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Abstract

We consider the problem of forecasting a sequence of outcomes from an unknown source.
The quality of the forecaster is measured by a family of checking rules. We prove upper
bounds on the value of the associated game, thus certifying the existence of a calibrated
strategy for the forecaster. We show that complexity of the family of checking rules can be
captured by the notion of a sequential cover introduced in (Rakhlin et al., 2010a). Various
natural assumptions on the class of checking rules are considered, including finiteness of
Vapnik-Chervonenkis and Littlestone’s dimensions.

1. Introduction

As many other papers on calibration, we start with the following motivating example:
Consider a weatherman who predicts the probability of rain tomorrow and then observes the
binary “rain/no rain” outcome. How can we measure the weatherman’s performance? If we
make no assumption on the way Nature selects outcomes, defining a notion of performance
is a non-trivial matter. One approach, familiar to the learning community, is to prove regret
bounds with respect to some class of strategies. However, in the absence of any assumptions
on the sequence, the performance of the comparator will not be favorable, rendering the
bounds meaningless. An alternative measure of performance is to ask that the forecaster
satisfies certain properties with respect to the sequence. One such natural property is
calibration. It posits that for all the days that the forecaster predicted a probability p of
rain, the empirical frequency of rain was indeed close to p. It is not obvious, a priori,
that there exists a forecasting strategy calibrated with respect to every p, no matter what
sequences Nature presents. The question was raised in the Bayesian setting by Dawid
(1982), followed by the negative result of Oakes (1985), who showed that no deterministic

c© 2011 D.P. Foster, A. Rakhlin, K. Sridharan & A. Tewari.



Foster Rakhlin Sridharan Tewari

calibration strategy exists. The first positive result was shown by Foster and Vohra (1998),
who provided a randomized calibration strategy.

Calibration is indeed the absolute minimum we should expect from a forecaster. Clearly
a forecaster who makes a constant prediction of .6 on the binary sequence 11.0010010000111111...
for π (which empirically is one half ones and believed by most to be half ones in the limit)
should be fired at some point for a failure to be calibrated (Lehrer, 2004). However, fore-
casting the right overall frequency might not be enough. Indeed, consider a binary sequence
“010101 . . .” of “rain/no rain” outcomes. A forecaster predicting 0.5 chance of rain is cali-
brated, yet such a lousy weatherman should be fired immediately! To cope with the obvious
shortcoming of calibration, one may introduce more complex checking rules (Kalai et al.,
1999; Sandroni et al., 2003; Cesa-Bianchi and Lugosi, 2006), such as “the forecaster should
be calibrated on all even rounds.” This additional rule clearly disallows a constant predic-
tion of 0.5 since within the even rounds the empirical frequency is 1. While resolving the
problem with the particular sequence “010101 . . .,” the forecaster’s performance might still
appear unacceptable (by our standards) on other sequences. We refer to (Sandroni et al.,
2003) for further discussion on checking rules.

How rich can we make the set of checking rules while being able to satisfy all of them
at the same time? Of course, if checking rules are completely arbitrary, there is no hope, as
the rule can be tailored to the particular sequence presented. It is then natural to ask the
following questions: What is a sufficient restriction on the class of checking rules? What
are the relevant measures of complexity of infinite classes of checking rules? What governs
the rates of convergence in calibration? In addressing these matters, we come to questions
of martingale convergence for function classes. In particular, this allows us to make a
connection to the Vapnik-Chervonenkis theory which measures the complexity of the class
using a combinatorial parameter. We can view the classical calibration results as a particular
instance of checking rules with a finite VC dimension. To the best of our knowledge, the
connection between calibration and statistical learning has not been previously observed.

Our results are based on tools recently developed in (Rakhlin et al., 2010b,a). These
papers consider abstract repeated zero-sum games (subsuming Online Learning) and ob-
tain upper bounds on the minimax value via the process of sequential symmetrization.
Interestingly, these bounds are attained without explicitly talking about algorithms, and
instead focusing on the inherent complexity of the problem. Analogously, in the present
paper we prove convergence results which depend on the complexity of the class of checking
rules without providing a computationally efficient algorithm (the inefficient algorithm can
be recovered from the minimax formulation). We argue that an understanding of what is
attainable in terms of satisfying checking rules is necessary before looking for an efficient
implementation. Once the inherent complexity of calibration with checking rules is under-
stood, algorithmic questions will arise. While there is an efficient algorithm for classical
calibration with two actions (see Foster and Vohra (1998); Abernethy et al. (2011)), the
question is still open for more complex classes of checking rules.

Classical decision theory typically divides problems into two pieces, probability and loss,
and then combines these (via expectation) for making decisions. Calibrated forecasts allow
this same division to be done in the setting of individual sequences: a probabilistic forecast
can be made and then a loss function can be optimized as if these probabilities were in fact
correct. These decisions can be made in a game theoretic setting, in which case calibrated
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forecasts can lead to equilibria in games (Foster and Vohra, 1997; Kakade and Foster,
2008). But unlike traditional decision theory which has viewed this division of decisions
into probability and loss as having zero cost, there is a huge cost when using calibration
in this way for individual sequences. Namely, the rates of convergence for a calibrated
forecast have often been much poorer than the ones generated by optimizing the decisions
directly, as is typically done in the experts literature. The cause of this rate difference is
that calibration tries to optimize over details that the experts approach would ignore. We
present alternative definitions of calibration that address this by focusing attention only on
the parts of calibration that translate into difference at the decision-making level. We refer
to (Young, 2004) for connections between calibration, decision making, and games.

Another motivation for studying checking rules comes from recent research at the inter-
section of game theory, learning, and economics, which often involves multiple agents acting
in the world (Kakade et al., 2003). Being able to calibrate with respect to a class of checking
rules can lead to good guarantees on the quality of actions taken by agents. For instance,
one can consider multi-agent decision-making problems in large environments, where the
agents only need to calibrate with respect to a small set of checking rules relevant to their
decision making.

2. Notation

Let Ex∼p denote expectation with respect to a random variable x with a distribution p.
A Rademacher random variable is a symmetric ±1-valued random variable. The notation
xa:b denotes the sequence xa, . . . , xb. The indicator of an event A is denoted by 1 {A}. The
set {1, . . . , T} is denoted by [T ], while the (k − 1)-dimensional probability simplex in Rk is
denoted by ∆k. Let Ek denote the k vertices of ∆k. The set of all functions from X to Y is
denoted by YX , and the t-fold product X ×. . .×X is denoted by X t. Whenever a supremum
(or infimum) is written in the form supa without a being quantified, it is assumed that a
ranges over the set of all possible values which will be understood from the context.

Following (Rakhlin et al., 2010a), we define binary trees as follows. Consider a binary
tree of uniform depth T where every interior node and every leaf is labeled with a value
X chosen from some set X . More precisely, given some set X , an X -valued tree of depth
T is a sequence (x1, . . . ,xT ) of T mappings xi : {±1}i−1 7→ X . Unless specified otherwise,
ε = (ε1, . . . , εT ) ∈ {±1}T will define a path. For brevity, we will write xt(ε) instead of
xt(ε1:t−1).

3. The Setting

In this paper we consider the k-outcome calibration game (in the weatherman example,
k = 2). Each outcome is represented by an element of Ek, whereas the forecast is represented
by a point in ∆k. More precisely, the protocol can be viewed as the T -round game between
player (learner) and the adversary (Nature):

FOR round t = 1, . . . , T ,

• the player chooses a mixed strategy qt ∈ ∆(∆k) (distribution on ∆k)

• the adversary picks outcome xt ∈ Ek
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• the learner draws ft ∈ ∆k from qt and observes outcome xt
ENDFOR

Both opponents can base their next move on the history of actions observed so far. In
particular, this makes the adversary adaptive. Throughout the paper, zt ∈ Z is given by
zt = ((f1, x1), . . . , (ft−1, xt−1)), the history of actions by both players at round t. Define
the set of all possible histories by Z =

⋃T
t=1 (∆k × Ek)t.

Definition 1 A forecast-based checking rule is a binary-valued function c : Z×∆k 7→ {0, 1}.

In other words, a checking rule depends on both the history and the current forecast.
For simplicity, we only consider binary-valued checking rules; however, the results can be
extended to real-valued functions and will appear in the full version of the paper.

Let ζ be a family of checking rules. The goal of the player is to minimize the performance
metric

RT := sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥
for some norm ‖ · ‖ on Rk. While the `1 norm is typically used for calibration (Mannor and
Stoltz, 2010), we can consider a general `p norm for 1 ≤ p ≤ ∞. Informally, RT says that
the player needs to be calibrated (that is, average of forecasts close to the actual frequency)
for any rule c that becomes active only on certain rounds. In the asymptotic sense, any rule
that is not active infinitely often does not matter for the player.

Example 1 For classical ε-calibration, choose ζ = {cp(zt, ft) = 1 {‖ft − p‖ ≤ ε : p ∈ ∆k}}.
In particular, ε-calibration captures the weather forecasting example discussed earlier. We
refer to (Cesa-Bianchi and Lugosi, 2006; Mannor and Stoltz, 2010) for the details on the
relationship between ε-calibration and well-calibration.

Example 2 Let G be an ε grid of the ∆k. Define

ζ = {cA(zt, ft) = 1 {‖ft − a‖ ≤ ε for some a ∈ A}}A∈2G .

That is, cA captures the set of forecasts for which ft either over-forecasts or under-forecasts
the correct probability of the outcome. This is a much richer set of rules than the previous
example and is the implicit set used in the Brier quadratic calibration score used in (Foster
and Vohra, 1998). As we will show later, the rate of convergence is much slower than for
classical calibration.

Example 3 Let p̂θ,t be the forecast made by a probabilistic model Pθ. Using ζ = {cθ,p(zt, ft) =
1 {‖p̂θ,t − p‖ ≤ ε}} will test if the model Pθ is a much better fit to the data than the fore-
casting rule ft. If complexity of the set of models {Pθ} is controlled, then theorems we will
discuss later will guarantee existence of a rule that can do well against this family of tests.
This connects to the testing of experts literature (Olszewski and Sandroni, 2009).
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Given the set ζ of checking rules, when is it possible to find a strategy for the forecaster
such that RT goes to zero as T increases? Instead of using, for instance, Blackwell’s
approachability to provide a calibration strategy with respect to the class ζ (as done in
(Foster and Vohra, 1998; Sandroni et al., 2003)), we directly attack the value of the game.
Given a θ > 0, we define the value of the calibration game as

VθT (ζ) := inf
q1

sup
x1

Ef1∼q1 . . . inf
qT

sup
xT

EfT∼qT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]
,

where qt’s range over all distributions over ∆k and xt range over Ek. Note that the value
can be interpreted as the probability of the performance metric RT being larger than θ
under the stochastic process arising from the successive infima, suprema, and expectations.
An upper bound on VθT (ζ) implies existence of a strategy for the learner such that the
calibration metric RT is smaller than θ with probability at least 1 − VθT (ζ). Or put more
colloquially, our bound on VT is an upper bound on the probability of the weatherman being
fired for failure to be calibrated to accuracy θ. Alternatively, lower bounds on VθT (ζ) imply
impossibility results for the learner. Note that the definition of value of the game is for a
fixed θ and number of rounds T . Thus, it is not obvious how to use the so-called “doubling
trick” to get a player strategy that is Hannan consistent for the calibration game. The main
difficulty is the dependence of the game (and hence the optimal player strategy) on θ. It
is possible to define a game where the optimal player strategy will work uniformly over all
θ (see (Rakhlin et al., 2010b)). Once this is done, we can proceed along similar lines as in
Mannor and Stoltz (2010) to guarantee the existence of a Hannan consistent strategy for
calibration with only an extra logarithmic factor on number of rounds played. However, for
simplicty, we stick to the fixed θ, T definition above in this paper.

4. General Upper Bound on the Value VθT (ζ)

Let δ > 0 and let Cδ be a minimal δ-cover of ∆k in the norm ‖ · ‖. The size of the δ-cover
can be bounded as

|Cδ| ≤ (c1/(2δ))
k−1 . (1)

where c1 is some constant independent of k, but varying with the choice of the norm
‖ · ‖. This constant will appear throughout the paper. Further, for any pt ∈ ∆k, let
pδt ∈ Cδ be a point in Cδ such that ‖pt − pδt‖ ≤ δ. Slightly abusing the notation, define
zδt =

(
(pδ1, x1), . . . , (pδt−1, xt−1)

)
∈ Zδ ⊆ Z where Zδ :=

⋃T
t=1 (Cδ × Ek)t−1. (For the proofs

of Lemmata 2–4, see Sec. 7 & Appendix.)

Lemma 2 For any θ > 0,

VθT (ζ) ≤ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

}]
(2)

for any δ ≤ θ/2.
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The interleaved suprema and expectations on the right-hand side of (2) can be written
more succinctly as

sup
p

E

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

}]
(3)

where p can be either thought of as a joint distribution over sequences (x1, . . . , xT ) or as a
sequence of conditional distributions {pt : Et−1

k → ∆k}. Using the notation of conditional
distributions, the expectation in (3) can be expanded as Ex1∼p1Ex2∼p2(·|x1)ExT∼pT (·|x1:T−1).
Of course, expected value of an indicator is just the probability of the event. The goal is
to relate (3) to the probability that the norm ‖ · ‖ of the average of a martingale difference
sequence is large. The latter probability is exponentially small by a concentration of measure
result which we present next.

Lemma 3 For any Rk-valued martingale difference sequence {dt}Tt=1 with ‖dt‖ ≤ 1 a.s. for
all t ∈ [T ], there exists a k-dependent constant ck such that

P

(∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥ > θ

)
≤ 2 exp

(
−Tθ

2

ck

)
.

In particular, ck = 8k for any `p norm with 1 ≤ p ≤ ∞.

Armed with a concentration result for martingales, we apply the sequential symmetriza-
tion technique (see (Rakhlin et al., 2010b) for the high-probability version). In the lemma
below, the supremum is over all binary Ek-valued trees x of depth T , as well as all binary
Cδ-valued trees pδ of depth T . Given x,pδ, let the Zδ-valued tree zδ be defined by

zδt (ε) =
(

(pδ1(ε),x1(ε)), . . . , (pδt−1(ε),xt−1(ε))
)

for any t ∈ [T ]. We also write z(x,pδ) instead of zδ to make the dependence on x,pδ explicit.

Lemma 4 For T > 16ck log(4)
θ2

and δ ≤ θ/2,

VθT (ζ) ≤ 4 sup
x,pδ

Pε

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) xt(ε)

∥∥∥∥∥ > θ/8

)
,

where the probability is over an i.i.d. draw of Rademacher random variables ε1, . . . , εT .

What has been achieved by this lemma? We were able to pass from the quantity
in (3) which is defined with respect to a complicated stochastic process to a much simpler
process. It is defined by fixing the worst-case trees (in the spaces of moves of the adversary
and the player) and then generating the process by coin flips εt. The resulting quantity
is a symmetrized one and can be seen as a sequential version of the classical Rademacher
complexity. In particular, the symmetrized upper bound of Lemma 4 allows us to define
appropriate covering numbers and thus analyze infinite classes of checking rules.

The definitions of a sequential cover and covering number below are from (Rakhlin
et al., 2010a). Note that they differ from the corresponding classical “static” notions.
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Definition 5 Consider a binary-valued function class G ⊆ {0, 1}Y over some set Y. For
any given Y-valued tree y of depth T , a set V of binary-valued trees of depth T is called a
0-cover of G on y if

∀g ∈ G, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ∀t ∈ [T ], g(yt(ε)) = vt(ε) . (4)

The covering number at scale 0 of a class G (the 0-covering number) on a given tree y is
defined as

N(G,y) = min {|V | : V is a 0-cover of G on y} .

Also define the worst-case covering number for all depth-T trees as N(G, T ) = supyN(G,y).
We point out that the order of quantifiers in (4) is crucial: For a given function g, the

covering tree v can be chosen based on the path ε itself. It is thus not correct to think
of the 0-cover as the number of distinct trees obtained by evaluating all functions from
G on the given y. Indeed, as described in (Rakhlin et al., 2010a), it is possible for an
exponentially-large set of functions G to have a 0-cover of size 2, capturing the temporal
structure of G.

Definition 6 Define the minimal checking covering number of ζ over depth T trees as

Nch(ζ, T ) = sup
x,pδ

N(ζ, (z(x,pδ),pδ))

and the minimal checking cover of ζ on x,pδ as the set of size N(ζ, (z(x,pδ),pδ)) that

provides the cover. Here, abusing notation, (z(x,pδ),pδ) is the Zδ ×Cδ-valued tree obtained

by pairing the trees z(x,pδ) and pδ together (and note that ζ is a class of binary functions
on Zδ × Cδ).

Importantly, the minimal checking covering number is defined only over history trees
z(x,pδ) consistent with the chosen trees x,pδ. Clearly, we can upper bound the minimal
checking covering number by the minimal cover N(ζ, T ) over Zδ×Cδ. It is immediate that
Nch(ζ, T ) ≤ N(ζ, T ).

Theorem 7 For T > 16ck log(4)
θ2

and δ ≤ θ/2,

VθT (ζ) ≤ 8 Nch(ζ, T ) exp

(
− Tθ2

64 ck

)
Proof [Theorem 7] Given any trees x,pδ, let the set of binary valued trees V be a (finite)
minimal checking cover of ζ on x,pδ. For any c ∈ ζ, let v[c, ε] ∈ V be the member of the
minimal checking cover that matches c on the tree (x,pδ) over the path ε. Then we see
that

Pε

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) xt(ε)

∥∥∥∥∥ > θ/8

)
= Pε

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt v[c, ε]t(ε) xt(ε)

∥∥∥∥∥ > θ/8

)

≤ Pε

(
max
v∈V

∥∥∥∥∥ 1

T

T∑
t=1

εt vt(ε) xt(ε)

∥∥∥∥∥ > θ/8

)
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Since |V | is finite, by union bound we pass to the upper bound of

|V |max
v∈V

Pε

(∥∥∥∥∥ 1

T

T∑
t=1

εt vt(ε) xt(ε)

∥∥∥∥∥ > θ/8

)
≤ Nch(ζ, T ) max

v∈V
Pε

(∥∥∥∥∥ 1

T

T∑
t=1

εt vt(ε) xt(ε)

∥∥∥∥∥ > θ/8

)
We now appeal to Lemma 3. Note that v is binary-valued and x is Ek-valued, and, hence,
‖vt(ε) xt(ε)‖ ≤ 1 for any t. Also, εt vt(ε) xt(ε) is a martingale difference sequence since xt
and vt by definition only depend on ε1:t−1. Hence, for any x and v,

Pε

(∥∥∥∥∥ 1

T

T∑
t=1

εt vt(ε) xt(ε)

∥∥∥∥∥ > θ/8

)
≤ 2 exp

(
− Tθ2

64 ck

)
Combining with Lemma 4, we have that

VθT (ζ) ≤ 4 sup
x,pδ

Pε

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) xt(ε)

∥∥∥∥∥ > θ/8

)
≤ 8 Nch(ζ, T ) exp

(
− Tθ2

64 ck

)
.

5. Families of Checking Rules

The main objective of this paper is to find general sufficient conditions on the set of checking
rules that guarantee existence of a calibrated strategy. Theorem 7 guarantees decay of VθT (ζ)
if checking covering numbers of ζ can be controlled. In this section, we show control of these
numbers under various assumptions on ζ, along with the resulting rates of convergence.

5.1. Finite Class of Checking Rules

The first straightforward consequence of Theorem 7 is that, for a finite class ζ,

VθT (ζ) ≤ 8 |ζ| exp

(
− Tθ2

64 ck

)
(5)

for T > 16ck log(4)
θ2

. We can convert this statement into a probability of RT being large. To
this end, setting the right-hand side of (5) to η and solving for θ, we obtain

θ =

√
64ck log(8|ζ|/η)

T
.

For this value, the condition T > 16ck log(4)
θ2

is automatically satisfied. We can then state the
result for finite ζ as follows: There exists a randomized strategy for the player such that

P

(
RT ≤

√
64ck log(8|ζ|/η)

T

)
≥ 1− η

for any η > 0, no matter how Nature chooses the outcomes.
As an example, consider the classic problem of digit identification, with the images of

digits presented as “side information”. A system that generates a prediction and gets scored
against the true digit is then being effectively tested by a total of 10 checking rules.
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5.2. History Invariant Checking Rules

A finite class of checking rules is, in some sense, too easy for the forecaster. Once we go to
infinite classes, much of the difficulty arises from potentially complicated dependence of the
rules on the history. Before attacking infinite classes of history-dependent rules, we consider
the case of history-independence. The classical notion of calibration is an example of such
a class of checking rules.

Formally, assume that ζ is a class of checking rules such that for all c ∈ ζ, pair of
histories z, z′ ∈ Z and p ∈ ∆k :

c (z, p) = c
(
z′, p

)
Abusing notation, we can write each c ∈ ζ as a function c : ∆k 7→ {0, 1}.

The next lemma recovers the rates obtained by Mannor and Stoltz (2010). For k = 2,
the rate T−1/3 has been also found previously by a variety of algorithms that reduced
calibration on an ε-grid to the experts problem of no-internal regret with O(1/ε) experts.

Lemma 8 For any class ζ of history invariant measurable checking rules, for any θ ∈ (0, 1]
we have that

VθT (ζ) ≤ 8 exp

(
− Tθ2

64 ck
+
(c1

θ

)k−1
)

for T > 16ck log(4)
θ2

. This leads to

P
(

RT ≤ c′k T
−1/(k+1)

√
log(8/η)

)
≤ 1− η

for an appropriate constant c′k.

Proof From Eq. (1), the total number of different labelings of set Cδ by ζ is bounded by

2(c1/(2δ))
k−1

(that is, the number of binary functions over set of size |Cδ|). For δ = θ/2, we

have that the size is bounded by 2(c1/θ)
k−1

. By Theorem 7 we conclude that

VθT (ζ) ≤ 8 2( c1θ )
k−1

exp

(
− Tθ2

64 ck

)
.

Over-bounding, we obtain the first statement. Now, set θ = c′kT
−1/(k+1)

√
log(8/η) for some

appropriate constant c′k. For this value of θ, it holds that VθT (ζ) ≤ η . We conclude that

P
(

RT ≤ c′k T
−1/(k+1)

√
log(8/η)

)
≤ 1− η .

While the rate for all measurable history-invariant checking rules decays with k, we
can get Õ(

√
T ) rates as soon as we restrict the class of checking rules to have a finite

combinatorial dimension. A finite combinatorial dimension limits the effective size of ζ as
applied on Cδ. The first result we present holds for Vapnik-Chervonenkis classes.
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Lemma 9 For any class ζ of history invariant checking rules with VC dimension VCdim(ζ),
we have that

VθT (ζ) ≤ 8
(e c1

θ

)(k−1) VCdim(ζ)
exp

(
− Tθ2

64 ck

)
for T > 16ck log(4)

θ2
. We therefore obtain

P

(
RT ≤ c′

√
kVCdim(ζ) · ck log(8/η) log T

T

)
≤ 1− η

for an appropriate constant c′k.

Proof By the Vapnik-Chervonenkis-Sauer-Shelah lemma, the number of different labelings
of the set Cδ by ζ is bounded by (e |Cδ|)VCdim(ζ). Clearly, the size of the minimal 0-
cover cannot be more than the number of different labelings on the set Cδ. Using |Cδ| ≤
(c1/(2δ))

k−1 with δ = θ/2 and Theorem 7 we conclude that

VθT (ζ) ≤ 8
(e c1

θ

)(k−1) VCdim(ζ)
exp

(
− Tθ2

64 ck

)
which concludes the first statement. For the probability version, set

θ = c′
√
kVCdim(ζ) · ck log(8/η) log T

T

For this setting, VθT (ζ) ≤ η for some appropriate k-independent constant c′. The second
statement follows.

For the classical calibration problem, the VC dimension of the set of `1-balls is at most
k2 and the constant ck = 8k for the `1 norm (as shown in Lemma 3). Combining, we
obtain the following corollary, which, to the best of our knowledge, does not appear in the
literature.

Corollary 10 For classical calibration with k actions and `1 norm, the rate of convergence
is

O

(
k2

√
log(T ) log(1/η)

T

)

Next, we consider an alternative combinatorial parameter, called Littlestone’s dimen-
sion (Littlestone, 1988; Ben-David et al., 2009). This dimension captures the sequential
“richness” of the function class.

Definition 11 An X -valued tree x of depth d is shattered by a function class F ⊆ {±1}X if
for all ε ∈ {±1}d, there exists f ∈ F such that f(xt(ε)) = εt for all t ∈ [d]. The Littlestone
dimension Ldim(F ,X ) is the largest d such that F shatters some X -valued tree of depth d.
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We use Ldim(F) for Ldim(F ,X ) if the domain X is clear from context. As shown in
(Rakhlin et al., 2010a), the Littlestone’s dimension can be used to upper bound sequential
covering numbers in a way similar to VC dimension upper bounding the classical covering
numbers.

Lemma 12 For any class ζ of history invariant checking rules with Littlestone’s dimension
Ldim(ζ),

VθT (ζ) ≤ 8 (eT )Ldim(ζ) exp

(
− Tθ2

64 ck

)
Proof Note that for any history invariant family of checking rules ζ, the definition of
covering number here coincides with the definition of covering number in (Rakhlin et al.,
2010a) for binary class of functions ζ on space Cδ. Therefore,

Nch(ζ, T ) ≤ (eT )Ldim(ζ,Cδ) .

The Littlestone’s dimension on the set Cδ can be upper bounded by the Littlestone’s di-
mension Ldim(ζ) over the whole simplex ∆k. Using Theorem 7 concludes the proof.

In the above lemma and in the rest of the paper, it will be assumed that T is large
enough that T > 16ck log(4)

θ2
so that we can appeal to Theorem 7.

5.3. Time Dependent Checking Rules

We now turn to richer classes of checking rules. Of particular interest are classes of history-
invariant rules that have mild dependence on time. Our results have a flavor of “shifting
experts” results in individual sequence prediction. Suppose the checking rules can be written
as a family of functions c : [T ] ×∆k 7→ {0, 1} (i.e. the checking rule only depends on the
length of the history and not the history itself). More specifically, given a family ζ of time
invariant checking rules, we consider the family of time dependent checking rules ζn given by
checking rules that are allowed to change at most n ≤ T times over the T rounds (checking
rule for each round is chosen from ζ). Formally,

ζn = {cn|∃ 1 = i0 ≤ . . . ≤ in ≤ T and c1, . . . , cn ∈ ζ s.t.

∀ s ≥ 0, ∀ is ≤ t ≤ t′ < is+1, c
n(t, ·) = cn(t′, ·) = cs

}
and in+1 is assumed to be T + 1.

Lemma 13 For any class ζ of history invariant measurable checking rules, we have that

VθT (ζn) ≤ 8 exp

(
− Tθ2

64 ck
+ n

(c1

θ

)k−1
+ n log T

)
Proof For any t, the total number of different labelings of set Cδ by ζ is bounded by

2(c1/(2δ))
k−1

. To account for all the possibilities, we need to consider all possible ways of
choosing n shifts out of T rounds, and then to choose a constant function for each interval
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out of the 2(c1/(2δ))
k−1

possibilities. Choosing δ = θ/2, the effective size of ζ on Cδ is

bounded by
(
T
n

) (
2(c1/θ)

k−1
)n

. Hence by Theorem 7 we conclude that

VθT (ζ) ≤ 8

(
T

n

)
2n(

c1
θ )

k−1

exp

(
− Tθ2

64 ck

)
which concludes the proof.

The corresponding statement in probability is analogous to that in Lemma 8 if n is
constant. If n grows with T , a non-trivial rate in probability can still be shown as long as
n = o(T ). Hence, there exists a calibration strategy for arbitrary sets of history-independent
measurable checking rules which change o(T ) of times.

Lemma 14 For any class ζ of history invariant checking rules with VC dimension VCdim(ζ),

VθT (ζn) ≤ 8

(
T

n

)(e c1

θ

)n(k−1)VCdim(ζ)
exp

(
− Tθ2

64 ck

)
Proof For any t ∈ [T ] the number of different labelings of the set Cδ by ζ is bounded by

(e |Cδ|)VCdim(ζ). Hence the total possible number of different labelings of set Cδ by ζ in the

T different rounds can be bounded by
(
T
n

)
(e |Cδ|)nVCdim(ζ) ≤

(
T
n

) (
e c1
θ

)n(k−1) VCdim(ζ)
. By

Theorem 7 we conclude that

VθT (ζ) ≤ 8

(
T

n

)(e c1

θ

)n(k−1)VCdim(ζ)
exp

(
− Tθ2

64 ck

)
which concludes the proof.

Similarly to Lemma 9, we obtain Õ(
√
T ) rate of convergence for the class ζn constructed

from a VC class of history-independent checking rules.

5.4. General Checking Rules

In this section we study checking rules that depend on history. We start with an assumption
on the form of these rules: history is represented by some potentially smaller set. Such a
smaller set can arise from a bound on the available memory, or from limited precision.

Formally, assume that for some set Y there exists a mapping φ : Zδ 7→ Y and a class
of binary functions G ⊆ {0, 1}Y×∆k with the following property: For any c ∈ ζ there exists
g ∈ G such that

c(z, p) = g(φ(z), p) for any z ∈ Z and p ∈ ∆k .

Clearly, if we set Y = Zδ and φ the identity mapping, G and ζ coincide.

Lemma 15 For any set Y and class of binary functions G satisfying the above mentioned
assumption with mapping φ, we have that

VθT ≤ 8 (eT )Ldim(G) exp

(
− Tθ

2

64ck

)
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Proof Note that

Nch(ζ, T ) = sup
x,pδ

N(ζ, (z(x,pδ),pδ)) = sup
x,pδ

N(G, (φ(z(x,pδ)),pδ)) ≤ sup
y,pδ

N(G, (y,pδ)) ≤ (eT )Ldim(G) .

Using this with Theorem 7 we conclude the proof.

Corollary 16 For any class of checking rules ζ,

VθT ≤ 8 (eT )Ldim(ζ,Zδ×Cδ) exp

(
− Tθ

2

64ck

)
Proof Use previous lemma with G = ζ, Y = Zδ and φ the identity mapping.

5.5. Checking Rules With Limited History Lookback

We now consider a family of checking rules that only depend on at most m of the most
recent pairs of actions played by the two players. We call such a class of rules an m-look
back family. Specifically, for 0 ≤ m ≤ T − 1, define Y =

⋃m
t=0 (Cδ × Ek)t ⊂ Zδ, G = ζ and

φ : Zδ 7→ Y is given by:

φ(z) =

{
z if z ∈ Y
(zt−m−1, . . . , zt) if z ∈ (Cδ × Ek)t for some m < t ≤ T

The first bound we can get here directly is the one implied by Lemma 15 for the G and
Y mentioned above.

Lemma 17 For any m-look back family of checking rules ζ,

VθT ≤ 8 · 2m km( c1θ )
km

exp

(
− Tθ

2

64ck

)
Proof Note that

|Y| =
m∑
t=0

∣∣(Cδ × Ek)t∣∣ ≤ m∑
t=0

(|Cδ| · k)t ≤
m∑
t=0

(( c1

2δ

)(k−1)
· k
)t
≤ m km

( c1

2δ

)(k−1)m

So for δ = θ/2 we have |Y| ≤ mkm
(
c1
θ

)(k−1)m
. This implies that the total number of

different possible binary labelings of elements of the set Y × Cδ (and hence Nch(ζ, T )) is
bounded by

Nch(ζ, T ) ≤ 2m km( c1θ )
km

Hence using Theorem 7 we conclude the theorem statement.

Note that the above bound gives polynomial convergence for any m ≤ log T
1+ε for any

ε > 0. That is, there exists a forecasting strategy that can calibrate against any family of
measurable checking rules which have dependence on a logarithmic (in T ) number of past
forecasts and outcomes.
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Lemma 18 For any m-look back family of checking rules ζ, if VC dimension of the class
as applied on input space Y × Cδ is given by VCdim(ζ,Y × Cδ) then,

VθT ≤ 2

(
e m km

(c1

θ

)km)VCdim(ζ,Y×Cδ)
exp

(
− Tθ

2

64ck

)
Proof By VC lemma the number of different labelings of the set Y × Cδ by the class ζ is
bounded by (e|Y × Cδ|)VCdim(ζ,Y×Cδ). However

|Y × Cδ| ≤ m km
(c1

θ

)km
Hence

N (ζ, T ) ≤
(
e m km

(c1

θ

)km)VCdim(ζ,Y×Cδ)

We conclude the proof by appealing to Theorem 7.

The above bound guarantees existence of a calibration strategy whenever m = o(T ).
That is, as long as the checking rule with bounded VC only looks back up to o(T ) steps in
history, the forecaster has a successful strategy.

5.6. Checking Rules with Bounded Computation

Whenever the number of arithmetic operations required to compute each function in a class
is bounded by some constant, the VC dimension of the class can be bounded from above
Goldberg and Jerrum (1995). Specifically result in Goldberg and Jerrum (1995) states that
for binary function class ζ over domain X ⊂ Rn defined by algorithms of description length
bounded by ` and which run in time U using only the operations of conditional jumps and
+, −, × and / (in constant time), the VC dimension of the function class is bounded by
O(`U). Using this with Lemma 18 we make the following observation.

For m-look back family of checking rules ζ defined by algorithms with description length
bounded by ` and runtime bounded by U , applying Lemma 18, the value of the game is
bounded by

VθT ≤ 2

(
e m k

(c1

θ

)k)O(m`U)

exp

(
− Tθ

2

64ck

)
Hence we can gaurantee calibration against set of all checking rules defined by algorithms
of description length bounded by ` and whose run times are bounded by U as long as
m`U = o(T ).

6. Lower Bounds

In this section we show that the
√
T rate for classical calibration cannot be improved. While

the argument is not difficult, we could not find it in the literature.
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Lemma 19 For two actions, the rate for the classical calibration game is lower bounded
for any θ > 0 as

VθT ≥ P

(
1

T

T∑
t=1

xt ≥ 2θ

)
where x1, . . . , xT are independent Rademacher random variables.

Proof Note that for k = 2, the vector notation for the outcomes is no longer necessary.
Indeed, the difference of any two vectors in the simplex is |(a, 1− a)− (b, 1− b)| = 2|a− b|,
and thus the value of the game can be written as

VθT (ζ) := inf
q1

sup
x1

Ef1∼q1 . . . inf
qT

sup
xT

EfT∼qT

[
1

{
sup
c∈ζ

∣∣∣∣∣ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∣∣∣∣∣ > θ

}]
where qt is a distribution over [0, 1], ft ∈ [0, 1], and xt ∈ {0, 1}. In fact, the mathematical
exposition is easier if qt is a distribution on [−1, 1], ft ∈ [−1, 1], and xt ∈ {−1, 1}. The
problem is not changed, as one can easily translate between the two formulations. We
consider a particular ζ consisting of two rules: c1(zt, ft) = 1 {ft ≥ 0} and c2(zt, ft) =
1 {ft < 0}. Note that we can equivalently write these rules as being 1/4-close to the centers
1/4 and 3/4. Hence, this is genuinely a classical ε-calibration problem with ε = 1/4. We
can then write the value of the game as

inf
q1

sup
x1

Ef1∼q1 . . . inf
qT

sup
xT

EfT∼qT

1

{
max

{∣∣∣∣∣ 1

T

T∑
t=1

(xt − ft)1 {ft ≥ 0}

∣∣∣∣∣ ,
∣∣∣∣∣ 1

T

T∑
t=1

(xt − ft)1 {ft < 0}

∣∣∣∣∣
}
> θ

}
Let sign(b) denote the sign of b ∈ R, and sign(0) = 1. Let us write

A(f1:T , x1:T ) :=
1

T

T∑
t=1

(xt − ft)1 {ft ≥ 0} and B(f1:T , x1:T ) :=
1

T

T∑
t=1

(xt − ft)1 {ft < 0} .

The suprema over xt’s can equivalently be written as suprema over all distributions on
{−1, 1}. The lower bound is then achieved by choosing xt to be i.i.d. Rademacher random
variables. The lower bound on the value of the game can thus be written as

VθT ≥ inf
q1

Ef1∼q1Ex1 . . . inf
qT

EfT∼qTExT [1 {max {|A(f1:T , x1:T )|, |B(f1:T , x1:T )|} > θ}]

= inf
f1

Ex1 . . . inf
fT

ExT [1 {max {|A(f1:T , x1:T )|, |B(f1:T , x1:T )|} > θ}]

= inf
f1

sup
a1∈{±1}

Ex1 . . . inf
fT

sup
aT∈{±1}

ExT
[
1
{

max
{
|A(f1:T , {atxt}Tt=1)|, |B(f1:T , {atxt}Tt=1)|

}
> θ
}]

The last equality holds because xt have the same distribution as atxt. Now, choosing
at = sign(ft), we get

VθT ≥ inf
f1

Ex1 . . . inf
fT

ExT
[
1
{

max
{
|A(f1:T , {sign(ft)xt}Tt=1)|, |B(f1:T , {sign(ft)xt}Tt=1)|

}
> θ
}]

= inf
f1

Ex1 . . . inf
fT

ExT [1 {max {|A(f1:T , x1:T )|, |B(f1:T ,−x1:T )|} > θ}] .
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Observe that

A(f1:T , x1:T )−B(f1:T ,−x1:T ) =
1

T

T∑
t=1

(xt − ft)1 {ft ≥ 0} − 1

T

T∑
t=1

(−xt − ft)1 {ft < 0}

=
1

T

T∑
t=1

xt −
1

T

T∑
t=1

ft1 {ft ≥ 0}+
1

T

T∑
t=1

ft1 {ft < 0}

≤ 1

T

T∑
t=1

xt .

Hence,

1 {max {|A(f1:T , x1:T )|, |B(f1:T ,−x1:T )|} > θ} > 1

{
1

T

T∑
t=1

xt < −2θ

}
.

We conclude

VθT ≥ P

(
1

T

T∑
t=1

xt < −2θ

)
.

The lower bound of Lemma 19 can be immediately extended to k > 2 actions and
history-invariant checking rules that change O(k) times. This can be done by dividing T
rounds into bk/2c equal-length periods and then constructing the lower bound for each
period based on two actions.

7. Proofs

Proof [Lemma 2] The first step is replacing the suprema over xt with suprema over
distributions pt on Ek. The second step is exchanging each infimum and supremum by
appealing to the minimax theorem.

VθT (ζ) = inf
q1

sup
p1

E
f1∼q1
x1∼p1

. . . inf
qT

sup
pT

E
fT∼qT
xT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]

= sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]

= sup
p1

inf
f1∈∆k

Ex1∼p1 . . . sup
pT

inf
fT∈∆k

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]
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Now since Cδ ⊂ ∆k we have

VθT (ζ) = sup
p1

inf
f1∈∆k

Ex1∼p1 . . . sup
pT

inf
fT∈∆k

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]

≤ sup
p1

inf
f1∈Cδ

Ex1∼p1 . . . sup
pT

inf
fT∈Cδ

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zt, ft) · (ft − xt)

∥∥∥∥∥ > θ

}]

≤ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pδt − xt)

∥∥∥∥∥ > θ

}]
(6)

where the last inequality is obtained by replacing each infft∈Cδ by the (possibly) sub-optimal
choice of pδt , thus only increasing the value.

By triangle inequality∥∥∥∥∥ 1

T

T∑
t=1

c(zt, p
δ
t ) · (pδt − xt)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pδt − pt)

∥∥∥∥∥+

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥
and the first term above is further bounded above by

1

T

T∑
t=1

∥∥∥c(zδt , pδt ) · (pδt − pt)∥∥∥ ≤ 1

T

T∑
t=1

∥∥∥pδt − pt∥∥∥ ≤ δ .
Using this in Equation 6, we get

VθT (ζ) ≤ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
1

{
δ + sup

c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ

}]

≤ 1 {δ > θ/2}+ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

}]

Choosing δ ≤ θ/2 concludes the proof.

Proof [Lemma 3]
The result is a straightforward consequence of concentration results for 2-smooth func-

tions of an average of a martingale difference sequence due to Pinelis (1994). We also refer to
(Rakhlin et al., 2010b) for a short but detailed proof. The result states that, for a 2-smooth
norm (in particular, ‖ · ‖2),

P

(∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
2

≥ ε

)
≤ 2 exp

(
− ε

2T

8B2

)
if ‖dt‖2 ≤ B almost surely for all t. It remains to pass from our norm ‖ · ‖ to the `2 norm.
Here, we make this transition explicit for any `p norm (1 ≤ p ≤ ∞), but it can also be done
for any appropriately normalized norm on Rk.
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For p ≤ 2, ‖ · ‖2 ≤ ‖ · ‖p and thus the condition ‖dt‖p ≤ 1 implies ‖dt‖2 ≤ 1. Further,
‖ · ‖p ≤

√
k‖ · ‖2 and so ‖ · ‖p ≥ ε implies ‖ · ‖2 ≥ ε/

√
k. Thus, ck = 8k. Now, for the case

p ≥ 2, ‖ · ‖2 ≤
√
k‖ · ‖p and thus we set B =

√
k, leading to the value ck = 8k.
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Appendix

Proof [Lemma 4] Fix a p. If we condition on x1, . . . , xT , the sequence of p1, . . . , pT is
well-defined, and we can consider a tangent sequence x′t ∼ pt. This sequence is independent
(see (de la Peña and Giné, 1998; Rakhlin et al., 2010a)). Note also that for any t, c(zδt , p

δ
t )

is constant given x1, . . . , xT . Then for any fixed c ∈ ζ,

Ex′1∼p1,...,x′T∼pT

[
1

{∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ > θ/4

}∣∣∣∣∣x1, . . . , xT

]

= P

(∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ > θ/4

∣∣∣∣∣ x1, . . . , xT

)
≤ 2 exp

(
− Tθ

2

16ck

)
≤ 1

2

where the last inequality is by our assumption that T > 16ck log(4)
θ2

. Hence we can conclude
that for any fixed c ∈ ζ,

P

(∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ ≤ θ/4
∣∣∣∣∣ x1, . . . , xT

)
≥ 1

2

Now since we are conditioning on x1, . . . , xT we can pick c∗ ∈ ζ as :

c∗ = argmax
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥
and so

P

(∥∥∥∥∥ 1

T

T∑
t=1

c∗(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ ≤ θ/4
∣∣∣∣∣ x1, . . . , xT

)
≥ 1

2
(7)

Since the Inequality (7) holds for any x1, . . . , xT we assert that

1

2
≤ P

(∥∥∥∥∥ 1

T

T∑
t=1

c∗(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ ≤ θ/4
∣∣∣∣∣ sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

)
Hence we can conclude that for any distribution,

1

2
P

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

)

≤ P

(∥∥∥∥∥ 1

T

T∑
t=1

c∗(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ ≤ θ/4
∣∣∣∣∣ sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

)

× P

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

)

= P

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2 ,

∥∥∥∥∥ 1

T

T∑
t=1

c∗(zδt , p
δ
t ) · (pt − x′t)

∥∥∥∥∥ ≤ θ/4
)

≤ P

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

)
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Note that the probability is both with respect to the stochastic process x1, . . . , xT and the
tangent sequence x′1, . . . , x

′
T . Furthermore, the above inequality holds for any p. Thus,

1

2
sup
p

Ex1,...,xT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (pt − xt)

∥∥∥∥∥ > θ/2

}]

≤ sup
p

Ex1,...,xTEx′1,...,x′T

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

}]

Moving back to the expanded notation of (2) and using Lemma 2,

1

2
VθT ≤ sup

p1
Ex1∼p1 . . . sup

pT

ExT∼pTEx′1∼p1,...,x′T∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

}]

≤ sup
p1

Ex1,x′1∼p1 . . . sup
pT

ExT ,x′T∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

}]

Next, we upper bound the above expression by introducing suprema over pδt (we are slightly
abusing the notation, as these variables will no longer depend on pt):

sup
p1

sup
pδ1∈Cδ

Ex1,x′1∼p1 . . . sup
pT

sup
pδT∈Cδ

ExT ,x′T∼pT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

c(zδt , p
δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

}]
= sup

p1

sup
pδ1∈Cδ

E
x1,x′1∼p1

. . . sup
pT

sup
pδT∈Cδ

E
xT ,x′T∼pT

E
εT[

1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T−1∑
t=1

c(zδt , p
δ
t ) · (xt − x′t) + εT c(zδT , p

δ
T ) · (xT − x′T )

∥∥∥∥∥ > θ/4

}]

The last step is justified because xT and x′T have the same distribution pt when conditioned
on x1, . . . , xT−1, and thus we can introduce the Rademacher random variable εT . Next, we
pass to the supremum over (xT , x

′
T ):

sup
p1

sup
pδ1∈Cδ

E
x1,x′1∼p1

. . . sup
xT ,x′T∈Ek

sup
pδT∈Cδ

E
εT[

1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T−1∑
t=1

c(zδt , p
δ
t ) · (xt − x′t) + εT c(zδT , p

δ
T ) · (xT − x′T )

∥∥∥∥∥ > θ/4

}]
= sup

p1

sup
pδ1∈Cδ

E
x1,x′1∼p1

. . . sup
pT−1

sup
pδT−1∈Cδ

E
xT−1,x′T−1∼pT−1

E
εT−1

sup
xT ,x′T∈Ek

sup
pδT∈Cδ

E
εT1

sup
c∈ζ

∥∥∥∥∥∥ 1

T

T−2∑
t=1

c(zδt , p
δ
t ) · (xt − x′t) +

T∑
j=T−1

εj c(z
δ
j , p

δ
j) · (xj − x′j)

∥∥∥∥∥∥ > θ/4




≤ sup
p1

sup
pδ1∈Cδ

E
x1,x′1∼p1

. . . sup
xT−1,x′T−1∈Ek

sup
pδT−1∈Cδ

E
εT−1

sup
xT ,x′T∈Ek

sup
pδT∈Cδ

E
εT1

sup
c∈ζ

∥∥∥∥∥∥ 1

T

T−2∑
t=1

c(zδt , p
δ
t ) · (xt − x′t) +

T∑
j=T−1

εj c(z
δ
j , p

δ
j) · (xj − x′j)

∥∥∥∥∥∥ > θ/4



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Continuing similarly all the way to the first term, we obtain an upper bound

sup
x1,x′1∈Ek

sup
pδ1∈Cδ

E
ε1
. . . sup

xT ,x
′
T∈Ek

sup
pδT∈Cδ

E
εT

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t , p

δ
t ) · (xt − x′t)

∥∥∥∥∥ > θ/4

}]

We now pass to the tree notation. The above quantity is equal to

sup
x,x′,pδ

Eε

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) · (xt(ε)− x′t(ε))

∥∥∥∥∥ > θ/4

}]

where x,x′ are Ek-valued trees of depth T , pδ is a Cδ-valued tree of depth T , and the
Z-valued history tree is defined for by

zδt (ε) :=
(

(pδ1(ε),x1(ε)), . . . , (pδt−1(ε),xt−1(ε))
)
.

Here, ε = (ε1, . . . , εT ) ∈ {±1}T denotes a path. The last quantity is upper bounded by

sup
x,x′,pδ

Eε

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε))xt(ε)

∥∥∥∥∥+

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε))x

′
t(ε)

∥∥∥∥∥ > θ/4

}]

≤ sup
x,x′,pδ

Eε

{
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε))xt(ε)

∥∥∥∥∥ > θ/8

}

+1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε))x

′
t(ε)

∥∥∥∥∥ > θ/8

}}

≤ 2 sup
x,pδ

Eε

[
1

{
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) xt(ε)

∥∥∥∥∥ > θ/8

}]

= 2 sup
x,pδ

Pε

(
sup
c∈ζ

∥∥∥∥∥ 1

T

T∑
t=1

εt c(z
δ
t (ε),p

δ
t(ε)) xt(ε)

∥∥∥∥∥ > θ/8

)
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