
Learning Recurrent Neural Networks with Hessian-Free Optimization

James Martens JMARTENS@CS.TORONTO.EDU
Ilya Sutskever ILYA@CS.UTORONTO.CA

University of Toronto, Canada

Abstract
In this work we resolve the long-outstanding
problem of how to effectively train recurrent neu-
ral networks (RNNs) on complex and difficult
sequence modeling problems which may con-
tain long-term data dependencies. Utilizing re-
cent advances in the Hessian-free optimization
approach (Martens, 2010), together with a novel
damping scheme, we successfully train RNNs on
two sets of challenging problems. First, a col-
lection of pathological synthetic datasets which
are known to be impossible for standard op-
timization approaches (due to their extremely
long-term dependencies), and second, on three
natural and highly complex real-world sequence
datasets where we find that our method sig-
nificantly outperforms the previous state-of-the-
art method for training neural sequence mod-
els: the Long Short-term Memory approach of
Hochreiter and Schmidhuber (1997). Addition-
ally, we offer a new interpretation of the general-
ized Gauss-Newton matrix of sch (2002) which
is used within the HF approach of Martens.

1. Introduction
A Recurrent Neural Network (RNN) is a neural network
that operates in time. At each timestep, it accepts an in-
put vector, updates its (possibly high-dimensional) hid-
den state via non-linear activation functions, and uses it
to make a prediction of its output. RNNs form a rich
model class because their hidden state can store informa-
tion as high-dimensional distributed representations (as op-
posed to a Hidden Markov Model, whose hidden state is es-
sentially log n-dimensional) and their nonlinear dynamics
can implement rich and powerful computations, allowing
the RNN to perform modeling and prediction tasks for se-
quences with highly complex structure.

Gradient-based training of RNNs might appear straight-

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

Figure 1. The architecture of a recurrent neural network.

forward because, unlike many rich probabilistic sequence
models (Murphy, 2002), the exact gradients can be cheaply
computed by the Backpropagation Through Time (BPTT)
algorithm (Rumelhart et al., 1986). Unfortunately, gradi-
ent descent and other 1st-order methods completely fail to
properly train RNNs on large families of seemingly sim-
ple yet pathological synthetic problems that separate a tar-
get output and from its relevant input by many time steps
(Bengio et al., 1994; Hochreiter and Schmidhuber, 1997).
In fact, 1st-order approaches struggle even when the sep-
aration is only 10 timesteps (Bengio et al., 1994). An un-
fortunate consequence of these failures is that these highly
expressive and potentially very powerful time-series mod-
els are seldom used in practice.

The extreme difficulty associated with training RNNs is
likely due to the highly volatile relationship between the
parameters and the hidden states. One way that this volatil-
ity manifests itself, which has a direct impact on the per-
formance of gradient-descent, is in the so-called “vanish-
ing/exploding gradients” phenomenon (Bengio et al., 1994;
Hochreiter, 1991), where the error-signals exhibit expo-
nential decay/growth as they are back-propagated through
time. In the case of decay, this leads to the long-term error
signals being effectively lost as they are overwhelmed by
un-decayed short-term signals, and in the case of exponen-
tial growth there is the opposite problem that the short-term
error signals are overwhelmed by the long-term ones.

During the 90’s there was intensive research by the ma-
chine learning community into identifying the source of
difficultly in training RNNs as well as proposing meth-
ods to address it. However, none of these methods be-
came widely adopted, and an analysis by Hochreiter and
Schmidhuber (1996) showed that they were often no bet-
ter than random guessing. In an attempt to sidestep the
difficulty of training RNNs on problems exhibiting long-
term dependencies, Hochreiter and Schmidhuber (1997)

Learning Recurrent Neural Networks with Hessian-Free Optimization

proposed a modified architecture called the Long Short-
term Memory (LSTM) and successfully applied it to speech
and handwritten text recognition (Graves and Schmidhu-
ber, 2009; 2005) and robotic control (Mayer et al., 2007).
The LSTM consists of a standard RNN augmented with
“memory-units” which specialize in transmitting long-term
information, along with a set of “gating” units which al-
low the memory units to selectively interact with the usual
RNN hidden state. Because the memory units are forced
to have fixed linear dynamics with a self-connection of
value 1, the error signal neither decays nor explodes as it
is backpropagated through them. However, it is not clear
if the approach of training with gradient descent and en-
abling long-term memorization with the specialized LSTM
architecture is harnessing the true power of recurrent neu-
ral computation. In particular, gradient descent may be de-
ficient for RNN learning in ways that are not compensated
for by using LSTMs. Another recent attempt to resolve
the problem of RNN training which has received atten-
tion is the Echo-State-Network (ESN) of Jaeger and Haas
(2004), which gives up on learning the problematic hidden-
to-hidden weights altogether in favor of using fixed sparse
connections which are generated randomly. However, since
this approach cannot learn new non-linear dynamics, in-
stead relying on those present in the random “reservoir”
which is effectively created by the random initialization,
its power is clearly limited.

Recently, a special variant of the Hessian-Free (HF) opti-
mization approach (aka truncated-Newton or Newton-CG)
was successfully applied to learning deep multilayered neu-
ral networks from random initializations (Martens, 2010),
an optimization problem for which gradient descent and
even quasi-Newton methods like L-BFGS have never been
demonstrated to be effective. Martens examines the prob-
lem of learning deep auto-encoders and is able to obtain the
best-known results for these problems, significantly sur-
passing the benchmark set by the seminal deep learning
work of sci (2006).

Inspired by the success of the HF approach on deep neu-
ral networks, in this paper we revisit and resolve the long-
standing open problem of RNN training. In particular, our
results show that the HF optimization approach of Martens,
augmented with a novel “structural-damping” which we
develop, can effectively train RNNs on the aforementioned
pathological long-term dependency problems (adapted di-
rectly from Hochreiter and Schmidhuber (1997)), thus
overcoming the main objection made against using RNNs.
From there we go on to address the question of whether
these advances generalize to real-world sequence model-
ing problems by considering both a high-dimensional mo-
tion video prediction task, a MIDI-music modeling task,
and a speech modelling task. We find that RNNs trained
using our method are highly effective on these tasks and
significantly outperform similarly sized LSTMs.

Other contributions we make include the development of

the aforementioned structural damping scheme which, as
we demonstrate through experiments, can significantly im-
prove robustness of the HF optimizer in the setting of RNN
training, and a new interpretation of the generalized Gauss-
Newton matrix of sch (2002) which forms a key component
of the HF approach of Martens.

2. Recurrent Neural Networks
We now formally define the standard RNN (Rumelhart
et al., 1986) which forms the focus of this work. Given
a sequence of inputs x1, x2, . . . , xT , each in Rn, the net-
work computes a sequence of hidden states h1, h2, . . . , hT ,
each in Rm, and a sequence of predictions ŷ1, ŷ2, . . . , ŷT ,
each in Rk, by iterating the equations

ti = Whxxi +Whhhi−1 + bh (1)
hi = e(ti) (2)
si = Wyhhi + by (3)
ŷi = g(si) (4)

where Wyh,Whx,Whh are the weight matrices and
bh, by are the biases, t1, t2, . . . , tT , each in Rk, and
s1, s2, . . . , sT , each in Rk, are the inputs to the hidden and
output units (resp.) and e and g are pre-defined vector val-
ued functions which are typically non-linear and applied
coordinate-wise (although the only formal requirement is
that they have a well-defined Jacobian). The RNN also has
a special initial bias binit

h ∈ Rm which replaces the formally
undefined expression Whhh0 at time i = 1. For a sub-
scripted variable zi, the variable without a subscript, z, will
refer to all of the zi’s from i = 1 to T concatenated into a
large vector, and similarly will use θ to refer to all of the
parameters as one large vector.

The objective function associated with RNNs for a single
training pair (x, y) is defined as f(θ) = L(ŷ; y), where
L is a distance function1 which measures the deviation of
the predictions ŷ from the target outputs y. Examples of L
include the squared error

∑
i ‖ŷi − yi‖2/2 and the cross-

entropy error−
∑
i

∑
j yij log(ŷij)+(1−yij) log(1−ŷij).

The overall objective function for the whole training set is
simply given by the average of the individual objectives
associated with each training example.

3. Hessian-Free Optimization
Hessian-Free optimization is concerned with the minimiza-
tion of an objective f : RN → R, with respect to N -
dimensional input vector θ. Its operation is viewed as the
iterative minimization of simpler sub-objectives based on
local approximations to f(θ). Specifically, given a param-
eter setting θn, the next one, θn+1, is found by partially
optimizing the sub-objective

qθn(θ) ≡Mθn(θ) + λRθn(θ), (5)

1Not necessarily symmetric or sub-additive.

Learning Recurrent Neural Networks with Hessian-Free Optimization

In this equation, Mθn(θ) is a θn-dependent “local”
quadratic approximation to f(θ) given by

Mθn(θ) = f(θn) + f ′(θn)
>δn + δ>n Bδn/2, (6)

where B is an approximation to the curvature of f , the term
δn is given by δn = θ− θn, and Rθn(θ) is a damping func-
tion that penalizes the solution according to the difference
between θ and θn, thus encouraging θ to remain close to
θn. The use of a damping function is generally necessary
because the accuracy of the local approximation Mθn(θ)
degrades as θ moves further from θn.

In standard Hessian-free optimization (or ‘truncated-
Newton’, as it is also known),Mθn is chosen to be the same
quadratic as is optimized in Newton’s method: the full 2nd-
order Taylor series approximation to f , which is obtained
by taking B = f ′′(θn) in eq. 6, and the damping func-
tion Rθn(θ) is chosen to be ‖δn‖2/2. Unlike with quasi-
Newton approaches like L-BFGS there is no low-rank or
diagonal approximation involved, and as a consequence,
fully optimizing the sub-objective qθn can require a matrix
inversion or some similarly expensive operation. The HF
approach circumvents this problem by performing a much
cheaper partial optimization of qθn using the linear con-
jugate gradient algorithm (CG). By utilizing the complete
curvature information given by B, CG running within HF
can take large steps in directions of low reduction and cur-
vature which are effectively invisible to gradient descent. It
turns out that HF’s ability to find and strongly pursue these
directions is the critical property which allows it to success-
fully optimize deep neural networks (Martens, 2010).

Although the HF approach has been known and studied
for decades within the optimization literature, the short-
comings of existing versions of the approach made them
impractical or even completely ineffective for neural net
training (Martens, 2010). The version of HF developed by
Martens makes a series of important modifications and de-
sign choices to the basic approach, which include (among
others): using the positive semi-definite Gauss-Newton
curvature matrix in place of the possibly indefinite Hessian,
using a quadratic damping function for Rθn(θ) = ‖δn‖2/2
with the damping parameter λ adjusted by Levenberg-
Marquardt style heuristics (Nocedal and Wright, 1999), us-
ing a criterion based directly on the value of qθn in order to
terminate CG (as opposed to the usual residual-error based
criterion), and computing the curvature-matrix products Bv
using mini-batches (as opposed to the whole training set)
and the gradients with much larger mini-batches.

In applying HF to RNNs we deviate from the approach of
Martens in two significant ways. First, we use a different
damping function for R (developed in section 3.2), which
we found improves the overall robustness of the HF al-
gorithm on RNNs by more accurately identifying regions
where M is likely to deviate significantly from f . Second,
we do not use diagonal preconditioning because we found

that it gave no substantive benefit for RNNs2.

3.1. Multiplication by the Generalized Gauss-Newton
Matrix

We now define the aforementioned Gauss-Newton matrix
Gf , discuss its properties, and describe the algorithm for
computing the curvature matrix-vector product Gfv (which
was first applied to neural networks by sch (2002), extend-
ing the work of Pearlmutter (1994)).

The Gauss-Newton matrix for a single training example
(x, y) is given by

Gf ≡ J>s,θ(L◦g)′′Js,θ
∣∣
θ=θn

(7)

where the Js,θ is the Jacobian of s w.r.t. θ, and (L◦ g)′′
is the Hessian of the L(g(s); y) with respect to s. To
compute the curvature matrix-vector product Gfv we first
compute Js,θv = Rs using a single forward pass of the
“R{}-method” described in Pearlmutter (1994). Next, we
run standard backpropagation through time with the vector
(L◦g)′′Js,θv which effectively accomplishes the multipli-
cation by J>s,θ, giving

J>s,θ((L◦g)′′Js,θv)
∣∣
θ=θn

= (J>s,θ(L◦g)′′Js,θ)
∣∣
θ=θn

v = Gfv

If s is precomputed then the total cost of this operation is
the same as a standard forward pass and back-propagation
through time operation - i.e., it is essentially linear in the
number of parameters.

A very important property of the Gauss-Newton matrix is
that it is positive semi-definite when (L◦g)′′ is, which hap-
pens when L(ŷ; y) is convex w.r.t. s. Moreover, it can be
shown that Gf approaches the Hessian H when the loss
L(ŷ(θ); y) approaches 0.

The usual view of the Gauss-Newton matrix is that it is
simply a positive semi-definite approximation to the Hes-
sian. There is an alternative view, which is will known
in the context of non-linear least-squares problems, which
we now extend to encompass Schraudolph’s generalized
Gauss-Newton formulation. Consider the approximation f̃
of f obtained by “linearizing” the network up to the activa-
tions of the output units s, after which the final nonlinearity
g and the usual error function are applied. To be precise, we
replace s(θ) with s(θn)+ Js,θ|θ=θn δn (recall δn ≡ θ−θn),
where Js,θ is the Jacobian of s w.r.t. to θ, giving:

f̃θn(θ) = L
(
g(s(θn) + Js,θ|θ=θn δn) ; y

)
(8)

2The probable reason for this is that RNNs have no large axis-
aligned (i.e. associated to specific parameters) scale differences,
since the gradients and curvatures for the various parameters are
formed from the summed contributions of both decay and un-
decayed error signals. In contrast, deep nets exhibit substantial
layer-dependent (and thus axis aligned) scale variation due to the
fact that all signals which reach a given parameter go through the
same number of layers and are thus decayed by roughly the same
amount.

Learning Recurrent Neural Networks with Hessian-Free Optimization

Because function Js,θδn is affine in θ, it follows that f̃
is convex when L ◦ g is (since it will be the composition
of a convex and affine function), and so its Hessian will
be positive semi-definite. A sufficient condition for L ◦ g
being convex is when the output non-linearity function g
‘matches’ L (see sch, 2002), as is the case when g is the
logistic function and L the cross-entropy error. Note that
the choice to linearize up to s is arbitrary in a sense, and
we could instead linearize up to ŷ (for example), as long as
L is convex w.r.t. ŷ.

In the case of non-linear least-squares, once we linearize
the network, L ◦ g is simply squared L2 norm and so f̃
is already quadratic in θ. However, in the more general
setting we only require that L ◦ g be convex and twice dif-
ferentiable. To obtain a (convex) quadratic we can simply
compute the 2nd-order Taylor series approximation of f̃ .

The gradient of f̃(θ) is given by

∇sL(g(s(θn) + Js,θ|θ=θn δn); y) Js,θ|θ=θn (9)

The 1st-order term in the quadratic approximation of f̃ cen-
tered at θn is the gradient of f̃ as computed above, evalu-
ated at θ = θn (i.e. at δn = 0), and is given by

∇sL(g(s(θn)); y) Js,θ|θ=θn
which is equal to the gradient of the exact f evaluated at
θ = θn. Thus the 1st-order terms of the quadratic approxi-
mations to f and f̂ are identical.

Computing the Hessian of f̃ we obtain:

J>s,θ
∣∣
θ=θn

(L◦g)′′
(
g(s(θn) + Js,θ|θ=θn δn); y

)
Js,θ|θ=θn

The 2nd-order term of the Taylor-series approximation of
f̃ is this quantity evaluated at θ = θn. Unlike the first-
order term, it is not the same as the corresponding term
in the Taylor series of f , but is in fact the Gauss-Newton
matrix Gf of f . Thus we showed that the quadratic model
of f which uses the Gauss-Newton matrix in place of the
Hessian is in fact the Taylor-series approximation to f̃ .

Martens (2010) found that using the Gauss-Newton ma-
trix Gf instead of H within the quadratic model for f was
highly preferable for several reasons. Firstly, because H is
in general indefinite, the sub-objective qθn may not even be
bounded below when B = H + λI. In particular, infinite
reduction will be possible along any directions of negative
curvature that have a non-zero inner product with the gra-
dient. While this problem can be remedied by choosing
λ to be larger in magnitude than the most-negative eigen-
value of H, there is no efficient way to compute this in
general, and moreover, using large values of λ can have
a highly detrimental effect on the performance of HF as
it effectively masks out the important low curvature direc-
tions. Secondly, Martens (2010) made the qualitative ob-
servation that, even when putting the issues of negative cur-
vature aside, the search directions produced by using Gf in

place of H performed much better in practice in the context
of neural network learning.

3.2. Structural Damping
While we have found that applying the HF approach of
Martens (2010) to RNNs achieves robust performance
for most of the pathological long-term dependency prob-
lems (section 4) without any significant modification, for
truly robust performance on all of these problems for 100
timesteps and beyond we found that it was necessary to
incorporate an additional idea which we call “structural
damping” (named so since it is a damping strategy that
makes use of the specific structure of the objective).

In general, 2nd-order optimization algorithms, and HF in
particular, perform poorly when the quadratic approxima-
tion M becomes highly inaccurate as δn approaches the
optimum of the quadratic sub-objective qθn . Damping,
which is critical to the success of HF, encourages the op-
timal point to be close to δn = 0, where the approximation
becomes exact but trivial. The basic damping strategy used
by Martens is the classic Tikhonov regularization, which
penalizes δn by λR(δn) for R(δn) = 1

2‖δn‖
2. This is ac-

complished by adding λI to the curvature matrix B.

Our initial experience training RNNs with HF on long-term
dependency tasks was that when λ was small there would
be a rapid decrease in the accuracy of the quadratic approx-
imation M as δn was driven by CG towards the optimum
of qθn . This would cause the Levenburg-Marquardt heuris-
tics to (rightly) compensate by adjusting λ to be much
larger. Unfortunately, we found that such a scenario was
associated with poor training outcomes on the more diffi-
cult long-term dependency tasks of Hochreiter and Schmid-
huber (1997). In particular, we saw that the parameters
seemed to approach a bad local minimum where little-to-no
long-term information was being propagated through the
hidden states.

One way to explain this observation is that for large val-
ues of λ any Tikhonov-damped 2nd-order optimization ap-
proach (such as HF) will behave similarly to a 1st-order ap-
proach3 and crucial low-curvature directions whose associ-
ated curvature is significantly smaller than λ will be effec-
tively masked-out. Martens (2010) found that the Tikhonov
damping strategy was very effective for training deep auto-
encoders presumably because, during any point in the opti-
mization, there was a value of λ which would allow M to
remain an accurate approximation of f (at qθn ’s optimum)
without being so high as to reduce the method to mostly
1st-order approach. Unfortunately our experience seems to
indicate that is less the case with RNNs.

Our hypothesis is that for certain small changes in θ there
can be large and highly non-linear changes in the hidden
state sequence h (given that Whh is applied iteratively to

3it can be easily shown that as λ → ∞, minimizing qθn is
equivalent to a small step of gradient descent.

Learning Recurrent Neural Networks with Hessian-Free Optimization

potentially hundreds of temporal ‘layers’) and these will
not be accurately approximated by M . These ideas mo-
tivate the development of a damping function R that can
penalize directions in parameter space, which despite not
being large in magnitude can nonetheless lead to large
changes in the hidden-state sequence. With such a damping
scheme we can penalize said directions without requiring
λ to be high as to prevent the strong pursuit of other low-
curvature directions whose effect on f are modeled more
accurately. To this end we define the “structural damping
function” as

Rθn(θ) =
1

2
‖δn‖2 + µSθn(θ) (10)

where µ > 0 is a weighting constant and Sθn(θ) is a func-
tion which quantifies change in the hidden units as a func-
tion of the change in parameters. It is given by

Sθn(θ) ≡ D(h(θ) ; h(θn)),

where D is a distance function similar to L. Note that we
still include the usual Tikhonov term within this new damp-
ing function and so just as before, if λ becomes too high, all
of the low curvature directions become essentially “masked
out”. However, with the inclusion of the µSθn(θ) term we
hope that the quadratic model will tend to be more accu-
rate at its optimum even for smaller values of λ and fortu-
nately this is what we observed in practice, in addition to
improved performance on the pathological long-term de-
pendency problems.

When the damping function Rθn(θ) is given by ‖δn‖2/2,
the function qθn is a quadratic with respect to δn and thus
CG can be directly applied with B = Gf + λI in order to
minimize it. However, CG will not work with the structural
damping function because S is not generally quadratic in θ.
Thus, just as we approximated f by the quadratic function
M , so too must we approximate S.

One option is to use the standard Taylor-series approxima-
tion:

S(θn) + (θ − θn)>
dS

dθ

∣∣∣∣
θ=θn

+
1

2
(θ − θn)>HS(θ − θn)

where HS is the Hessian of S at θn. Note that because D is
a distance function,D(h(θ), h(θn)) is minimized at θ = θn
with value 0. This implies that

D(h(θ), h(θn)) = 0 and
dD(h(θ), h(θn))

dh(θ)
= 0

Using these facts we can eliminate the constant and lin-
ear terms from the quadratic approximation of S since
S(θn) = D(h(θn), h(θn)) = 0 and

dS

dθ

∣∣∣∣
θ=θn

=
dD(h(θ), h(θn))

dθ

∣∣∣∣
θ=θn

=
dD(h(θ), h(θn))

dh(θ)

dh(θ)

dθ

∣∣∣∣
θ=θn

= 0

The fact that the gradient of the damping term is zero is
important since otherwise including it with qθn would re-
sult in a biased optimization process that could no longer
be said to be optimizing the objective f .

Moreover, just as we did when creating a quadratic approx-
imation of f , we may use the Gauss-Newton matrix GS of
S in place of the true Hessian. In particular, we define:

GS ≡ J>t,θ(D◦e)′′Jt,θ
∣∣
θ=θn

where Jt,θ is the Jacobian of t(θ) w.r.t. θ (recall eq. 2: hi =
e(ti) and (D◦e)′′ is the Hessian of D(e(t);h(θn)) w.r.t t).
This matrix will be positive semi-definite if the distance
function D matches the non-linearity e in the same way
that we required L to match g in order to obtain the Gauss-
Newton matrix for f .

And just as with Gf we may view the Gauss-Newton ma-
trix for S as resulting from the Taylor-series approximation
of the following convex approximation S̃ to S:

S̃ = D(e(t(θn) + Jt,θ|θ=θnδn) ; h(θn))

What remains is to find an efficient method for comput-
ing the contribution of the Gauss-Newton matrix for S to
the usual curvature matrix-vector product to be used within
the HF optimizer. While it almost certainly would require
a significant amount of additional work to compute both
Gfv and λµGSv separately, it turns out that we can com-
pute their sum Gfv+ λµGSv = (Gf + λµGS)v, which is
what we actually need, for essentially the same cost as just
computing Gfv by itself.

We can formally include λµS as part of the objective, treat-
ing h = e(t) as an additional output of the network so that
we linearize up to t in addition to s. This gives the com-
bined Gauss-Newton matrix:

J>(s,t),θ

∣∣∣
θ=θn

(L◦g ⊗D◦e)′′ J(s,t),θ
∣∣
θ=θn

Where ⊗ is the matrix Kronecker product. Because the
linearized prediction of t is already computed as an inter-
mediate step when computing the linearized prediction of
s, the required multiplication by the Jacobian J(s,t),θ|θ=θn
requires no extra work. Moreover, as long as we perform
backpropagation starting from both s and t together (as we
would when applying reverse-mode automatic differentia-
tion) the required multiplication by the transpose Jacobian
term doesn’t either. The only extra computation required
will be the multiplication by (D◦e)′′, but this is very cheap
compared to the weight-matrix multiplication. Equiva-
lently, we may just straightforwardly apply Pearlmutter’s
technique (involving a forward and backwards pass of the
R-operator) for computing Hessian-vector products to any
algorithm which efficiently computes f̃ + λµS̃. And said
algorithm for computing f̃+λµS̃ can itself be generated by
applying a forward pass of R-operator to a function which

Learning Recurrent Neural Networks with Hessian-Free Optimization

computes s and t (jointly, thus saving work), feeding the
results into L◦ g and D ◦ e), respectively, and taking the
finally taking the sum.

The result of applying either of these techniques is given
as Algorithm 1 in the supplementary materials for specific
choices of neural activation functions and error functions.
Note that the required modification to the usual algorithm
for computing the curvature matrix-vector product is sim-
ple and elegant and requires virtually no additional com-
putation. However, it does require the extended storage of
the Rti’s, which could otherwise be discarded immediately
after they are used to compute Rhi.

While we have derived the method of ‘structural damping’
specifically for the hidden unit inputs t in the RNN model,
it is easy to see that the idea and derivation generalize to any
intermediate quantity z in any parameterized function we
wish to learn. Moreover, the required modification to the
associated matrix-vector product algorithm for computing
the damped Gauss-Newton matrix would similarly be to
add λµ(D◦e)′′Rz to z∗ where D is the distance function
that penalizes change in z.

There is valid concern that one can raise regarding the po-
tential effectiveness of the structural damping approach.
Because S is a highly non-linear function of δn it could be
the case that the quadratic model will occasionally under-
estimate (or overestimate) the amount of change, perhaps
severely. Moreover, if the linear model for the hidden units
h is accurate for a particular δn then we probably don’t
need to penalize change in h, and if it’s not accurate then
structural damping may not help because, since it relies on
the linear model, it could fail to detect any large changes
in h. Fortunately, we can (mostly) address this concerns.
First, even when the change in the hidden states (which are
high-dimensional vectors) are not accurately predicted by
the linear model, it could still be the case that the overall
magnitude of the change is, since it’s just a single scalar.
Second, while the amount of change may be over or under-
estimated for any particular training case, we are averag-
ing our computations over many (usually 1000s of training
cases) and thus there may be some beneficial averaging ef-
fects. And third, the linear model detecting a large change
in the hidden state sequence, while not a necessary condi-
tion for the break-down of the approximation, is at least a
sufficient one (since we can’t trust such large changes), and
one which will be detected by structural damping term.

4. Experiments
In our first set of experiments we trained RNNs, using
our HF-based approach, on various pathological synthetic
problems known to be effectively impossible for gradient
descent (e.g., Hochreiter et al., 2001). These problems
were taken directly from the original LSTM paper (Hochre-
iter and Schmidhuber, 1997).

Figure 2. An illustration of the addition problem, a typical prob-
lem with pathological long term dependencies. The target is the
sum of the two marked numbers (indicated with the black arrows).
The “. . .” represent a large number of timesteps.

In our second set of experiments we trained both RNNs
(using HF) and LSTMs4 (using backprop-through-time)
on more realistic high-dimensional time-series prediction
tasks. In doing so we examine the hypothesis that the
specialized LSTM approach, while being effective at tasks
where the main difficulty is the need for long-term memo-
rization and recall, may not be fully exploiting the power of
recurrent computation in RNNs, and that our more general
HF approach can do significantly better.

With a few exceptions we used the same meta-parameters
and initializations over all of the experiments. See the pa-
per supplement for details.

4.1. Pathological synthetic problems

In this section we describe the experiments we performed
training RNNs with HF on seven different problems that
all exhibit pathological long term dependencies. Each of
these problems has a similar form, where the inputs are
long sequences whose start (and possibly middle) are rel-
evant, and the goal of the network is to output a partic-
ular function of the relevant inputs at the final few time-
steps. The irrelevant part of the sequence is usually ran-
dom, which makes the problem harder. A typical problem
is illustrated in figure 2. The difficulty of these problems
increases with T (the sequence length), since longer se-
quences exhibit longer range dependencies. Problems 1-6
are taken from Hochreiter and Schmidhuber (1997), so we
will forgo giving a detailed description of them here.5

In our experiments, we trained RNNs with 100 hidden units
using HF, with and without structural damping, on prob-
lems 1-7 for T = 30, 50, 100, 200. Our goal is to deter-
mine the amount of work the optimizer requires to train the
RNN to solve each problem. To decide if the optimizer
has succeeded we use the same criterion as Hochreiter and
Schmidhuber.

1. THE ADDITION PROBLEM
In this problem, the input to the RNN is a sequence of ran-
dom numbers, and its target output, which is located at the
end of the sequence, is the sum of the two “marked” num-

4Specifically, the architecture that incorporates ‘forget gates’
which is described in Gers et al. (1999)

5For a more formal description of these problems and of the
learning setup, refer to the supplementary materials.

Learning Recurrent Neural Networks with Hessian-Free Optimization

0 50 100 150 200 2500.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 2500.0e4
0.5e4
1.0e4
1.5e4
2.0e4
2.5e4
3.0e4
3.5e4
4.0e4

add

0 50 100 150 200 250

0 50 100 150 200 250

mult

0 50 100 150 200 250

0 50 100 150 200 250

temporal2

0 50 100 150 200 250

0 50 100 150 200 250

temporal3

0 50 100 150 200 250

0 50 100 150 200 250

random perm

0 50 100 150 200 250

0 50 100 150 200 250

xor

0 50 100 150 200 250

0 50 100 150 200 250

5 bit mem

0 50 100 150 200 250

0 50 100 150 200 250

20 bit mem

Figure 3. For each problem, the plots in the top row give the mean number of minibatches processed before the success condition was
achieved (amongst trials that didn’t fail) for various values of T (x-axis), with the min and max given by the vertical bars. Here, a
minibatch is a set of 1000 sequences of length T that may be used for evaluating the gradient or a curvature matrix-vector product. A
run using over 50,000 minibatches is defined as a failure. The failure rates are shown in the bottom row. Red is HF with only standard
Tikhonov damping and blue is HF with structural damping included.

bers. The marked numbers are far from the sequence’s end,
their position varies, and they are distant from each other.
We refer to Hochreiter and Schmidhuber (1997) for the for-
mal description of the addition problem, and to fig. 2 for an
intuitive illustration.

2. THE MULTIPLICATION PROBLEM
The multiplication problem is precisely analogous to the
addition problem except for the different operation.

3. THE XOR PROBLEM
This problem is similar to the addition problem, but the
noisy inputs are binary and the operation is the Xor.
This task is difficult for both our method and for LSTMs
(Hochreiter and Schmidhuber, 1997, sec. 5.6) because the
RNN cannot obtain a partial solution by discovering a rela-
tionship between one of the marked inputs and the target.

4. THE TEMPORAL ORDER PROBLEM
See Hochreiter and Schmidhuber (1997, task 6a).

5. THE 3-BIT TEMPORAL ORDER PROBLEM
See Hochreiter and Schmidhuber (1997, task 6b).

6. THE RANDOM PERMUTATION PROBLEM
See Hochreiter and Schmidhuber (1997, task 2b).

7. NOISELESS MEMORIZATION
The goal of this problem is to learn to memorize and repro-
duce long sequences of bits. The input sequence starts with
a string of 5 bits followed by T occurrences of a constant
input. There is a target in every timestep, which is constant,
except in the last 5 timesteps, which are the original 5 bits.
There is also a special input in the 5th timestep before last
signaling that the output needs to be presented. We also
experimented with a harder variant of this problem, where
the goal is to memorize and sequentially reproduce 10 ran-
dom integers from {1, . . . , 5} which contain over 20 bits of
information.

RESULTS AND DISCUSSION
The results from our experiments training RNNs with HF
on the pathological synthetic problems are shown in fig-
ure 3. We refer the reader to Hochreiter and Schmidhuber
(1997) for a detailed analysis of the performance of LSTMs
on these tasks. Our results establish that our HF approach
is capable of training RNNs to solve problems with very
long-term dependencies that are known to confound ap-
proaches such as gradient descent. Moreover, the inclusion
of structural damping adds some additional speed and ro-
bustness (especially in the 5 and 20 bit memorization tasks,
where it appears to be required when the minimal time-lag
is larger than 50 steps). For some random seeds the explod-
ing/vanishing gradient problem seemed to be too extreme
for the HF optimizer to handle and the parameters would
converge to a bad local minimum (these are reported as fail-
ures in figure 3). This is a problem that could potentially
be addressed with a more careful random initialization than
the one we used, as evidenced by the significant amount
of problem-specific hand tweaking done by Hochreiter and
Schmidhuber (1997, Table 10).

It should be noted that the total amount of computation re-
quired by our HF approach in order to successfully train an
RNN is considerably higher than what is required to train
the LSTM using its specialized variant of stochastic gradi-
ent descent. However, the LSTM architecture was designed
specifically so that long-term memorization and recall can
occur naturally via the “memory units”, so representation-
ally it is a model ideally suited to such tasks. In contrast,
the problem of training a standard RNN to succeed at these
tasks using only its general-purpose units, which lack the
convenient “gating neurons” (a type of 3-way neural con-
nection), is a much harder one, so the extra computation
required by the HF approach seems justified. And it should
also be noted that the algorithm used to train LSTMs is
fully online and thus doesn’t benefit from parallel compu-
tation nearly as much as a semi-online approach such as

Learning Recurrent Neural Networks with Hessian-Free Optimization

Table 1. Average test-set performance for HF-trained RNN and
the LSTM on the three natural sequence modeling problems.

Dataset (measure) RNN+HF LSTM+GD
Bouncing Balls (error) 22 35
MIDI (log-likelihood) -569 -683
Speech (error) 22 41

HF (where the training cases in a given mini-batch may be
processed all in parallel).

4.2. Natural problems

For these problems, the output sequence is equal to the in-
put sequence shifted forward by one time-step, so the goal
of training is to have the model predict the next timestep
by either minimizing the squared error, a KL-divergence,
or by maximizing the log likelihood. We trained an RNN
with HF and an LSTM with backpropagation-through-time
(verified for correctness by numerical differentiation). The
RNN had 300 hidden units, and the LSTM had 30 “memory
blocks” (each of which has 10 “memory cells”) resulting in
nearly identically sized parameterizations for both models
(the LSTM had slightly more). Full details of the datasets
and of the training are given in the supplementary material.

1. BOUNCING BALL MOTION VIDEO PREDICTION
The bouncing balls problem consists of synthetic low-
resolution (15×15) videos of three balls bouncing in a box.
We trained the models on sequences of length 30.

2. MUSIC PREDICTION
We downloaded a large number of midi files and converted
each into a “piano-roll”. A piano-roll is a sequence of 128-
dimensional binary vectors, each describing the set of notes
played in the current timestep (which is 0.05 seconds long).
The models were trained on sequences of length 200 due to
the significant long-term dependencies exhibited by music.

3. SPEECH PREDICTION
We used a speech recognition dataset to obtain sequences
of 39-dimensional vectors representing the underlying
speech signal, and used sequences of length 100.

RESULTS
The results are shown in table 1. The HF-trained RNNs
outperform the LSTMs trained with gradient descent by a
large margin. It should be noted that training the LSTMs
took just as long or longer than the RNNs.

5. Conclusions
In this paper, we demonstrated that the HF optimizer of
Martens (2010), augmented with our structural damping
approach, is capable of robustly training RNNs to solve
tasks that exhibit long term dependencies. Unlike previous
approaches like LSTMs, the method is not specifically de-
signed to address the underlying source of difficulty present
in these problems (but succeeds nonetheless), which makes

it more likely to improve RNN training for a wider vari-
ety of sequence modeling tasks that are difficult, not only
for their long term dependencies, but also for their highly
complex shorter-term evolution, as our experiments with
the natural problems suggest. Given these successes we
feel that RNNs, which are very powerful and general se-
quence models in principle, but have always been very hard
to train, may now begin to realize their true potential and
see more wide-spread application to challenging sequence
modeling problems.

Acknowledgments
The authors would like to thank Richard Zemel and Geof-
frey Hinton for their helpful suggestions. This work was
supported by NSERC and a Google Fellowship.

REFERENCES

Fast curvature matrix-vector products for second-order gradient
descent. Neural Computation, 14(7):1723–1738, 2002.

Reducing the dimensionality of data with neural networks. Sci-
ence, 313:504–507, 2006.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions
on Neural Networks, 5:157–166, 1994.

F.A Gers, J. Schmidhuber, and Cumminsm F. Learning to forget:
Continual prediction with lstm. Neural Computation, 12:2451–
2471, 1999.

A. Graves and J. Schmidhuber. Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network archi-
tectures. Neural Networks, 18:602–610, 2005.

A. Graves and J. Schmidhuber. Offline Handwriting Recogni-
tion with Multidimensional Recurrent Neural Networks. In
Advances in Neural Information Processing Systems, 2009.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Net-
zen. Diploma thesis. PhD thesis, Institut fur Informatik, Tech-
nische Universitat Munchen, 1991.

S. Hochreiter and J. Schmidhuber. Bridging long time lags by
weight guessing and ”long short term memory”. In Spatiotem-
poral models in biological and artificial systems, 1996.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neu-
ral Computation, (8):1735–1780, 1997.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. A Field
Guide to Dynamical Recurrent Neural Networks, chapter Gra-
dient flow in recurrent nets: the difficulty of learning long-term
dependencies. IEEE press, 2001.

H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication.
Science, 304:78–80, 2004.

J. Martens. Deep learning via Hessian-free optimization. In
Proceedings of the 27th International Conference on Machine
Learning (ICML), 2010.

H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and
J. Schmidhuber. A system for robotic heart surgery that learns
to tie knots using recurrent neural networks. In 2006 Interna-
tional Conference on Intelligent Robots and Systems, 2007.

K.P. Murphy. Dynamic bayesian networks: representation, infer-
ence and learning. PhD thesis, UC Berkeley, 2002.

J. Nocedal and S.J. Wright. Numerical optimization. Springer
Verlag, 1999.

B.A. Pearlmutter. Fast exact multiplication by the Hessian. Neu-
ral Computation, 6(1):147–160, 1994.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):
533–536, 1986.

