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Abstract

Although active networks have generated much debate in the
research community, on the whole there has been little hard
evidence to inform this debate. This paper aims to redress
the situation by reporting what we have learned by design-
ing, implementing and using the ANTS active network toolkit
over the past two years. At this early stage, active networks
remain an open research area. However, we believe that we
have made substantial progress towards providing a more
flexible network layer while at the same time addressing the
performance and security concerns raised by the presence
of mobile code in the network. In this paper, we argue our
progress towards the original vision and the difficulties that
we have not yet resolved in three areas that characterize a
“pure” active network: the capsule model of programma-
bility; the accessibility of that model to all users; and the
applications that can be constructed in practice.

1 Introduction

Active networksare a novel approach to network architecture
in which customized programs are executed within the net-
work. They were first described in [41], where the authors
postulated that this approach would provide two key bene-
fits: it would enable a range of new applications that lever-
aged computation within the network; and it would acceler-
ate the pace of innovation by decoupling services from the
underlying infrastructure. Active networks have generated
much interest because of their appeal as a means of creating
new Internet services. They have also resulted in at least as
much controversy because of serious performance and secu-
rity concerns raised by the presence of untrusted code within
the network.

Can active networks deliver their claimed benefits in
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terms of new and novel services, while at the same time
keeping the network efficient and secure? At least eight
active network prototypes have been developed in addi-
tion to our own to study this question in one form or an-
other [1, 11, 43, 48, 2, 16, 30, 39]. Hence the concept of
active networking (if not its actual deployment) is now “old
hat.” However, very little evidence has been presented to
support or refute the original vision for active networks to
date.

In this paper, we reconsider the vision for active net-
works in light of our experience designing, implementing
and using the ANTS toolkit [46] over the past two years;
ANTS is well-suited to this purpose because it is based on
an aggressive “capsule” design that adds extensibility at the
IP packet level. We unabashedly present a mix of fact and
opinion, experimental results and qualitative analysis, that
reports on the progress we have made reconciling network
flexibility with performance and security. Our findings are
based on having implemented two large active network ap-
plications and numerous smaller examples on top of ANTS,
and on a comparison of the properties of ANTS with the
Internet. Additionally, ANTS is widely used within the re-
search community (having been publicly available since late
’97) and has resulted in considerable design feedback.

To highlight what we have learned, we contrast our find-
ings with the vision originally stated in [41] in three areas
that characterize a “pure” active network: the capsule model
of programmability; the accessibility of that model to all
users; and the applications that can be constructed in prac-
tice. Specifically, we present the following findings in this
paper:

Capsules. Profile measurements suggest that cap-
sules can be a competitive forwarding mechanism wherever
software-based routers are viable; this is despite the fact
that our prototype is limited to an unimpressive 10 Mbps, in
large part due to being implemented in Java. To implement
capsules efficiently, we have replaced a naive code carrying
scheme with one in which code is carried by reference and so
depends, to a larger extent than suggested in [41], on demand
loading and traffic patterns for which caching is effective.
We have also found it necessary to revise our architecture to
accommodate heterogeneous types of nodes, and in partic-
ular to be compatible with nodes that are not active. As a
result, routers that would not otherwise perform forwarding
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in software are not slowed by capsule processing.
Accessibility.We have partly succeeded in allowing each

user the freedom to control the handling of their packets
within the network. We are able to isolate the code and
state of different services to guarantee their correctness to
the same degree as do today’s static and trusted protocols.
This is possible without restrictions on who can program
the network, despite the fact that active network code is
mobile and untrusted. However, it remains an open prob-
lem to prevent misbehaving programs from monopolizing
resources across a group of nodes. This is analogous to the
way that the current Internet does not prevent misbehaving
users from monopolizing bandwidth. Both problems require
further network mechanisms to be developed (see, for exam-
ple, [8]), though the active network version of the problem is
more complicated; we describe how it differs. To deal with
this problem in the immediate future, we have fallen back on
certification by a trusted authority, a measure not in keeping
with [41] in that it will slow the rate of change. Nonetheless,
we argue that the result is a system that can still evolve much
more quickly than the Internet.

Applications. We have found capsules most useful for
experimenting with and deploying new services that are
routing variants, such as multicast, that make use of network
layer state. Capsule code tends to be “glue” that acts as a
flexible means for composing the capabilities made avail-
able by active nodes, rather than application-specific com-
putation that is migrated to within the network as suggested
in [41]. We expect that there will be relatively few active ser-
vices, but believe that the case for using active networks is
still compelling because of the great difficulties introducing,
changing and experimenting with new services in the Inter-
net today. In particular, the automatic code deployment of
capsules provides a fundamentally new and valuable model
for systematic change across wide-area network paths.

In sum, we believe that we have made substantial
progress towards building the kind of active network envi-
sioned in [41]. We find it feasible to add a degree of pro-
grammability across the network layer that provides clearly
useful new flexibility. At the same time, the mechanisms we
have developed and the restrictions we have adopted go a
long way towards resolving performance and security con-
cerns. On the other hand, it is clear that greater application
experience is needed and open issues remain in areas such
as resource management. We observe that programmability
is rapidly being incorporated into network elements at es-
sentially all locations where it is viable. Without further re-
search this programmability will by default take the form of
piecemeal solutions that allow individual network elements
to be upgraded, but no more than that. If we are not careful,
the network may well be “activated” without providing the
benefit of a systematic means of upgrading services across
the Internet.

The rest of this paper is organized as follows. We begin
with background on active network research, and then sum-
marize the essential features of ANTS needed to understand
our results. In the main sections, we present our findings for
each of the three topic areas. Finally, we discuss some more
speculative observations in terms of network architecture.

2 Background

There are many approaches by which programmability can
be deeply embedded into the network infrastructure, at either
routers or individual packets, in the fashion of active net-
works. We briefly consider three styles to help place ANTS
in context.

Some active network systems provide extensibility to
individual devices, increasing their flexibility well beyond
the level currently supported by router configuration mech-
anisms, such as Cisco’s IOS. Two examples are the active
bridge [1] and router plugins [11]. Such systems are well-
suited to the task of imposing policy or functionality at a par-
ticular network location in the manner of a firewall or other
edge boundary device. As such, they are typically meant for
use by network administrators or other privileged users.

A second style of system provides programmability
across multiple nodes for control tasks rather than new data
transfer services. For example, BBN’s SmartPackets [39]
provides a programming environment that caters to manage-
ment tasks; ISI’s active signaling and the Tempest [43] target
call and virtual network setup; andACTIVE IP [47] supports
measurement and discovery tasks. Netscript [48] is an ex-
ample of a system that combines both of these styles by al-
lowing management channels to program new data transfer
services.

These two styles of system essentially restrict either
where programs can be run or who can cause them to be
run. Doing so limits their applicability, but is useful in prac-
tice precisely because it makes the design problem more
tractable by specializing it to a particular domain. Single
network element schemes, for example, are not intended to
introduce services that are spread over the wide area and for
that reason do not have to coordinate code distribution across
an entire network. Similarly, control tasks are not executed
at the granularity of packet forwarding and so have less strin-
gent performance requirements.

In contrast, ANTS belongs to a third style of systems that
do nota priori restrict who can program which nodes. In-
stead, ANTS aims to allow each user to construct new data
transfer services across the wide-area, such as routing for
host mobility, by controlling the handling of their own pack-
ets within the network. This is analogous to extensible op-
erating system approaches [21, 5] that aim to offer untrusted
applications as much control over the way system resources
are managed as possible while still being able to protect the
underlying resources and arbitrate between competing de-
mands.

ANTS is based on an aggressive “capsule” approach in
which code is associated with packets and run at selected IP
routers that are extensible. We sketch its design in the fol-
lowing section. Two other capsule-based systems, PAN [30]
and PLAN [16], are similar in spirit to our own, and ex-
perience with both, on the whole, supports the conclusions
drawn here. We mention specific results in the text as appro-
priate. PAN is modeled on ANTS and differs principally in
that its capsules transfer unsafe binary forwarding programs
and execute them directly, trading security for performance.
PLAN capsules carry short programs in a specially-designed
language that is the basis for system security. In contrast, the
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Figure 1 . Entities in an ANTS active network

ANTS toolkit builds on the safety properties of Java byte-
codes.

A final strategy that does not fit into these three styles is
worth noting. Active services [2] seek to gain the advantages
of active networks without disturbing the network layer by
relying on domain-specific proxies to support “value-added”
network services such as transcoding. We consider domain-
specific solutions to be a useful tool, but the use of prox-
ies to be largely orthogonal to many active network design
problems. Clearly, proxies are valuable for incremental de-
ployment. (They are not the only option though. We prefer
firewall-style interception at selected routers because of the
late-binding that it provides, and the potential for access to
routing and load information that it retains.) However, the
use of proxies rather than extensible routers does not resolve
design issues such as the extension API, code distribution
and global resource management, all of which must be tack-
led in any real system.

3 The essentials of ANTS

In this section, we summarize the details of ANTS that are
needed to understand the subsequent discussion. We focus
on “bootstrapping the reader” by explaining how it works;
we defer arguments about why it works in this manner to
the following sections. The summary is based on the refer-
ence version of ANTS detailed in a dissertation [45], which
supersedes an earlier exposition [46].

We describe ANTS along two lines: the interface it
presents to users at the edge of the network, and its im-
plementation within the network. In addition, we comment
on the ANTS toolkit, a reference implementation written in
Java, and how ANTS may be deployed incrementally in the
Internet.

3.1 Interface

The entities in an ANTS network are shown in Figure 1. Ap-
plications obtain customized network services by sending
and receiving special types of packets calledcapsulesvia
a programmable router referred to as anactive node. Each

active node is connected to its neighbors, some of which can
be conventional IP routers, by link layer channels. The in-
novative properties of an ANTS network stem from the in-
teraction of capsules and active nodes; the application and
channel components are simply modeled on those of con-
ventional networks.

The format of a capsule, shown in Figure 2, is an ex-
tension of the IP packet format. Capsules are like mobile
agents in that they direct themselves through the network by
using a custom forwarding routine. The type of forwarding
is indicated by the value of the type field and is selected by
end-user software when it injects a capsule into the network.
The corresponding forwarding routine is transferred using
mobile code techniques to active nodes that the capsule vis-
its as it passes through the network. The routine is executed
at each active node that is encountered along the forwarding
path. At conventional nodes, IP forwarding occurs using the
IP header fields.

Any party can develop a new network service and make
it available for widespread use. The first step is to write a
new set of forwarding routines that implement the desired
behavior. This is done in a subset of Java in our reference
implementation, the ANTS toolkit. Each different forward-
ing routine corresponds to a different type of capsule and
can carry different header fields (the type-dependent header
fields in Figure 2). The kinds of forwarding routines that
can be constructed depend on the capabilities of the active
node; routines are further restricted in the amounts of node
resources they can consume. The ANTS toolkit provides
a core API, listed in Table 1, that grew out of experience
with a predecessor system [47] and consists of the small-
est set of operations with which we were able to develop
many different services. It provides three categories of calls
that: query the node environment; manipulate asoft-storeof
service-defined objects that are cached for a short time and
then expired; and route capsules towards other nodes or ap-
plications in terms of shortest paths. These calls allow novel
routing services to be expressed by querying network char-
acteristics, maintaining route information in the soft-store,
and following it during forwarding. Additional API calls
will likely be added with further development and experi-
ence. Loss information, for example, is clearly useful for
congestion-related services, yet absent from the list because
it is inconvenient in our current user-level Java implementa-
tion.

Once the code is written, it is signed by a trusted author-
ity (an IETF-equivalent) to certify that the service makes use
of overall network resources in a “reasonable” fashion. Cer-
tification reflects global resource management concerns that
we have not otherwise resolved in the general case. This
issue is discussed in Section 5. Finally, the code is regis-
tered with a directory service using a human-readable name
(such as “Drop Priority”) to make it available to other net-
work users.

End-user software can use a new service developed ac-
cording to this model in a simple manner. First, the service
code is obtained via the directory service, which is simply
the local filesystem in our prototype. In a large-scale net-
work, this step can be made automatic (without burdening
applications) with a process analogous to DNS host resolu-
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Method Description
int getAddress() Get local node address
ChannelObject getChannel() Get receive channel
Extension findExtension(String ext) Locate extended services
long time() Get local time
Object put(Object key, Object val, int age) Put object in soft-store
Object get(Object key) Get object from soft-store
Object remove(Object key) Remove object from soft-store
void routeForNode(Capsule c, int n) Send capsule towards node
void deliverToApp(Capsule c, int a) Deliver capsule to local application
void log(String msg) Log a debugging message

Table 1 . Active node API

tion. Second, the service is registered with the local active
node. This provides the node with a copy of the service code
to bootstrap code distribution within the network, and allows
the node to compute the type values that will be placed on
corresponding capsules. Once these steps are complete, ap-
plications are free to send and receive capsules that belong to
the new service, and these capsules will be forwarded within
the network by executing the corresponding routines.

3.2 Implementation

To process capsules efficiently for the expected traffic pat-
terns of our target applications, ANTS separates the trans-
fer of service code from that of the rest of the capsule and
caches code at active nodes. Each capsule carries a type field
as shown in Figure 2 that refers to its customized forwarding
routine. The value of this type field is based on an MD5 [36]
fingerprint of the associated service code. Code is provided
to nodes at the edges of the network by end-user software.
Within the network, a lightweight code distribution system
transfers the code along the path the capsule follows when
the code is not already cached.

Our code distribution system is designed to provide rapid
but unreliable transfer of short routines between adjacent ac-
tive nodes; ANTS places a limit of 16 KB on the code of
each service to limit the impact of code transfers on the net-
work. The protocol works as follows (Figure 3). When the
code needed to forward a capsule is not found in the cache,
a request is sent to the previous active node that the capsule
visited. The “previous address” header field (Figure 2) is

maintained by active nodes for this purpose. If this node has
the required code, which is likely because it executed the
code moments before, it sends the code. The code is then
cached for later use and executed to forward the capsule. If
messages are lost or the code is unavailable, the capsule is
discarded and considered lost. Thus code transfer will either
succeed quickly, in which case the interruption to forward-
ing will be close to minimal, or occasionally fail, in which
case applications must recover the lost capsule in the normal
manner.

Once the code has been distributed, capsule processing
at an active node is straightforward: capsules are received,
they are demultiplexed using their type field to the associ-
ated forwarding routine, the routine is safely executed within
a sandbox, and the process repeats. We refer to this model as
extensible packet forwarding, since it generalizes the IP for-
warding model in use today. The sandbox prevents untrusted
code from corrupting the node and the state of other services
that are being run concurrently. Capsules may only effect
externally visible behavior through node API “system calls”.
The sandbox also enforces constraints that facilitate the pro-
tection and resource management mechanisms discussed in
Section 5: overall runtime is limited; access to the capsule
itself is limited so that the source address and type are con-
stant, while the previous address and TTL are maintained by
the node; creation of other capsules is restricted so that only
related types can create each other; and freshly manufac-
tured capsules obey invariants such as having a smaller TTL
and the source address of the parent to facilitate distributed
debugging. The additional packet overhead of this model is
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modest; type is the largest field in our implementation, and
at 128 bits it is the size of a single IPv6 address. The addi-
tional runtime steps are also modest, as is reported in Section
4.2, because we are able to leverage the restrictions placed
on forwarding routines to simplify the implementation.

3.3 ANTS Toolkit

The ANTS toolkit [45] is a reference implementation of the
architecture described above. It incorporates everything de-
scribed in this paper with the exception of signing code and
checking the signatures, since this has no effect once code is
loaded. The toolkit also carries capsules within UDP data-
grams that are organized into an overlay, rather than as a
direct extension of the IP format. This is convenient as the
toolkit runs at user-level on end-systems.

Both the reference platform itself and the capsule for-
warding routines (which are supplied by application devel-
opers) are written in 100% Java. This has been a valuable
design choice in that it has allowed us to rapidly develop
a portable, compact (approximately 10000 lines) and flex-
ible experimental platform that is accessible to application
developers. The active node sandbox, for example, builds
directly on Java’s type-safety and security manager frame-
work, while code distribution is facilitated by dynamic load-
ing mechanisms. As a result, the ANTS toolkit has been
widely used within the research community.

The cost of this design choice has primarily been per-
formance, though the lack of fine-grained control over re-
sources, for example, the size of objects and garbage collec-
tion, has also been a limitation. We expect much of these
costs to eventually be recovered, since neither the reference
platform nor the forwarding routines need to be written in
Java in a different implementation. In the short term, the
platform can be statically compiled and, with a suitable Java
runtime, reside in the operating system along with other net-
working code. Ultimately, safe execution techniques ap-
plicable to binaries (namely software-based fault isolation
(SFI) [44] or proof-carrying-code (PCC) [29]) could be used
in higher performance implementations. Alternatively, spe-

cialized runtimes would improve performance by exploiting
the subset of Java (or other language) that is used to write
forwarding routines. For example, ANTS requires that for-
warding routines be single-threaded.

3.4 Deployment

ANTS is designed to be deployed incrementally within the
Internet today. Since not all nodes are required to be ac-
tive, a straightforward step is to selectively activate nodes in
strategic locations. This is likely to begin with end-systems,
along with routers connected to bandwidth-limited wireless
and access links, and followed by increasingly high perfor-
mance routers at ISPs within the network. Activating such
routers can be straightforward because ANTS nodes can be
embedded in the network and intercept capsules that pass
through them.

At a finer granularity, nodes can be active for selected
services, but perform IP forwarding for other services. The
ANTS architecture allows this decision to be made locally
by each node. This strategy can extend the performance
range of active nodes: compute-intensive services that are
not dynamically loaded because they do not run at the line
packet rate can instead be statically loaded if the capsules
that use them arrive infrequently. This is analogous to the
way ICMP and other services are handled separately from
the IP “fast path” in high-bandwidth routers. This line of
reasoning suggests that hybrid active node implementations
will be useful for combining the performance of high-end
routers with the flexibility of programmable services. For
example, an IP router could be extended with an attached
PC that receives packets via a classifier.

4 Are capsules feasible?

We now switch gears and turn to the main contributions of
this paper. The first question we consider is essentially one
of performance: are capsules a feasible mechanism on which
to build active network programs?

We argue that when capsules are implemented as de-
scribed in Section 3.2, they can be a competitive forwarding
mechanism wherever software-based routers are viable. We
argue this in two steps. First, that capsule code can indeed
be carried by reference and loaded on demand. Fingerprints
have proved an effective design technique here. Second, that
the intrinsic overhead of capsule processing is low and so
adds little to the cost of IP forwarding when both are imple-
mented in software.

Of course, software-based forwarding will not be vi-
able at all network locations, even in router designs with
a processor per port. At one extreme, current genera-
tion PC-based routers provide a flexible processing envi-
ronment capable of forwarding at least 70,000 packets/sec,
easily reaching 100 Mbps for typical packet sizes [28].
They are poorly-suited to this task as they are I/O lim-
ited. At the other extreme, modern high-end commercial
routers can forward 70 byte packets at wire speed for OC-
48 (2.4Gbps) line rates, which requires forwarding rates ap-
proaching 4,000,000 packets/sec [42]. The difference is a
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factor of 50. It is difficult, however, to evaluate the poten-
tial of extensible routers because of the changing underlying
technologies; for example, reconfigurable hardware such as
RaPiD [10] is appearing. Ultimately, the applications of a
programmable node will be constrained by its capabilities
and position in the network. For example, processor rates of
1 GHz and line rates of 1 Gbps imply an average process-
ing budget of 1000 cycles, if all packets are to processed and
the average size is 128 bytes. This figure varies by orders
of magnitude, reaching 100,000 cycles if 10% of the pack-
ets are processed and the line rate is 100 Mbps, for exam-
ple. Thus a network in which node capabilities are hetero-
geneous seems fundamental to us. It is for this reason that
our architecture supports partially active networks in which
some routers, such as those in the core of the Internet, can
implement IP forwarding only and are not slowed by capsule
processing.

4.1 Implementing capsules

One of the first changes we made in moving from an earlier
active network system to ANTS was to carry capsule code
by reference rather than by value. Besides the obvious space
and time overheads of carrying code and converting it to an
efficient executable representation, we observed that most
of the applications we were exploring exhibited significant
locality — the same code was executed along the same net-
work path. This is particularly so for network layer evolution
where, although many new services might be tried over time,
a small number of services account for virtually all of the
traffic at any given instant. We believe that this is unlikely to
change, even in a much more dynamic network, because of
the existence of higher layer flows and a dependence on third
party software. Most other active network systems that em-
phasize performance also cache code, for example PAN [30]
and router plugins [11, 12]. PLAN [16] does carry a small
amount of code directly, but similarly distinguishes between
forwarding fragments and extension code that is cached1.

To provide the same behavior as the capsules described
in [41], we must be able to distribute the right code to the
right place, where “right” is determined by a model in which
the code is actually present in each capsule. Each mecha-
nism can potentially cause difficulties.

To ensure the right code, we compute the type identifiers
that are stamped on each ANTS capsule from an MD5 [36]
fingerprint of the corresponding code2. This is analogous to
the way fingerprints are used to name the types of network
objects [7]. We originally chose this method as a distributed
naming scheme to eliminate the need for standardized proto-
col identifiers, but quickly came to value its security proper-
ties. It is secure because a belief that the fingerprint function
is one-way implies that the association between a capsule

1It is also interesting to note that PLAN forwards capsules
roughly three times as fast as ANTS. As best we can tell, this is
due more to the performance of the underlying language runtimes
and better marshaling code than architectural choices.

2We first heard this technique suggested in the context of pro-
tocol code by Gary Minden. We pioneered its use at the same time
as PAN [30].

and its forwarding code is unambiguous3. Because this cor-
respondence can be verified locally, without trusting exter-
nal parties or relying on external information, the danger of
code spoofing is eliminated. SFS uses fingerprints as the ba-
sis of self-certifying pathnames [26] for essentially the same
reasons.

A significant difference compared to conventional pro-
tocols is that the identifier names an implementation rather
than an interface. This is potentially beneficial because it
eliminates versioning problems: different versions of code
are treated as different services within the network. How-
ever, we have found that this property typically means that a
higher level of naming is soon introduced. In our system, a
directory service is used by end-user software selecting pro-
tocols, and bootstrap capsules (such as those that transfer
code between active nodes) carry well known names. Any
higher level of naming must then be secured if it is not to
negate the fingerprint properties that we value.

To transfer code to the right place, we have found the
simple scheme described in Section 3.2 to be quite general
and sufficient to our needs. In networking parlance, service
code is “soft-state” [9] that is automatically replenished as
it is needed. The scheme thus adapts to packet loss, node
failures and changing routes, all without complicating cap-
sule semantics with extra mechanisms such as an explicit
“connection” setup phase. Because it interleaves capsule
forwarding and code transfer hop-by-hop, it can be used to
load new routing services.

There are also more subtle issues that we have uncovered
while studying code distribution. For example, the code dis-
tribution system should not leave active nodes open to a de-
nial of service attack. The hop-by-hop nature of our scheme
may be of use here, since code messages are only exchanged
between neighbors and can easily be authenticated, thus re-
ducing the scope of attacks. Also, unless the latency of load-
ing is small it may conflict with the end-system timeouts that
are used to detect loss. For our system, a measurement-based
analysis [45] predicts that loading delays will fall within the
normal range of one-way transit variations (of 0.1 to 1 sec-
ond) reported in [33], even for cross-country paths. Caching
behavior under overload is also of concern.

For the most part, however, we have deferred serious
analysis of the performance of code distribution mechanisms
until there is greater experience with large scale active net-
works. We observe that, if code loading is rare enough, its
performance will be of little consequence as long as it is ad-
equate. We believe our scheme provides adequate perfor-
mance, but further observe that ANTS could be used with
other code distribution schemes in practice.

4.2 Forwarding performance

At active nodes, processing can be separated by the granu-
larity at which it occurs:

• per capsule forwarding tasks;
3There is some evidence that the collision-resistance of MD5

may be broken in the foreseeable future [37], but to our knowledge
no evidence that the one-way property on which we depend is in
question.
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• per service code distribution; and
• periodic node management tasks.

Of these tasks, only capsule forwarding limits node per-
formance in practice. For the traffic patterns of interest, code
caching is effective and so code distribution is rarely needed.
Measurements of the ANTS toolkit showed a processing cost
of approximately 1 ms per code distribution message, with
up to a maximum of 16 messages to transfer service code.
This is approximately one order of magnitude more expen-
sive than regular capsule forwarding, and requires that the
cost of loading be amortized over around 1000 capsules be-
fore it has a negligible impact (1%) on network performance.

Periodic tasks in ANTS, such as route updates and clean-
ing of the soft-store, do not result in a noticeable slowdown
either. This is because we are able to make them occur at a
much coarser granularity than capsule forwarding (seconds
rather than microseconds) and implement them in a manner
that does not block forwarding for their duration.

We also note that capsule forwarding is readily paral-
lelized to run on routers in which there is one processor per
port. This is because no tight synchronization is required

between the per port forwarding engines. An initial concern
was that the soft-store would require synchronized access.
We have found, however, that this potential problem can be
eliminated by design, since it does not complicate active net-
work programming to define the soft-store to be a per port
resource.

To understand the costs of capsule processing, we mea-
sured the forwarding performance of a single ANTS node
while running a basic service that is the equivalent of IP, yet
implemented within the ANTS framework rather than as a
built-in capability. For comparison, the performance of user
level relays written in Java and C, but otherwise running on
the same system, are also shown; these blindly receive and
then transmit packets, without the intervening processing re-
quired by ANTS. The experimental platform used was a Sun
Ultra 1 running Solaris 2.6 and an early access release of
Sun’s JDK1.2. It has an estimated performance of 3.5 on the
SPECJVM98 benchmark, while the hardware and operating
system alone have publicly available performance results of
approximately 6 on the SPECINT95 benchmark4.

Throughput results are shown in Figure 4, and latency re-
sults in Figure 5. We see that ANTS forwards approximately
1700 capsules/sec for small packet sizes and 16 Mbps for
large (Ethernet) packet sizes, with corresponding latencies
that range from approximately 500 to 700µs. ANTS and
Java relay throughput is similar, while C relay throughput is
greater by between a factor of three and four. For latency, the
result is similar though less pronounced, with ANTS adding
roughly half of the difference between Java relay latency and
C relay latency; we have not tuned our system for latency.

While these results are unimpressive by production stan-
dards, they do serve to demonstrate three points. First, even
at face value, they show a level of performance that is ad-
equate to deploy active nodes across access links up to T1
(1.5 Mbps) rates immediately. Second, ANTS captures most
of the potential of Java relay, the minimal Java-based user-
level system running on the same platform. Third, the sim-
ilar slopes of the latency lines indicate that capsule pro-
cessing does not contain hidden data-dependent costs (ex-
tra copies) compared to a minimal relay. The conclusion we
draw is that the performance of our prototype is limited by
both user-level and Java-based operation, neither of which
is required by our architecture. The user-level C relay is
faster by a factor of four, and it is likely that an in-kernel
implementation is faster by a factor of at least two again.
These observations suggest that substantially faster imple-
mentations can be constructed without resorting to custom
hardware. PAN [30] is one step in this direction. It imple-
ments an architecture that is modeled on ANTS, but with
in-kernel binary forwarding routines that forego protection.
By doing so, it is able to saturate 100 Mbps Ethernet with
1 KB packets, almost an order of magnitude improvement.

To understand the fundamental costs of capsule process-
ing in more detail, we profiled an ANTS node running on
the same platform. We did this for 512 byte capsules with

4The SPECJVM98 result is an estimate because one of the
seven tests we ran produced invalid results due to bugs in the run-
time and benchmark. The publicly available results come from the
SPEC website at www.spec.org.

70



Operation IP? Time (µs) (%)
1. Packet Receive no 180 29
2. Header Processing yes 30 5
3. Type Demultiplex no 20 3
4. Capsule Decode no 110 18
5. Capsule Evaluate no 10 2
6. Route Lookup yes 30 5
7. Capsule Encode no 90 14
8. Header Processing yes 40 7
9. Packet Transmit no 80 13
Other n/a 25 4
Total n/a 615 100

Table 2 . Profile of basic capsule processing

built-in Java runtime facilities, and normalized the result us-
ing the previously reported latency to account for profiling
overhead. The results are shown in Table 2. In the profile
results, ANTS processing is divided into nine steps, some of
which are analogous to the steps that occur in IP and some
of which are unique to ANTS. This is noted in the ”IP?” col-
umn. For this comparison, IP processing steps are abstracted
from RFC 1812 [3], which defines the standard IP process-
ing that must be performed by all IP routers.

1. A message is received from the incoming network in-
terface via the operating system. IP in the kernel does
not require this step, and neither would ANTS if run-
ning in the kernel.

2. The structure of the message is checked to ensure that
it is a valid capsule. The checks are simple, and IP
performs analogous checks.

3. The capsule type is mapped to the appropriate forward-
ing routine. This is done with a hash table lookup.
There is no corresponding requirement for IP.

4. The capsule is decoded from an external packet repre-
sentation to an internal object representation. This step
requires object allocation and member initialization by
copying. It is an artifact of the Java-based implemen-
tation that is not intrinsic to the ANTS architecture.

5. A forwarding routine is invoked. To implement IP
service, the forwarding routine simply invokes default
forwarding via the active node. While default forward-
ing is the same as IP forwarding, expressing it as a
service within ANTS generates some overhead to set
up the call in a safe and generic manner.

6. A routing table lookup is performed. In the prototype,
a simple hash table lookup is used, while in IP and
a production ANTS system a more expensive longest
matching prefix operation is needed. (The greater rel-
ative cost of this step in practice will result in a more
favorable comparison than is made here.)

7. The capsule is encoded to an external packet represen-
tation from an internal object representation. Again,
this step is not intrinsic to ANTS.

8. Header fields are updated, for example, by decrement-
ing the TTL and setting the previous node address. The

updates are simple, and IP requires analogous updates,
though fewer in number.

9. A message is sent to the outgoing network interface via
the operating system. IP in the kernel does not require
this step, and neither would ANTS if running in the
kernel.

Clearly, our user-level profiling and analysis can project
only approximate results for a kernel-level implementation.
However, what is significant is how few complex process-
ing steps are required for capsule forwarding. In particu-
lar, a number of steps are not required in the current model,
but easily could be in alternative designs: code distribution,
because it has been separated; authentication, because state
protection is built on the fingerprint identifiers as described
in the next section; and resource reservation and account-
ing, because we follow the basic connectionless forwarding
model.

To contrast ANTS and IP processing using the results
in Table 2, we first exclude the receive and transmit times,
since they would not be substantial in a kernel-based im-
plementation. Note that this will increase the overhead at-
tributed to ANTS. Of the remaining ANTS-only steps, the
largest components by far are for capsule encoding and de-
coding, both of which are artifacts of our Java-based proto-
type rather than intrinsic costs of capsule processing. This
difficulty is well known but not satisfactorily addressed with-
out language support such as theview construct in SPIN’s
version of Modula-3 [18]. We therefore exclude these costs.

The remaining processing steps correspond to intrinsic
costs. The profile data shows that, for these steps, ANTS
adds 30µs to the 100µs needed for IP. That is, ANTS adds
an overhead of roughly 30% to IP to perform type demul-
tiplexing and safe evaluation. Both of these operations are
known to run quickly. Demultiplexing is efficient because it
requires only a hash lookup. This is facilitated in ANTS be-
cause the fingerprint provides pseudo-random bits that can
be used directly as an index. Safe evaluation can be per-
formed efficiently with binary forwarding routines in a high
performance implementation: SFI [44] is known to add an
overhead of approximately 4% for fault isolation (write pro-
tection) and approximately 20% for general (read/write) pro-
tection, while PCC [29] adds no runtime overhead after the
proof is checked when the code is loaded. Other costs will
of course depend on the forwarding routine itself, but these
costs are deliberately incurred when a new service provides
a performance advantage. The forwarding times for some
routines are reported in Section 6. We note here that all of
the node API operations can be implemented to run quickly
since all are lightweight; for example, none require disk ac-
cess or network roundtrips.

5 Who can introduce new services?

The vision presented in [41] is that all users should be able to
customize processing within the network. This would foster
third party developers and a marketplace for new services
that would accelerate the pace of innovation. Mobile code
technologies are suggested as a mechanism that will enable
programs to be run safely in the context of shared resources.
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We have partly succeeded in reaching this goal, finding
security concerns to be more challenging than those of per-
formance. After all, it is clear that the speed at which capsule
forwarding can be implemented will dictate where it is ap-
plied. But it is not clear that the resource management and
security difficulties can be resolved in a large wide-area sys-
tem without restrictions that negate the original vision.

In ANTS, we are able to isolate the code and state of
different services in a manner that is equivalent to that of
static and trusted protocols today. This is despite the fact
that service code is mobile and untrusted. We view this as
substantial progress. On the other hand, we currently handle
the problem of global resource allocation with a certifica-
tion mechanism that slows the rate of change compared to
the active network vision, though we argue that the resulting
system can still evolve much more quickly than the Internet.

The rest of this section elaborates on these findings along
the lines of the protection and resource management threats
that exist, and how they are handled in ANTS compared to
the Internet. We consider protection threats to be those that
directly impact the execution of a service within the network
so that it is no longer isolated from other code and hence no
longer guaranteed to behave correctly. We consider resource
management threats to be those that affect the performance
of a service, rather than its correctness, by consuming shared
resources in an unreasonable fashion that starves other legit-
imate network users. That is, we are more concerned with
network robustness than fairness.

5.1 Protection

The ultimate goal of ANTS is to allow untrusted users to
control the handling of their own packets within the network,
yet to ensure that the code they provide can do no harm to
the users of other services even if it is designed poorly or
used maliciously. Early in our design effort, we realized
that the capsule model provides a clear basis for simplify-
ing interactions within the network: each capsule explicitly
specifies its own handling via its type field, which is carried
with the capsule through the network as shown in Figure 2.
To extend this scheme into a protection model that is equiv-
alent to the operation of conventional protocols, we added
the stipulation that a capsule cannot change its type to that
of another service (or equivalently create capsules of another
service) within the network. This is enforced by the ANTS
runtime sandbox described in Section 3.3. The result is that
the processing a capsule can undergo is fixed by the value of
its type field at the moment it is injected into the network,
in the same manner that an IPv4 packet is forwarded with
IPv4 processing only. This means that, for example, it is
not possible to construct a service that arbitrarily searches
the network and then interferes with capsules belonging to
another service.

This model is straightforward to understand, and has
worked well for us once we extended it to allow for the
controlled sharing of state between related types of cap-
sules (as described shortly). It provides an authentication-
free foundation on which other security mechanisms can be
constructed as they are needed. We have found that, while

it does limit the kind of services that can be constructed in
ANTS, the benefits of having this form of protection model
far outweigh the costs. A typical example of a service that is
difficult to realize is a firewall, since one type of capsule can-
not directly control the forwarding of another type. (How-
ever, these kind of services are not targeted by ANTS.)

Protection threats that would break this model must stem
from the transfer and execution of code within the network.
It appears to us that there are only three kinds of threats that
could result in capsules of one service being handled in an
unintended manner, whether accidental or malicious, that
cannot occur in the Internet except in response to a faulty
implementation:

• the node runtime may be corrupted by service code;
• service code distributed to an active node may be cor-

rupted or spoofed; and
• the state cached at an active node on behalf of one ser-

vice may be inadvertently manipulated by another ser-
vice.

The first threat, corrupting the active node itself, is met
through the use of safe evaluation techniques for executing
service code. While the ANTS toolkit relies on the proper-
ties of Java, other implementations could be based on proof-
carrying code (PCC) or software-based fault isolation (SFI).
The net result is that the sound implementation of the node
runtime implies that it cannot be crashed or otherwise cor-
rupted by arbitrary service code in the same sense that tra-
ditional operating systems protect themselves from applica-
tions.

The second threat, code spoofing or the transfer of cor-
rupted code, is met through the use of fingerprint-based cap-
sule types, as was previously discussed.

A third means of interfering with a service is to corrupt
the state that it maintains at an active node. This is prevented
in ANTS by a restricted node API. Access to state shared
across services is guarded. For example, the default shortest-
path routes can only be read by services, so that one service
cannot alter them for another. Only two forms of service-
specific state are retained by a node after a capsule is for-
warded: service code itself and data placed in the soft-store.
The code is readily protected because it is read-only. The
data is protected by building on the fingerprint-based cap-
sule types to partition the soft-store by service. This guar-
antees that state maintained on behalf of one service cannot
be manipulated by code corresponding to another service.
Conversely, sharing between the sessions of a service is con-
trolled by the service code.

A significant complication that we faced to make this
model useful is the need for read and write sharing between
different types of capsules. To implement many services,
a set of related forwarding routines must be able to share
state within the network. For example, one type of cap-
sule may establish custom routes by placing information in
the soft-store of nodes, and another type of capsule follow
those routes by accessing the information. We accomplish
one level of sharing in a secure manner by using a hier-
archical fingerprint scheme for computing the capsule type
identifiers. Essentially, if capsules with forwarding routines
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A andB are to share state within the network andXH is
the fingerprint ofX , they are marked with the type identi-
fiers (A, (A, B)H )H and (B, (A, B)H)H .5 Code distribu-
tion then transfers the routinesA andB when they are re-
quired so that the type identifier can be verified. In this man-
ner, capsules of typeA andB can be recognized as belong-
ing to a single service that is identified as(A, B)H and state
can be shared between them. This scheme also prevents an-
other routine,C, from later claiming to belong to the service
and manipulate its state.

In sum, ANTS provides measures that defeat all of these
kind of threats so that the protection provided by ANTS is as
good as the protection afforded to protocols in the Internet
today. This is so despite the fact that ANTS services are im-
plemented with mobile and untrusted code (certification is
not required for basic protection) while conventional proto-
cols are implemented with static trusted code. Further, these
measures are robust because they are implemented by each
active node without relying on any external parties.

In the larger context, Internet security is in the process of
being extended because it is known to be weak. Both ANTS
and the Internet protect different protocols from interfering,
but not different users of a protocol from interfering with
each other. An interesting use of ANTS is to introduce new
security services that add authentication and encryption at
selected points. This could easily be done by extending the
node API with authentication and encryption calls that ser-
vices could combine to meet their own security needs.

5.2 Resource management

We now provide a taxonomy of resource management
threats. In ANTS, one service can potentially interfere with
the performance of another in three ways:

• a capsule may consume a large, possibly unbounded,
amount of resources at a single node;

• a capsule and other capsules it creates within the
network may consume a large, possibly unbounded,
amount of resources across multiple nodes; and

• an application running on an end-system may be used
to inject a large, possibly unbounded, number of cap-
sules into the network.

This classification is useful because it highlights re-
source management tasks that can readily be addressed, re-
main open in both ANTS and the Internet, and the difference
between the two.

The first threat, too many resources used at a node during
the forwarding of a single capsule, is able to be met in ANTS
with current technology because the programming model is
restricted. In the Internet, the resources consumed during
packet forwarding are implicitly bounded by the design and
correct implementation of IP and other network protocols. In
ANTS, the node runtime enforces simple resource bounds.

5Actually, type calculation is more complex because there is an
intermediate level of naming between individual capsules and ag-
gregate services that is used to minimize code distribution. See [45]
for details.

Long running forwarding routines are broken with a watch-
dog timer. Termination is simplified by unloading all state
associated with forwarding routines that trigger violations.
Access to memory and bandwidth is limited by decrement-
ing the TTL field to prevent a capsule from sending a large
number of outgoing capsules (as defined by the TTL) or
placing a large number of objects in the soft-store. Alter-
native local policies, such as static limits on the fanout of a
capsule, could easily be enforced. Other resources, such as
the stack, can be similarly limited, though this is not done
in the prototype because it requires the Java runtime to be
modified. This simple scheme has been sufficient to our pur-
poses because we are more concerned with preventing gross
errors in the set of cached services than accounting for all re-
source consumption or enforcing fairness between capsules.
Other research efforts, such as RCANE [27], are exploring
active network environments that support more fine-grained
control of resources.

The third threat, that misbehaving applications may
starve well-behaved ones exists in both ANTS and the In-
ternet and is not well addressed in either. The root of this
problem is that the Internet currently lacks network-based
resource allocation mechanisms; instead, it relies on the co-
operation of users6. This is increasingly recognized as prob-
lematic, and efficient network-based mechanisms are fun-
damentally needed to improve fairness and penalize non-
responsive flows [8] in the same manner that operating sys-
tems, not applications, must arbitrate between competing re-
source demands and protect the system. These mechanisms
will benefit an active network in the same ways they benefit
the current Internet.

In-between these extremes lies the more difficult task of
controlling the resource consumption of a capsule and its
descendents across a group of nodes. This task differenti-
ates active networks from the Internet. In the Internet, the
resources that are consumed as a packet is forwarded from
source to destination are relatively well understood in terms
of a static model that limits bandwidth, memory and pro-
cessing time. This, of course, assumes correct design and
implementation, which is not always the case.7 In an active
network, however, resource consumption is driven by pro-
grams and cannot be finessed by arguments of a restricted
set of developers. It will be much more dynamic in nature,
and must be restricted in its form to ensure that the effects of
one service on others or a region of the network are reason-
able.

One useful technique is a per capsule hop limit. In
both IP and ANTS, packets and capsules would consume
unbounded resources if blindly forwarded around a routing
loop. The TTL field is used to break such loops in IP, and
ANTS uses the same mechanism to detect and stop an anal-
ogous class of infinite loop program errors. PLAN [16] goes
further by dividing the TTL between a capsule and its de-

6It is often mentioned that the access bandwidth of a user limits
the impact they can have on the network. However, this is a poor
allocation mechanism at best. It does not prevent, for example,
equally capable users from starving one another of bandwidth to a
given destination.

7For an example flaw see CERT Advisory CA98-01,Smurf IP
Denial-of-Service Attacks, January 1998.
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scendents so that the original TTL bounds the total amount
of resources consumed within the network. We consider
TTL-based mechanisms insufficient, however, to prevent
capsules from consuming an excessive (though bounded)
amount of node resources if directed to do so by a poorly
designed service. TTLs cannot provide a tight bound on ac-
tivity when multicast must be accommodated. This is be-
cause the number of “capsule-hops” that can legitimately re-
sult from a single capsule grows with the multicast group
size, and so can be large. More fundamentally, the property
that we want to hold is that capsule forwarding does not re-
sult in activity that is concentrated in a small region of the
network, swamping nodes in the process. Activity that is
significant but not concentrated, as occurs when multicast is
implemented correctly, can be an efficient use of resources
and should be allowed. However, since TTLs are not related
to topology they cannot readily restrict the location of activ-
ity. Even without multicast this is problematic. For example,
consider a service that “ping-pongs” a capsule between ad-
jacent nodes until its TTL is exhausted. With a maximum
TTL of 255 (8 bits as in IP), a node sending one capsule
with a buggy or malicious forwarding routine might inflict
100 capsules worth of forwarding work on other nodes.

Better mechanisms are therefore needed. In particular
cases, it may be practical to locally check that programs
match a restricted form. For example, forwarding rou-
tines that route a capsule towards a fixed destination and do
not create other capsules satisfy most definitions of “safe.”
Though this class may sound restrictive it includes selec-
tive discard, congestion notification and network merging
services. Fairness mechanisms that limit the impact of mis-
behaving users, such as fair queuing, will also mitigate the
damage that can be inflicted by a poorly designed program.
However, they cannot prevent such programs from consum-
ing more resources than is appropriate.

Until better solutions are available, we have fallen back
on the mechanism of requiring that service code be certi-
fied with a digital signature by a trusted authority (an IETF
equivalent) before it is freely executed at nodes. This runs
counter to the other mechanisms of the node runtime in that
it depends on external parties. Nonetheless, we argue that
it results in a system that is capable of evolving much more
rapidly than is possible today. This is because certification
differs from standardization in that it does not seek to define
a single preferred behavior. Rather, no consensus is needed
and certification only seeks to establish that a service makes
reasonable use of overall network resources, regardless of
whether it is considered an effective means of accomplishing
a particular task. To simplify the potentially difficult task of
inspecting programs for certification, we note that the latter
need not be foolproof since it is not necessary to hold all pro-
grams to the same level of accountability. To support rapid
experimentation, for example, it would be possible to mod-
ify the ANTS runtime to execute code that is newly certified
(or even not certified) at a reduced rate, so that it consumes
no more than 1% (say) of the available resources. Fresh code
could similarly be certified for a restricted period in which
a trial can be run. Together with a revocation mechanism,
such techniques would allow new services to be gradually
accepted as experience is gained with them. We also note

that the availability of executable code raises the possibil-
ity of automatically testing services against common failure
cases.

Our current dependence on certification begs the ques-
tion of whether it is still useful to incur the costs of other se-
curity mechanisms. We believe that protection and resource
allocation mechanisms are invaluable because they defend
against accidental as well as malicious errors; we seek to
expand our mechanisms to cover the ground nominally pro-
tected by certification. Even if this can be accomplished,
however, it is likely that certification has a role to play in a
practical active network. Signed code provides a trail to fol-
low when problems arise. It also enables a spectrum of trust,
whereby more trusted users are allowed access to wider and
more powerful APIs. We have deferred the study of these
tradeoffs and associated issues for which we can anticipate a
need, such as revocation, to future research.

6 What services can be introduced?

We have found the most compelling use of capsules to be as
a means of rapidly upgrading the services of large, wide-area
networks such as the Internet. There is a clear need for such
a mechanism because of difficulties that exist today. For ex-
ample, IPv6 (the next version of the IP) is proving slow and
difficult to deploy; if the Internet continues to be successful
IPv6 will not be the last evolutionary step that is needed. In
the meantime, backwards-compatible solutions such as Net-
work Address Translation (NAT) boxes (which map a large
set of internal addresses to a small set of external ones) are
gaining ground because they are more readily deployed, de-
spite the architectural difficulties they present [40]. Further-
more, today’s Internet hampers experimentation: it was not
possible to test the IPv6 candidates under real conditions be-
fore selecting a standard. Thus active networks would be of
tremendous value if they facilitated the widespread deploy-
ment of even a small number of services such as multicast,
mobility or IPv6.

In the remainder of this section we characterize the kind
of services that ANTS is able to introduce and discuss this
characterization using examples. We have found that ANTS
is able to introduce a class of new services that are otherwise
difficult to deploy. We have also been struck by the number
of service variations that are enabled by using a program-
ming language to combine a small set of node operations.
This leads us to conclude that a viable active network could
be extremely useful for the experimentation necessary to de-
sign new protocols. Despite this, it is clear that greater ap-
plication experience is needed to judge the utility of active
networks. No single application (“killer app”) that proves
the value of extensibility has emerged, and none is likely to
because support for such an application can always be built-
in to the base system. Rather, the advantages of extensibility
accrue over time. Active networks are no different in this
regard than extensible operating systems [21, 5], databases
or language implementations [22].
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Service Capsule Code (bytes) Latency (us) Slowdown
MulticastData 3496 670 1.25

ANTS–PIM JoinPrune 4325 975 1.82
RegisterStop 1690 560 1.05
Query 1844 615 1.15

WebRoute Bind 1821 685 1.28
Redirect 1843 600 1.12
Activate 1991 620 1.16

Table 3 . Latency and code size for sample ANTS capsule forwarding routines

6.1 Characterization of services

The reason capsules provide a powerful means for effecting
change is that they deploy processing along network paths
in a clean manner that is not dependent on the details of the
path itself. This is in contrast with the existing mechanisms
that are essentially administrative and proceed one router at
a time. New services that can be deployed in ANTS but are
difficult to introduce into the Internet today are thus those
whose implementation is spread across multiple network el-
ements. They are often variations on routing and forwarding.
Unlike services constructed above the network layer, they
can make direct use of topology, loss and load information
to construct novel routing, flow setup, congestion handling
and measurement services.

By analyzing our architecture we have identified the
characteristics that a service must possess to be able to be
readily introduced in ANTS:

• Expressible.The service code must be constructed us-
ing the restricted node API listed in Table 1.

• Compact.The service code must be smaller than a self-
imposed limit of 16 KB to limit the impact of code
distribution on the rest of the network.

• Fast. Each routine must run to completion at the for-
warding rate, or it will be aborted by the node.

• Incrementally deployable.The service must not fail in
the case that not all nodes are active.

We believe that many useful services can be constructed
to have these characteristics. We have implemented at least
five services (host mobility, source-specific multicast [46],
path MTU queries, PIM-style multicast, and Web cache
routing [45]), the last two of which were case studies of
services that are intended to be realistic. Others have used
ANTS to study a number of novel services: an auction ser-
vice [23]; a reliable multicast protocol [24]; and a network-
level packet cache [20].

As evidence of the utility of capsules, the strongest ar-
gument we can presently make is to provide examples of
services that: have been promoted by others; are meritorious
enough that they have received serious consideration by the
Internet community; are difficult to introduce in the Inter-
net today because they rely on network layer state and their
implementation is spread across the network; and can be in-
troduced in an equivalent form with ANTS-style capsules.
We have identified a number of such services:

• multicast (PIM-SM [13], CBT [4], Express [17]);
• reliable multicast support ([31, 25], Cisco’s PGM);
• explicit congestion notification (ECN) [34];
• PIP [14], a former IPv6 candidate; and
• anycasting [32].

We identified these services as candidates only gradu-
ally, as we gained experience constructing forwarding rou-
tines that possessed the required characteristics. It is not
obvious how all of these services can be designed to meet
the required criteria, and in the remainder of this section we
discuss the criteria in light of these examples.

6.2 Discussion

6.2.1 Expressible

The small API available in our prototype has proved suf-
ficient to express a variety of services. This is partly be-
cause its capabilities, such as the ability to place application-
defined objects into the soft-store, are widely applicable, and
partly because the forwarding routines themselves tend to act
as “glue” that binds together these capabilities. It quickly be-
came apparent as we wrote services that this code is a much
more flexible form of glue than the traditional means of com-
position in networked systems, layering models, even com-
pared to micro-protocol systems such as thex-kernel [19].
We note that Click [28], an experimental router infrastruc-
ture containing much finer-grain routines (such as queue ma-
nipulation), has recently emerged. We view systems such as
Click as synergistic with active networks, since they provide
a router with a native set of fine-grain APIs that ANTS cap-
sules could compose into novel functions.

Many variations on a forwarding routine are often possi-
ble, such as multicast protocols that support reliable multi-
cast, or changes in routing between Web caches that imple-
ment different search policies. This is significant because
in ANTS a slightly different service is straightforward to
use since its deployment is automatic. This could stimu-
late the real-world experimentation that is necessary to de-
sign new and improved protocols. Code also provides a
wider interface with which to discover network properties
than the “black-box” model that is used today, where prop-
erties are inferred from observations of traffic. For example,
path MTU estimates can be obtained by recording the min-
imum MTU as a capsule is forwarded along a path (at con-
nection setup time too) rather than relying on heuristics and
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error messages. This too enriches the variety of services that
can be expressed.

The API does not readily allow two kinds of services to
be constructed, both of which fall outside the design space
of the ANTS programming model. It is difficult to embed
long-lived processes in the network, such as a Web cache or
transcoding engine. This is because the API does not support
reliable storage or timers. Such capabilities could be added
to the API by other means, for example an administrator up-
grading an active node, but they cannot be extended at the
capsule level. However, ANTS works in synergy with such
complementary evolution. This is because new services can
be written to take advantage of new capabilities as they are
embedded in the network: forwarding routines simply query
nodes for the availability of a particular feature and act ac-
cordingly. We speculate that one of the most valuable uses
of ANTS may be new services that connect applications with
network-embedded resources (caches, transcoding engines)
in a more flexible way than the fixed proxies or transparent
interception that is used today.

The second kind of service that is difficult to construct
is that which cuts across many flows, such as firewall filter-
ing. (But recall that one service can be composed of several
cooperating types of capsule.) This is because network pro-
cessing is explicitly selected for each capsule as it is injected
into the network to support our security model. Instead, this
kind of service is well-served by extending routers to be pro-
grammable by the administrator, as is done in [11]. This is
because processing that cuts across many flows is often used
to enforce policy at a point.

6.2.2 Compact and fast

Forwarding routines tend to be small because they tend to be
“glue” code. We have not found it difficult to construct ser-
vices that are smaller than our 16 KB limit, despite a naive
transfer format that transfers Java classfiles directly. Other
systems have similarly found that capsule-style code can be
compact and often acts as glue [39, 16]. Inevitably though,
this bound will limit the complexity of forwarding routines
that can be constructed. We believe that a relatively small
bound, on the order of the current 16 KB, will prove suf-
ficient for the type of services that ANTS targets and that
other deployment mechanisms will be more appropriate for
more ambitious services, such as video transcoding.

The forwarding routines also tend to complete quickly.
This is because all of the node API operations complete
rapidly (none block on disk or network access) and the glue
code typically combines them in a straightforward manner.
The majority of the routines we have constructed have run
within a factor of two of the basic capsule forwarding time.

As evidence to support these assertions, we provide in
Table 3 the forwarding times and program code sizes for cap-
sules of the two most realistic services we have implemented
in ANTS: PIM-style multicast and Web cache routing. For-
warding time is given in microseconds across a single ANTS
node, using the same experimental platform as described in
Section 4.2. It is also given as a slowdown factor relative
to results for the “null” ANTS capsule reported in Section

4.2. This shows the impact of executing a real routine that
is more complex than IP forwarding. Each line represents
one type of capsule; each service is comprised of multiple
kinds of capsules that work together. WebQuery capsules,
for example, take 1.15 times as long to forward as the “null”
ANTS capsule and have roughly 1.8 KB of associated code
that is first demand loaded. We omit an explanation of the
services themselves because it is not necessary to understand
their operation for the purpose of this paper, and they are
fairly involved. The interested reader is referred to a disser-
tation [45].

6.2.3 Incrementally deployable

Essentially all new Internet services must be able to be intro-
duced incrementally or they cannot be deployed. In ANTS,
this requires that services be able to function in a network in
which not all nodes are active. Designing services for this
case has proved to be a challenging but usually soluble task.

For example, some of the potential services we put forth,
notably the multicast services such as PIM, are specified for
a network region in which all routers participate in the im-
plementation. It is not obvious how to define an equivalent
service that works in a partially active network. Yet this can
be done. To see how, consider that PIM can be run in an
overlay, which is effectively a situation where only some of
the network nodes implement the service — what is needed
then is a dynamic means of establishing the tunnels of the
overlay. We designed such a mechanism using capsules as
part of our PIM-equivalent implementation in ANTS.

Similarly, active path MTU discovery requires that all
nodes along the path be active or the result must be treated as
an estimate. Technically, however, Internet path MTUs can
only ever be estimates because they must allow for routes
that change unexpectedly. To the extent that there are active
nodes adjacent to bandwidth limited links, which typically
have the smallest MTUs, the result of an active path MTU
service will be a useful estimate.

6.3 Upgrading ANTS

An interesting class of services to consider are those that are
not easily introduced without upgrading ANTS itself. These
are primarily services that require changes to widely-held
assumptions, of which we have identified the following ex-
amples:

• the way capsule types are computed and carried;
• the format of addresses;
• the code distribution mechanism;
• resource limiting via TTLs;
• and the node API.

These base assumptions are shared by active nodes
throughout the network, and so are difficult to override lo-
cally. While it would perhaps be preferable to have an ar-
chitecture that encoded no such assumptions, this position
is untenable. The chief benefit of ANTS compared to the
Internet is that the scope of node processing that is fixed at
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the outset in its function has been greatly reduced. When
changes to widely-shared assumptions are necessary, they
must be made by upgrading ANTS in the same way as pro-
tocols are upgraded in the Internet today, with backwards-
compatibility, versioning or overlays. For this reason, ANTS
capsules carry a version number.

We note, however, that there are often design
workarounds that obviate the need to change the base as-
sumptions. For example, though it is not possible to intro-
duce IPv6per sebecause the format of addresses is fixed, it
still possible to increase the size of the address space and so
solve the same problem. PIP [14] accomplishes this by using
the existing addresses hierarchically with a technique known
as source routing. As another example, while the node API
is fixed, language-level introspection can be used to query
whether a new feature is available at the local node and if so
gain access to it. This is a powerful mechanism for support-
ing change, and ANTS includes the notion of extensions in
its node API (Table 1) for this purpose.

7 Architectural observations

Active networks represent a different architectural perspec-
tive than traditional layered protocol stacks. In this section,
we offer somewhat more speculative observations on net-
work architecture that we have made in the course of our
work and that have not appeared in the literature to the best
of our knowledge.

7.1 Value of systematic change

As we have experimented with ANTS, we have realized
the value of a systematic means of upgrading protocol pro-
cessing within the network, as opposed to depending on
backwards-compatibility. ANTS makes the new process-
ing that a capsule can undergo within the network explicit,
while depending on backwards-compatibility implicitly ex-
tends old processing.

It is quite remarkable how effectively backwards-
compatibility has been leveraged to extend TCP/IP to new
situations. However, an implicit means of extension ulti-
mately has unexpected or adverse side-effects, while an ex-
plicit one has much cleaner semantics. This is already ap-
parent in the case of NATs compared to IPv6, and we be-
lieve that many more situations will come to light. For
example, consider network-embedded Web caches, such as
Cisco’s CacheDirector, that are currently being developed.
For reasons of backwards-compatibility, they work in a man-
ner that is transparent to their clients, spoofing the remote
Web server. This may pose no direct problems today. How-
ever, research is now beginning to address how to share
congestion information to improve the performance of short
connections. In this context, transparent proxies have the
potential to confuse hosts by mixing different congestion in-
formation under one name.

7.2 Dealing with heterogeneous nodes

Implementing active nodes has forced us to reckon with the
differing capabilities of nodes at different network locations.
A difference in style between ANTS and IP that has emerged
is in how we accommodate this heterogeneity. IP essentially
defines the minimal forwarding required for internetwork-
ing, with the expectation that this processing will run at all
locations. On the other hand, in an active network we must
confront the issue of different kinds and complexities of cap-
sule processing running at different locations.

Our strategy has been to bind capsule routines at runtime
to those nodes that have sufficient forwarding resources to
execute them. We do this in a clean manner by: using cap-
sule code to query the node environment and decide if there
are sufficient resources; having active nodes protect them-
selves by unloading routines in the case that they take too
long to run; and writing services that do not need to be run
at all nodes to work correctly. IP routers then exist at the
bottom of this organization as those nodes that are not active
for any type of capsule. Architecturally, this strategy could
be seen as the logical extension of the two-tier “edge and
core” model recently in vogue with developments such as
IETF Differentiated Services.

7.3 End-to-end argument

An initial concern of the active network approach was that
it might conflict with the end-to-end argument [38, 6, 35].
With one exception, encryption, we have not found this to
be the case, most likely because we view ANTS as simply a
framework for expressing and deploying new services. The
new services themselves can be well designed or poorly de-
signed, depending on the skill of the developer. It is cer-
tainly possible to construct services that do not conflict with
the end-to-end argument (such as the multicast variants de-
scribed in this paper) and features of our architecture (such
as the provision of soft-storage) are intended to encourage
good design.

However, end-to-end encryption, such as that specified
in IPv6 IPSEC, poses a challenge for the active network
approach. When it is present, active code cannot readily
operate on the packet payload. Two factors mitigate this
problem. First, many ANTS services require access only
to packet header fields, for example, routing variations. It
is then possible to design encryption in a manner that ex-
poses these fields. Second, end-to-end encryption that cov-
ers the entire payload, such as IPSEC, precludes many useful
network-embedded services that are already deployed, such
as firewalls, transparent proxies, and wireless boosters. For
this reason, variant encryption standards that expose header
fields are likely to emerge.

7.4 Localizing change

We have come to appreciate that changes in network services
must be localized in their implementation if they are to be
easily deployed. This observation holds regardless of the
protocol layer of the change, and whether they are effected
by means of an active network or not. Much of the value of
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the capsule model is that it allows changes to be made along
an entire network path at one time, rather than at individual
network locations. This new kind of locality greatly expands
the scope of changes that can be made.

Arguably, IPv6 is proving slow and difficult to intro-
duce because its changes are not easily localized. Since it
replaces rather than extends existing addresses, it logically
needs to be deployed at all network locations before it can
be used. This is clearly not feasible, and an overlay and
complicated transition plans are necessary to avoid long pe-
riods of restricted connectivity [15]. Conversely, NATs are
rapidly gaining ground despite their drawbacks precisely be-
cause they are easy to deploy with only local changes. It is
interesting to speculate whether incrementally deployed so-
lutions to IPv6, such as PIP [14], would have enjoyed more
success.

8 Conclusions

In this paper, we have reported substantial progress towards
active networksas envisioned in [41]. In order to build a real,
working system, we have revised some of the positions orig-
inally put forth in [41]. Nevertheless, even after this healthy
dose of reality, we find that a surprising amount of the origi-
nal vision still holds sway:

• Capsules have proved a worthwhile model because
they provide a clean means of upgrading processing
along an entire network path. This model of deploy-
ment is considerably more powerful than the pointwise
administrative upgrades that are the norm today. To
implement capsules efficiently, we have come to de-
pend on the demand loading of code and on traffic pat-
terns for which code caching is effective.

• We have partly succeeded in designing a network that
any untrusted user can freely customize. We have man-
aged to isolate different services from each other with-
out trust or centralized control, but not to protect the
network as a whole from untrusted services. To ac-
complish the latter in the general case, we have fallen
back on certification by a trusted authority until better
solutions are found. This is a measure that runs counter
to our vision but which still allows easy change relative
to standards bodies today.

• We have found the most compelling application of
capsules to be network layer service evolution, rather
than the migration of application code to locations
within the network. We have found capsule code to
be well-suited to the task of introducing many varia-
tions of a service, and hence valuable for experimen-
tation. We also speculate that capsule code will act in
synergy with network embedded devices (caches and
transcoders) that are deployed by other means, such
that both will work more effectively together.
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