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IEEE Expert 6(3): 67-74, June 1991 AbstractThis article describes a method for monitoring and diagnosis ofprocess systems based on three foundational technologies: semi-quantitativesimulation, measurement interpretation (tracking), and model-baseddiagnosis. Compared to existing methods based on �xed-thresholdalarms, fault dictionaries, decision trees, and expert systems, severaladvantages accrue:� the physical system is represented in a semi-quantitative modelwhich, unlike a pure numeric model, predicts all possible behav-iors that are consistent with the incomplete/imprecise knowledgeof the system's devices and processes, ensuring, for example, thata hazardous-but-infrequent behavior will not be overlooked;� imprecise knowledge of parameter values and functional rela-tionships (both linear and non-linear) can be expressed in thesemi-quantitative model and used during simulation, producinga valid range for each variable;� incremental simulation of the model in step with incoming sensorreadings, with subsequent comparison of observations to predic-tions, permits earlier fault detection than with �xed thresholds;� by using a structural model of the plant and tracing upstreamfrom the site of unexpected readings, model-based diagnosis per-mits e�cient generation of fault candidates without resort topre-compiled (and often incomplete) symptom{fault patterns;� by injecting a hypothesized fault into the model and trackingits predictions against observations, the dynamic behavior of theplant is exploited to corroborate or refute hypotheses;� by simulating ahead in time from the current state, an operatorcan be forewarned of nearby undesirable states that the plantmight enter.
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Process Monitoring and Diagnosis:A Model-Based ApproachDaniel DvorakAT&T Bell LaboratoriesBenjamin KuipersThe University of Texas at AustinJanuary 2, 1996In a book with the curious title of Normal Accidents, author CharlesPerrow [1] examines several of the most notable accidents involving complexsystems of the modern industrial world | accidents such as the 1979 ThreeMile Island nuclear power accident, the 1977 New York City blackout, andthe 1969 Texas City explosion of a butadiene re�ning unit. Perrow highlightsthe di�cult job of plant operators who are responsible for physical systemshaving complex interactions and tight coupling. With current monitoringtechnology, alarms are triggered whenever �xed thresholds are exceeded. Anuclear power plant, for example, can have over a thousand distinct alarms,and hundreds of them can be activated within a minute, as in a loss-of-coolantaccident. In such situations, process operators tend to overlook relevantinformation, respond too slowly, and panic when the rate of information 
owis too great.Not surprisingly, operator advisory systems have become an importantarea of application for expert systems. Systems such as Escort [2] (an ex-pert system for complex operations in real-time) and Realm [3] (a reactoremergency action level monitor) are two of many expert systems developedfor process industries. For surveys of this work, see [4] and [5]. These systemsaim to reduce the cognitive load on operators, usually by helping to diag-2



nose the cause of alarms and possibly to suggest corrective actions. Mostof these expert systems get their knowledge of symptoms, faults, and cor-rective actions through the usual process of codifying human expertise inrules or decision trees. The problem, as with all expert systems, is reliabil-ity. As Denning observes, \the trial-and-error process by which knowledgeis elicited, programmed, and tested is likely to produce inconsistent and in-complete databases; hence, an expert system may exhibit important gaps inknowledge at unexpected times" [6]. Obviously, these \gaps in knowledge"can have serious consequences in some process industries.An alternate approach | one which is not based on an expert's imperfectrecall of symptoms and faults | is to use a model of the process to predictits behavior or at least check consistency among some observed variables.When observations disagree with the model's predictions, some diagnostictechnique is initiated to identify the fault candidates. These model-basedapproaches to diagnosis have emerged from two di�erent communities. Inthe engineering community, fault detection and isolation (FDI) techniquesgenerally rely on a precise mathematical model of the process and on pre-enumerated symptom{fault patterns (\fault signatures"). See [7] for an ex-cellent collection of state-of-the-art work in FDI. In the computer science/AIcommunity, model-based reasoning (MBR), as applied to diagnosis, relies onmodels of structure and behavior. Given symptoms of misbehavior (as de-tected with the behavioral model), fault candidates are identi�ed by followinga dependency chain back from a violated prediction to each component andparameter that contributed to that prediction. See [8] for an excellent surveyof model-based troubleshooting.The model-based approach described in this article has evolved withinthe AI community, but some similar ideas have appeared independently inthe FDI literature, such as that of Isermann [9]. In all the model-basedapproaches it's important for the reader to look closely at the type of modelused since that determines many of the capabilities and limitations of thespeci�c method. The variety of model types is evident in a short samplingof the literature | dynamic quantitative mathematical models [9], dynamicqualitative mathematical models [10], the extended signed directed graph[11], causal models and con
uence equations [12], fuzzy qualitative models[13], and the semi-quantitative model in this article.3



This article focuses on process monitoring and diagnosis | basic elementsof an operator advisory system. In this setting several conditions hold thatchallenge diagnostic methods: the plant is a continuous-variable dynamicsystem with feedback loops and state, diagnosis must be performed whilethe system operates, many system quantities are not sensed, and measure-ments are unreliable due to sensor failures. We begin our presentation withan intuitive description of our design for process monitoring and diagnosis.As we describe later, the design is based on three foundational technolo-gies: semi-quantitative simulation, measurement interpretation (tracking),and model-based diagnosis. We then walk through an example of the systemat work, detecting and diagnosing a fault. Finally, we list some limitationsof the method and discuss related work in the �eld.The Basic Idea: MimicryThe key cognitive skill for process operators is the formation of a men-tal model that not only accounts for current observations but also enablesthem to predict near-term behavior and predict the e�ect of possible controlactions. This observation underlies our framework for process monitoring,named Mimic. The basic idea is quite simple: mimic the physical systemwith a predictive model, and when the system changes behavior due to a faultor repair, change the model accordingly so that it continues to give accuratepredictions of expected behavior. Intuitively,Mimic incrementally simulatesa model of the physical system in step with incoming observations, makingthe state of the model track the state of the physical system. When theobservations disagree with predictions, model-based diagnosis is employed todetermine the possible fault(s). When a fault is identi�ed, it is injected intothe model so that the model's predictions continue to track observations.The key bene�t is that we can use the model as our window into what'shappening inside the physical system. Speci�cally, the model can be used to:� detect early deviations from expected behavior, much more quicklythan with �xed-threshold alarms (an extreme form of analytical redun-dancy1);1The term analytical redundancy, also called functional redundancy, refers to the faultdetection method of using known analytical relationships among sets of signals, such asoutputs from dissimilar sensors, to check for mutual consistency. The method (and thephrase) emerged as an alternative to the earlier practice of hardware redundancy, wherein4



PhysicalSystem ModelTrackingDiagnosisAdvising-- -� -� ���� safety conditionsrecommended procedures� ���controlalarmsforewarningsFigure 1: The 3 tasks of process monitoring.� predict the values of unobserved variables (signal reconstruction) topermit alarms or other inferences on unseen variables, and to assist theoperator's understanding of process conditions;� predict ahead in time, thus forewarning of undesirable or hazardousconditions;� predict the e�ect of proposed control actions to test if the control actionwill have the desired e�ect | a valuable capability in complex systems.Figure 1 depicts this framework where a predictive model mimics thephysical system. Two tasks maintain the model. The tracking task advancesthe state of the model in step with observations from the physical system.The diagnosis task, upon identifying a particular fault, injects that fault intothe current model so that the predictions of the model will continue to agreewith actual observations. To be precise,Mimic maintains a set of candidatemodels since a given behavior might be caused by one of several faults. Eachcandidate model represents a possible condition of the system (i.e., its stateand faults).The end purpose of monitoring and diagnosis is advice | advice to theoperator about what's happening and what to do about it. The role of theadvising task is to apply the expert knowledge of safety conditions, recom-mended operating procedures, and performance objectives to produce advicein the form of alarms, forewarnings, and recommended actions. Although itis not further discussed in this paper, the advising task is a major bene�-ciary of the model-based approach in that the candidate models (and their3 or 4 identical sensors and voting logic are used for fault tolerance.5
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�6simulationcontrol6hypotheses-- -models predictions ?�6 untrackeddiscrepancies� � discrepancies �Figure 2: Architecture of Mimic.tracked states) can provide a testbed for generating forewarnings and fortesting proposed control actions.1 Three Key TechnologiesMimic is built upon three technologies that have emerged from research in re-cent years: semi-quantitative simulation, measurement interpretation (track-ing), and model-based diagnosis. These technologies are joined together ina hypothesize-build-simulate-match cycle, as shown in Figure 2. This �guregives a more detailed view of the tracking and diagnosis tasks of Figure 1.6



1.1 Semi-Quantitative SimulationIndustrial process plants (such as chemical re�neries and nuclear power plants)are examples of continuous-variable dynamic systems. In modern controltheory these dynamic systems are modeled with a set of coupled �rst-orderdi�erential equations consisting of the balance equations, physical-chemicalstate equations, and phenomenological laws. Given a set of initial values, anumerical simulation of the equations yields precise predictions of values foreach variable over time.Oddly enough, standard numeric simulation is too precise and too narrowfor our purposes. In reality, there is much imprecision in process systems.Sensors, actuators, and functional units operate within certain tolerances,parameter values are known approximately, and some functional relations arenot known with precision. One approach, of course, is to do precise numericalsimulation using average values, and then use some form of approximatematching of simulation results to observations. There are two main problemswith this approach:1. Given initial conditions, numerical simulation predicts only one behav-ior from a model even though more than one may be possible, given thereal imprecision. For example, a tiny di�erence in one parameter candetermine whether or not a rocket achieves escape velocity. In e�ect,numerical simulation makes an inappropriate commitment to a singlebehavior whereas qualitative simulation guarantees that all possiblebehaviors will be predicted. This capability is especially importantin testing a fault hypothesis, which may exhibit several qualitativelydistinct behaviors.2. The second problem is the approximate-matching problem | how doyou decide, in a principled way, when a di�erence between predictionand observation is due to imprecision and when it is due to a fault?What we really want is to explicitly express the imprecise knowledgeas part of the model and have the simulator use it, producing validranges for each variable, permitting direct matching of observationsto predictions. Semi-quantitative simulation provides this capability.Furthermore, when the observations match the predictions of two (ormore) distinct behaviors, we want to track both hypotheses until they7



diverge, which Mimic does.Qualitative simulation [14], the foundation for semi-quantitative simula-tion, has two important characteristics for our application. First, it usesa qualitative level of description that permits imprecise knowledge to beexpressed. This purely qualitative description uses no numbers (but cantake advantage of quantitative information when available, as we shall soonsee). Second, qualitative simulation generates all of the qualitatively distinctbehaviors attainable from a starting state, consistent with the given impre-cise knowledge. This property is essential in monitoring a physical system,whether healthy or faulty.Quantitative re�nement of qualitative simulation [15] takes advantage ofquantitative knowledge when it is available, which is always the case in pro-cess plants. This knowledge consists of numeric ranges for landmark values(e.g., the pressure-relief valve opens at 200{210 psi) plus envelope functionsthat de�ne the limits of monotonic relationships (e.g., an approximate rela-tionship between the volume of 
uid in a tank and its height). Quantitativevalues are expressed as numeric ranges and simulated with a modi�ed in-terval arithmetic. Interval arithmetic is normally subject to an uncertaintyexplosion, but this problem is avoided because all reasoning takes place withrespect to the �xed set of landmarks provided by the qualitative behavior.The resulting semi-quantitative simulation retains all the properties of qual-itative simulation, but with two additional bene�ts: (1) behaviors that arequalitatively possible but quantitatively invalid are eliminated, and (2) nu-meric range predictions are generated for each variable and can be directlycompared to numeric sensor readings. This form of semi-quantitative simu-lation is provided in Qsim, which we have used in this research.1.2 Measurement Interpretation (Tracking)Mimic seeks to maintain a model whose state and whose faults (if any)re
ects the current state of the physical system. More precisely, it maintainsa set of models, each in a state consistent with the most recent observations.This set is called the \tracking set", and each model in the set embodiesdi�erent fault hypotheses and therefore represents an alternate interpretationof the system. Models are added to the tracking set during diagnosis as8



D E FGH IJKLM- - -�����>@@@@@R -�����:XXXXXz�����:XXXXXzFigure 3: Tracking through a behavior graph.fault/repair hypotheses are generated. Models are deleted from the trackingset during tracking, when a model's predictions do not track observations.Qualitative simulation generates a behavior graph, which is a directedgraph of the possible qualitative states of the system and the transitionsamong them. A behavior is a path through the directed graph and consistsof a sequence of states alternating between states that represent an instantof time and states that represent an interval of time. Tracking, also calledmeasurement interpretation [16, 17], is the process of using the observationsto follow a path (a behavior) through the behavior graph. Using the fragmentof behavior graph in Figure 3, we describe several details of the process:� If a model is currently in state E, then each new set of observations iscompared to the values of state E. If the observations match the pre-dictions, (i.e., if each observation is within the predicted range), thenthe model remains in state E. Note that no ad hoc approximate match-ing is needed. Because the semi-quantitative model predicts a validnumeric range for each variable, observations are compared directly tothe predicted ranges of each simulated state.2� When an observation does not match the current state E, incrementalsimulation is used to generate the immediate successor states F, G, H.32Usual noise �ltering of sensor readings should still be performed.3Recall that the reason why a state in a semi-quantitative simulation can have morethan one possible successor state is because of the imprecise knowledge expressed in themodel. 9



If, say, the observations match state G, then the model is retained withits state now set to G.Incremental simulation refers to the control that the tracking task ex-erts over the simulator. When triggered, the simulator generates onlythe immediate qualitative successor state(s) to the current state. Thus,the simulation is advanced only as needed; it is never \run to comple-tion".� If the observations do not match any of the immediate successor states(F,G,H), then incremental simulation is repeated and the observationscompared to the second-generation successor states (I, J, K, L, M).This limited-distance look-ahead is needed to jump over instantaneousstates that fall between consecutive observations.� Observations may include independent variables, i.e., exogenous vari-ables whose values cannot be predicted. When an independent variablechanges value, tracking must reinitialize the models in the tracking setusing the current observations and most recent predictions for inte-grated quantities. Thus, the simulation, just like the physical system,is made to react to changes in independent variables.� Through progressive step-size re�nement of the semi-quantitative sim-ulation, a desired precision can be attained for the quantitative pre-dictions [18]. Speci�cally, the time interval between qualitative timepoints can be used to re�ne the step-size of the quantitative simula-tion, inserting new quantitative states having time points within thatinterval. These new quantitative states more precisely bound the pre-dicted behavior.� It's important to note that Mimic never has to generate the full be-havior graph (an \envisionment") | a computation that can be pro-hibitively expensive for complex systems because of the intractablebranching problem of qualitative simulation. Instead, Mimic performsincremental simulation to generate only the states in the immediatevicinity of the last tracked state, abandoning any branches that do nottrack the observations. In e�ect, the observations act as a �lter thateliminates irrelevant branches in the behavior graph.10



1.3 Model-Based DiagnosisProcess systems are designed for continuous operation, and are thereforesomewhat fault-tolerant. The economic pressures to keep the plant in produc-tion often mean that the system will continue running with multiple faults.Thus, single-fault diagnosis is inadequate. However, complete multiple-faultdiagnosis is combinatorially explosive and therefore unrealistic for real-timemonitoring. As a middle approach, Mimic uses a method for incrementallyconstructing and testing multiple-fault hypotheses. Speci�cally, since the pe-riodic sensor measurements are frequent, it is assumed that only a single newfault (or a single repair) can occur between successive measurements. Thus,Mimic can construct multiple-fault hypotheses, one hypothesis at a time.Let's now examine when and how diagnosis occurs. The tracking taskdiscards a model when there is a discrepancy between predictions and ob-servations. However, before the model is discarded, an attempt is made tomodify it to bring its predictions into agreement with the observations. Thisis similar in intent to the Debug phase of the Generate-Test-Debug (GTD)paradigm [19], though GTD andMimic di�er in many other ways. Using thestructural model (the model of components, connections, and parameters),the algorithm traces upstream from the site of the discrepancies to identifyall components and parameters that could have contributed to the discrep-ancy (dependency tracing). Under the assumption that the discrepancies aredue to a single new fault or a single new repair, the only suspects to considerare those that can account for all discrepancies. These suspects are furtherchecked for global consistency through constraint-suspension; if there is noassignment of values that is consistent with all the symptoms, then the sus-pect is exonerated. For each remaining suspect, each of its other operatingmodes is tested for compatibility with the observations. Whatever modelvariations survive this test are added to the tracking set. For a more detaileddescription of model-based diagnosis, see [8].Unlike many diagnostic methods, model-based diagnosis does not rely ona set of symptom{fault patterns. The problem with relying on such pat-terns is that they are often incomplete since it is di�cult for an expert toanticipate all possible faults and their symptoms, especially the symptomsof interacting faults. Even if the symptom{fault patterns are collected fromexhaustive fault-model simulations, it is not necessarily more e�cient to use11



such patterns, as Davis has argued [20].Another important property of model-based diagnosis is that it handlesfailed sensors and missing data in a natural way, not as a special case. Asensor is just another component that a�ects an observation; dependencytracing will identify it as a suspect in the usual way. As Scarl [21] observes,model-based reasoning avoids combinatoric problems in handling failed sen-sors and unavailable data because it matches against predictions rather thansymptomatic patterns. If a sensor is bad and thus gives readings di�erentthan predicted, the sensor becomes a suspect simply because it is upstreamof the discrepancy. If a datum is unavailable, then it is not compared withpredictions and therefore cannot cause discrepancies.2 ExampleTo illustrate Mimic at work, consider the electric water heater shown inFigure 4, which has been modeled and tested withMimic. The water heaterhas a single thermostat which controls whether or not power is applied to thetwo heating elements (on-o� control). Raw sensor information comes froma temperature sensor near the thermostat, from a 
ow-rate sensor on thecold-water inlet, and from a voltage sensor on the heating elements. In a realmonitoring situation we would want to diagnose a variety of possible faultssuch as defective heating elements, a stuck thermostat, a faulty 
ow-ratesensor, and loss of electrical power. However, to keep this example simple,we consider only the possibility of defective heating elements.The water heater is modeled as a 2-compartment model in which twomasses of water (upper and lower) are connected with thermal 
ow andmass 
ow between them, as shown in Figure 5. Each compartment is treatedas well-mixed (the temperature is the same everywhere within the compart-ment). The temperature in each compartment is a�ected by �ve heat 
ows:heat gain from the heating element, heat loss to the room through the insu-lating jacket, heat gain due to water in
ow, heat loss due to water out
ow,and heat transfer through thermal contact with the other compartment. Thesemi-quantitative Qsim model of the water heater contains the usual equa-tions that relate mass, mass 
ow, heat, heat 
ow, thermal resistance, and12
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hot water outlet upper heaterlower heaterAA AA AA AA AA AA�� �� �� �� �� ����AA AA AA AA AA AA�� �� �� �� �� ����Figure 4: Electric water heater.temperature. In addition, it contains numeric ranges for landmark valuessuch as room temperature, inlet water temperature, nominal heating rate,and thermal resistance of the insulation. No envelope functions are neededin this model because there are no imprecise monotonic relationships.In the normal (fault-free) model all components of the water heater (tank,heating elements, thermostat, temperature sensor, 
ow-rate sensor, voltagesensor, voltage supply) operate according to their intended purpose. In afault model, a faulty component operates according to a failure mode, suchas a heating element that generates no heat when power is applied.Table 1 summarizes an example of monitoring the water heater, showinghow monitoring progresses over eight moments in a series of observations.4For each moment, the table shows the quantitative sensor readings and threesets maintained inside Mimic. The water heater begins in a state where thewater in the tank is hot, the heating elements are o�, no water is 
owing,4The numeric values shown in Table 1 are from a numeric simulation of the waterheater in which the lower heater produces no heat.13
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Moment 0 1 2 3 4 5 6 7Synopsis temp 
ow temp heater temp still 
ow temp heaterhot starts dropping on dropping stops rising o�Time (min.) 0.0 1.0 2.0 2.4 2.7 3.0 13.0 27.7Flow (liters/min.) 0 30 30 30 30 0 0 0Temp. (deg. C) 64.9 64.9 61.4 58.9 57.1 55.9 60.0 66.0Power (on or o�) o� o� o� on on on on o�New fault hypotheses none none none none bad H1 none none nonebad H2New fault model(s) none none none none bad H1 none none nonebad H2Tracked model(s) normal normal normal normal bad H1 bad H1 bad H2 bad H2bad H2 bad H2Table 1: Diagnosing the water heater from dynamic behavior.and there is a slow temperature loss. These readings are consistent with thenormal model. Now, someone starts to draw water for a bath. A high 
owrate is measured but all other readings remain the same. Since water 
ow isan independent variable, Mimic reinitializes every tracked model (just thenormal model in this case) to re
ect the change. Since the normal model isconsistent with the new values, it is retained.As time continues, the temperature inside the tank drops because of thecooler inlet water. These readings are consistent with the current state ofthe normal model, so no change occurs to the tracking set. At moment 3the temperature drops to the point where the heating elements turn on, asobserved by the voltage sensor. These readings are also consistent with thepredictions of the normal model, so the model is retained.At moment 4 the temperature continues to drop. Although this observa-tion is qualitatively consistent with the normal model, it is inconsistent withthe associated quantitative ranges. In e�ect, the model is saying that forthis 
ow rate, tank capacity, heating rate, and inlet temperature, the watertemperature should not be dropping so fast. Thus, the tracking task discards15



the normal model. At the same time, this discrepancy triggers dependencytracing which identi�es two possible faults | a bad upper heating element ora bad lower heating element (denoted bad-H1 and bad-H2)5. This causes twofault models to be built. Both models are successfully initialized, so Mimicis now tracking two models.The water 
ow stops at moment 5 (somebody turned o� the faucet).With this change in an independent variable, Mimic reinitializes the twomodels. At moment 6, the temperature is observed to be rising. The observedtemperature is then compared to the quantitative predictions of the twomodels. Because the observed temperature exceeds the range predicted bythe bad-H1 model, that model is discarded. The predictions of the oneremaining model, bad-H2, are compatible with the observations, so the modelis retained. This model continues to track future readings, thus emerging asthe sole fault hypothesis.3 DiscussionThe water heater example shows how, with few observable variables, Mimiccan diagnose a system by observing its dynamic behavior. In general, thespeed at which a diagnosis can be narrowed depends on the number of moni-tored variables and the dynamic activity of the system. With more monitoredvariables and more system activity, there are more opportunities to refuteincorrect hypotheses.Diagnostic systems often rank competing hypotheses by probability, basedon the a priori fault probabilities of the components. Because Mimic doescontinuous monitoring, it can also rank hypotheses by age. The longer thata hypothesis survives, continuing to track the changing observations, thestronger the evidence supporting that hypothesis. This age-ranking also de-sirably focuses attention on hypotheses that account for the earliest manifes-tations of a fault, before numerous other manifestations (and corresponding5Due to the one-fault-at-a-time assumption, the double-fault bad-H1, bad-H2 is nothypothesized. In a more detailed example, other hypotheses would also be proposed, suchas a faulty temperature sensor, faulty 
ow sensor, and faulty thermostat, since all areupstream of the temperature discrepancy. 16



hypotheses) appear. In short, the natural time delays in the system help inidentifying the correct hypothesis.Alarms are treated in a new way in Mimic in that they are based pri-marily on the predictions of the model(s) in the tracking set. This has sev-eral nice consequences: alarm thresholds can be dynamic rather than �xed,thus allowing earlier alerting; alarms can be based on unobserved variables,permitting more freedom in alarm design; alarms can reveal any mutuallyinconsistent readings (extreme analytical redundancy); alarms, called fore-warnings, can be based on near-future predicted states; and false alarms dueto operating-mode changes (e.g., startup/shutdown) should not occur if themodel faithfully predicts such dynamic behavior.4 LimitationsIf Mimic cannot quickly refute invalid hypotheses, the tracking set willgrow and Mimic will slow down correspondingly. Mimic refutes hypothesesthrough tracking, which means that there must be an observed discrepancybetween the model's predictions and the sensor readings. In practice, thismeans that the model's predictions must be reasonably well-bounded andthat there must be an adequate number of well-placed sensors.Mimic assumes that faults occur one-at-a-time. More precisely, it as-sumes that the manifestations of di�erent faults appear at di�erent timeswith respect to its sampling rate. This assumption may be violated in thecase of a catastrophic event (such as an explosion) or cascading faults, wherediscrepancies due to more than one fault may appear simultaneously.Qualitative simulation can predict spurious behaviors, i.e., behaviors thatdo not occur in the physical system. This means, for example, that a realfault could go undetected if its behavior happened to correspond to a spu-rious behavior. Prediction of spurious behaviors is due to an interactionbetween the qualitative level of description and the local state-to-state per-spective of the simulation algorithm. However, this problem has been sub-stantially reduced in qualitative simulation by the introduction of severalglobal constraints | constraints that eliminate spurious behaviors throughglobal consistency checks, such as the non-intersection constraint applied to17



trajectories in qualitative phase space [22], the automatic derivation of en-ergy constraints by recognizing conservative and non-conservative forces [23],and the use of higher-order derivative constraints [24].The Qsim algorithm guarantees that all behaviors are predicted, andonly under a qualitative level of description does this give a tractable set ofpossibilities. In simple cases (such as the water heater) this is tractable inpractice as well as in theory. For more complex systems, controlling the sizeof the hypothesis set is still a potential problem.5 Related WorkKay [25] has demonstrated the Mimic approach in monitoring the pump-down phase of a vacuum system for semiconductor fabrication, where ultra-high vacuums are required (10�9 Torr). Since there is no practical theory forthe sorption of gases, it is di�cult to model the process numerically. Kay'ssemi-quantitative model, with dynamic envelopes that bounded the expectedobservations, permitted reasoning with uncertainties and still achieved de-tection of faults early in the pump-down phase.Abbott's approach to monitoring and diagnosis [32], like sc Mimic, takesadvantage of the sequence in which symptoms appear, although the mecha-nisms are somewhat di�erent. Draphys detects symptoms (discrepancies)by comparing sensor readings to expected values computed from a numer-ical simulation model of the fault-free system. Fault hypotheses are thengenerated by tracing upstream from the symptom through a graph model ofthe paths of interaction among components (dependency-tracing through astructural model). As new symptoms appear, Draphys tests each existinghypothesis to see if propagating its e�ects further downstream in the graphmodel covers the new symptoms. This latter step is akin to Mimic's track-ing, but at a more abstract level. Speci�cally, the graph model in Draphysrepresents only that a fault in one component may a�ect another component;there is no information about whether the a�ected sensor reading should behigh or low, and there is no information about time delays in fault propaga-tion. Such information can be used to refute some hypotheses, whichMimiccan do because the semi-quantitative model that it uses during tracking pro-18



vides such information.Isermann'smodel-based approach to process fault diagnosis [9], likeMimic,uses dynamic mathematical models and measurable input and output signalsto allow estimation of unmeasurable internal quantities, which can then beused for fault detection. Unlike Mimic, however, Isermann's models arepurely quantitative and are expected to \describe the process behavior pre-cisely." The resulting approximate-matching problem (to determine if anobservation is \normal") is handled with a Bayes decision algorithm. Af-ter a symptom is recognized (through Bayes decision), the fault is classi�edby comparison with fault signatures, which have been established a priori.Although Isermann's work uses di�erent methods for simulation and mea-surement interpretation and diagnosis, he reaches a similar conclusion thatwe share: \dynamic process behavior yields considerably more informationon process faults than can be achieved in the static case."A number of expert systems have been built which share the same oper-ational goal as Mimic | that of relieving some of the burden of monitoringfrom process operators [4]. Mimic focuses primarily on determining the stateof the physical system, but most of these expert systems have the broaderscope of trying to advise the operator on corrective actions. Escort [2],an exemplar of this group, gets its knowledge of faults and anomalies andcorrective actions through the usual process of codifying human expertise inrules; Escort does not encode a predictive model of the physical system asMimic does.The version ofMimic described in this article has evolved from an earlierdesign presented in [26]. In particular, hypothesis generation is now based ondependency tracing rather than on a decision tree, and a more sophisticatedform of semi-quantitative simulation is used.6 SummaryThis article has described a method for monitoring and diagnosis of pro-cess systems based on three foundational technologies: semi-quantitativesimulation, measurement interpretation (tracking), and model-based diag-nosis. These technologies have been joined together in a hypothesize-build-19



simulate-match architecture (Figure 2). Compared to existing methods basedon �xed-threshold alarms, fault dictionaries, decision trees, and expert sys-tems, several advantages accrue:� The physical system is represented in a semi-quantitative model which,unlike a pure numeric model, predicts all possible behaviors that areconsistent with the incomplete/imprecise knowledge of the system'sdevices and processes. This ensures, for example, that a hazardous-but-infrequent behavior will not be overlooked.� Imprecise knowledge of parameter values and functional relationships(both linear and non-linear) can be expressed in the semi-quantitativemodel and used during simulation. This produces a valid range foreach variable and eliminates the need for approximate-matching of ob-servations to predictions.� Incremental simulation of the model in step with incoming sensor read-ings, with subsequent comparison of observations to predictions, per-mits earlier fault detection than with �xed-threshold alarms.� By using a structural model of the plant and tracing upstream from thesite of unmatched observations, model-based diagnosis permits e�cientgeneration of fault candidates without resort to pre-compiled (and oftenincomplete) symptom{fault patterns.� By injecting a hypothesized fault into the model and tracking its pre-dictions against observations, the dynamic behavior of the plant is ex-ploited to corroborate or refute hypotheses.� By simulating ahead in time from the current state, an operator canbe forewarned of nearby undesirable states that the plant might enter.Similarly, the e�ects of proposed control actions can be determined bysimulating from the current state.The three technologies that Mimic builds upon continue to be activeareas of research, and Mimic stands to inherit the bene�ts of this research.For example, recent research by Berleant and Kuipers [18] and Kay andKuipers [27] have improved quantitative reasoning mechanisms to provider20



tighter bounds on predictions of semi-quantitative models. Also, researchby Fouch�e and Kuipers [23] on reasoning about energy has eliminated animportant source of spurious behaviors in qualitative simulation.An important task, not discussed in this article, is the model-buildingtask. Model-based reasoning can, and should, be decomposed into a model-building task, which creates the semi-quantitative di�erential equations froma higher-level description of a physical system, and a simulation task, whichtakes the equations and predicts the possible behaviors. Although the ex-ample model in this paper was described at the level of semi-quantitativedi�erential equations used in Qsim, it is usually more convenient to describea model at a higher level of abstraction. For example, the device ontology[28] views a system as a collection of interconnected devices (such as tanks,pumps, and pipes), and the process ontology [29] views a system as a set ofprocesses (such as liquid 
ow and heat 
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