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ABSTRACT

The phenomenon of choice shifts in group decision-making has received much attention in the social

psychology literature. Faced with a choice between a “safe” and “risky” decision, group members

appear to move to one extreme or the other, relative to the choices each member might have made

on her own. Both risky and cautious shifts have been identified in different situations. This paper

demonstrates that from an individual decision-making perspective, choice shifts may be viewed as

a systematic violation of expected utility theory. We propose a model in which a well-known failure

of expected utility — captured by the Allais paradox — is equivalent to a particular configuration of

choice shifts. Thus, our results imply a connection between two well-known behavioral regularities,

one in individual decision theory and another in the social psychology of groups.
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1 Introduction

How do groups confront choices involving risk? Despite the fact that group decision-making is ubiq-

uitous in social, economic and political life, economists haven’t had much to say on the subject.1

Before 1961, conventional wisdom on the subject (largely from social psychology) was fairly unam-

biguous: relative to the attitudes of group members, the group itself is likely to favor compromise and

caution. But a series of experiments by James A. F. Stoner (1961) identified “risky shifts” : when faced

with the same decision problem, individuals within a group adopt a riskier course of action, com-

pared with the decisions they would make outside the group.2 Later, Nordhøy (1962), Stoner (1968)

and others provided some evidence for cautious shifts: a group tendency to exhibit greater restraint in

risk-taking relative to the proclivities of individuals in that group. To accommodate both directions

of change, the general phenomenon was ultimately referred to as a choice shift. Today, choice shifts in

group decision-making are universally viewed as a consistent and robust phenomenon (Davis et al.

(1992)).3

At the broadest level, group decisions embody two functions: the aggregation of information and

the aggregation of preferences. In this paper, we focus on the latter function (see below for comments

on the former). That is, assuming group members are faced with all the information relevant to the

decision at hand, we ask, can the mere fact that the ultimate decision is taken by the group as a whole

distort the individual expression of preferences? Might an individual express support or vote for an

outcome that he would not have chosen in isolation?

From the perspective of economic theory, the standard paradigm of group decision-making em-

phasizes pivotal events, special situations in which a particular individual’s “vote” affects the final

outcome. But in such an event, the individual must act as he would in isolation, controlling for infor-

mational differences.

This argument makes it obvious that the pivotality logic is akin to an independence axiom for

decision-making, and so to some extent on the axiomatic foundations of expected utility. It is therefore

not surprising that we propose to view the phenomenon of choice shifts as a systematic violation of

expected utility theory. But more than this, we propose a model in which a well-known failure of

expected utility — captured by the Allais paradox — is equivalent to a particular configuration of choice

shifts (which include both risky and cautious shifts, but in a specific pattern).

A traditional explanation for the risky shift emphasizes the “diffusion of responsibility” (DOR)
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created by a group decision (e.g., see Wallach et al. (1962, 1964)). The idea is simple: when an indi-

vidual makes a risky choice which fails to generate a successful outcome, she might feel responsible

for (or guilty about, or disappointed by) her failure. Similarly, success should bring on a sense of

“elation” over and above the “direct” utility of the outcome. DOR can be interpreted as saying that

individuals tend to place higher weight on events with low outcomes relative to events with high out-

comes, but that this tendency is attentuated when they participate in a group decision; hence, they

are willing to take greater risks within the group. Now, DOR appears to explain too much, in that it

seemingly cannot account for cautious shifts (see, e.g., Dean G. Pruitt (1971a, b)). But we are going to

argue that this assessment may have been too premature. In Theorem 1, we show that the tendency

to place higher weight on low outcomes is actually related to a family of shifts, each contingent on the

ambient group environment. Some of these shifts are cautious; some risky.

To make these points, we adopt the rank-dependent generalization of expected utility theory.

This class of preferences, originally due to John Quiggin (1982) and Menahem E. Yaari (1987), extends

the class of expected utility preferences to account for many experimental observations on decision-

making under risk (see Chris Starmer (2000)). Endowed with these preferences, an individual faces a

choice between a risky and a safe option, either alone or in a group. Say that she exhibits a risky shift

if she is indifferent between the risky and safe lotteries when making the decision herself, yet strictly

prefers to “vote” for the risky lottery in the group situation. Likewise define a cautious shift.4

We describe a group decision problem by a pair (a, b), where a ∈ (0, 1) is the probability that our

individual is pivotal (i.e., decides the outcome) and b ∈ [0, 1] is the probability that the group chooses

safe over risky, conditional on our individual not being pivotal.5 Theorem 1 proves that an individual

exhibits the Allais paradox if and only if he exhibits the following pattern of choice shifts: for every

likelihood a of being pivotal, there exists a unique threshold b∗ — the likelihood of the safe outcome

in the non-pivotal case — such that our individual exhibits a risky shift when b < b∗, and a cautious

shift when b > b∗. This result establishes an intimate connection between two well-known behavioral

regularities, one in individual decision theory and another in the social psychology of groups.6

While we take a first step towards a formal theory of choice shifts, our emphasis on a “pure”

preference-based theory is admittedly special. In particular, it is not meant to signal that an informa-

tional approach to choice shifts is any less important, just that the two are potentially complementary.

Indeed, economic theory does offer a set of models that produce a shift in an individual’s vote, be-

cause the votes of others may embody information that a particular individual may not possess (see
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Feddersen and Pesendorfer (1998)). Now, this particular route is of interest but it does necessitate

that information not be revealed explicitly, requiring it to be indirectly transmitted through the final

decision-making process instead. For a large class of situations, and particularly in group situations

with a commonality of objectives, we do not find this argument very convincing.7 On the other hand,

this is not to deny that group members bring new information to the table. They certainly do, ranging

all the way from the provision of verifiable facts to different ways of reasoning about commonly avail-

able data.8 And it is certainly possible that such group interaction may lead to significant changes in

the behavior or attitudes of each member. Whether these interactions are capable of generating pre-

dictable shifts in attitudes towards risk and caution is a different matter that we do not address here.9

Thus our focus is a more primitive one: we study the basic logic of individual decision-making in

group situations.

Further discussion follows the statement of the theorem, and potential applications are described

in Section 3. The formal proof of the theorem is relegated to an appendix.

2 Model

2.1 Preferences

Let P denote the set of simple lotteries (i.e., lotteries with finite outcomes) over some ambient con-

nected space of outcomes. The individual in question is presumed to have rank-dependent preferences

(RDP) defined on P. Such preferences are represented by a functional called a rank-dependent utility,

which is similar to expected utility except that it is not linear in the probabilities.

To describe the representation, fix some preference ordering �. Order the support outcomes of

any simple lottery — call them 1, . . . , n — in weakly increasing order of preference. The lottery is

then p = (p1, . . . , pn). For k = 1, . . . , n + 1, let wk(p) be the sum of all probability weights over

outcomes that are worse than k; wk(p) =
∑

i<k pi. Of course, w1(p) is always 0.

Well-known axiomatizations10 assert that � is an RDP ordering if and only if there exists a con-

tinuous, strictly increasing “probability transformation function” f : [0, 1] → [0, 1] with f(0) = 0 and

f(1) = 1 and a continuous, nondegenerate utility function u defined on outcomes11 such that p � q

if and only if

n∑
k=1

[f(wk+1(p))− f(wk(p))]u(k) ≥
n∑

k=1

[f(wk+1(q))− f(wk(q))]u(k). (1)
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In what follows, we employ the minor additional restriction that f is differentiable.

2.2 The Allais Paradox

As mentioned in the Introduction, the RDP class was introduced in response to a large body of evi-

dence indicating a violation of the independence axiom. Perhaps the best known violation is the Al-

lais Paradox, first discovered by Maurice Allais (1953). To describe Allais’ original paradox consider

the ordered set of outcomes {0, 1M, 5M} (M is one hundred million francs in Allais’ 1953 formula-

tion). Let p, q, p′ and q′ be the following lotteries,

p = ( 89
100 , 11

100 , 0
100 ) q = ( 90

100 , 0
100 , 10

100 )

p′ = (0, 1, 0) q′ = ( 1
100 , 89

100 , 10
100 )

Allais found that for most subjects, q � p but p′ � q′.

Notice that in the paradox, we “transform” p to p′ by moving weight (equal to 89/100 in the

specific example) from the low outcome to the middle outcome. Exactly the same shift of weight is

applied to “transform” q to q′. One may view the Allais paradox as stating that such common shifts of

weight raise the preference for p over q. Here is a formal definition based on that idea: an individual

exhibits the Allais Paradox if for every pair of lotteries (1 − α, α, 0) and (1 − β, 0, β) with α > β and

(1− α, α, 0) v (1− β, 0, β), we have

(1− α− γ, α + γ, 0) � (1− β − γ, γ, β)

for all γ ∈ (0, 1− α].

This definition turns out to be a special case of a more extensive class of situations that Segal (1987)

refers to as the “generalized” Allais paradox (for variants of the Allais paradox, see the survey by

Starmer (2000)). We return briefly to a discussion of our definition in the remarks following Theorem

1.

2.3 Choice Shifts

Now we develop the notion of choice shifts. As in the case of the Allais paradox, we are interested in

choices over a risky lottery r and a safe lottery s. However, owing to the nature of group interaction,

the individual must confront more complex (compound) lotteries.
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Specifically, group decision-making introduces strategic uncertainty. An individual will generally

cast her vote or express an opinion on the choice to be made between r and s,12 while often remaining

uncertain of the final outcome. In its most abstract and general form, a group decision problem (from

the point of view of a given individual) may be represented by a pair g ≡ (a, b), where a ∈ (0, 1) is the

probability that our individual is pivotal (i.e., decides the outcome) and b ∈ [0, 1] is the probability with

which the group decides on s, conditional on our individual not being pivotal. The great advantage

of this description is, of course, that it admits a large class of aggregation rules within the group. [A

possible disadvantage is that a and b don’t simply depend on the nature of the group problem but on

the behavior of other group members, an “equilibrium issue” which we don’t address.] Note that the

restriction a > 0 means that our individual must have some say within the group, and the restriction

a < 1 means that she cannot be a dictator.

We will say that an individual exhibits a risky shift over r and s within the group problem g if she

is indifferent between r and s, yet strictly prefers to “vote” for r in the context of that group problem.

Likewise, she exhibits a cautious shift over r and s (within the group problem g) if she is indifferent

between r and s, yet strictly prefers to “vote” for s in the context of that group problem. A shift —

risky or cautious — is generally referred to as a choice shift.

To see this more formally, construct the “effective lotteries” when the individual participates in

a group decision with parameters (a, b). Let p and q be a pair of simple lotteries and let x be some

value in [0, 1]. We denote by x[p] + (1 − x)[q] the compound lottery that yields the lottery p with

probability x and the lottery q with probability 1 − x. Thus, if a group member “votes” for r, the

effective compound lottery r∗ is given by

r∗ ≡ a [r] + (1− a) [b [s] + (1− b) [r]] . (2)

Likewise, when she votes for s, the compound lottery thus generated is

s∗ ≡ a [s] + (1− a) [b [s] + (1− b) [r]] . (3)

A risky shift is the joint statement r ∼ s and r∗ � s∗, while a cautious shift is the joint statement r ∼ s

and s∗ � r∗. A choice shift is just the lack of indifference between r∗ and s∗, assuming that there is

indifference between r and s to begin with.

Notice that our formulation of the choice shift phenomenon has nothing to do with attitudes to

risk. For instance, if b = 0 then r=r∗ and r∗ = a [s] + (1− a) [r]. Hence, r ∼ s must imply r∗ ∼ s∗ under
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expected utility theory (or even under the weaker assumption of betweeness), regardless of attitudes

to risk.

2.4 The Main Result

We are now in a position to state our equivalence result.

Theorem 1 In the rank-dependent class, the following statements are equivalent:

1. An individual exhibits the Allais Paradox.

2. Given any pair r and s and any a ∈ (0, 1), there exists b∗ ∈ [0, 1] such that for any group decision problem

g = (a, b) with b < b∗, she prefers to support the risky option, while if b > b∗, she prefers to support the safe

option. Moreover, if the agent is initially indifferent between r and s, then b∗ lies strictly between 0 and 1. The

individual exhibits a risky shift if b < b∗, and a cautious shift if b > b∗.

The theorem shows that the phenomenon of choice shifts may be viewed as a preference reversal

that is caused by the same failure of independence that triggers the Allais paradox.

In the formal proof, we show that both the Allais paradox and the phenomenon of choice shifts are

separately equivalent to the strict concavity of the transformation function f .13 We use this connection

here to provide some intuition for the theorem.

Suppose that a risky lottery r places probability p on winning a high prize and probability 1−p on

winning a low prize. Suppose that s is a safe lottery that promises some prize intermediate between

the first two. Imagine “transforming” s into r by removing probability mass from the intermediate

prize and transferring it in the ratio p : 1 − p to the high and low prizes. The two transfers create

a tradeoff, and an individual’s preferences across r and s may be viewed as an evaluation of this

tradeoff.14

In a group decision problem our individual generates a choice between the “derived” lotteries

r∗ (by voting risky) and s∗ (by voting safe). The tradeoff between these two lotteries is exactly the

same as it was before: to “transform” s∗ into r∗, remove probability mass from the intermediate prize

and transfer it in the ratio p : 1 − p to the high and low prizes. However, when f is nonlinear,

an individual views the same marginal tradeoffs differently, depending on the “initial lottery” (for

instance, the lotteries s and s∗ in our discussion). In particular, the probability with which the low

prize is realized in this “initial lottery” becomes important.

6



If f is strictly concave and the initial low-prize probability is small to start with, the transfer of

mass to the low outcome is likely to have a large (negative) impact on utility. It follows that in this

case, the individual is less likely to “accept” the implied tradeoff; he will vote for the safe outcome.

Now, the probability of the “initial” low outcome being small is linked closely to the safe outcome

being adopted with high probability when our agent votes safe. Because b is the probability that the

safe outcome will emerge when our agent is not decisive, all this is connected with b being high. To

summarize: high b assists an individual’s preference for caution in a group problem.

By exactly the same logic, a low b increases the chances of r being adopted even when our agent

votes safe, so that the probability of the low outcome under s∗ is thereby increased. By strict concavity,

the same probability transfer has a smaller negative impact, raising the chances of voting risky. This

explains, or at least indicates, how the strict concavity of f can be related to a class of choice shifts as

described in part (2) of the theorem.

The strict concavity of f also implies the Allais paradox. Recall that we start with two lotteries

(1 − α, α, 0) and (1 − β, 0, β) over which the individual is indifferent. The only way this can happen

is if α exceeds β to begin with, or equivalently, if the probability of the low outcome in the former

lottery is smaller than in the latter. But now a probability transfer of γ from the low outcome to the

middle outcome will have a stronger positive impact in the former lottery, resulting in the comparison

(1− α− γ, α + γ, 0) � (1− β − γ, γ, β). This is precisely our condition.

We have therefore linked a fairly complex pattern of choice shifts to the Allais paradox using the

“intermediate” device of a strictly concave transformation function. Several steps are missing, of

course. We need to show that a strictly concave f is not just a convenient link, it is a necessary link. In

addition, our predicted pattern of choice shifts is valid for all risky lotteries, not just those that take

on two outcomes.

The reader interested in the complete argument is therefore invited to study the formal proof. The

proof actually indicates that the Allais paradox can be stated in even weaker form without losing the

equivalence of the theorem: one need only impose the paradox for “small” shifts of probability from

the low to the middle outcome. However, the original version of the Allais paradox refers to another

special case: one in which all the weight is removed from the low outcome for one of the lotteries

(recall the example in Section 2.2). This case is implied by the strict concavity of the transformation

function f , but the reverse implication does not generally hold. One can easily amend the proof here

to show that if the coexistence of strictly concave and strictly convex segments in f can be ruled out by
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some other condition, our predicted pattern of the choice shifts is equivalent to the original, restricted

form of the Allais paradox.15

3 Discussion

By Theorem 1, any individual who exhibits the Allais paradox exhibits choice shifts, but does so in a

particular, testable pattern. As an instance of this pattern, consider the case of unanimity, and suppose

that in the absence of unanimous agreement the fallback option is the risky outcome. It is very easy

to see that b = 0 for this case, so by Theorem 1, a risky shift will occur.

On the other hand, suppose that a unanimity vote is required to replace a sure status-quo with a

risky alternative. Then b = 1. Theorem 1 states that a cautious shift will occur.16

The above prediction can be applied in a variety of situations. For instance, empirical evidence

shows that 75% of U.S. households do not hold stocks despite the high equity premium (see Michael

Haliassos and Carol Bertaut (1995)): another manifestation of the well known equity premium puz-

zle. To understand this bias towards relative safety, it may help to view a household as a two-person

group that requires unanimity to make risky investments. In the absence of unanimous agreement,

say that some safe strategy is adopted — a savings account or a CD. Then b is effectively 1, and so our

model predicts that whenever the spouse is almost indifferent between risky and safe investing, [s]he

would tend to decide against the risky option. Thus households would exhibit a bias towards rela-

tively safe investment opportunities, accepting risky investments only when these offer a relatively

high premium.17

Indeed, the reasoning behind our explanation yields a corollary: controlling for wealth and other

factors, households with two or more members will tend to make more cautious investments com-

pared to the investments made by unitary households. We know of no data that confirm or deny this

assertion, but it is certainly testable.

More generally, our argument brings together two strands of literature on household behavior:

one that models households as collective decision units (see Fran cois Bourguignon and Pierre-André

Chiappori (1992) and Maurizio Mazzocco (2004)), and another that attempts to explain the equity-

premium puzzle with rank-dependent preferences (but remains within the representative agent paradigm).18

Our particular emphasis of the effect of the Allais paradox on group decision-making opens up a new

and possibly significant connection. If indeed, as the experimental literature (see, e.g., Colin Camerer
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(1995)) has shown, most people are prone to Allais-type behavior, then we should not be “puzzled”

by large equity premia. In short, under our approach, the equity premium is a puzzle only so far as

Allais behavior is considered a paradox.

What determines the likely outcome (such as safety in the example above) in case a particular

individual isn’t pivotal? In many situations, social convention might drive such an outcome. For

example, in a football team, huddled in the final seconds of a close game, players would expect a

risky play (b ' 0), and such an expectation might itself cause a risky shift for each player.19 Or

consider a team of physicians that debates the use of a new experimental drug (successful in some

past cases but leading to complications in others) versus a conventional option (which, say, alleviates

the pain but does not cure the illness). The belief of doctors about their peers opinions (and hence the

parameter b) may depend on the situation of the patient or the usual practices in their hospital.

In these examples and in many similar situations, one course of action is usually considered the

social norm: in one situation the norm may call for risk-taking, while in another the norm may involve

caution. Typically, a supermajority (perhaps full consensus) will be required to overturn the norm.

Indeed, some of the pioneering studies on choice shifts focused on decision problems of this type (for

a survey of these studies see Pruitt (1971a,b)). The basic finding in these studies is that for items on

which the widely held values favor the risky alternative, unanimous group decisions are more risky

than the average of the initial individual decisions. Group decisions tend to be more cautious on

items for which widely held values favor the cautious alternative.

In group decisions in which no overt social or cultural values are at stake (e.g. a decision between

investment opportunities, job candidates), it is often the case that an option serves as a focal point

whenever it is believed to be supported by the majority. In such cases, our model predicts that shifts

would occur in the direction of the “focal” option. This prediction is consistent with experimental

studies that demonstrate choice shifts using lotteries with monetary prizes. In particular, Davis and

Hintz (1982) provides a survey of experimental evidence demonstrating that in binary decision prob-

lems, the direction of choice shifts in groups is largely predicted by the preferences of the majority of

individuals.

Shifts towards the majority option have been reported in a series of recent studies by Cass R.

Sunstein and his collaborators on mock juries (see David Schkade, Sunstein and Daniel Kahneman

(2001) and Sunstein, Reid Hastie, John W. Payne and Schkade (2002). These studies have shown that

“when a majority of individuals initially favored little punishment, the jury’s verdict showed a ‘le-
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niency shift’, meaning a verdict that was systematically lowered than the median rating of individual

members before they started to talk with one another. But when the majority of individual jurors

favored strong punishment, the group as a whole produced a ‘severity shift’, meaning a rating that

was systematically higher than the median rating of individual members before they started to talk”

(Sunstein (2004)).20

Systematic biases in judicial decisions have also been found in comparing the decision of fed-

eral judges in isolation and in panels of three.21 Sunstein (2004) reports that the vote of a demo-

cratic/republican judge is influenced by the configuration of the other judges in the panel. On a

given issue, judges deciding on their own would tend to vote according to their “political affiliation”,

but when facing a related decision in a panel containing a majority of judges from the opposing party,

they tend to shift their decision in the other direction.

Investment clubs may also be thought of as an example in which group members exhibit a choice

shift towards a focal option, one which is believed to be supported by the majority of members. An

estimated 11% of the US population is involved in an investment club (Brooke Harrington (2001)).

Approximately 60% of investment club members are women (Harrington (2001)), which contrasts

sharply with the percentage of women who invest in the stock market on their own (Brad M. Barber

and Terrance Odean (2001)). In addition, Barber and Odean (2001) present empirical evidence that

suggests that women are far less confident than men are with regard to taking risk on the stock

market.22 These findings suggests that women, while unwilling to invest in stocks on their own,

accept the risk of these investments when deciding in a group with other women. This may be

explained by noting that since the women meet as an “investment club”, each expects some risky

investment to be made, hence each would lessen the weight she puts on bad outcomes and be more

willing to accept risk.23

4 Concluding Remarks

In this paper we focused on choice shifts from the perspective of an individual decision-maker. A

natural sequel would be to conduct an equilibrium analysis of choice shifts. One way to proceed in

this direction is to introduce a distribution of preference types, such that all types are disappointment

averse and at least one type is indifferent between the risky and safe lotteries. We could then derive

the symmetric Bayesian Nash equilibria of games induced by different supermajority rules. Theorem
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1 implies that under unanimity there would exist a unique equilibrium in undominated strategies

in which the status-quo is implemented. This is because unanimity has the special feature that the

outcome in a non-pivotal event is independent of the players’ beliefs. However, this feature is not

shared by other supermajority rules, which suggests that such rules may induce multiple equilibrium

outcomes.

Our paper suggests a parsimonious explanation for why group members may base their decisions

on non-pivotal events. An important conclusion that comes out of this is that systematic shifts that

individuals exhibit when participating in group decisions may simply be another manifestation of

the well-known Allais paradox. Hence, such shifts are to be viewed as anomalous only in as much as

the Allais “paradox” is thought of as truly paradoxical.

5 Appendix

Proof of Theorem 1. Let p and p′ be two lotteries. Denote the union of their supports by {1, . . . , n}. In

what follows we assume without loss of generality that outcome k +1 is strictly preferred to outcome

k. Let {wk} and {w′
k} be the associated collection of worse-than weights. Then, if ∆ denotes the utility

difference between the two lotteries,

∆ =
n∑

k=1

{
[f(wk+1)− f(wk)]−

[
f(w′

k+1)− f(w′
k)

]}
u(k)

=
n∑

k=1

[Tk+1 − Tk]u(k),

where Tk ≡ f(wk)− f(w′
k) for each k. Notice that T1 = Tn+1 = 0. Using this information, we see that

∆ =
n∑

k=2

Tkc(k), (4)

where c(k) ≡ u(k − 1)− u(k) < 0 for all 2 ≤ k ≤ n.

We proceed in two steps.

STEP 1. The Allais paradox holds if and only if f is strictly concave.

Suppose that f is strictly concave. Let p = (1 − α − γ, α + γ, 0) and p′ = (1 − β − γ, γ, β). (4)

implies that

∆ = c(2)[f(1− α− γ)− f(1− β − γ)] + c(3)[1− f(1− β)]. (5)
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When γ = 0, it is assumed that p ∼ p′, so that

c(2)[f(1− α)− f(1− β)] + c(3)[1− f(1− β)] = 0 (6)

Using (6) in (5), we see that

∆
−c(2)

= [f(1− β − γ)− f(1− α− γ)] + [f(1− α)− f(1− β)]

= [f(1− α)− f(1− α− γ)]− [f(1− β)− f(1− β − γ)], (7)

and the right-hand side of this expression is positive by strict concavity of f . Consequently, the Allais

paradox holds.

Conversely, assume the Allais paradox. To prove that f is strictly concave, it suffices to show that

there exists ε > 0 such that for every x and y in (0, 1) with 0 < y − x < ε,

f(x)− f(x− γ) > f(y)− f(y − γ) (8)

for all γ ∈ (0, x]. To this end, pick any three outcomes that are strictly ranked (nondegeneracy of u

— see footnote 11 — permits this). Clearly, there exists ε > 0 such that if x and y are in (0, 1) and

0 < y − x < ε

(y, 0, 1− y) � (x, 1− x, 0).

Using the connectedness of the outcome space, however, we can shift the best of the three outcomes

close enough to the intermediate outcome such that

(y, 0, 1− y) ∼ (x, 1− x, 0).

Now (with α = 1− x and β = 1− y) all the conditions of the Allais paradox are satisfied, so that we

can follow the same argument leading to (7) to assert that for all γ ∈ (0, x], (8) holds.

STEP 2. Part 2 of the theorem holds if and only if f is strictly concave.

Assume f is strictly concave. Fix a pair (r, s) and a probability of being pivotal a. The decision

problem our individual faces in a group decision g = (a, b) is a choice between the two compound

lotteries r∗ and s∗, which are defined formally in (2) and (3).

The “worse-than” weights of the two compound lotteries are, of course, functions of the group

decision parameter g, so write them as wk(r∗, g) and wk(s∗, g). To economize on notation, however,

let Rk(g) ≡ wk(r∗, g) and Sk(g) ≡ wk(s∗, g) for every k, with the understanding that we will simply
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write Rk and Sk when the context is clear. Similarly, let wk ≡ wk(r) for every outcome k. Without loss

of generality r places positive weight on outcomes 1 and n, so that

0 < wk < 1 for every 2 ≤ k ≤ n. (9)

It is easy to see that

Rk = Rk(g) = [a + (1− a)(1− b)]wk for k ≤ s

= [a + (1− a)(1− b)]wk + b(1− a) for k > s, (10)

while

Sk = Sk(g) = (1− a)(1− b)wk for k ≤ s

= (1− a)(1− b)wk + [a + b(1− a)] for k > s. (11)

Let V (r∗, g) and V (s∗, g) be the expected payoffs from voting r and from voting s in the group

problem g. Define ∆(g) ≡ V (r∗, g)− V (s∗, g). Then, invoking (4),

∆(g) =
n∑

k=2

Tkc(k), (12)

where Tk ≡ f(Rk)− f(Sk) for each k. In fact, if we define λ ≡ (1− a)(1− b),

Tk = f([a + λ]wk)− f(λwk) for k ≤ s, (13)

and

Tk = f([a + λ]wk + [1− a− λ])− f(λwk + [1− λ]) for k > s. (14)

Substitution of (13) and (14) into (12) yields

∆(g) =
s∑

k=2

[f([a+λ]wk)− f(λwk)]c(k)−
n∑

k=s+1

[f(λwk +[1−λ])− f([a+λ]wk +[1−a−λ])]c(k). (15)

Recalling (9), the observation that f(x + y) − f(x) is declining in x when f is strictly concave and

y > 0, and the fact that c(k) < 0, simple inspection of (15) reveals that ∆(g) is strictly increasing in λ

for given a.24 Because λ and b are negatively related, this proves that ∆(g) is strictly decreasing in b,

which establishes the first statement in part 2.

To establish the remainder of part 2, notice that a = 1 (and λ = 0) is equivalent to the individual

decision problem. Using this parameter in (15), we obtain

s∑
k=2

f(wk)c(k)−
n∑

k=s+1

[1− f(wk)]c(k) = 0. (16)
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describes the indifference condition between r and s. In this case, we simply verify the end-point

conditions

lim
b→0

∆(g) > 0 and lim
b→1

∆(g) < 0. (17)

To do this, note that ∆(g) is continuous so simply put b = 0 (λ = 1− a) and then b = 1 (λ = 0) in

(15). Pursuing the former exercise first, we see that when b = 0,

∆(g) =
s∑

k=2

[f(wk)− f([1− a]wk)]c(k)−
n∑

k=s+1

[f([1− a]wk + a)− f(wk)]c(k). (18)

Now by strict concavity, f([1−a]wk +a) > (1−a)f(wk)+af(1) = (1−a)f(wk)+a, and f([1−a]wk) >

(1− a)f(wk), so

∆(g) >
s∑

k=2

[f(wk)− (1− a)f(wk)]c(k)−
n∑

k=s+1

[(1− a)f(wk) + a− f(wk)]c(k)

= a

{
s∑

k=2

f(wk)c(k)−
n∑

k=s+1

[1− f(wk)]c(k)

}
= 0,

using (16). Alternatively, if b = 1, then λ = 0 and

∆(g) =
s∑

k=2

f(awk)c(k)−
n∑

k=s+1

[1− f([awk + [1− a])]c(k). (19)

Once again, strict concavity tells us that f(awk + [1− a]) > af(wk) + (1− a) and f(awk) > af(wk), so

that

∆(g) <
s∑

k=2

af(wk)c(k)−
n∑

k=s+1

[1− af(wk)− (1− a)]c(k)

= a

{
s∑

k=2

f(wk)c(k)−
n∑

k=s+1

[1− f(wk)]c(k)

}
= 0,

using (16) once again. This completes the proof of part 2, given part 1.

It remains to show that part 2 of Theorem 1 implies that f is strictly concave.

Denote by x a typical low outcome, by s a safe outcome and by y a typical high outcome, with

u(x) < u(s) < u(y). Let r denote a typical risky lottery that places probability p on x and 1 − p on y.

Then for group parameters g = (a, b),

∆(g) = [f((a + λ)p)− f(λp)]c(s) + [f((a + λ)p + (1− a− λ))− f(λp + (1− λ))]c(y),

where c(s) ≡ u(x)− u(s), and c(y) ≡ u(s)− u(y).
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Now suppose that there is an open interval I such that f ′(z) is nondecreasing on I . Find parame-

ters ĝ = (â, b̂) and a risky weight p̂ such that

[λ̂p̂, λ̂p̂ + (1− λ̂)] ⊆ I. (20)

where λ̂, just as before, is (1−â)(1− b̂). This is very easy to do. As a consequence, all the four numbers

λ̂p̂, (â + λ̂)p̂, (â + λ̂)p̂ + (1− â− λ̂) and λ̂p̂ + (1− λ̂)

lie in I as well.

At the same time, choose the supports x, y and s so that c(s) and c(y) satisfy the equation

∆(g) = [f((â + λ̂)p̂)− f(λ̂p̂)]c(s) + [f((â + λ̂)p̂ + (1− â− λ̂))− f(λ̂p̂ + (1− λ̂))]c(y) = 0. (21)

Now differentiate ∆(g) with respect to b in a small interval around b̂ (keeping all other parameters

constant). Letting λ = (1− â)(1− b), we see that that

− 1
1− â

∂∆(g)
∂b

= p̂[f ′((â+λ)p̂)− f ′(λp̂)]c(s)− (1− p̂)[f ′((â+λ)p̂+(1− â−λ))− f ′(λp̂+(1−λ))]c(y).

But for all such b (in a small enough interval containing b̂) (20) holds. Therefore f ′((â + λ)p̂) ≥ f ′(λp̂)

and f ′((â + λ)p̂ + (1 − â− λ)) ≤ f ′(λp̂ + (1 − λ)). Using this in the expression above along with the

fact that c(s) and c(y) are negative, we see that

∂∆(g)
∂b

≥ 0

for all b in some interval containing b̂. Together with (21), this contradicts part 2 of the statement of

the theorem.
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Footnotes

1. A notable exception is a recent experimental literature that compares the quality of decision

making across groups and individuals (e.g., David J. Cooper and John H. Kagel (2004)).

2. Stoner’s study was based on a questionnaire with 12 hypothetical “life situations”, which were

originally designed by Michael A. Wallach and Nathan Kogan (1959, 1961) to investigate indi-

vidual risk-taking propensities.

3. Shifts have also been found in studies using choices between lotteries with monetary prizes —

see Davis and Hintz (1982) and the references therein.

4. More generally, the literature on non-expected utility has focussed on two sorts of preferences:

the Yaari-Quiggin class and the class of “betweenness-satisfying” preferences. The latter has

preferences in which a mixture between two lotteries is ranked “in between” those lotteries.

To motivate our focus on RDP we note that even the weakest version of betweenness, mixture

18



symmetry (proposed by Soo-Hong Chew, Larry G. Epstein and Uzi Segal (1991)), cannot accom-

modate choice shifts. For under mixture symmetry, an individual who is indifferent between

some pair of lotteries, is also indifferent between each of these lotteries and any mixture of both.

5. Observe that this description is compatible with a large class of aggregation rules within the

group. Also note that in an extended framework, a and b are endogenously determined by the

“equilibrium” behavior of all group members.

6. An exercise in a similar spirit may be found in Daisuke Nakajima (2004), which connects the

Allais paradox to experimental findings that the Dutch auction raises more revenue than a first-

price sealed-bid auction.

7. Indeed, in most of the experiments, and in many of the examples we discuss in Section 3, group

members arrived at a decision after the relevant information was either presented by an outside

party or revealed during deliberation.

8. For a formal model of the latter type of interaction, see Enriqueta Aragones, Itzhak Gilboa,

Andrew Postlewaite and David Schmeidler (2005).

9. When preparing the final draft of this paper, Doug Bernheim drew our attention to Joel Sobel

(2005), which takes up this line of reasoning.

10. There have been many axiomatic derivations of rank-dependent utility. Restrictions of space

prevent us from doing justice to all the contributors to this line of research. The most recent

and most general axiomatization is offered by Mohammed Abdellaoui (2002). References to

previous studies can be found in this paper.

11. Nondegeneracy simply means that utility values are distinct over at least two outcomes, and

therefore — by the continuity of u and connectedness of the outcome space — over a continuum

of them.

12. Note that individuals don’t necessarily vote within the group problem. Depending on the con-

text, one may be modelling votes, advice, command or suggestion.

13. The equivalence between the Allais paradox and strict concavity of f was proved by Segal

(1987). While we work with a weaker version of the Allais paradox, we do not emphasize this
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particular connection as a novel feature of the paper. On the other hand, the equivalence with

choice shifts is at the heart of our exercise. In passing, it is worth noting that the strict concavity

of f has been linked to other facets of individual behavior. Abdellaoui (2002) and Yaari (1987)

connect concave f to a notion of risk-aversion, appropriately defined for the RDP class. Peter

P. Wakker (2001, 2005) links the concavity of f to a failure of the sure-thing principle, which he

calls “pessimism”.

14. The idea of a “revealed probability trade-off” was introduced in Abdellaoui (2002).

15. For instance, a further axiomatization of RDP is provided by Simon Grant and Atsushi Kajii

(1998), which results in a transformation function that has constant elasticity. Constant elasticity

precludes the coexistence of strictly convex and strictly concave segments.

16. Of course, unanimity represents a special case in which the nonpivotal event is uniquely pinned

down by some default. In other group settings, an individual’s expectation regarding the non-

pivotal event may depend on her beliefs about the other members in the group (and so captured

best by “interior” values of b).

17. To be sure, a fully developed application of our model would require us to explain why an

individual household member faces a parameter such as a: some probability between 0 and

1 that she may be pivotal. One interpretation — the one that fits most easily into our model

— is that there some uncertainty about what the partner(s) of that member will decide to do.

This seems reasonable: while there is presumably a process of deliberation in which all the pros

and cons are discussed, each member may still be uncertain as to the effect of her opinion on

the final investment decision. It is also possible to view the situation as one in which a spouse

becomes reluctant to pressure his/her partner into a risky investment, if there is uncertainty

regarding what that partner would do if called on to decide unilaterally. By supporting the safe

status quo, the spouse avoids the possibility of feeling responsible for unfavorable results.

18. See Narayana R. Kocherlakota (1996) for a survey.

19. Wallach, Kogan and Daryl J. Bem (1962) use this decision problem as an example of a group

decision in which the risky option is considered to be the social norm.

20. In our opinion, the systematic shifts uncovered by Sunstein and others cannot be explained by

the information-driven biases of the various jury theorems in the political economy literature.
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Jurors approach the trial with no prior private information, they all observe the same evidence

and arguments during the trial, and any asymmetry in the interpretation of this information

will most likely wash out in the deliberation process.

21. These studies have focused on cases in which judges were confronted with the decision to “up-

hold an administrative agency’s interpretation of law, so long as those interpretations do not

violate clear congressional instructions and so long as those interpretations are ‘reasonable’ ”

(Sunstein (2004)). One may view the decision to uphold the agency’s interpretation as the safe

alternative, while offering a different interpretation may be reasonably viewed as a riskier al-

ternative.

22. Noticing that women are reluctant to invest in the stock-market on their own, some commercial

banks in Israel have began organizing investment clubs where women meet to discuss potential

investments; see Noa Greenberg (2001).

23. Another interpretation of the what happens in investment clubs is that they allow individuals

to aggregate information and share the burden of conducting research. However, this may not

be a compelling answer. Most investment clubs tend to be composed of individuals who do not

have prior expertise in investing. They also tend to be composed of homogeneous populations.

Moreover, there other standard alternatives that are available to individual investors who do

not have the time or expertise to invest in financial research, such as actively managed mutual

funds. Indeed, recent studies have shown that investment clubs underperform relative to indi-

vidual investors drawn from the same population (Barber and Odean (2000)). This seems to run

counter to the intuition that investment clubs aggregate information, or at least that they do so

effectively.

24. For 2 ≤ k ≤ s, identify x with λwk and y with awk. For s + 1 ≤ k ≤ n, identify x with

(a + λ)wk + (1 − a − λ) and y with a(1 − wk), but note in this latter case that x decreases as λ

increases.
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