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Abstract. We propose the use of nonlocal operators to define new types of flows and functionals
for image processing and elsewhere. A main advantage over classical PDE-based algorithms is the
ability to handle better textures and repetitive structures. This topic can be viewed as an extension
of spectral graph theory and the diffusion geometry framework to functional analysis and PDE-like
evolutions. Some possible application and numerical examples are given, as is a general framework
for approximating Hamilton-Jacobi equations on arbitrary grids in high demensions, e.g., for control
theory.
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1. Introduction.

1.1. Motivation. In this paper our goal is to formalize a systematic and coher-
ent framework for nonlocal image and signal processing. By this we mean that any
point can interact directly with any other point in the image domain (at least in prin-
ciple). In practice, for complexity reasons, the number of interactions is limited only
to the “most relevant” regions (in some sense which is derived from the application).
Our formulation is continuous.

We attempt to extend some known PDE’s and variational techniques to this non-
local framework. The major difference is that classical derivatives are local operators.
However, following ideas from graph theory, and specifically the gradient and diver-
gence operators of Zhou and Schölkopf [58, 59], we observe that many PDE-based
processes, minimizations and computation methods can be generalized to be nonlo-
cal. A main advantage for image processing is the ability to process both structures
(geometrical parts) and textures within the same framework.

We also believe this framework may be useful beyond the scope of image process-
ing, for purposes such as physical modelling of processes with nonlocal behavior. We
outline a method for approximating Hamilton-Jacobi equations in high dimensions in
Section 3, below.

1.2. Short Background. PDE’s have been used very successfully for many
image processing tasks, such as denoising, deconvolution, segmentation, inpainting,
optical-flow and more. For details regarding the theory and the applications see
[1, 43, 42, 17, 50] and the references therein.

Techniques using spectral graph theory [19, 38] were used for image segmentation
[51, 46, 56, 29] and in a more general form for various machine-learning applications
in the diffusion geometry framework [20, 40]. These techniques are based on manipu-
lation of the eigenvalues of the graph-Laplacian. Total variation type regularizations
on graphs were first proposed in [15] and later by [59] and [7]. A related framework
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in the context of PDE’s is the Beltrami flow on Riemannian manifolds [52, 31] where
the metric is image-driven and textures can be handled [49]. This framework however
is still local and is based on PDE’s in a classical sense.

For image denoising, nonlocal methods were developed based on gray-level pixel
affinities in the form of the Yoroslavsky filter [57] and the bilateral filters [54]. Deeper
understanding of these filters and their relation to PDE’s were given by Barash and
Elad [5, 6, 26]. Nonlocal denoising based on patch-distances was proposed by Buades
et al in [9]. They have also given in [10] the asymptotic relation of neighborhood
filters to Perona-Malik type PDE’s [47]. The use of patch distances in [9] followed
ideas by Efros and Leung [25] for texture synthesis and completion. We will give
a variational interpretation of this process in this paper. In [53] the filter of [9],
referred to as nonlocal means, was understood as a special case within the diffusion
geometry framework. Other patch distances based on filters were proposed. In [36]
a fast algorithm was designed for computing the fully nonlocal version. The study of
[30] presented a statistical analysis of the problem and suggested to use an adaptive
window approach which minimizes a local risk measure.

The DUDE algorithm [39] denoises data sequences generated by a discrete source
and received over a discrete memoryless channel. DUDE assigns image values using
similarity of neighborhoods based on image statistics. This resembles the construc-
tion of conditional probabilities in Awate and Whitaker [4]. The DUDE approach
is limited to discrete-valued signals as opposed to [4] and our approach, which ad-
dresses continuous- valued signals, such as those associated with grayscale images.
The DUDE algorithm is not very effective in case of additive noise.

Awate and Whitaker’s algorithm [4] can be expressed in our framework (without
our PDE/regularization steps). They use the entropy as a measure of self similarity
and obtain a convolution with weights requiring a convolution. They update their
weights as they proceed in time using their gradient descent approach. Their method
somewhat resembles the approach in [32], Section 3, where g, the function within the
regularizer, involves entropy.

A first variational understanding as a nonconvex minimization was given in [32].
In [28] we proposed an alternative convex quadratic functional, showed the relation to
spectral graph theory, and were able to achieve superior filtering properties, compared
with [9], using an iterative “nonlocal diffusion” process. We also presented a simple
nonlocal supervised segmentation algorithm which follows [51, 35, 29] and analyzed
analytically the step-edge case. In [27] a more general convex framework was proposed
and a method to compute the energy minimizations using graph-cut techniques was
shown. This paper follows and significantly generalizes our previous studies [28, 27].

2. The proposed mathematical framework.

2.1. Basic operators. In the following we use a variant of the gradient and
divergence definitions on graphs given in the context of machine learning [58, 59]. In
our case, the weights are not normalized pointwise and the definitions are continuous.
Recently Bougleux et al. [7] have proposed a regularization framework on graphs
which also uses similar operators. In their study, a family of p−Laplace operators
was defined for discrete data and a variational framework was proposed for image and
mesh denoising.

Let Ω ⊂ R
n, x ∈ Ω, u(x) a real function u : Ω → R. We extend the notion of
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derivatives to a nonlocal framework by the following definition:

∂yu(x) :=
u(y) − u(x)

d̃(x, y)
, y, x ∈ Ω,

where 0 < d̃(x, y) ≤ ∞ is a positive measure defined between points x and y. To keep
with standard notations related to graphs we define the weights as

w(x, y) = d̃−2(x, y).

Thus 0 ≤ w(x, y) < ∞. In this paper we assume the weights are symmetric, that is
w(x, y) = w(y, x). The nonlocal derivative can be written as

∂yu(x) := (u(y) − u(x))
√

w(x, y). (2.1)

The nonlocal gradient ∇wu(x) : Ω → Ω × Ω is defined as the vector of all partial
derivatives:

(∇wu)(x, y) := (u(y) − u(x))
√

w(x, y), x, y ∈ Ω. (2.2)

We denote vectors as ~v = v(x, y) ∈ Ω×Ω. The standard L2 inner product is used
for functions

〈u1, u2〉 :=

∫

Ω

u1(x)u2(x)dx.

For vectors we define a dot product

(~v1 · ~v2)(x) :=

∫

Ω

v1(x, y)v2(x, y)dy,

and an inner product

〈~v1, ~v2〉 := 〈~v1 · ~v2, 1〉 =

∫

Ω×Ω

v1(x, y)v2(x, y)dxdy.

The magnitude of a vector is

|~v|(x) :=
√

~v1 · ~v1 =

√

∫

Ω

v(x, y)2dy.

With the above inner products the nonlocal divergence div w~v(x) : Ω × Ω → Ω is
defined as the adjoint of the nonlocal gradient:

(div w~v)(x) :=

∫

Ω

(v(x, y) − v(y, x))
√

w(x, y)dy. (2.3)

The Laplacian can now be defined by:

∆wu(x) :=
1

2
div w(∇wu(x)) =

∫

Ω

(u(y) − u(x))w(x, y)dy. (2.4)

Note that in order to get the standard Laplacian definition which relates to the graph
Laplacian we need a factor of 1/2.
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2.2. Some properties. Most of the properties involving a double integral can
be shown by expanding an integral of the form

∫

Ω×Ω f(x, y)dxdy to 1
2

∫

Ω×Ω(f(x, y) +
f(y, x))dxdy, changing the order of integration and using the fact that w(x, y) =
w(y, x). We give an example showing the adjoint relation

〈∇wu,~v〉 = 〈u,−div w~v〉, (2.5)

〈∇wu,~v〉 =
∫

Ω×Ω(u(y) − u(x))
√

w(x, y)v(x, y)dxdy

= 1
2

∫

Ω×Ω

[

(u(y) − u(x))
√

w(x, y)v(x, y) + (u(x) − u(y))
√

w(y, x)v(y, x)
]

dxdy

= 1
2

∫

Ω×Ω
[u(y)(v(x, y) − v(y, x)) − u(x)(v(x, y) − v(y, x))]

√

w(x, y)dxdy

= 1
2

∫

Ω×Ω
[u(x)(v(y, x) − v(x, y)) − u(x)(v(x, y) − v(y, x))]

√

w(x, y)dxdy

=
∫

Ω
u(x)

(

−
∫

Ω
(v(x, y) − v(y, x))

√

w(x, y)dy
)

dx.

“Divergence theorem”:

∫

Ω

div w~vdx = 0. (2.6)

The Laplacian is self adjoint

〈∆wu, u〉 = 〈u, ∆wu〉 (2.7)

and negative semidefinite

〈∆wu, u〉 = −〈∇wu,∇wu〉 ≤ 0. (2.8)

We can also formulate a nonlocal (mean) curvature:

κw := div w

(

∇wu
|∇wu|

)

=
∫

Ω
(u(y) − u(x))w(x, y)

(

1
|∇wu|(x) + 1

|∇wu|(y)

)

dy,
(2.9)

where

|∇wu|(q) :=

√

∫

Ω

(u(z) − u(q))2w(q, z)dz.

2.3. The Regularizing Functionals. Below we propose two types of regular-
izing nonlocal functionals. The first type is based on the nonlocal gradient. It is
set within the mathematical framework described above. The second type is based
on differences, it appears to be easier to implement, where the minimization can be
accomplished using graph cut techniques, as will be discussed in Section 5. We still
investigate the relations between these functionals and when each of them is preferred.

The gradient-based functional is

J(u) =
∫

Ω
φ(|∇wu|2)dx,

=
∫

Ω φ(
∫

Ω(u(y) − u(x))2w(x, y)dy)dx,
(2.10)

where φ(s) is a positive function, convex in
√

s with φ(0) = 0.
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The difference-based functional is

Ja(u) =

∫

Ω×Ω

φ((u(y) − u(x))2w(x, y))dydx. (2.11)

The variation with respect to u (Euler-Lagrange) of (2.10) is

∂uJ(u) = −2

∫

Ω

(u(y) − u(x))w(x, y)(φ′(|∇wu|2(x)) + φ′(|∇wu|2(y)))dy, (2.12)

where φ′(s) is the derivative of φ with respect to s. This can be written more concisely
as

∂uJ(u) = −2div w

(

∇wuφ′(|∇wu|2(x))
)

.

The variation with respect to u of (2.11) is

∂uJa(u) = −4

∫

Ω

(u(y) − u(x))w(x, y)φ′((u(y) − u(x))2w(x, y))dy. (2.13)

Note that for the quadratic case φ(s) = s the functionals (2.10) and (2.11) coincide
(and naturally so do Eqs. (2.12) and (2.13)).

2.3.1. Relation to isotropic and anisotropic local functionals. The func-
tionals which can be written in the form of Eq. (2.10) correspond in the local case to
isotropic functionals (which have no preferred directionality). The second category,
Eq. (2.11), can be related to anisotropic functionals in the local case. We suggest
later two different methods for efficiently computing each category.

As an example, for total-variation, φ(s) =
√

s, Eq. (2.10) becomes:

JNL−TV (u) =

∫

Ω

|∇wu|dx =

∫

Ω

√

∫

Ω

(u(y) − u(x))2w(x, y)dydx (2.14)

whereas Eq. (2.11) becomes

JNL−TV a(u) =

∫

Ω×Ω

|u(x) − u(y)|
√

w(x, y)dydx (2.15)

The above functionals correspond in the local two dimensional case to the isotropic
TV

JTV (u) =

∫

Ω

|∇u|dx =

∫

Ω

√

u2
x1

+ u2
x2

dx

and to the anisotropic TV

JTV a(u) =

∫

Ω

(|ux1
| + |ux2

|)dx.

Following the discussion in Section 3, another analogue to anisotropic TV is:

∫

Ω

2
∑

i=1

|
∫

Ω

(u(y) − u(x))w(x, y)(yi − xi)dy|dx.
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3. Computing Hamilton-Jacobi Equations on Arbitrary Grids in High

Dimensions. In this section we show how this general framework can be used for
computational purposes. Our ultimate goal here is to solve partial differential equa-
tions approximately in high dimensions on irregular grids. We assume to be operating
on a set of isolated data points Ωd ⊂ R

n, with n large and Ωd sparse. Note that unlike
the nonlocal models of the next section, here the construction of the weights is based
on different considerations and is not image or signal driven. The calculus however
is similar. A detailed study on the computational aspects with examples will appear
elsewhere.

Using the nonlocal gradient defined in (2.2) enables us to obtain partial derivatives
as follows. We wish to compute partial derivatives of u, i.e.

(

∂u

∂xi

)

w

, i = 1, . . . , n

in a consistent way.
Let us first define an approximation of the unit vector in the xi direction as

follows:

(x̂i)w := ∇w(xi). (3.1)

The corresponding partial derivative estimation is therefore:

(

∂u

∂xi

)

w

:= ∇w(u) · (x̂i)w = ∇w(u) · ∇w(xi)

=
∫

Ω
(u(y) − u(x))w(x, y)(yi − xi)dy,

(3.2)

we remind that dy is shorthand for dy1 . . . dyn. Note that this can be generalized to
any order, e.g. second order derivatives can be estimated by

(

∂2u

∂x2
i

)

w

:= ∇w

(

∇w(u) · (x̂i)w

)

· (x̂i)w.

We construct w such that the unit vectors are orthonormal:

(x̂i)w · (x̂j)w = δij ,

that is:
∫

(yj − xj)w(x, y)(yi − xi)dy = δij = 1 if i = j (3.3)

= 0 if i 6= j.

A similar framework for approximating partial derivatives for the purpose of strain
localization was found by Chen, Zhang and Belytschko in [18]. Our construction of
monotone schemes for Hamilton-Jacobi equations in high dimensions is new.

A simple and important class is

w(x, y) = w(|x − y|) = w(r) (3.4)

normalized so that
∫

Ω

r2w(r)dx = n (3.5)
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e.g., if n = 2, we need

∫

r3w(r)dr =
1

π
. (3.6)

We can take w(r) = c/r2, 0 ≤ r ≤ R, c > 0 = 0 R < r with R =
√

2
πc .

Another possibility is

w(Ω) = Ce−r2/σ, C, σ > 0.

For (3.5) we need σ =
√

2
πC , e.g., for n = 2.

We compute

(

∂u

∂xi

)

w

=

∫

(u(y) − u(x))w(x, y)(yi − xi)dy (3.7)

= uxi
(x) +

1

2

n
∑

j,k=1

∫

uxj,xk
w(x, y)(yj − xj)(yk − xk)(yi − xi)dy

+ · · ·
= uxi

(x) + error.

In future work we will estimate the error term and develop a theory for solving
Hamilton-Jacobi equations in high dimensions using relatively few data points. Such
problems arise in control theory and elsewhere. Radial basis functions were used in
[11] to obtain schemes in up to four dimensions. Our present approach seems to be
more flexible. We outline it below. See [45], [44] for classical approaches.

In our framework: We are interested in solving

ut + H(ux1
, . . . , uxn

) = 0 (3.8)

u(x, 0) = ϕ(x).

We are interested in finding the unique viscosity solution [21]. We approximate
this by discretization in time, for x ∈ Ω

um+1(x) − um(x)

∆t
= −H̃

((

∂um

∂x1

)

w

,

(

∂um

∂x2

)

w

, . . .

(

∂um

∂xn

)

w

)

(3.9)

u0(x) = ϕ(x)

where H̃ is the numerical Hamilton which is consistent with H (definitions will be
given in a future paper)

um(x) ≈ u(x, m∆t).

A scheme is monotone if um+1(x) is a nondecreasing function of the values um(x).
We will take an analogue of the Lax-Friedrichs scheme [45]

um+1(x) = u(x) − ∆tH

((

∂u

∂x1

)

w

, . . . ,

(

∂u

∂xn

)

w

)

(3.10)

+ 2∆t

∫

c(x, y)w(x, y)(u(y) − u(x))dy
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(dropping the superscript m), where c(x, y) is a nonnegative smooth function, chosen
so that (3.10) gives us a consistent, monotone approximation to the Hamilton-Jacobi
equation, (3.8) (for precise definitions, see [45]).

For this to be monotone, we first require

2c(x, y)w(x, y) −
∑

ν

|Hν |w(x, y)|yν − xν | > 0. (3.11)

So we can take on the support of w(x, y):

2c(x, y) >
∑

ν

|Hν ||yν − xν | (3.12)

and for consistency c(x, x + h) → 0 as h → 0.
Also, we have a time step restriction:

1 + ∆t

∫

(

∑

ν

Hνw(x, y)(yk − xv) − 2c(x, y)w(x, y)

)

dy ≥ 0 (3.13)

1 ≥ ∆t

∫

(w(x, y)2c(x, y) −
∑

ν

Hνw(x, y)(yν − xν))dy

so we can take:
1 ≥ 4∆tw(x, y)c(x, y).

Just to illustrate how this becomes rather conventional in a simple case, let n = 1
and

w(x, y) =
1

2h2
(δ(x − y − h) + δ(x − y + h)), δ the Dirac delta function. (3.14)

Then
(

∂u

∂x

)

w

=
u(x + h) − u(x − h)

2h

(unsurprisingly) and

um+1(x) = u(x) − ∆tH

(

u(x + h) − u(x − h)

2h

)

(3.15)

+ ∆t
(c(x, x + h)(u(x + h) − u(x)) − c(x, x − h)(u(x) − u(x − h))

h2
.

If we take c(x, y) = K|y − x| for K > 0 large enough to satisfy (3.12), we have the
conventional Lax-Friedrichs scheme, which is known to converge as h → 0, if (3.13) is
satisfied.

4. Basic Models. Our proposed nonlocal models are based on the general func-
tional (2.10). The quadratic case, φ(s) = s (resulting in a linear steepest descent), was
investigated in [28] where applications for denoising and segmentation were shown.
Here we will focus on functionals with a TV-type regularizer.

We are interested in the minimizations of the following functionals:
Nonlocal ROF:

JNL−TV (u) + λ‖f − u‖2
L2, (4.1)
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where JNL−TV (u) is defined in (2.14), f is the noisy input image or signal, and
the minimization is over u. We are also interested in the inpainting version of this
functional, following the local TV-inpainting model of [16]:

JNL−TV (u) +

∫

Ω

λ(x)(f − u)2dx, (4.2)

with λ(x) = 0 in the inpainting region and λ(x) = c in the rest of the image.
Another very important model following [41, 14] is the extension of TV − L1 to

a nonlocal version:

JNL−TV (u) + λ‖f − u‖L1. (4.3)

We will show later an interesting application of texture regularization using this mini-
mization. It can both detect and remove anomalies or irregularities from images, and
specifically textures.

We can further generalize Meyer’s G-norm [37] to a nonlocal setting as described
below.

4.1. Generalizing Meyer’s G-norm. Let us define the nonlocal G space (the
dual space of nonlocal TV). In the local case this space was considered by Meyer as the
natural space of oscillatory patterns [37]. In our case oscillatory patterns which are
regular and repetitive can be included in the nonlocal TV space, if a proper method
for calculating the weights is used (as seen in our numerical examples). Thus we
anticipate that in this case the nonlocal G space will characterize irregularities and
randomness of the signal (and also noise). We have not yet investigated this topic
thoroughly.

Let us define the nonlocal G space by

G = {v ∈ X / ∃g ∈ Y such that v = div w(g)} . (4.4)

The nonlocal G norm (if v ∈ G) is:

‖v‖NL−G = inf {‖g‖∞ / v = div w(g)} (4.5)

where ‖g‖∞ := supx{|g|(x)}.
We can thus choose to minimize the following alternative to NL-ROF (4.1). We

shall refer to it as NL TV-G:

JNL−TV (u) + λ‖f − u‖NL−G. (4.6)

In the experimental section, some examples are given, showing the qualitative char-
acteristics of this regularization.

4.2. Computing the weights. In our examples below we have a simplified
scheme to compute the weights using only binary values (0 or 1) based on smallest
patches distances.

Let us define the patch distance as in [9]:

da(f(x), f(y)) =

∫

Ω

Ga(t)|f(x + t) − f(y + t)|2dt,

where Ga is a Gaussian of standard deviation a.



10 G. GILBOA AND S. OSHER

For each point we define the following set A of area |A| = γ (a parameter) within
a search neighborhood S(x) around x (where A ⊂ S(x) ⊆ Ω, |A| � |S(x)|):

A(x) := argmin
A

{
∫

A

da(f(x), f(y))dy, s.t. A ⊂ S(x), |A| = γ

}

. (4.7)

Then the weights are computed as:

w(x, y) =

{

1, if y ∈ A(x) or x ∈ A(y)
0, otherwise.

(4.8)

This naturally gives the property of symmetric weights w(x, y) = w(y, x). For the
way to discretize the weights see Section 5.1 below. Note that in the following section
we keep with the general case of real-valued non-negative weights, and do not assume
that the values are binary.

5. Computation.

5.1. Basic Discretization. Let ui denote the value of a pixel i in the image
(1 ≤ i ≤ N), wi,j is the sparsely discrete version of w(x, y). We use the neighbors set
notation j ∈ Ni defined as j ∈ Ni := {j : wi,j > 0}.

Let ∇wd be the discretization of ∇w:

∇wd(ui) := (uj − ui)
√

wi,j , j ∈ Ni (5.1)

Let div wd be the discretization of div w:

div wd(pi,j) :=
∑

j∈Ni

(pi,j − pj,i)
√

wi,j . (5.2)

The discrete inner product for functions is < u, v >:=
∑

i(uivi) and for vectors we
have the discretized dot product (p · q)i :=

∑

j(pi,jqi,j) and inner product < p, q >:=
∑

i

∑

j(pi,jqi,j). The vector magnitude is therefore |p|i :=
√

∑

j(pi,j)2.

Binary weights:. We use binary weight values of 0 or 1. This way rare features
which also have a very large “patch distance” between them and any other patch in
the image can be regularized as well. In the more common case where the weights are
computed with a Gaussian-like formula, e.g. as in [9],[28],[53],[30], the weights decay
fast for distances above a certain threshold (usually related to the noise variance).
This results in very weak connections (low weight values) for singular regions, thus
such regions are essentially isolated from the rest of the image. This may be a good
property in the case of denoising which avoids blurring of singular patches. However
it is not adequate for the applications presented here, where the purpose is to re-
move irregularities. Note also that with binary weights the “manifold”, as defined by
the values u(x) and the “metric” w(x, y), is not necessarily smooth and can contain
discontinuities or edges (which are handled well by the nonlocal TV regularizer).

The weights are descretized as follows: we take a patch around a pixel i, compute
the distances (da)i,j (a discretization of da(x, y)) to all the patches in the search
window and select the k closest (with the lowest distance value). The number of
neighbors k is an integer proportional to the area γ. For each selected neighbor j we
assign the value 1 to wi,j and to wj,i. A maximum of up to m = 2k neighbors for
each pixel is allowed in our implementation. In the examples of Figs. 6.4 - 6.8 we
used 5 × 5 pixel patches, a search window of size 21 × 21 and m = 10.
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5.2. Steepest Descent. In this convex framework, one can resort as usual to a
steepest descent method for computing the solutions. One initializes u at t = 0, e.g.
with the input image: u|t=0 = f , and evolves numerically the flow:

ut = −∂uJd − ∂uHd(f, u),

where ∂uJd is the discretized version of Eq. (2.12) or Eq. (2.13) and Hd(f, u) is
the discretized fidelity term functional. As in the local case, here also one should
introduce a regularized version of the total variation: φ(s) =

√
s + ε2 (where s is the

square gradient magnitude). Thus the E-L equations are well defined, also for a zero
gradient. When the L1 norm is used as fidelity, a similar regularization is needed for
that term also. The time-step restriction (CFL) is proportional to the regularizing ε
and thus convergence is slow.

5.3. Graph-Cuts. For the difference-based (“anisotropic”) functional, Eq. (2.11),
we can generalize known fast algorithms which use graph-cuts techniques [8, 34]. A
generalization of the algorithm of Darbon and Sigelle [23, 22] can be seen in our CAM
report with Darbon and Chan [27].

5.4. Projections. For the gradient-based (“isotropic”) case graph-cuts tech-
niques cannot be generalized in a straightforward manner. They are restricted to
pairwise interactions between nodes of the graph. When minimizing expressions in-
volving the nonlocal gradient, however, this restriction is not met and one has to
resort to an alternative method.

The projection algorithm of Chambolle [12] generalizes easily in this case. We
show below how to compute the nonlocal ROF and a good approximation of nonlocal
TV − L1.

5.4.1. Nonlocal ROF. Chambolle’s projection algorithm [12] for solving ROF
[48] can be extended to solve nonlocal ROF.

A minimizer for the discrete version of Eq. (4.1) can be computed by the following
iterations (fixed point method):

pn+1
i,j =

pn
i,j + τ(∇wd(div wd(p

n) − 2λf))i,j

1 + τ |(∇wd(div wd(pn) − 2λf))i,j |
(5.3)

where p0 = 0, and the operators ∇wd and div wd are defined in (5.1) and (5.2),
repectively. The solution is u = f − 1

2λdiv wd(p).
Theorem 5.1. The algorithm converges to the global minimizer as n → ∞ for

any 0 < τ ≤ 1
‖div wd‖2

L2

.

Proof. The proof follows the same lines as the original proof of [12]. One should
replace the numerical gradient, divergence and dot product defined in [12] by the
nonlocal discrete definitions given here (Equations (5.2), (5.1) and the definitions
which follow). Then everything follows in a straightforward manner: Obviously, the
nonlocal TV, Eq. (2.14), is one-homogeneous, that is JNL−TV (λu) = λJNL−TV (u).
Thus we have a similar “characteristic function” structure of the Legendre-Fenchel
transform (J∗

NL−TV := supu < u, v > −J(u)). Solving the projection ,we reach
a similar Euler-Lagrange equation for the constrained problem, resolve the value of
the Lagrange multiplier using the same arguments and reach the above fixed point
iterations. The bound on τ (Th. 3.1 in [12]) follows through in the same manner,
having transformed the operators to their nonlocal counterparts. The only difference
is that in our case ‖div wd‖2

L2 is not resolved (with the definitions of [12] it is shown
that ‖div ‖2

L2 ≤ 8).
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A bound on τ . The bound on τ depends on the operator norm ‖div wd‖2 which is
a function of the weights wi,j . As the weights are image dependent, so is ‖div wd‖2.
We propose below a simple bound which is very straightforward and does not depend
on the image. We assume that the maximal number of neighbors for each pixel is a
fixed parameter (not image dependent) and that the weights are bounded by some
value, typically 1.

Proposition 5.2. Let m be the maximal number of neighbors of a pixel, m :=
maxi{

∑

j(sign(wi,j))}. If the weights are in the range 0 ≤ wi,j ≤ 1 ∀i, j, then for

0 < τ ≤ 1
4m the algorithm converges.

Proof. We need to show that ‖div wd‖2 ≤ 4m:

‖div wd(p)‖2 =
∑

i

(

∑

j(pi,j − pj,i)
√

wi,j

)2

≤ 2
∑

i

(

∑

j(p
2
i,j + p2

j,i)
)(

∑

j wi,j

)

≤ 4 maxi

(

∑

j wi,j

)

∑

i

∑

j p2
i,j

≤ 4m‖p‖2.

Remark: . Note that in [12] the discrete local gradient and divergence operators
are not symmetric, thus they do not fall precisely to the framework of this paper. Yet,
the divergence operator of [12] can be viewed as div wd with nonsymmetric weights of
unit value where m = 2. In this sense the original bound ‖div ‖2 ≤ 8 can be viewed
as a special case of the bound presented above.

5.4.2. Nonlocal TV-L1. To solve (4.3) we generalize the algorithm of [3]. We
consider the problem:

inf
u,v

{

JNL−TV (u) +
1

2α
‖f − u − v‖2

L2 + λ‖v‖L1

}

(5.4)

The parameter α is small so that we almost have f = u + v, thus (5.4) is a very good
approximation of (4.3). We can solve the discretized version of (5.4) by iterating:

• v being fixed (we have a nonlocal ROF problem), find u using the nonlocal
Chambolle’s projection algorithm:

inf
u

(

JNL−TV (u) +
1

2α
‖f − u − v‖2

L2

)

• u being fixed, find v which satisfies:

inf
v

1

2α
‖f − u − v‖2

L2 + λ‖v‖L1 .

The solution for v is given by soft-thresholding f − u with αλ as the threshold [13],
denoted by STαλ(f − u), where

STβ(q) :=







q − β, q > β
0, |q| ≤ β
q + β, q < −β.

(5.5)

Proposition 5.3. The algorithm converges to the global minimizer as n → ∞
for any 0 < τ ≤ 1

‖div wd‖2

L2

.
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Proof. The proof is similar to the one of [3] (which is in the spirit of [2]). Using
similar arguments one can show that having solved the nonlocal ROF problem the it-
erative process presented here converges to the global minimizer. For the convergence
of the NL-ROF part we use Theorem 5.1 above.

5.4.3. Nonlocal TV-G. One can repeat the same arguments for minimizing
nonlocal TV − G, Eq. (4.6), and modify the iterative projection algorithm of [2]
to be nonlocal, in a similar manner as the algorithms presented above. We briefly
summarize the idea: Let X be the Euclidean space and let Gµ be defined as

Gµ = {v ∈ NL − G/‖v‖NL−G ≤ µ} .

We consider the following problem:

inf
(u,v)∈X×Gµ

{

JNL−TV (u) +
1

2α
‖f − u − v‖2

L2

}

. (5.6)

To find the minimizer of the discretized functional one can apply the following
simple iterations of NL-ROF minimizations. Initialize u = f, v = 0. Iterate until
convergence:

• v being fixed (one needs to solve a nonlocal ROF problem), find u using the
nonlocal projection algorithm (see Section 5.4.1),

inf
u

(

JNL−TV (u) +
1

2α
‖f − u − v‖2

L2

)

• u being fixed, find v using the nonlocal projection algorithm,

inf
ũ

(

JNL−TV (ũ) +
1

2µ
‖f − u − ũ‖2

L2

)

,

where v = f − u − ũ.
In the second step, where u is fixed, we need to solve infv∈Gµ

{

‖f − u − v‖2
L2

}

. See
the analysis of [2] or Section 3 in [3] showing that the minimization amounts to an
ROF problem. The arguments for our nonlocal version are similar. Note that in
practice one does not need to fully converge for each NL-ROF solution and can use
only a few iterations.

6. Experiments.

6.1. Nonlocal TV Inpainting. Here we show the distinct difference between
local and nonlocal TV-inpainting (see [16] for the local method). We minimize the
functional (4.2). As usual for this problem we assume having the inpainting regions
Ωinp ∈ Ω in advance. We would like to fill-in the missing information in a sensible
manner according to the data in the rest of the image Ω/Ωinp. In the toy example of
Fig. 6.1 a textured region has to be inpainted. The local TV chooses a locally smooth
solution (non-oscillatory) which does not fit this data. The nonlocal smoothness,
as defined by our functional (using patch-based distances) fills-in the information
correctly. The notion of smoothness is generalized to regularity. Thus patches with
similar partial data are selected to fill-in the missing information. In Fig. 6.2 two
examples of filling in parts of the Barbara image are shown. One is of regular texture
(knee part) and one is non-texture (face). It is shown that the missing information
is being replaced well by the algorithm, such that it is hard to distinguish visually
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Original Inpainting region

Local TV Nonlocal TV

Fig. 6.1. Nonlocal vs. local TV inpainting. Top: original texture (left), the texture with the
inpainting region (in red). Bottom: results of local TV-inpainting [16] (left) and the nonlocal method
using Eq. (4.2). The nonlocal method recovers the texture pattern correctly.

between the original and the inpainted image. The errors of the inpainting results,
with respect to the original image, are presented on the right side (second and fourth
rows of the knes and face, respectively).

In the above cases we performed a single inpainting iteration and the missing
regions are required to be smaller than the patches. For filling-in larger regions, an
iterative process is necessary, where the boundaries have to be filled in first and one
can then recompute the weights deeper into the inpainting region and regularize again.
This process can be viewed as a variational understanding of the process suggested
by Efros and Leung [25]. See also a deterministic approach suggested in [24].

The inpainting regularization can work also with the quadratic regularizer J(u) =
∫

Ω
|∇wu|2dx. In the inpainting problem however, as oppose to denoising, the weights

for pixels to be inpainted are computed based on partial patches, where the central
point of the inpainting region is unknown. Thus there are cases where two types of
completions are possible. The quadratic regularizer will have a weighted averaging
solution whereas the TV -type regularizer will have a weighted median solution, which
is usually sharper and more attractive visually (see illustration in Fig. 6.3).

6.2. Nonlocal TV − L1 regularization. This model presents a new way of
viewing signal and image variational regularization. It replaces the local notion of
smoothness by the global notion of regularity. Thus features which appear frequently
are preserved.

The local TV − L1 model is known to remove outliers, such as impulsive noise
[41]. It is also known to keep intact large structures without reducing contrast (as
oppose to the TV − L2 case) while eliminating the smaller scales [14].

The nonlocal concept of “large” scales replaces the physical size of objects (pixels
with a constant color) with the frequency of their appearance. Thus smaller scales
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Original Inpainting region

Nonlocal TV inpainting Error

Original Inpainting region

Nonlocal TV inpainting Error

Fig. 6.2. Nonlocal TV inpainting, Barbara image. Top: original, knee part (left), inpainting
region (in red). Second row: results of nonlocal TV-inpainting, Eq. (4.2) (left) and errors from
the original image. On the third and fourth rows an example of inpainting the face is shown (non-
textural part). The algorithm (with the same parameters) recovers well both types of regions.

should be interpreted as rare features. We obtain a variational regularization proce-
dure which detects and removes irregularities. This can be very useful for regularizing
textures, as seen in the examples below.

See Section for details regarding the calculation of the weights.

In Fig. 6.4 we give a toy example of small but very repetitive features versus large
but rare ones. We also add some white Gaussian noise (of standard deviation σ = 10).
We can observe that this regularization keeps the textures (small physical scale) and
removes the larger objects (replacing them with texture). The texture itself is also
regularized in the sense that the noise is removed. The residual part f − u can be
viewed as an anomaly detector.

Fig. 6.5 depicts an experiment where the search neighborhood S(x) is changed.
S(x) controls the size of the region around each pixel for which similar patches are
examined (see Section 4.2 for details). It should reflect the expected auto-similarity
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Fig. 6.3. TV versus quadratic regularization for inpainting. When two filling-in options are
possible, the TV regularizer takes a median solution, whereas the quadratic regularizer takes an
averaging solution.

scale of the image, or how far we should look in order to find repetitive structures. In
this example the patterns are about 30 pixels apart. When S(x) is too small (9 × 9
pixels), the regularization does not take into account the large-scale regularity of the
image. Thus the regularization quality is degraded: corners are eroded and outliers
and scratches are not removed well.

In Figs. 6.6 and 6.7 we try to detect and remove texture irregularities. We
compare the nonlocal TV −L1 with the local version and a simple 3×3 median filter.
We can see that the local TV − L1 behaves qualitatively in a similar manner to a
median filter (removes small physical features) whereas the nonlocal version keeps well
regular feature, even at the smallest scales. Outliers with a large scale can be removed
while retaining the fine coherence of the textural nature. For the nonlocal and local
TV −L1 regularization we retained the same residual L1 norm: ‖f − u‖L1. This fair
comparison is harder to obtain in the case of the median filter, but the residual norm
is of a similar value.

In Fig. 6.8 we regularized part of a zebra image with different values of λ to show
qualitative the behavior of the nonlocal TV − L1 “scale-space”. Smaller value of λ
means stronger regularization.
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Original Noisy (σ = 10)

u v

Fig. 6.4. Removal of Anomalies by nonlocal TV − L1. Top: original image (left), image with
additive white Gaussian noise. Bottom: result of nonlocal TV −L1 regularization u (left), v ≈ f −u.
This type of regularization retains repetitive patterns and removes rare and irregular ones (the light
and dark larger symbols in this case). Note also that a standard removal of the noise is achieved.
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Input image

Large similarity scale
u v

Small similarity scale
u v

Fig. 6.5. Auto similarity scale in nonlocal TV −L1. The search neighborhood S(x) for comput-
ing the weights (Section 4.2) controls the similarity scale of the regularization. Top: input image.
Middle: nonlocal TV − L1 with a large search neighborhood (S(x) is a window of size 61 × 61).
Bottom: nonlocal TV − L1 with a small search neighborhood (S(x) is a window of size 9 × 9).
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Original f

NL TV − L1 u v

Local TV − L1 u v

Median filter u v

Fig. 6.6. Detecting and removing irregularities from textures by different methods. Example 1.
u (left) - regularized texture. v (right) - texture irregularities. The same L1 norm of the residual
‖v‖

L1 is used for the nonlocal TV − L1 and the local TV − L1.
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Original f

NL TV − L1 u v

Local TV − L1 u v

Median filter u v

Fig. 6.7. Detecting and removing irregularities from textures by different methods. Example 2.
‖v‖

L1 is the same for the nonlocal TV − L1 and the local TV − L1.
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Original

λ = 2, u v

λ = 0.8, u v

λ = 0.3, u v

Fig. 6.8. NL TV − L1. Regularization results for different values of λ.
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Original f u v

Original f u v

Fig. 6.9. Examples of regularizing images with nonlocal TV −G, Eq. (4.6). The filter removes
well random parts of the image, preserving edges and regular patterns.

Original f NL TV − G u v

NL TV − L1 u v

Fig. 6.10. Nonlocal TV − G regularization, Eq. (4.6), compared with nonlocal TV − L1, Eq.
(4.3). Nonlocal TV − G removes random oscillations but keeps outliers.

6.3. Nonlocal TV −G regularization. In Fig. 6.9 two examples of regularizing
images with nonlocal TV − G, Eq. (4.6), are shown. The images are taken from the
Kodak collection [33]. The qualitative properties of this regularization are different
from the original functional proposed by Meyer [37], see examples e.g. in [55, 2, 3].
A notable difference is that the regular textural part is preserved and only random
textures are removed from u. Edges, as in the original model, are well preserved
without erosion of contrast. Fig 6.10 compares the nonlocal TV − G minimization
with nonlocal TV − L1, showing that the latter is more suited for removing outliers.
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7. Conclusion. A very general framework is presented for processing signals and
images non-locally. Two categories of functionals are suggested: one which is based
on generalized nonlocal gradient and divergence operators. The other is based on
differences. In this paper we focus on the first category, present the general framework
and generalize several projection algorithm for computing the nonlocal versions of
ROF [48], TV − L1 [41] and TV − G [37].

In essence two steps are required for this type of regularization: a first step consists
of finding the weights between pixels. We used patch based similarities following [9].
Other affinity measures between regions and pixels can naturally be proposed. The
second step is choosing the appropriate regularization and functional minimization.
It is shown how nonlocal TV − L1 can be used to detect and remove irregularities
from textures. In addition we demonstrate that nonlocal TV-inpainting can fill-in
repetitive textures correctly.

Preliminary calculations done elsewhere already indicate that Hamilton-Jacobi
equations in at least five space dimensions can be solved effectively using the approach
outlined in Section 3.

We currently would like to extend the theoretical foundations and also to inves-
tigate additional applications for which this framework can contribute.
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