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1 Overview

Signal Detection Theory (often abridged as SDT) is used to analyze

data coming from experiments where the task is to categorize am-

biguous stimuli which can be generated either by a known process

(called the signal) or be obtained by chance (called the noise in the

SDT framework). For example a radar operator must decide if what

she sees on the radar screen indicates the presence of a plane (the

signal) or the presence of parasites (the noise). This type of appli-

cations was the original framework of SDT (see the founding work

of Green & Swets, 1966) But the notion of signal and noise can

be somewhat metaphorical is some experimental contexts. For

example, in a memory recognition experiment, participants have

to decide if the stimulus they currently see was presented before.

Here the signal corresponds to a familiarity feeling generated by a

memorized stimulus whereas the noise corresponds to a familiar-

ity feeling generated by a new stimulus.

The goal of detection theory is to estimate two main parame-

ters from the experimental data. The first parameter, called d ′, in-

dicates the strength of the signal (relative to the noise). The second

parameter called C (a variant of it is called β), reflects the strategy
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Table 1: The four possible types of response in sdt

DECISION: (PARTICIPANT’S RESPONSE)

REALITY Yes No

Signal Present Hit Miss

Signal Absent False Alarm (FA) Correct Rejection

of response of the participant (e.g., saying easily yes rather than

no). SDT is used in very different domains from psychology (psy-

chophysics, perception, memory), medical diagnostics (do the sy-

mptoms match a known diagnostic or can they be dismissed are

irrelevant), to statistical decision (do the data indicate that the ex-

periment has an effect or not).

2 The Model

It is easier to introduce the model with an example, so suppose

that we have designed a face memory experiment. In the first part

of the experiment, a participant was asked to memorize a list of

faces. At test, the participant is presented with a set of faces one at

a time. Some faces in the test were seen before (these are old faces)

and some were not seen before (these are new faces). The task is

to decide for each face if this face was seen (response Yes) or not

(response No) in the first part of the experiment.

What are the different types of responses? A Yes response given

to an old stimulus is a correct response, it is called a Hit; but a Yes

response to a new stimulus is a mistake, it is called a False Alarm

(abbreviated as FA). A No response given to a new stimulus is a

correct response, it is called a Correct Rejection; but a No response

to an old stimulus is a mistake, it is called a Miss (abbreviated as

FA). These four types of response (and their frequency) can be or-

ganized as shown in Table 1.
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The relative frequency of these four types of response are not

all independent. For example when the signal is present (first row

of Table 1) the proportion of Hits and the proportion of Misses add

up to one (because when the signal is present the subject can say

either Yes or No). Likewise when the signal is absent, he propor-

tion of FA and the proportion of Correct Rejection add up to one.

Therefore all the information in a Table such as Table 1) is given by

the proportion of Hits and FAs.

Even though the proportions of Hits and FAs provide all the in-

formation in the data, these values are hard to interpret because

they crucially depend upon two parameters. The first parameter

is the difficulty of the task: The easier the task the larger the pro-

portion of Hits and the smaller the proportion of FAs. When the

task is easy, we say that the signal and the noise are well separated,

or that there is a large distance between the signal and the noise

(conversely, for a hard task, the signal and the noise are close and

the distance between them is small). The second parameter is the

strategy of the participant: A participant who always says No will

never commit a FA; on the other hand, a participant who always

says Yes is guaranteed all Hits. A participant who tends to give the

response Yes is called liberal and a participant who tends to give

the response No is called conservative.

3 The SDT model

So, the proportions of Hits and FAs reflect the effect of two under-

lying parameters: the first one reflects the separation between the

signal and the noise and the second one the strategy of the partic-

ipant. The goal of SDT is to estimate the value of these two para-

meters from the experimental data. In order to do so, SDT creates

a model of the participant’s response. Basically the SDT model as-

sumes that the participant’s response depends upon the intensity

of a hidden variable (e.g., familiarity of a face) and that the partici-

pant responds Yes when the value of this variable for the stimulus

is larger than a predefined threshold.
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SDT also assumes that the stimuli generated by the noise con-

dition vary naturally for that hidden variable. As is often the case

elsewhere, SDT, in addition, assumes that the hidden variable val-

ues for the noise follow a normal distribution. Recall at this point,

that when a variable x follows a Gaussian (a.k.a Normal) distrib-

ution, this distribution depends upon two parameters: the mean

(denoted µ) and the variance (denoted σ2). It is defined as:

G (x,µ,σ) =
1

σ
p

2π
exp

{

−
(x −µ)2

2σ2

}

. (1)

In general within the SDT framework the values of µ and σ are arbi-

trary and therefore we choose the simpler values of µ= 0 and σ= 1

(other values will give the same results but with more cumbersome

procedures). In this case, Equation 1 reduces to

N (x) =
1

p
2π

exp

{

−
1

2
x2

}

. (2)

Figure 1: The model of sdt.

Finally, SDT assumes that the signal is added to the noise. In

other words, the distribution of the values generated by the signal
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condition has the same shape (and therefore the same variance) as

the noise distribution.

Figure 1 illustrates the SDT model. The x-axis shows the in-

tensity of underlying hidden variable (e.g., familiarity for the face

example). As indicated above, the distribution of the noise is cen-

tered at zero (i.e., mean of the noise is equal to zero, with a stan-

dard deviation of 1. So, the standard deviation of the noise is equiv-

alent to the unit of measurement of x. The distribution of the sig-

nal is identical to the noise distribution, but it is moved to the

right of the noise distribution. The distance between the signal

and the noise distributions corresponds to the effect of the signal

(this is the quantity that is added to the noise distribution in order

to get the signal distribution): this distance is called d ′. Because

the mean of the noise distribution is zero, d ′ is equal to the mean

of the signal distribution.

The strategy of the participant is expressed via the choice of

the threshold. There are several ways of expressing the position

of this threshold, among the possible candidates we will mention

four of them denoted B , D , C and β. The first quantity B (some-

times called ϑ) gives the position of the threshold on the x-axis. In

the example illustrated in Figure 1, this value is equal to 2, and so

the participant corresponding to this figure has decided that any

stimulus with a value of x larger than 2 comes from the signal dis-

tribution and is given the response Yes. The position of the thresh-

old can also be given relative to the signal distribution (because the

noise has zero mean, B is the distance of the threshold relative to

the noise distribution), as the mean of the signal is equal to d ′ we

can compute D as D = d ′−B (a value equal to 1 in our example).

The most popular way of expressing the location of the thresh-

old, however, is neither from the distribution of the noise nor the

distribution of the signal but relative to what is called the ideal ob-

server. The ideal observer minimizes conjointly the probability of

a Miss and of an FA. When each type of errors has the same cost,

the criterion of the ideal observer is positioned on the average of

the means of the signal and the noise distribution. In our example,

the threshold of the ideal observer would be equal to 1
2

d ′ = 1
2
= .5.

The value of C is the distance from the actual threshold to the ideal
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observer, it can computed as C = B − d ′

2
= 2− .5 = 1.5. The sign

of C reveals the participant’s strategy: when C = 0, we have the

ideal observer; when C is negative the participant is libéral (i.e.,

responds Yes more often than the ideal observer); when C is pos-

itive the participant is conservative (i.e., responds No more often

than the ideal observer).

An alternative way of expressing the position of the partici-

pant’s criterion is given by the quantity called β. It corresponds

to the ratio of the height of the signal distribution to the noise dis-

tribution for the value of the threshold. Because the distributions

of the noise and the signal are normal with variance equal to one,

we can compute β from Equation 2 as:

β=
N (D)

N (B)
=

N (1)

N (2)
=

.2420

.0540
≈ 4.4817 . (3)

Some rewriting can show that Equation 3 can be rewritten as

β= exp
{

d ′×C
}

. (4)

The quantity β has the advantage of being a likelihood ratio and

can be used to interpret SDT within a statistical framework. For

practical reasons, it is often easier to compute the logarithm of β,

for example from Equation 4, we get

lnβ= d ′×C = 1×1.5 = 1.5 . (5)

The model illustrated by Figure 1 generates a specific pattern

of response probabilities which can be computed from integrating

the normal distribution. So, for example, the probability of a FA is

obtained as the probability (i.e., area under the normal distribu-

tion) of finding a value larger than 2 with a normal distribution of

mean 0 and variance 1 (this can be computed with most statistical

packages or from Tables such as the ones given in Abdi, 1987). This

quantity is also called the probability associated to the value 2, in

our example it is equal to .0228. Along the same lines, the prob-

ability of a Hit is obtained as the probability (i.e., area under the

normal distribution) of finding a value larger than 2 with a normal

distribution of mean 1 (i.e., the mean of the signal) and variance
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Table 2: The probability or the four possible types of response ac-

cording to to Figure 1.

DECISION: (PARTICIPANT’S RESPONSE)

REALITY Yes No Total

Signal Present Hit Miss

Pr{Hit}=.1587 Pr{Miss}=.8413 1

Signal Absent False Alarm (FA) Correct Rejection

Pr{FA}=.0228 Pr
{

Correct Rejection
}

=.9772 1

1, this is equivalent of finding the probability (i.e., area under the

normal distribution) of finding a value larger than 2−1 = 1 with a

normal distribution of mean 1−1 = 0 and variance 1. This value is

equal to .1587.

4 SDT in practice

The previous example was describing the performance of a partic-

ipant who behaved according to the SDT model. However, in prac-

tice we do not known the values of the parameters of SDT, but we

want to estimate them from the performance of the participants.

In an experimental paradigm the only observable quantities are

the participant’s responses from which we can derive the number

of hits and FA’s.

To illustrate this problem suppose that we want to evaluate the

performance of a wine taster whose task is to detect if a wine la-

belled as made from “Pinot Noir” has been tempered by the addi-

tion of some Gamay (generally considered an inferior grape). Here,

the signal corresponds to presence of Gamay. Our wine taster tasted

(blindfolded) twenty glasses of Pinot, (half of them tempered with
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Table 3: The performance of a wine taster trying to identify Gamay

in a Pinot Noir wine.

DECISION: ( TASTER’S RESPONSE)

REALITY Yes (Gamay) No (Pure Pinot)
∑

Signal Present Hit Miss

(Gamay) #{Hit}=9 #{Miss}=1 10

Pr{Hit}=.9 #{Miss}=.1 1

Signal Absent False Alarm (FA) Correct Rejection

(Pure Pinot) #{FA}=2 #
{

Correct Rejection
}

=8 10

Pr{FA}=.2 Pr
{

Correct Rejection
}

=.8 1

some Gamay and half without). The results are reported in Table 3,

and show that the proportion of Hits and FAs are respectively .9

and .2. In order to find the values of d ′ and the criterion, we need

to inverse the formulas given above (i.e., Equation 3–5). We need

one new notation: for a normal distribution with zero mean, we

denote by ZP the value of the normal distribution whose associ-

ated probability is equal to P (e.g., Z.025 = 1.96). We denote ZH et

ZF A the values corresponding to the proportions of Hits and FAs.

With these new notations and after some (minor) algebraic ma-

nipulations we find the following set of formulas. The estimation

of d ′ is obtained as

d ′ = ZH −ZF A = Z.9 −Z.2 = 1.28− (−.84) = 2.12 . (6)

The estimation of C is obtained as

C =−
1

2
[ZH +ZF A] =− [Z.9 +Z.2] =−

1

2
[1.28− .84] =−.22 , (7)

and lnβ is obtained as

lnβ= d ′×C = 2.12×−.22 =−.47 (8)
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(β is obtained as exp{lnβ} = .63).

How to interpret these results? The taster is clearly (but not

perfectly) discriminating between Pinots and tempered Pinots (as

indicated by a d ′ of 2.12), this taster is also liberal (in case of doubt

the taster will rather say that the wine has been tempered rather

than not).

5 Bibliography

The classic work on SDT is Green and Swets (1966), a basic in-

troduction is McNicol, D. (1972), two recent comprehensive ref-

erences are Macmillan and Creelman (2005) and Wickens (2002).
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