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ABSTRACT: Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or
a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often un-
satisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportuni-
ties, and substantial contributions can be made through the informed application of biomedical engineering strategies.
This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for
surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to
realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a
few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited
by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have
an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result,
wait-and-see surgical decisions can lead to undesirable and less successful “delayed” repair procedures. In this fight for
time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional
recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered
nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and
track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regen-
erative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic
and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.
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I. INTRODUCTION

I.A. Incidence of Peripheral Nerve Injury
The peripheral nervous system (PNS) is damaged
primarily by traumatic injury, surgery, or repetitive
compression (tunnel syndromes). Traumatic injuries
can occur due to stretch, crush, laceration (sharps
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or bone fragments), and ischemia, and are more
frequent in wartime, i.e., blast exposure. Peripheral
nerve injuries occur with surprising frequency, as
they are reported in up to 3% of a// trauma patients,
increasing to 5% if plexus and root avulsion cases
are included.' In addition to unanticipated injury,

PNS, peripheral nervous system; PLGA, poly(lactic-co-glycolic acid; T1B, tibial nerve; CP, common peroneal nerve;
BDNE, brain-derived neurotrophic factor; GDNE, glial-derived neurotrophic factor; TGF-p, transforming growth
factor B; MRI, magnetic resonance imaging; DT, diffusion tensor imaging; Gf, gadofluorine-M; NAA, N-acetyl
aspartate; DWI, diffusion-weighted imaging; DT, diffusion tensor imaging; ADC, apparent diffusion coeflicient;

FA, fractional anisotropy; EMG, electromyography
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nerves are damaged due to surgical manipulation or
unavoidable transection during tissue removal. For
instance, nerves are often sacrificed during intra-
abdominal and cervical surgical procedures such as
tumor resection. Overall, a recent study revealed that
PNS injuries were 87% from trauma and 12% due
to surgery (one-third tumor related, two-thirds non—
tumor related). Nerve injuries occurred 81% of the
time in the upper extremities and 11% in the lower
extremities, with the balance in other locations.* It
is important to note however, the incidence of PNS
injury is grossly underestimated due to the span of
causes and the intervention from many clinical dis-
ciplines, including orthopedic surgery, plastic sur-
gery, as well as neurosurgery.'

Injury to the PNS can range from severe, lead-
ing to major loss of function or intractable neuro-
pathic pain, to mild, with some sensory and/or mo-
tor deficits affecting quality of life. When surgical
repair of the nerve is required, the goal is to guide
regenerating sensory, motor, and autonomic axons
to the distal, degenerating nerve segment to maxi-
mize the chance of target reinnervation.> Despite
best efforts and modern surgical techniques, func-
tional restoration is often incomplete, with approx-
imately 50% of surgical cases achieving normal to
good restoration of function.*” Accordingly, there
is a clear need for biomedical engineering research
to develop novel strategies and grafting options to
improve outcomes following nerve damage.*

I.B. Executive Summary of Biomedical
Engineering Challenges

When a direct repair of the two nerve ends is not
possible, synthetic or biological nerve conduits are
typically used for small nerve gaps of 1 cm or less.
For extensive nerve damage over a few centimeters
in length, the nerve autograft is the “gold standard”
technique. The biggest challenges, however, are
the limited number and length of available donor
nerves, the additional surgery associated with do-
nor site morbidity, and the few eftective nerve graft
alternatives.9 A survey of clinicians indicated that
a direct surgical repair of the nerve is performed in
78% of the cases, autografts are used in 15% of cas-
es, alternative methods (i.e., conduits) are used 4%
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of the time, and the balance receives no repair.* Re-
pair results varied greatly among clinicians and may
reflect treatment decisions influenced by limited
confidence in alternative repair options. Moreover,
the literature is clear that autografting is superior
to all grafting alternatives. Nonetheless, given the
short supply and comorbidities associated with au-
tografts, comprehensive engineered solutions that
match or surpass the performance of autografts
would be extremely beneficial to improve overall
outcome following severe nerve injuries and/or
multiple nerve trauma scenarios.

In certain injury cases it may take many months
(typically 3-6 months, sometimes longer) to deter-
mine whether spontaneous restoration of function
will occur, causing the most opportune timing for
surgical augmentation to pass. If surgical repair is
then attempted, the delay reduces the likelihood
of success due to degeneration of the distal nerve
support structure and target (e.g., muscle) atrophy.
Biomedical engineers have a great opportunity to
contribute strategies to assist and improve surgical
decisions. In particular, there is currently a lack of
precision in our ability to noninvasively assess the de-
gree of nerve injury or to track the progress of axonal
regeneration. The development and validation of ad-
vanced neuroimaging modalities capable of assessing
axonal tract integrity and the progress of spontaneous
regeneration would be beneficial to properly grading
injuries and promptly identifying cases requiring sur-
gical intervention with less ambiguity.'0-!4

Degeneration of the axonal segment in the dis-
tal nerve is an inevitable consequence of disconnec-
tion, yet the distal nerve support structure as well as
the final target must maintain efficacy to guide and
facilitate appropriate axonal regeneration. There is
currently no clinical practice targeted at maintain-
ing fidelity of the distal pathway/target, and only a
small number of researchers are investigating ways
to preserve the distal nerve segment, such as the
use of electrical stimulation or localized drug de-
livery. Overall, biomedical engineering approaches
could contribute solutions to the most pressing
limitations in peripheral nerve repair, including
the development of tissue-engineered nerve graft
alternatives that match or exceed the performance
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of autografts, the ability to noninvasively assess
nerve damage and track axonal regeneration, and
the ability to maintain the efficacy of the distal
pathway and target.

I.C. Scope of this Article

For the biomedical engineer to improve upon current
peripheral nerve repair strategies, a thorough knowl-
edge of the anatomy, pathophysiology, and surgical
reconstruction techniques is prerequisite.>37815 Ac-
cordingly, we review the clinical presentations and
classification of nerve injuries, in addition to the
state of the art for surgical decision-making and re-
pair strategies. This discussion is framed to present
specific challenges that are required to substantially
improve the treatment of nerve injuries and to pro-
mote recovery in currently intractable cases. Particu-
lar attention is given to tissue-engineered constructs
to replace and/or augment the use of autografts, ad-
vanced neuroimaging and diagnostic modalities to
assess axonal integrity and track regeneration, and
strategies to maintain efficacy of the distal regenera-
tive pathway and target. Biomedical engineering ap-
proaches are appropriate to address these issues and
can substantially contribute at both the basic and
applied levels, ultimately resulting in improved sur-
gical management and functional recovery following
peripheral nerve injuries.

Il. PERIPHERAL NERVE ANATOMY AND
INJURY CLASSIFICATION

Il.LA. Peripheral Nerve Anatomy

The anatomy of a peripheral nerve is shown in
Fig. 1A. Axons are grouped into fascicles supported
by a collagenous endoneurium. Each fascicle is de-
lineated by a perineurium sheath—a perineural cell
layer serving as a blood-nerve barrier. Together, the
perineurium and endoneurium provide elasticity to
the nerve. Depending on the nerve and location,
the nerve can contain many fascicles (polyfascicu-
lar) or just a few (oligofascicular). The epineurium
is a loose connective-tissue sheath that defines the
nerve architecture. The external epineurium sur-
rounds all fascicles, whereas the mainly collagenous
internal epineurium provides mechanical support
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for the nerve fascicles and blood vessels. The me-
soneurium is the outermost connective tissue of the
nerve, spanning the epineurium to the surrounding
tissue. Structurally, the mesoneurium allows for ex-
pansion and contraction of nerve related to extrem-
ity movement. For instance, maximal flexion and
extension of the median nerve requires longitudinal
movement up to 3 cm distally. The nerve blood sup-
ply enters through the mesoneurium; blood vessels
run longitudinally within the epi- and perineurium
and end as capillaries in the endoneurium.®!6:17

II.B. Injury Classification
Depending on the injury type and severity, surgical

intervention may be required. Only a specific subset
of cases, however, may require a guidance conduit,
nerve graft, or tissue-engineered construct. Nerve
injuries are classified in two fundamental ways:
the broad pathological descriptions of H.J. Seddon
(neurapraxia, axonotmesis, and neurotmesis) and
degrees of anatomical disruption and regenerative
potential (1% through 5% degree) by S. Sunderland
(Fig. 1B and Table 1).!3!1° Neurapraxia (1% degree)
is a blockage of nerve conduction at a discrete loca-
tion. It is characterized by a short episode of myelin
breakdown and related dysfunction without physi-
cal disruption of the nerve tissues or axons; there-
fore, regeneration is not involved in repair. These
mild injuries are brought about by compression,
lack of blood flow, or mild blows, and the loss of
conduction returns within days to a few months. It
is not treated surgically and there is no need for a
tissue-engineered solution.

Axonotmesis (2 degree) is a more severe nerve
injury, characterized by axonal damage and Wallerian
degeneration of the distal nerve. Injuries are typically
due to a traumatic crush or stretch causing disrup-
tion in motor, sensory, and autonomic function. Here,
damaged proximal axons attempt to regenerate and
are guided by the distal nerve to reinnervate their
targets. In 2" degree injury, damage is purely axonal,
where the distal architecture and Schwann cell basal
lamina remain intact. No surgery is required as axons
regenerate down intact endoneurial tubes and recov-
ery of function is likely. Again, a tissue-engineered
solution is not needed in these cases.
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FIGURE 1. Nerve injury classification. (A) Cross-section of a normal nerve. (B) lllustration of injury clas-
sifications. Type |: myelin disruption with axons intact. Type Il: axon disruption with intact perineurium.
Type Ill: damaged Schwann cell basal lamina and endoneurial scarring inhibiting regeneration. Type IV:
nerve fascicle disruption and loss of the perineurium sheath; repair required. Type V: disruption of the
entire nerve; repair required. Type VI: mixed injury of all types along the damaged nerve. Reprinted

with permission from Ref. 6.

In 3 degree injury, there is disruption of the
Schwann cell basal lamina and potential scarring
of the endoneurium. Axons must grow through
the damaged and scarred tissue, which may lead to
axonal loss and misdirection. Regeneration remains
within fascicles since the perineurium is intact.
Surgery is typically not needed unless it localizes to
a known area of nerve compression. In these cases a
surgical decompression procedure will ensure there
is not a superimposed component of compression.

The perineurium is disrupted in 4" degree in-
jury and the nerve is typically nonfunctional. Con-
tinuity within the epineurium is comprised of scar
tissue with little to no tissue architecture, which
results in a blockage of regenerating axons. Recov-
ery does not occur without surgical intervention to
remove the lesioned area. Unfortunately, diagnosis
requires a wait-and-see period, typically over three
months, the time it takes for 2" and some 3™ de-

gree injuries to show signs of repair.

Neurotmesis (5" degree) is the most severe
lesion, characterized by a complete transection of
the epineurium and encapsulating connective tis-
sue continuity. Surgical intervention is required
for repair and to prevent neuroma formation at
the proximal stump. An additional 6% degree in-
jury, described by S.E. Mackinnon, characterizes a
mixed pattern of injuries (1st to 5 degree) to the
multiple fascicles in the nerve.®

lll. PERIPHERAL NERVE REPAIR: SURGICAL
GOALS AND STRATEGIES

PNS reconstructive repair strategies are focused on
3" to 6™ degree nerve injuries, whereas 1% and 2™
degree injuries are left to heal on their own. While
3 degree injuries are not the most severe, they are
the most challenging due to the diagnostic process.
Patients present with functional loss; however, the
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TABLE 1. Peripheral Nerve Injury Classification*

Injury Degree Pathology Treatment TEC Prognosis
I Axons not disrupted None Not Full recovery
Neurapraxia Possible segmented demy- needed Days up to 3 months
elination
Il Axon loss None Not Good, rate is slow
Axonotmesis Endoneurium, perineurium, Slow regenera- needed
epineurium intact tion 2-3 cm per
month
II Axon loss None ? Incomplete
Endonurium disrupted Surgery only if Axonal loss and mis-
Perineurium, epineurium no recovery in direction
intact 2-3 months
Slow regenera-
tion 2-3 cm per
month
v Axon loss Surgery re- Yes Regeneration only
Endonurium, perineurium quired to after repair
disrupted remove scar Availability of graft
Epineurium intact tissue. material
Autograft or
conduit for gaps
\ Complete disruption of Surgical repair Yes Regeneration only
Neurotmesis nerve to proximate after repair
the two ends Availability of graft
Direct repair, material
Autograft or
conduit for gaps
Vi Mixed injury Surgical repair Yes

*Adapted from Refs. 6, 1; TEC = tissue engineered construct.

injury is intra-endoneurial and damage is not vis-
ible with conventional functional assessments or
imaging modalities. Ultimately, the injury could
undergo spontaneous regeneration similar to a 2™
degree injury, or develop inhibiting scar tissue and
require surgical intervention to restore regenera-
tion. A waiting period of three months is standard
prior to surgery, during which 2" degree injuries
would see a return of function.®

There are three surgical reconstruction strate-
gies: (1) direct repair, where the proximal and distal
nerve ends are sutured back together, (2) nerve graft-
ing, required to bridge a gap between nerve ends,
and (3) nerve transfer, when the distal or proximal
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nerve segment is unusable or missing (Fig. 2). A
direct repair is appropriate for reconnection of in-
jured nerves where no gaps exist between the ends,
and the stumps are sutured together in what is
called an end-to-end neurorrhaphy. An important
microsurgical technique is to identify, separate, and
join each perineurial defined fascicle.$ If there is
no scar tissue at the suture line, proximal axons ex-
tend into a network of proliferating Schwann cells
within the distal (degenerating) nerve segment,
which promotes and directs regeneration. Diffi-
culties with this strategy include reproducing the
original alignment of nerve fascicles and a neuror-
rhaphy without inducing tension.®20-!
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FIGURE 2. Options for surgical nerve repair. The method of repair depends upon the classification and
location of the injured nerve. Note that more proximal injuries require strategies other than grafting
because the distance is too long for regeneration to occur before the distal nerve and target lose the
ability to support regeneration. Figure adapted with permission from Ref. 20.

Importantly, a direct repair must be outside
of the zone of injury, meaning the entire damaged
nerve segment must be removed to prevent scar
tissue formation and inhibition of regeneration.?!
This and other surgical procedures such as tumor
excision can leave a gap between nerve endings.
In these cases an end-to-end neurorrhaphy would
induce longitudinal tension, known to lead to poor
outcome. In particular, tension has been shown
to attenuate or stop epineurial blood flow that
is believed to cause tissue necrosis from chronic
ischemia. Under high tension, the perineurium
may become permeable and endoneurial structures
damaged 316172223 To avoid tension when joining
the nerve ends, the preferred bridging material is
an autograft. Similar to the distal nerve segment,
an autograft provides a Schwann cell loaded scaf-
fold and tissue architecture primed for regenerating
axons emanating from the proximal nerve.

Challenges with grafting include graft pheno-
type (sensory versus motor), donor site morbidity,
and limited grafting material>6202425 In addition,
axons can be easily misguided with increasing growth

distance through grafts or a distal nerve that loses its
supportive capacity before regeneration is complete.
The importance of graft phenotype is highlighted
here. First, superior motor axon regeneration and
recovery is achieved when using motor nerve rather
than sensory nerve grafts. Specifically, motor axon
growth appears to prefer a motor pathway, whereas
sensory nerves are less specific (Fig. 3).2-7 Motor
grafts may also be preferred over sensory due to their
larger endoneurial tube diameter (which can yield
greater axon number). However, sensory nerves are
the preferred sources for autografts, as the primary
complication is localized numbness (which is often
temporary) rather than a motor deficit.

In cases where autografts are not possible, al-
lografts and nerve conduits are the alternatives.
Allografts necessitate systemic immunosuppressive
therapy for up to two years and are typically reserved
for patients with extensive or otherwise irreparable
nerve injuries. Acellularized allografts have been used
with success and experimentally shown to be superior
to nerve conduits, but are relatively cost-prohibitive
and not the primary means of repair in nerve graft-
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FIGURE 3. Effect of nerve phenotype on regenerative capacity. Nerve grafts consisting of primarily
motor fibers allow for more robust regeneration than from grafts consisting primarily of sensory fibers.
This is because motor axons regenerate preferentially through motor grafts, whereas sensory axons will
regenerate down either phenotype. Control was an isograft. Reprinted with permission from Ref. 27.

ing. 202 Accordingly, a good substitute to nerve graft-
ing for short defects is a nerve conduit,a short cylinder
that approximates the nerve stumps and constrains
aberrant regeneration. Conduits can be either bio-
logical (e.g., vein grafts) or synthetic (e.g., PLGA or
collagen tubes).>¢7230 Indeed, synthetic conduits
are appealing since they can be easily fabricated and
stored until they are needed. Nerve conduits are used
clinically for smaller, noncritical nerve repair (gaps
<3 c¢m) in small-caliber nerves. Unfortunately, con-
duits fail to promote adequate nerve regeneration
in critical large-diameter nerve gaps longer than 1
cm or small-diameter nerve gaps longer than 3 cm
in length.>3! Since empty conduits do not contain
factors that may directly facilitate axon regeneration,
such as extracellular matrix, growth factors, or sup-
port cells, nerve grafting remains superior overall.
Nerve conduits have also had success as a protective
wrap, particularly in surgical areas.

In some cases, the proximal segment of the
nerve is not available or the gap between the proxi-
mal and distal ends is too large to graft. When the
two ends cannot be connected or the injury is too
proximal (too far) for axons to regenerate, axons are
recruited from a nearby donor nerve to reinnervate
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the distal nerve.”® One strategy is to connect the
distal end to an adjacent uninjured nerve in an
end-to-side neurorrhaphy (Fig. 4). When motor
recovery is necessary, a redundant motor nerve is
sought and injured by epineurotomy or compres-
sion proximal to the suture site. Motor axons will
sprout only in an end-to-side fashion with injury
(Fig. 4A). This injury induces axons to extend into
the newly coapted distal nerve segment. The disad-
vantages of this method are inducing an additional
injury and the “stolen nerves” causing a reduction
of innervation at the original healthy nerve target.
Sensory axons, on the other hand, will sprout spon-
taneously without injury (Fig. 4B).3233

A growing practice in motor nerve repair is a
nerve transfer, the redirection of a nearby motor nerve.
The goal is to maximize functional recovery with fast
reinnervation of denervated motor targets. First, an
expendable motor nerve must be located near the
target denervated muscle. In a high ulnar transection,
for instance, the distal anterior interosseous motor
nerve can be redirected to the denervated ulnar motor
target. This method provides fast and superior muscle
reinnervation compared to other techniques, which
rely more heavily on slowly regenerating nerves. The



88

A. Regenerative Sprouting

A)/ Recipient Nerve
/

Pfister et al.

—

%

=

Donor Nerve

Motor Target

B. Spontaneous Collateral Sprouting

///v./// Recipient Nerve

rd

"

= T
I

LY

%
=

Donor Nerve

Motor Target

FIGURE 4. Regeneration schemes from an end-to-side neurorrhaphy. When the proximal nerve is un-
available, the distal segment is attached to a neighboring redundant nerve in an end-to-side neuror-
rhaphy. (A) To redirect motor and sensory fibers, the donor nerve must be injured to induce regeneration
into the distal segment of the damaged nerve. (B) Unlike motor axons, sensory axons will spontaneously
sprout without inducing an injury. Reprinted with permission from Ref. 33.

disadvantages are finding an expendable donor nerve
near the target muscle with a large enough motor fi-
ber population from which to “borrow.” Importantly,
the donor nerve target should be synergistic with the
redirected target for the brain to accommodate the
rewiring of the newly redirected fibers. Currently
there are only a very limited number of surgeons that
perform nerve transfers.

IV. NEUROBIOLOGICAL SEQUELAE
AFFECTING PERIPHERAL NERVE
REGENERATION

IV.A. Acute Cellular and Molecular Events
That Support Nerve Regeneration

Axonal regeneration after peripheral nerve injury
may be reasonably good after surgical repair. Many
cellular and molecular events take place after nerve
injury that ultimately support nerve regeneration

and target reinnervation.?*33 Briefly, injured neu-
rons typically survive if the injury is not too close
to the cell body. After injury the neuronal cell body
undergoes chromatolysis in which changes in gene
expression prepare the neurons for regeneration of
their axons.*® The nerve stump distal to the injury
undergoes Wallerian degeneration with loss of my-
elin and axons followed by the proliferation of the
Schwann cells within the endoneurium. The latter
cells play a critical role in regeneration of axons
through the distal nerve stump to reinnervate the
denervated and atrophic muscle.*> In particular,
a choreographed organization of Schwann cells
forms aligned columns, referred to as the Bands
of Bungner, which provide neurotrophic support
and contact guidance to direct axonal regeneration
towards appropriate targets. Thus, neurons com-
mence regeneration of their axons in the growth-
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permissive environment of the Schwann cells in
the distal nerve stumps.?

However, despite these pro-regenerative
changes in damaged axons and Schwann cells,
functional outcomes in patients are frequently
poor, especially for injuries requiring great lengths
for target reinnervation, such as the brachial and
lumbar plexi. This has generally been attributed to
deterioration of denervated targets.?* This view,
however, is being revised with evidence that de-
terioration of the regenerative power of injured
nerves and the growth environment of the distal
nerve stumps accounts for regenerative failure
with time and distance.3*3

IV.B. Chronic Nerve Regeneration and
Target Reinnervation

Motoneurons are normally in contact with the
muscle fibers they supply. This neuron-muscle pair
is called the motor unit. The motor unit was referred
to as the common final pathway of the nervous
system by C.S. Sherrington in the last century be-
cause all of the processing in the nervous system
ultimately results in movement. Considering the
problems of poor functional recovery after periph-
eral nerve injuries, both time and distance of axon
regeneration are critical. At the wrist, for example,
median and ulnar nerve injuries involve distances
of about 100 mm over which axons must regen-
erate to reach many of the hand muscles. At the
average regeneration rate of 1 mm/day in humans,
recovery requires at least 100 days. More proximal
nerve injuries, such as a brachial plexus injury, in-
volve distances of up to a meter and require periods
of more than 2-3 years for regenerating axons to
reach and reinnervate the hand muscles (Fig. 5A).
In such cases, it is well recognized clinically that
there may be little or no restoration of function.
During this long period of time, neurons remain
without target connections (axotomized) and the
target organ and distal nerve remain denervated
until reached by regenerating axons. Although this
failure of functional recovery has been attributed
to irreversible atrophy of muscle targets and their
replacement by fat, animal experiments are now
indicating that it is the progressive failure of the
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neurons and Schwann cells to sustain axon regen-
eration over distance and time.?*%

A classic study by Fu and Gordon (1995) was
performed to determine the independent effects
of prolonged axotomy and chronic denervation
of the Schwann cells in the distal nerve using a
cross-suture technique in a rat model of nerve in-
jury (Fig. 5B).%” For chronic axotomy of the tibial
neurons, the tibial nerve (TIB) was transected and
the proximal nerve stump sutured to an inner-
vated muscle and left alone (Fig. 5C). At specific
time-points ranging from 0 to 12 months (chronic
axotomy), the redirected TIB nerve was recut and
sutured to the freshly denervated common peroneal
(CP) nerve to encourage regeneration into freshly
denervated tibialis anterior muscle (Fig. 5D).* To
consider the effects of prolonged denervation of
the Schwann cells in the distal nerve stump, the
CP nerve was transected. Regeneration of axons
through the chronically denervated CP nerve
stump was prevented by ligating and suturing the
proximal CP nerve stump to a nearby innervated
muscle (Fig.5E). After 0-12 months, the TIB nerve
was cut and sutured to the chronically denervated
CP distal nerve stump to encourage regeneration
of motor axons into the distal nerve stump con-
taining the chronically denervated Schwann cells
(Fig. 5F).%7

For both the chronically axotomized and den-
ervated animals, at least 5 months were allowed for
axonal regeneration. The number of motoneurons
that had regenerated their axons and how well the
reinnervated muscles recovered were determined.
Ventral nerve roots (L3 to L5) were isolated to
tease out single axons to stimulate and record the
isometric contractile forces of the muscle fibers
supplied by the single motor axon (motor unit
force) as well as the contractile forces developed by
all the reinnervated tibialis anterior muscle fibers
(Fig. 6A). The ratio of the muscle and motor unit
forces provides a good estimate of how many mo-
tor axons regenerate and reinnervate target muscle
after prolonged axotomy or after prolonged dener-
vation of the Schwann cells (Fig. 6B).

'This study found that the regenerative capacity
of neurons declines with time due to both prolonged
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FIGURE 5. lllustrations of (A) injuries to large nerves in the arm and the distances that must be traversed
by regenerating nerves to reinnervate denervated hand muscles at a rate of 1 mm/day in humans; (B)
the rat hindlimb, showing the branching of the sciatic nerve into the common peroneal (CP), nerve
innervating the tibialis anterior muscle of the ankle flexor muscle group, and the tibial (TIB) nerve
innervating the ankle extensor muscles; the sural nerve innervating skin is not shown; (C) TIB nerve
transection by cutting all the TIB neuronal axons to separate their axons from target connections and
thereby to axotomize the TIB neurons; (D) delayed suture of the proximal nerve stump of axotomized
TIB neurons to freshly denervated CP distal nerve stump to encourage nerve regeneration; (E) CP nerve
transection to promote Wallerian degeneration and denervation of Schwann cells, prior to (F) delayed
suture of freshly axotomized TIB nerve to chronically denervated CP nerve.

axotomy and the Schwann cell denervation. As the
period of prolonged axotomy increased, the number
of motoneurons that regenerated decreased. After
delayed repair of more than 4 months, regenera-
tion declined to ~33% of the number of axons that
could regenerate after an immediate nerve repair.®
Of considerable importance was that recordings of
maximal contractile ability indicated full recovery
despite the reduction in numbers of motor nerves

that reinnervated denervated muscle. This apparent
paradox of full recovery of muscle was accounted for
by findings that the reduced numbers of regenerating
nerves that supplied the muscle reinnervated three
times as many denervated muscle fibers as they nor-
mally do. The enlarged motor units compensated for
the poor regenerative ability of regenerating nerves
after prolonged axotomy. These findings demon-
strated the detrimental effects of time and distance
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FIGURE 6. lllustration of (A) experimental setup to stimulate either all (in the sciatic nerve) or single
axons (in ventral root filaments) that regenerated to supply the tibialis anterior muscle in the rat; (B) the
muscle twitch contraction in response to stimulation of all the axons, motor unit twitch contractions in
response to stimulation of single axons, and calculation of numbers of TIB axons that reinnervated the
muscle from the ratio of the muscle twitch force and average motor unit force; (C) application of retro-
grade dyes, Fluoro-Ruby and Fluoro-Gold, to TIB axons and CP axons to count Fluoro-Ruby-labeled TIB
motoneurons that normally send axons through the TIB nerve and Fluoro-Gold TIB motoneurons that
regenerate their axons through the Schwann cells in the CP distal nerve stump.

on regenerative capacity of injured nerves that had more than 4 months of prolonged denervation, less
not been appreciated previously. than 10% of the motoneurons were able to regen-

'The effect of prolonged denervation of Schwann  erate their axons successfully through the atrophic
cells on the ability of motoneurons to regenerate Schwann cell environment. This poor regenerative
their axons was even more profound. After periods of  capacity could not be compensated by the previously
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seen threefold increase in numbers of muscle fibers
reinnervated by each motoneuron. Accordingly,
many muscle fibers were not reinnervated, resulting
in denervation atrophy. The poor functional reinner-
vation was due to the chronic denervation alone and
not chronic axotomy because the tibial nerve was cut
and immediately cross-sutured to the chronically
denervated CP distal nerve stump.

Many could still argue that these findings re-
flect the inability of denervated muscle to accept re-
innervation after prolonged periods of denervation.
The surgical paradigm was therefore repeated with
the additional experimental method of retrograde
dye labeling of neurons to count motoneurons that
had regenerated their axons (Fig. 6C).* The results
of this study demonstrated conclusively that indeed
the prolonged neuron axotomy and the prolonged
denervation of Schwann cells progressively reduce
regenerative success and explain why peripheral
nerve regeneration so frequently fails to achieve
functional recovery.*# In summary, axon regen-
eration after peripheral nerve injury progressively
fails due to chronic axotomy of the neurons, chronic
Schwann cell denervation, and is not due solely to
irreversible atrophy of muscle as was previously be-
lieved. Indeed, chronically denervated muscles can
be reinnervated and in turn, will function.

IV.C. Treatments to Improve Outcome
Following Chronic Axotomy and
Denervation

Based on these seminal findings, several experi-
mental manipulations to obviate the negative ef-
tects of chronic axotomy and prolonged denerva-
tion have been explored in attempts to improve
peripheral manipulations to overcome the effects
of chronic axotomy include: electrical stimulation
to both (1) accelerate expression of neurotrophic
factors within the neurons, including brain-derived
neurotrophic factor (BDNF), and (2) accelerate
axon outgrowth across the lesion site, (3) the use of
exogenous sources of neurotrophic factors, includ-
ing BDNF and glial-derived neurotrophic factor
(GDNF),%04748 and (4) FK506 to reverse effects
of chronic axotomy on neurons.”” In the case of
chronic denervation of Schwann cells, some ma-
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nipulations can improve axon regeneration, includ-
ing activation of atrophic dormant Schwann cells
with the cytokine transforming growth factor 3
(TGF-B) or enhancing their numbers by injection
of skin-derived progenitor cells that differentiate
into Schwann cells.**!

All of these techniques were found to promote
axon regeneration. In particular, one has been re-
cently brought to fruition in human patients in a
small pilot clinical trial.#52-5* Patients suffering
severe carpal tunnel syndrome were selected with
documented loss of at least 50% of the functional
motor units in the thenar eminence of the hand
(innervated by the injured median nerve). Walleri-
an degeneration was verified electrophysiologically.
All of the patients underwent surgical release of
the carpal tunnel by cutting through the overlying
ligament. In half of the patients, the median nerve
proximal to the compression injury was electrically
stimulated at a frequency of 20Hz for 1 hour. The
protocol used was previously established to be ef-
fective in accelerating axon outgrowth across the
surgical site of reunion of a cut femoral nerve in
rats.”* In addition, a motor unit number estimation
technique using electromyographic rather than
contractile force recordings was used before surgery
to establish numbers of remaining motor units and
at 3-month intervals after surgery to evaluate mus-
cle reinnervation. Without electrical stimulation,
there was only a small increase in the number of
innervated motor units over 12 months after carpal
tunnel release. In contrast, those patients whose
median nerve was stimulated proximal to the site of
injury for 1 hour demonstrated significant increases
in motor unit numbers within 6 months and com-
plete restoration of numbers of motor units in the
thenar eminence by 12 months. These promising
results indicate the clinical potential for use of elec-
trical stimulation to promote functional recovery
after surgical repair in humans. The effectiveness
of this method for ulnar nerve compression at the
elbow is being investigated with promising results
(Ming Chan, unpublished observations).

In summary, the regenerative capacity of the
peripheral nervous system inherent to sensory and
motor neurons depends critically on the growth
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response in the neurons and the growth support
of Schwann cells in the distal nerve stumps of the
injured nerve. The growth response of neurons, in-
cluding upregulation of growth-permissive genes,
cytoskeletal proteins, and neurotrophic factors, is
relatively short-lived and declines exponentially
with time. Similarly the growth permissive state of
the Schwann cells deteriorates such that the cells
progressively fail to support axon regeneration
with declining expression of neurotrophic factors
and the low-affinity p75 receptor for the factors.
Several techniques have been explored to obviate
the negative effects of time and distance, many of
which show promising potential.

V. BIOMEDICAL ENGINEERING
CHALLENGE AND FOCUS AREAS

V.A. Importance of Biomedical Engineering
Contribution to PNS Repair

Biomedical engineers have made significant con-
tributions to PNS repair, yet clearly there are un-
met needs and future opportunities. Indeed, surgi-
cal techniques will continue to improve, potentially
necessitating advancement in tissue engineering,
biomaterials, surgical tools, and aids. However,
current best practices of autograft surgery require
stealing healthy nerves to fix damaged nerves, a
practice that needs alternatives. In particular, more
effective off-the-shelf alternatives and ultimately,
an equal replacement for the autograft are desired.
Biomedical engineering will be a major player in
the design, manufacture, storage, and implementa-
tion of advanced synthetic conduits, incorporation
and delivery of neurotrophic factors, or the pro-
cessing and storage of biological conduits such as
acellularized allografts. In addition, the decision of
surgical intervention remains ambiguous in some
cases, resulting in undesirable delayed repair asso-
ciated with a poor outcome. Thus, advanced neu-
roimaging and/or functional assessment of nerve
injury and regeneration would be beneficial.
Biomedical engineers must identify the com-
ponents essential to fulfilling the needs of the
clinician. Categorically, the primary current un-
met clinical needs lie in three interrelated areas:
(1) tissue-engineered nerve grafts, (2) advanced
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diagnostics, and (3) pathway/target maintenance.
In addition, the field would benefit from advanced
models capable of replicating important facets of
peripheral nerve injury and regeneration both in
vivo and in vitro.

V.B. Applications for Growth Conduits,
Nerve Grafts, and Tissue-Engineered
Constructs

Currently, the most active biomedical research is
directed at developing better synthetic nerve con-
duits, with the goal of producing adequate nerve re-
generation across lengths near or slightly exceeding
3 cm. This will satisfy only the subset of short and
small-caliber injuries that are commonly repaired
via grafting.* Long nerve gaps (>3 cm) and proxi-
mal nerve injuries such as brachial plexus injuries
will continue to be difficult because nerve regen-
eration progressively fails with distance and time,
and the Schwann cells in the distal nerve stumps
progressively fail to support axon outgrowth.3-37-38
While biomedical engineers are eager to exceed
the regenerative potential of nerve autografts, work
could also be done to create options or enhance-
ments for nerve transfers or develop more econom-
ical means of processing and storing acellularized
allografts.

Nonetheless, given the limitations in supply
and comorbidities associated with autografts, engi-
neered solutions that match or surpass the perfor-
mance of autografts would be extremely beneficial
to improve overall outcome following severe nerve
injuries and/or multiple nerve trauma scenarios.
A particular area of need is the surgical repair of
4™ to 6™ degree injuries that necessitate removal
of a segment of nerve, often leaving a substantial
gap between the proximal and distal ends. Unfor-
tunately, the tension created by pulling the ends
together results in the interruption of intraneural
blood flow. This is believed to be responsible for
tension-induced neuropathy and conduction block-
age from the disruption of axons and endoneural
tubes or separation of the suture line.'62223 Accord-
ingly, these nerve gaps require a bridging material
or graft. Engineered biomaterials and degradable
conduits have oftered an alternative to autograft-
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ing in small-caliber nerves over short 1- to 3-cm
lengths. The most pressing unmet clinical need,
deserving of substantial biomedical research focus,
is improved conduits to support axon growth over
longer distances and with the goal of matching and
eventually exceeding the efficacy of the autograft.

While autografts remain the gold standard of
care, limited donor nerve, donor site morbidity,
and the need for an additional surgery have sur-
geons calling for alternatives. The use of autografts
is limited by the size of defect because they are
nonvascularized and are subject to central necrosis
in large-diameter grafts.’%-1%17.2 In addition, the
donor nerve needs to be architecturally matched to
the anatomical fascicular patterns (number and di-
ameter) of the nerve in repair. Finally, grafts involve
two suture lines, which can promote intraneural
fibrosis and lead to constriction and compression
on the regenerated nerve.®*? It is clear, however,
that for any alternative strategy to be clinically ap-
plied, it needs to work as well or better than the
autograft. Currently employed alternative strategies
are allografts and nerve conduits. Allografts are im-
munogenic and are typically avoided as discussed
above, but the use of de-cellularized allografts is
gaining attention.> While the nerve architecture is
preserved, they require the same cellular infiltration,
signaling, and vascularization as nerve conduits,
which may limit their use.?

More commonly, the surgeon will use an open
lumen nerve conduit to constrain axon growth
to the distal stump while preventing neuroma
formation and infiltration of fibrous tissue. After
transection, axoplasm is lost from the nerve and
the fibroblasts and Schwann cells secrete several
neurotrophic factors.¥ Conduits are thought to
localize Schwann cell migration and allow trophic
factors to accumulate. A fibrin matrix is formed
within the lumen of the conduit accommodating
Schwann cells, fibroblasts, and macrophage migra-
tion.26%1329 Importantly, conduits must be degrad-
able, as nondegradable conduits must be removed
to avoid scar tissue accumulation that leads to nerve
compression.®

Engineered nerve conduits are considered
clinically useful only for noncritical, small-diameter
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sensory nerves 3 cm or less. First, the volume of the
conduit lumen appears to be critical to maintain
a high concentration of growth factors.® Second,
a small diameter is important for the diffusion of
nutrients into a nonvascularized area. Third, con-
duit length needs to be short to allow for complete
infiltration of Schwann cells.”?® When used on
small-caliber sensory nerves up to 3 cm, conduits
are better than end-to-end repair. In fact, in some
cases results are better than an autograft in gaps less
than 1 cm.>?* Unfortunately, regenerating nerves
do not maintain specificity when using a conduit,
and axons cross-innervate the targets.?2%3136

The goal of a peripheral nerve graft is to direct
axon growth towards the disconnected distal nerve,
ideally down the correct endoneurial tubes and to
the original target.%!> For biomedical engineering
efforts to be successful there must be consideration
of the molecular interactions of normal nerve in-
jury and repair. The autograft has Schwann cells
and basal lamina, endoneurial, perineurial, and
epineurial architecture, and even unknown phe-
notypic factors influencing sensory versus motor
regeneration.”’ Elucidating these properties will
provide enormous potential for growth in the field
of nerve tissue engineering. In particular, Schwann
cells in an autograft proliferate within the basal
lamina lined endoneurial tubes and form the Bands
of Bungner, the aligned columns that create a scat-
told to guide regenerating axons.®!3

The engineering challenges for nerve repair
are to accommodate larger deficits (diameter and
length), maximize the number of regenerating axons,
and guide axons with target specificity. An effective
nervous tissue construct may require some combina-
tion of three primary components: a scaftold, cells,
and signaling factors. Scaffolds provide a temporary
structure necessary for Schwann cell migration and
axon outgrowth, and are eventually replaced with
host cells and extracellular matrix. In nerve conduits,
the wound healing response forms a fibrin matrix
within the lumen but only over short lengths.!5-58-60
Ideally, an engineered scaffold should serve to mimic
the architectural anatomy and extracellular matrix of
the injured nerve segment.

Table 2 provides a summary of engineered
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constructs developed and tested in animal models
using a variety of conduit materials and luminal
components. The conduit refers to the cylindrical
tube used to approximate the nerve ends, whereas
the luminal contents support and guide regenerat-
ing axons. The efficacy and test methodology can
be found in the original articles cited in the table.
The presence of a luminal biomaterial scaffold is
essential as a substrate on which cell migration
and axon outgrowth can proceed down the conduit
length. Many conduit luminal scaffolds have been
attempted, from collagen and laminin hydrogels
to synthetic and collagen filaments and chan-
nels.2781561-65 However, these modifications have
not produced results better than the autograft and
therefore do not offer a substantial benefit over the
autograft at this time.>86 Clearly, there are critical
factors associated with autografts, or even decel-
lularized allografts, which are yielding superior
performance compared to engineered solutions.
'The systematic determination of these critical suc-
cess factors may reveal key design criteria for next-
generation nervous tissue constructs.

The addition of Schwann cells to nerve con-
duits is sometimes overlooked and may be an
increasingly important component in larger nerve
constructs.3636668  Axon communication with
Schwann cells is not yet fully understood, though it
is clear that Schwann cells are a critical component
for nerve regeneration.’>%-"! Schwann cell migra-
tion into nerve conduits or acellularized allografts
is insufficient beyond 2 c¢m and is therefore one of
the major limiting factors to axonal advancement
over large gaps.®*3! To overcome this limitation
many studies investigated using exogenous cells
within the nerve construct (Table 2). While they
have shown great promise, Schwann cells are im-
munogenic and their use in a nerve conduit re-
quires immunosuppressive therapy unless they are
derived from the patient themselves. Further study
is needed on autologous Schwann cell isolation and
expansion (e.g., proliferation) before they become
clinically useful.”’~7* In parallel, techniques that in-
crease host Schwann cell migration should be vig-
orously pursued, for nerve conduits, acellularized
allografts, and ultimately engineered constructs de-
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signed specifically for that purpose. Finally, as nerve
constructs become larger, mass transport issues will
become increasingly important, and pre- or pro-
vascularized grafts may be required to maintain
viability of transplanted and/or infiltrating cells.

Neuroscience research has produced numerous
studies on axon growth and pathfinding throughout
embryogenesis and development.”>”" In addition,
there have been investigations on alterations in sig-
naling following nerve injury.8-3348:69.75.78-80 Accord-
ingly, research in axon regeneration has considered
these factors and has begun to incorporate purified
neurotrophins and other signaling factors in nerve
conduits.®136381 The biggest challenges have been
how to incorporate the factor into the conduit and
studying the eftects of more than one factor at a
time. Table 2 also lists many trophic factors that
have been investigated in nerve conduits; for re-
views, see Refs. 8, 82-84. Currently there are three
general biomaterial approaches for local factor de-
livery: (1) incorporation of factors into a conduit
filler such as a hydrogel,®!15636467:68 (2) designing a
drug release system from the conduit biomaterial
such as microspheres, and (3) immobilizing factors
on the scaffold that are sensed in place or liberated
upon matrix degradation.61:62:63.82-87

Solving the complexity of nerve repair can also
greatly benefit from creative design. Long nerve gap
lengths have been among the most difficult injuries
to repair, demonstrating slow rates of regeneration
and often incomplete recovery. Thus, the continued
development of novel concepts to accommodate
longer nerve deficits must be encouraged. One
creative approach to bridge larger gaps is the com-
bination of nerve grafts and open conduits in an
alternating “stepping stone” assembly, which may
perform better than an empty conduit alone.> An-
other is the addition of minced nerve to the lumen
of a conduit, with outcomes that exceed those with
an empty conduit.®® In a fundamentally difterent
approach, functional axon fascicles grown in vitro
have been used as a persistent pathway to guide
regeneration.3%-%2

It is clear that countless specific parameters
associated with nerve conduits and/or tissue-engi-
neered grafts need to be considered. Computational
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models can be useful in helping to organize and
prioritize the importance of various design crite-
ria.”* For example, models could provide insight
into increasing conduit length demands, improv-
ing mass transport, and enhancing vascularization
and cellular migration. Computational models
could also be used to predict how these parameters
change with varied diameter conduits and identify
critical limitations.

V.C. Advanced Injury Diagnostics and
Regenerative Tracking

Current methods to assess the extent of nerve in-
jury or potential of recovery in human patients are
not accurate enough to make early surgical deci-
sions in every case.”"!°! Peripheral nerve injuries
are typically diagnosed by clinical examination and
in some cases with the aid of electrophysiological
data. Gross and fine function and evoked poten-
tials are effective in correctly distinguishing minor
neurapraxia from axonotmesis and neurotmesis.
Using current diagnostic techniques, however, it is
difficult to precisely discriminate between 2, 3%,
and 4™ degree lesions as classified on the Sunder-
land scale, making the necessity of surgical inter-
vention unclear. In particular, 2" degree injuries
typically recover spontaneously and should not
receive surgery. Third degree injuries can recover
in a similar spontaneous fashion; however, if there
is scarring of the endoneurium, effective regenera-
tion cannot proceed without surgical decompres-
sion and removal of the scar tissue. Fourth degree
injuries, where the perineurium is disrupted, will
require surgery in almost all cases for functional
restoration to be achieved.

In cases of surgical uncertainty, it often takes
several months to years as physicians monitor
signs of recovery. Upon determining that regen-
erative restoration of function will not occur, the
most opportune time for surgical intervention has
passed. Since acute repair leads to better functional
restoration, delays introduced by “wait-and-see”
diagnostics can be costly. When surgical interven-
tion occurs months after injury, regeneration will
ensue in an environment not optimized for axonal
regeneration that is marked by degeneration of the

Pfister et al.

distal nerve support structure and target atrophy.
Moreover, in 3" degree injuries that eventually
require surgery, the primary hindrance to regenera-
tion is the scar tissue that develops after the inju-
ry—underscoring the need to periodically evaluate
the regenerative environment and make surgical
decisions as quickly as possible. When restoration
of function does not occur and incomplete healing
of a nerve injury is suspected, the current state of
the art for diagnosis is invasive exploration. Thus,
surgical decision-making can be greatly improved
by noninvasive diagnostic methods that can accu-
rately assess peripheral nerve injury severity as well
as track regenerative progress.

Many potential noninvasive diagnostics with
the ability to track axonal regeneration are still
in experimental phases. In particular, advanced
neuroimaging strategies are being developed with
routines capable of accurate assessment of the
initial degree of nerve injury and tracking axonal
regeneration either directly or indirectly. Specifi-
cally, advanced magnetic resonance imaging (MRI)
routines are providing promising solutions to this
problem, but have only recently been used in this
capacity.'9>-1% These techniques build on the semi-
nal work of Howe et al., who developed MRI rou-
tines to specifically image nerves.!’

A summary of seminal studies applying MRI
with various protocols to grade injury severity and
assess regeneration is presented in Table 3. These
studies include both clinical (human) applications
and animal studies, with the latter using controlled
injuries and histopathological, electrophysiological,
and/or behavioral correlations. It is important to
note that in a few animal studies, damaged nerves
were excised prior to imaging to acquire sufficient
resolution and remove motion artifacts associated
with respiration. The principles applied in these
cases, however, provide valuable proof of concept.
Particularly promising techniques to differenti-
ate between healthy and injured nerves exploit
the anisotropy in the longitudinally aligned axons
and nerve sheaths, such as diffusion tensor imag-
ing (DTI) and tractography.!!-141% Notably, DTI
has also been use to image white matter tracts in
the brain.!®1% Adjunct technologies such as axonal
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tracers and contrast agents that are detectable via
advanced or standard MRI, could also be used as
guides to improve nerve diagnostics and regenera-
tive tracking.

Several recent studies have demonstrated the
use of MR neurography to indirectly or directly as-
sess nerve degeneration and, in some cases, track
myelin reorganization and/or axonal regenera-
tion.!1%-11 Despite initial concerns that MRI does
not provide high-resolution images of nerve, several
innovations, including fat suppression, optimized
pulse sequence echo times, and T2-weighted scans,
have provided high-fidelity images of peripheral
nerves. Using these MR protocols, damaged nerves
present a hyperintense signal on T2-weighted MR
images that is often associated with axons under-
going Wallerian degeneration in the distal nerve
segment. 10114117 Moreover, this hyperintensity
attenuates following successful regeneration. Al-
though increased signal intensity in T2-weighted
images is a good indicator of degeneration, the
image can also be affected by edema and inflam-
mation. Accordingly, the actual cause of increased
signal intensity could be multifold. First, it may be
the result of obstruction of axoplasm leading to in-
creased water content of the nerve. Second, it could
be due to compression, which in turn causes Wal-
lerian degeneration and a breakdown of myelin.
Finally, it may be from impeded venous blood flow
causing greater epineurial water content. Thus, one
or more of several pathologies, including inflam-
mation, axonal damage/degeneration, and/or de-
myelination may result in the observed MR signal
changes. Histological analysis is often necessary to
determine the actual cause.

MRI performed with the use of specialized
contrast agents and/or axonal tracers has additional
promise to increase the specificity in assessing and
tracking axonal changes in damaged nerves.!?0:12!
For instance, the experimental contrast agent
gadofluorine-M (Gf) has been used with T1 scans
to identify peripheral nerve degeneration and re-
generation.'”!22 Interestingly, Gf was taken up
only by damaged portions of the nerve that were
undergoing Wallerian degeneration and/or loss of
myelination. The contrast enhancement was seen
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for a shorter period of time proximal to the injury
than distal to the injury and therefore could be used
to trace regeneration. However, this contrast agent
was delivered systemically, and concerns about
invasiveness and potential toxicity may limit clini-
cal applicability. In another approach, injection of
Mn* into the distal portion of the injured nerve is
retrogradely transported.'?! Correlation was found
between the MR signal intensity and retrograde
tracing of Mn*? in this experiment, indicative of
regenerating axons; however, further investiga-
tions are needed to establish this agent for clinical
PN injury. In the future, these strategies could be
deployed in conjunction with other cutting-edge
technologies such as molecular imaging and image
enhancers that can be specifically engineered to
track nerve degeneration and axonal regeneration.
Proton MR spectroscopy may also prove to be
useful in diagnosing nerve degeneration and regen-
eration through the ability to measure the concen-
tration and diffusion of specific metabolites such
as N-acetyl aspartate (NAA). NAA is exclusively
expressed in neurons and their axons. Reduction of
NAA levels would be indicative of demyelination
and axonal loss (suggesting degeneration), whereas
restoration of NAA levels may be useful to track
regeneration by following the leading front of re-
generating axons. Using this technique, the aniso-
tropic diffusion of metabolites, including NAA,
was investigated in excised frog peripheral nerve.!?
Concerns over this technique include lack of speci-
ficity, as NAA levels in the axon could fluctuate for
a number of reasons, not just physical compression
or transection injuries. Currently, sufficient resolu-
tion can only be attained using excised nerves.
Diffusion-weighted imaging (DWI) and dif-
fusion tensor imaging (DTI) are perhaps the most
effective MRI methods for tracking peripheral-
nerve degeneration and regeneration by taking
advantage of both the diffusion of water and the
anisotropic properties of axons.*!%® In a given
environment without any impediments, water will
exhibit Brownian motion and diffuse randomly. In
the presence of axons, the myelin sheath hinders the
diffusion of water across the nerve fiber, creating a

preferential path for diffusion longitudinally along
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the fiber. DWI measures the rate of water diffu-
sion in tissue to determine the apparent diffusion
coefficient (ADC), a measure of diffusivity. Follow-
ing nerve injury, the ADC increases perpendicular
to the nerve (axon) orientation. Alternatively, the
state of the target muscle may also be analyzed to
indirectly assess axonal degeneration. The ADC of
denervated muscles is higher than that of normal
muscles due to greater disorder, making this mea-
sure a useful diagnostic for denervation.!>

DTT builds upon this principle, but provides
a tensor that includes both the magnitude and
direction of water diftusivity in multiple dimen-
sions. DTT is the most powerful technique to im-
age tissue with anisotropic organization, such as
peripheral nerve. The tensor will produce a sphere
if the tissue is isotropic and become ellipsoidal
with tissue anisotropy. The direction of diffusion
along an ellipsoid is determined from the tensor
eigenvalues. Eigenvalue A1 is representative of the
parallel diftusion along the ellipsoid, and A2 and
A3 are representative of the perpendicular direc-
tions. Combining sequential tensor measurements
mathematically allows fibers to be traced through
tractography. Currently, fractional anisotropy (FA)
is being tested as a measure of degeneration and
regeneration in peripheral nerves. FA is a measure
of relative anisotropy from the eigenvalues, where
0 is isotropic and 1 is anisotropic. Recently, this
technology has been applied to track the regenera-
tion of peripheral nerves following crush injury in
mice.'>'%8 Here, lesions result in decreased FA cor-
responding to destruction of the myelin sheath and
therefore greater disorder in the motion of water
diffusion. This was found to be primarily depen-
dent upon the parallel diffusivity (A1 eigenvalue).
Thus, FA values at different points from the site of
injury combined with diffusion tensor tractography
served as mechanisms to trace regeneration within
a given nerve.

Until advances in imaging technology move
to the clinic, many valuable improvements can be
made in traditional electrophysiological diagnosis
of nerve injury and regenerative tracking. Elec-
tromyography (EMG) with recording of evoked

compound action potentials is the most commonly
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used method to determine nerve connectivity. This
technique is more useful for superficial nerves than
for deep nerves. Unfortunately, recordings of the
compound action potentials are somewhat limit-
ing since they do not directly reveal details of the
nerve injury such as the length or number of nerve
fibers damaged. Recordings of single unit action
potentials on the other hand provide information
on the number of innervated and functional motor
units in the muscle of interest.>*!>5 Biomedical en-
gineering strategies may be developed to contrib-
ute to better diagnostics and can improve upon the
ubiquitous measurements of nerve conduction and
muscle stimulation. For instance, novel nervous tis-
sue interfaces and algorithms could potentially be
transformed into diagnostic devices such as minia-
ture and multielectrode stimulators and recorders.
Key challenges need to be addressed before
noninvasive imaging or electrophysiological evalu-
ation can become the standard of care in nerve
injury diagnosis and regenerative tracking. Cur-
rently, these techniques are experimental and re-
quire future refinement; thus additional studies are
necessary to set thresholds and determine clinical
applicability. Improvements in MR capabilities
may also be required: a key challenge is the imaging
resolution capabilities versus the size of the features
to be measured. Axons typically measure 5-20 mi-
crons in diameter and with myelination typically
measure 10-25 microns in diameter. Typical voxel
sizes are on the order of millimeters, with highest
MR resolution on the order of hundreds of microns.
With older MR technology, common in many hos-
pitals, the voxel size may be larger than the nerve
of interest, so sufficient resolution becomes exceed-
ingly difficult. The future development of easily
implemented, highly specific contrast agents with
little or no side effects may mitigate these issues.
However, currently these techniques require spe-
cialized expertise and often-expensive, state of the
art imaging technology. Thus, in the near term, this
technology may be limited to larger nerves such as
the brachial plexus to find broad application. De-
spite these challenges, the future development and
validation of advanced imaging modalities capable
of assessing axonal tract integrity and/or regen-



110

erative rate would be beneficial to properly grading
nerve injuries, to assess the progress of spontaneous
nerve regeneration, and to establish those cases of
nerve injury that require surgical intervention with
less ambiguity and much earlier.

V.D. Pathway and Target Maintenance

Degeneration of the axonal segment in the distal
nerve is an unavoidable consequence of disconnec-
tion. However, the distal nerve support structure as
well as the final target must maintain efficacy to
guide and facilitate appropriate axonal regenera-
tion. Although the distal pathway initially trans-
forms into a pro-regenerative environment, the
pathway ultimately loses the capacity to support
robust regeneration on the order of several months
post-injury (i.e., post-axonal loss). However, there
are currently few strategies directly targeted at
maintaining distal pathway and/or target fidelity.
Biomedical engineering strategies may be appli-
cable to target pathway degeneration, for instance,
through localized delivery of factors that may
maintain the pro-regenerative capacity, including
the de-axonized distal nerve structure required to
support targeted axonal regeneration as well as the
sensory/motor targets that must retain the ability to
function and re-integrate with the nervous system.
Such targeted delivery of neurotrophic agents may
maintain the efficacy of the distal pathway over ex-
tended periods of time, thus increasing the degree
of axonal regeneration, innervation, and functional
recovery. 30!

A myriad of factors affect relevant cell signal-
ing pathways and should be considered as adjunct
treatment for injuries near the midline that require
many months (or years) for functional restoration.
In addition, many of these factors affect cell exten-
sion and organization and thus should be consid-
ered as critical components to the advancement of
nerve tissue constructs. Chemotrophic factors are
needed to promote cell survival and enhance axonal
growth. Chemotrophic factors can also be used
to enhance Schwann cell migration, which in turn
guides axon advancement. The interplay, however,
between endogenously loaded trophins and those
produced by Schwann cells is complex and mer-
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its careful consideration. Moreover, the effects of
neurotrophic factors on nerve regeneration are vast
and complex, with sometimes dichotomous effects
based on situation-specific parameters, including
injury type or severity, timing, and co-delivered fac-
tors (see Refs. 8, 35,48, 69, and 126 for reviews).
Of specific interest is how end targets, such as
muscle, provide strong specificity signaling for re-
generation of nerve fibers. Stimulation or mimicry
of end targets may play an important role in keep-
ing extension on a preferred path. For example, the
chemotrophin BDNF has been shown to promote
motor neuron survival and outgrowth. In muscle,
it may serve as a stop signal for regenerating ax-
ons.'” Thus, an engineered chemotrophic gradient
of BDNF would be better suited than a uniform
concentration to the advancement of nerve fibers
across long gaps. Since scaffolding and extracellular
matrix also play a large role in chemotaxis, con-
trolled delivery of neurotrophins may be advanced
through incorporation in biomaterial scaffolds.

V.E. Modeling Peripheral Nerve Injury and
Repair

The complex, multifaceted nature of peripheral
nerve injury makes it difficult to use a single in vivo
model due to a wide variety of scenarios, such as
repetitive compression injuries (e.g., carpal tunnel),
transection injuries,and/or traumatic crush injuries.
Additionally, modeling of peripheral pain, neuro-
ma, and scar tissue is often extremely complex and
thus purposely limited in studies. The sciatic nerve
is the most commonly used model. While a con-
venient nerve to use, the sciatic is not optimal due
to heterogeneity—innervating multiple sensory,
synergistic, and opposing muscle targets. For these
reasons, some researchers use an upper-extremity
nerve, such as the median nerve in rats, which is
primarily a motor nerve and thus amenable to fore-
arm reach/grip behavioral tasks.'?-'3! Moreover,
to overcome inherent length issues in this model,
a cross-chest repair and innervation model was
developed.'¥? However, for the particular task of
testing repair strategies for long (>3 cm) nerve de-
fects, larger animal models are required, and typi-
cally include rabbits, canines,'*-%7 and nonhuman

Critical Reviews™ in Biomedical Engineering



Biomedical Engineering Strategies for Peripheral Nerve Repair

primates.?®31138-141 However, large animal studies
are expensive and time-consuming. This is particu-
larly the case in modeling long nerve defects and/
or near-midline injuries, which unfortunately are
two of the most pressing needs in clinical nerve
repair. Taken together, a more reliable, standard-
ized, translatable animal injury model is needed
to assess mechanisms associated with nerve injury
and to evaluate the usefulness of repair strategies.
Accordingly, there is a growing effort to reconsider
the availability and use of animal models of PNS
injury. 35142143

Our understanding of peripheral nerve injury
and repair would benefit immensely from the devel-
opment of a standardized in vitro model that repli-
cates critical components of the in vivo situation in a
reduced, yet systematically controlled environment.
To date, many critical components have been isolated
in vitro, such as elements of Schwann cell-axon in-
teractions in culture,*!%% axon outgrowth on various
biomaterials scaffolds,3%146-148 enhancement effects
of growth factors,3486%126 and injury-induced altera-
tions in gene expression.®!¥* Much utility would
be gained from three-dimensional (3-D) models
capable of evaluating haptotaxic and chemotaxic
factors governing Schwann cell migration, prolif-
eration, and/or organization in support of axonal
regeneration. Moreover, factors promoting expedi-
tious and targeted axonal regeneration through such
3-D cellular scaffolds could be systematically iden-
tified. Indeed, neural tissue engineering techniques
have evolved to create long lengths of fasciculated
axons that could mimic a nerve. For instance, the
process of axon stretch growth has the potential to
create bundles of axons in vitro that could then be
myelinated to create functional nerves in culture.”*-%2
These systems may be useful to study nerve injury
in a 3-D, multicell-type environment that recreates
key anatomical features, thus potentially provid-
ing a more physiologically relevant yet exquisitely
accessible and controlled platform. Indeed, new in
vitro models are being explored to provide testing
platforms for mechanistic studies that are difficult
to perform in vivo and for proof-of-concept ideas
that would otherwise be costly and complicated in
an animal mode].!43150-154
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The ability to promote nerve regeneration and
provide better therapeutic options will be driven
by our understanding of the fundamental neuro-
biological mechanisms. Accordingly, relationships
between nerve injury and neurodegenerative dis-
orders could reveal complementary therapeutic
mechanisms. For instance, amyotrophic lateral
sclerosis exhibits a preferential degeneration of mo-
tor neurons, yet the effects may be reversed through
crush injury.”® Rather than solely focusing on axon
outgrowth, biomedical engineers should also con-
sider and study the mechanisms of neuropathy (as
well as growth and development) to gain insight
into injury and repair. In addition, newly identified
injury mechanisms are needed as markers for clini-
cal diagnosis and studying and comparing injury
models.

VI. CLOSING: CHALLENGES AND
OPPORTUNITIES

In summary, peripheral nerve repair is a growing
field with substantial progress being made in more
effective repairs. Biomedical engineers have made
significant contributions, and the associated tech-
niques and approaches have a great deal more to
offer. Contributions range from surgical instru-
mentation to the development of tissue engineered
grafting substitutes. Tissue engineering has great
potential, as evidenced by the rapid combination of
facets of neuroscience and biomedical engineering
research into the subdiscipline of neural tissue engi-
neering. However, to date the field of neural tissue
engineering has not progressed much past the con-
duit bridging of small gaps and has not come close
to matching the autograft.>#15 Still, a recent sur-
vey of clinical departments serving peripheral nerve
injuries concluded, “Tissue engineering offers the
best promise of improved outcome at the moment”
and called for alternative/novel strategies, tissue
engineering research, and potentially xenographic
grafting options.* Indeed, neural tissue engineering
must continue to evolve to directly address pressing
clinical needs while factoring in neurobiological re-
alities. Thus, interactions between biomedical engi-
neers, neurobiologists, and clinicians must increase
to address these challenges.
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We conclude that the most pressing current
needs in peripheral nerve repair include the devel-
opment of tissue engineered nerve graft alternatives
that match or exceed the performance of autografts,
the ability to noninvasively assess nerve damage and
track axonal regeneration, and the ability to main-
tain the efficacy of the distal pathway and target.
In combination with a lack of effective diagnostic
techniques, the choices in assessment and repair of
peripheral nerve unfortunately remain limited. The
question of whether or not to perform surgery on
an injured nerve is a difficult choice; some 3™ degree
injuries heal without intervention but others may
not. Clearly, surgical intervention for treatment of
major nerve injury of 4" to 6™ degree is needed,
but currently we lack optimal repair methods and
tools to predict and track recovery progress. These
challenges are compounded by a current shortage
of trained peripheral-nerve surgeons and scientists
who specialize in peripheral-nerve anatomy and
repair strategies.

Tissue-engineered graft alternatives have yet
to reach the effectiveness of the autograft. The in-
cremental improvements that have been made in
developing a nervous tissue construct, individually,
have not produced results that can be useful clini-
cally. The concept of a nerve conduit is still limited to
small-diameter, short-gap repairs. Next-generation
tissue-engineered constructs that combine many
aspects of the nerve architecture (cells, scaffold,
signaling, and vasculature) may be required to of-
fer a true alternative to the autograft, yet must also
be designed to accommodate mass transport and
mitigate immune rejection. Moreover, such com-
prehensive tissue-engineered constructs must be
multifaceted in purpose, simultaneously facilitating
natural host reparative processes (e.g., Schwann cell
migration and organization), promoting expeditious
and targeted axonal outgrowth, as well as providing
trophic support to maintain the efficacy of the distal
pathway beyond the graft/lesion site. The judicious
application of biomedical engineering practices and
principles, with utmost cognizance of neurobiologi-
cal sequelae, clinical needs, and surgical limitations,
will be needed to substantially improve patient out-
comes following severe peripheral nerve injury.
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