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Abstract. This paper presents the design and evaluation of Pastnalabde,
distributed object location and routing substrate for widlea peer-to-peer ap-
plications. Pastry performs application-level routinglafject location in a po-
tentially very large overlay network of nodes connectedthia Internet. It can
be used to support a variety of peer-to-peer applicationduding global data
storage, data sharing, group communication and naming.

Each node in the Pastry network has a unique identifier (m)dé/hen presented
with a message and a key, a Pastry node efficiently routes #ssage to the
node with a nodeld that is numerically closest to the key, mgnall currently
live Pastry nodes. Each Pastry node keeps track of its imatedieighbors in
the nodeld space, and notifies applications of new nodeadsrinode failures
and recoveries. Pastry takes into account network logatigeeks to minimize
the distance messages travel, according to a to scalampitgxinetric like the
number of IP routing hops.

Pastry is completely decentralized, scalable, and sgHitring; it automatically
adapts to the arrival, departure and failure of nodes. Expmtal results obtained
with a prototype implementation on an emulated network afoup00,000 nodes
confirm Pastry’s scalability and efficiency, its ability tellsorganize and adapt to
node failures, and its good network locality properties.

1 Introduction

Peer-to-peer Internet applications have recently beenlpaped through file sharing
applications like Napster, Gnutella and FreeNet [1, 2, 8hil&/much of the attention
has been focused on the copyright issues raised by theseutarapplications, peer-
to-peer systems have many interesting technical aspketddicentralized control, self-
organization, adaptation and scalability. Peer-to-pgstesns can be characterized as
distributed systems in which all nodes have identical cditiab and responsibilities
and all communication is symmetric.
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There are currently many projects aimed at constructing-fiepeer applications
and understanding more of the issues and requirements bfappulications and sys-
tems|[1,2,5, 8,10, 15]. One of the key problems in largeespakr-to-peer applications
is to provide efficient algorithms for object location anditiog within the network.
This paper presents Pastry, a generic peer-to-peer objeatidn and routing scheme,
based on a self-organizing overlay network of nodes comuakeitt the Internet. Pastry
is completely decentralized, fault-resilient, scalabied reliable. Moreover, Pastry has
good route locality properties.

Pastry is intended as general substrate for the construcfia variety of peer-to-
peer Internet applications like global file sharing, fileratge, group communication and
naming systems. Several application have been built onftBastry to date, including
a global, persistent storage utility called PAST [11, 21d arscalable publish/subscribe
system called SCRIBE [22]. Other applications are undeeligment.

Pastry provides the following capability. Each node in ttestR/ network has a
unique numeric identifier (nodeld). When presented with asage and a numeric key,
a Pastry node efficiently routes the message to the node witidald that is numeri-
cally closest to the key, among all currently live Pastry emdrhe expected number of
routing steps is O(log N), where N is the number of Pastry sadehe network. At
each Pastry node along the route that a message takes, titpp is notified and
may perform application-specific computations relatechorhessage.

Pastry takes into account network locality; it seeks to miré the distance mes-
sages travel, according to a scalar proximity metric like lumber of IP routing hops.
Each Pastry node keeps track of its immediate neighborsimditield space, and no-
tifies applications of new node arrivals, node failures asmbveries. Because nodelds
are randomly assigned, with high probability, the set ofemdith adjacent nodeld is
diverse in geography, ownership, jurisdiction, etc. Apations can leverage this, as
Pastry can route to one éfnodes that are numerically closest to the key. A heuristic
ensures that among a set of nodes withitdosest nodelds to the key, the message is
likely to first reach a node “near” the node from which the naggsoriginates, in terms
of the proximity metric.

Applications use these capabilities in different ways. PABr instance, uses a
fileld, computed as the hash of the file’s name and owner, ast@yHey for a file.
Replicas of the file are stored on théastry nodes with nodelds numerically closest to
the fileld. A file can be looked up by sending a message viayasing the fileld as the
key. By definition, the lookup is guaranteed to reach a nodestores the file as long
as one of thé: nodes is live. Moreover, it follows that the message is likelfirst reach
a node near the client, among th@odes; that node delivers the file and consumes the
message. Pastry’s notification mechanisms allow PAST totauiai replicas of a file
on thek nodes closest to the key, despite node failure and nodebsrand using only
local coordination among nodes with adjacent nodelds.iBata PAST's use of Pastry
can be foundin [11, 21].

As another sample application, in the SCRIBE publish/stibsSystem, a list of
subscribers is stored on the node with nodeld numericatigedt to the topicld of a
topic, where the topicld is a hash of the topic name. That fodas a rendez-vous
point for publishers and subscribers. Subscribers sendssage via Pastry using the



topicld as the key; the registration is recorded at each admtey the path. A publisher
sends data to the rendez-vous point via Pastry, again usingpicld as the key. The
rendez-vous point forwards the data along the multicastfrtamed by the reverse paths
from the rendez-vous point to all subscribers. Full detailScribe’s use of Pastry can
be found in [22].

These and other applications currently under developmeng all built with little
effort on top of the basic capability provided by Pastry. Tast of this paper is orga-
nized as follows. Section 2 presents the design of Pastrilyyding a description of the
API. Experimental results with a prototype implementatidriPastry are presented in
Section 3. Related work is discussed in Section 4 and Sestgamcludes.

2 Design of Pastry

A Pastry system is a self-organizing overlay network of rep@éhere each node routes
client requests and interacts with local instances of omeare applications. Any com-
puter that is connected to the Internet and runs the Pastig software can act as a
Pastry node, subject only to application-specific secynitycies.

Each node in the Pastry peer-to-peer overlay network igasdia 128-bit node
identifier (nodeld). The nodeld is used to indicate a nodeStn in a circular nodeld
space, which ranges frofnto 2'2% — 1. The nodeld is assigned randomly when a node
joins the system. It is assumed that nodelds are generatddtisat the resulting set
of nodelds is uniformly distributed in the 128-bit nodeldasp. For instance, nodelds
could be generated by computing a cryptographic hash of dke’s public key or its
IP address. As a result of this random assignment of nodelitis,high probability,
nodes with adjacent nodelds are diverse in geography, ahipgijurisdiction, network
attachment, etc.

Assuming a network consisting df nodes, Pastry can route to the numerically
closest node to a given key in less thHmg,: N steps under normal operatioh (
is a configuration parameter with typical value 4). Despid@aurrent node failures,
eventual delivery is guaranteed unlés|/2| nodes withadjacentnodelds fail simul-
taneously (L] is a configuration parameter with a typical valuel®for 32). In the
following, we present the Pastry scheme.

For the purpose of routing, nodelds and keys are thought afsegjuence of digits
with base2’. Pastry routes messages to the node whose nodeld is nuliyerioaest
to the given key. This is accomplished as follows. In eachingistep, a node normally
forwards the message to a node whose nodeld shares withytlagokefix that is at least
one digit (orb bits) longer than the prefix that the key shares with the priesede’s
id. If no such node is known, the message is forwarded to a wibse nodeld shares
a prefix with the key as long as the current node, but is nurallyicloser to the key
than the present node’s id. To support this routing prooedeach node maintains some
routing state, which we describe next.

2.1 Pastry node state

Each Pastry node maintainsauting table aneighborhood sednd aleaf set We begin
with a description of the routing table. A node’s routing lgkR, is organized into



Nodeld 0233102

Leadet [ SVALLER ][ LARGER |

[ 10233033 ] 10233021 | 10233120 | 10233122 ]
[ 10233001 | 10233000 ][ 10233230 | 10233232 |

Routintable
-0-2212102 || 1 [ -2-2301203 ][ -3-1203203 |
0| 1-1-301233 ][ 1-2-230203 || 1-3-021022 |
[ 10-0-31203 | 10-1-32102 [N 10-3-23302 |

[ 102-0-0230 || 102-1-1302 | 102-2-2302 |nann]
1023-0-322 ][ 1023-1-000 || 1023-2-121 |G

[ 10233-0-01 [N 10233-2-32

[ o |

[ 10233120
|

Neighborhoodet
[ 13021022 | 10200230 ] 11301233 | 31301233 |
[ 02212102 | 22301203 ][ 31203203 | 33213321 |

Fig. 1. State of a hypothetical Pastry node with nodeld 10233262,2, andl = 8. All numbers
are in base 4. The top row of the routing table is row zero. Thaeled cell in each row of the
routing table shows the corresponding digit of the preseatefs nodeld. The nodelds in each
entry have been split to show tkemmon prefix with 10233102ext digit- rest of nodeldThe
associated IP addresses are not shown.

[logs» N rows with2® — 1 entries each. Th2? — 1 entries at row: of the routing table
each refer to a node whose nodeld shares the present nodelno the first: digits,
but whosen + 1th digit has one of th@® — 1 possible values other than the+ 1th
digit in the present node’s id.

Each entry in the routing table contains the IP address ofobm®tentially many
nodes whose nodeld have the appropriate prefix; in pradic®de is chosen that is
close to the present node, according to the proximity matvewill show in Section 2.5
that this choice provides good locality properties. If na@laaes known with a suitable
nodeld, then the routing table entry is left empty. The umifaistribution of nodelds
ensures an even population of the nodeld space; thus, oagajernly[log,s N rows
are populated in the routing table.

The choice ob involves a trade-off between the size of the populated pouf the
routing table (approximatelflog,s N1 x (2° — 1) entries) and the maximum number
of hops required to route between any pair of nodésggs N1). With a value ofb = 4
and10° nodes, a routing table contains on average 75 entries arekxfieeted number
of routing hops is 5, whilst with0° nodes, the routing table contains on average 105
entries, and the expected number of routing hops in 7.

The neighborhood se¥/ contains the nodelds and IP addresses of Mignodes
that are closest (according the proximity metric) to thelowmde. The neighborhood set
is not normally used in routing messages; it is useful in t@@iing locality properties,
as discussed in Section 2.5. The leaf6é& the set of nodes with thé|/2 numerically
closest larger nodelds, and the|/2 nodes with numerically closest smaller nodelds,
relative to the present node’s nodeld. The leaf set is usedgithe message routing,
as described below. Typical values fdi and|M| are2® or 2 x 2°.



How the various tables of a Pastry node are initialized anithtai@ed is the subject
of Section 2.4. Figure 1 depicts the state of a hypothetiaatrly node with the nodeld
10233102 (base 4), in a system that uses 16 bit nodelds ardeaofa = 2.

2.2 Routing

The Pastry routing procedure is shown in pseudo code fornalnell. The procedure
is executed whenever a message with Kegrrives at a node with nodeld. We begin
by defining some notation.

R}: the entry in the routing tabl& at columni, 0 < i < 2° and row,0 < I < [128/b].
L;: the i-th closest nodeld in the leaf st —||L|/2] < i < [|L|/2], where neg-
ative/positive indices indicate nodelds smaller/lardeamt the present nodeld, respec-
tively.

Dy: the value of thé’s digit in the keyD.

shl(A, B): the length of the prefix shared amoAgand B, in digits.

(1) if(L—yjz1/2) <D < Ly |

2 /I D is within range of our leaf set
3) forward toL;, s.th.|D — L;| is minimal;
(4) }else{

5) /I use the routing table
(6) Let! = shl(D, A);
(7 if (R # null) {

(8) forward toR;"';

© }

(10)  else{

(12) /l rare case

(12) forward toT’ € LU R U M, s.th.
(13) shi(T,D) > 1,

(14) |T'— D| < |A— D|

15 }

(16) }

Table 1. Pseudo code for Pastry core routing algorithm.

Given a message, the node first checks to see if the key falsnthe range of
nodelds covered by its leaf set (line 1). If so, the messafmearded directly to the
destination node, namely the node in the leaf set whose dadgallosest to the key
(possibly the present node) (line 3).

If the key is not covered by the leaf set, then the routingaadblused and the
message is forwarded to a node that shares a common prefixheitkey by at least
one more digit (lines 6-8). In certain cases, it is possibéd the appropriate entry in
the routing table is empty or the associated node is not eddelfline 11-14), in which
case the message is forwarded to a node that shares a prdfitheikey at least as
long as the local node, and is numerically closer to the kay the present node’s id.



Such a node must be in the leaf set unless the message hatyargeed at the node
with numerically closest nodeld. And, unlgg%|/2] adjacent nodes in the leaf set have
failed simultaneously, at least one of those nodes mustee li

This simple routing procedure always converges, becaudestap takes the mes-
sage to a node that either (1) shares a longer prefix with théhem the local node, or
(2) shares as long a prefix with, but is numerically closehtkey than the local node.

Routing performancelt can be shown that the expected number of routing steps is
[log,» N| steps, assuming accurate routing tables and no recent aibale$. Briefly,
consider the three cases in the routing procedure. If a mgedsdorwarded using the
routing table (lines 6-8), then the set of nodes whose ide hawnger prefix match
with the key is reduced by a factor @f in each step, which means the destination is
reached inlog,s N steps. If the key is within range of the leaf set (lines 2-&®ntthe
destination node is at most one hop away.

The third case arises when the key is not covered by the leéfseit is still more
than one hop away from the destination), but there is nomgutble entry. Assuming
accurate routing tables and no recent node failures, thensi¢hat a node with the
appropriate prefix does not exist (lines 11-14). The likadith of this case, given the
uniform distribution of nodelds, depends [dr. Analysis shows that withl.| = 2* and
|L| = 2 x 2, the probability that this case arises during a given mesgagsmission
is less than .02 and 0.006, respectively. When it happensiare than one additional
routing step results with high probability.

In the event of many simultaneous node failures, the numbesuing steps re-
quired may be at worst linear iV, while the nodes are updating their state. This is a
loose upper bound; in practice, routing performance deggagadually with the num-
ber of recent node failures, as we will show experimentailysection 3.1. Eventual
message delivery is guaranteed unlgdd /2| nodes with consecutive nodelds fail si-
multaneously. Due to the expected diversity of nodes wijaaaht nodelds, and with
a reasonable choice fok| (e.g.2°), the probability of such a failure can be made very
low.

2.3 Pastry API

Next, we briefly outline Pastry’s application programmimgeirface (API). The pre-
sented API is slightly simplified for clarity. Pastry expothe following operations:

nodeld = pastrylnit(Credentials, Application) causes the local node to join an ex-
isting Pastry network (or start a new one), initialize alexant state, and return
the local node’s nodeld. The application-specific cre@dsittontain information
needed to authenticate the local node. The applicatiomaeguis a handle to the
application object that provides the Pastry node with tlie@dures to invoke when
certain events happen, e.g., a message arrival.

route(msg,key) causes Pastry to route the given message to the node withdmuale
merically closest to the key, among all live Pastry nodes.

Applications layered on top of Pastry must export the folluywperations:



deliver (msg,key) called by Pastry when a message is received and the localsnode
nodeld is numerically closest to key, among all live nodes.

forward(msg,key,nextld) called by Pastry just before a message is forwarded to the
node with nodeld = nextld. The application may change théards of the message
or the value of nextld. Setting the nextld to NULL terminatee message at the
local node.

newlL eafs(leafSet) called by Pastry whenever there is a change in the local sdelf
set. This provides the application with an opportunity tfuatiapplication-specific
invariants based on the leaf set.

Several applications have been built on top of Pastry usiisgsimple API, includ-
ing PAST [11, 21] and SCRIBE [22], and several applicatioresuander development.

2.4 Self-organization and adaptation

In this section, we describe Pastry’s protocols for hamdtime arrival and departure
of nodes in the Pastry network. We begin with the arrival oeawmode that joins the
system. Aspects of this process pertaining to the locatitperties of the routing tables
are discussed in Section 2.5.

Node arrival When a new node arrives, it needs to initialize its stateembdnd then
inform other nodes of its presence. We assume the new nodeskindtially about a
nearby Pastry nodd, according to the proximity metric, that is already part loé t
system. Such a node can be located automatically, for iosfarsing “expanding ring”
IP multicast, or be obtained by the system administratatgh outside channels.

Letus assume the new node’s nodeldig The assignment of nodelds is application-
specific; typically it is computed as the SHA-1 hash of its dlt@ss or its public key).
NodeX then asksA to route a special “join” message with the key equaktd_ike any
message, Pastry routes the join message to the existinghatd@se id is numerically
closest taX.

In response to receiving the “join” request, nodgsZ, and all nodes encountered
on the path fromA to Z send their state tables f§. The new nodeX inspects this
information, may request state from additional nodes, &aed initializes its own state
tables, using a procedure describe below. Fina&llynforms any nodes that need to be
aware of its arrival. This procedure ensures tRainitializes its state with appropriate
values, and that the state in all other affected nodes istadda

Since noded is assumed to be in proximity to the new nalie A’s neighborhood
set to initializeX's neighborhood set. MoreoveX, has the closest existing nodeld to
X, thus its leaf set is the basis fof's leaf set. Next, we consider the routing table,
starting at row zero. We consider the most general case,axthernodelds off and
X share no common prefix. Let; denote nodel’s row of the routing table at level
Note that the entries in row zero of the routing table are peshelent of a node’s nodeld.
Thus, A, contains appropriate values fak,. Other levels ofd’s routing table are of no
use toX, sinceA’s and X'’s ids share no common prefix.

However, appropriate values faf; can be taken froni;, whereB is the first node
encountered along the route fromto Z. To see this, observe that entriesin and



X share the same prefix, becauseand B have the same first digit in their nodeld.
Similarly, X obtains appropriate entries faf, from nodeC, the next node encountered
along the route from! to Z, and so on.

Finally, X transmits a copy of its resulting state to each of the nodesdan its
neighborhood set, leaf set, and routing table. Those nodesn update their own state
based on the information received. One can show that at thige sthe new nod&’
is able to route and receive messages, and participate iRastey network. The total
cost for a node join, in terms of the number of messages exgthisO (log,: N). The
constant is about x 2°.

Pastry uses an optimistic approach to controlling concuimede arrivals and de-
partures. Since the arrival/departure of a node affectg ardmall number of exist-
ing nodes in the system, contention is rare and an optimagiiroach is appropriate.
Briefly, whenever a nodd provides state information to a nodk it attaches a times-
tamp to the messag®. adjusts its own state based on this information and evdgtual
sends an update messagedtde.g., notifyingA of its arrival). B attaches the original
timestamp, which allowsl to check if its state has since changed. In the event that its
state has changed, it responds with its updated stat&andtarts its operation.

Node departureNodes in the Pastry network may fail or depart without wagniim
this section, we discuss how the Pastry network handlesrsodé departures. A Pastry
node is considered failed when its immediate neighbors énntbdeld space can no
longer communicate with the node.

To replace a failed node in the leaf set, its neighbor in triehdspace contacts the
live node with the largest index on the side of the failed naahel asks that node for its
leaf table. For instance, if; failed for ||L|/2] < i < 0, it requests the leaf set from
L_||L)/2)- Let the received leaf set bE. This set partly overlaps the present node’s
leaf setL, and it contains nodes with nearby ids not presentlz.ifmong these new
nodes, the appropriate one is then chosen to insertlinteerifying that the node is
actually alive by contacting it. This procedure guarantbas each node lazily repairs
its leaf set unles§|L|/2] nodes with adjacent nodelds have failed simultaneouslg. Du
to the diversity of nodes with adjacent nodelds, such araiisivery unlikely even for
modest values ofL|.

The failure of a node that appears in the routing table oflz@rabode is detected
when that node attempts to contact the failed node and tkeme response. As ex-
plained in Section 2.2, this event does not normally delayrthuting of a message,
since the message can be forwarded to another node. Hoveewgplacement entry
must be found to preserve the integrity of the routing table.

To repair a failed routing table entd, a node contacts first the node referred to
by another entnR;, i # d of the same row, and asks for that node’s entryRgr In the
event that none of the entries in réave a pointer to a live node with the appropriate
prefix, the node next contacts an ean/H,z' # d, thereby casting a wider net. This
procedure is highly likely to eventually find an appropriatele if one exists.

The neighborhood set is not normally used in the routing ofsages, yet it is im-
portant to keep it current, because the set plays an impgadénin exchanging infor-
mation about nearby nodes. For this purpose, a node attemptsitact each member
of the neighborhood set periodically to see if it is stilvali If a member is not respond-



ing, the node asks other members for their neighborhoodsabhecks the distance of
each of the newly discovered nodes, and updates it own neigbbd set accordingly.

Experimental results in Section 3.2 demonstrate Pastfigstiveness in repairing
the node state in the presences of node failures, and quémtifcost of this repair in
terms of the number of messages exchanged.

2.5 Locality

In the previous sections, we discussed Pastry’s basicngputioperties and discussed
its performance in terms of the expected number of routingshand the number of
messages exchanged as part of a node join operation. Thisrsfaruses on another
aspect of Pastry’s routing performance, namely its progemith respect to locality.
We will show that the route chosen for a message is likely ttgbed” with respect to
the proximity metric.

Pastry’s notion of network proximity is based on a scalaxprity metric, such as
the number of IP routing hops or geographic distance. Itssiaed that the application
provides a function that allows each Pastry node to detegtthia “distance” of a node
with a given IP address to itself. A node with a lower distanakie is assumed to be
more desirable. An application is expected to implemerigstinction depending on its
choice of a proximity metric, using network services likaderoute or Internet subnet
maps, and appropriate caching and approximation techsiguminimize overhead.

Throughoutthis discussion, we assume that the proximaégsplefined by the cho-
sen proximity metric is Euclidean; that is, the triangwdatinequality holds for dis-
tances among Pastry nodes. This assumption does not hotddtige for some prox-
imity metrics, such as the number of IP routing hops in thermét. If the triangulation
inequality does not hold, Pastry’s basic routing is not @td; however, the locality
properties of Pastry routes may suffer. Quantifying theaetf such deviations is the
subject of ongoing work.

We begin by describing how the previously described prooeéar node arrival is
augmented with a heuristic that ensures that routing taitliées are chosen to provide
good locality properties.

Locality in the routing tableln Section 2.4, we described how a newly joining node
initializes its routing table. Recall that a newly joiningde X asks an existing nodé
to route a join message usidg as the key. The message follows a paths through nodes
A, B, etc., and eventually reaches nadewhich is the live node with the numerically
closest nodeld tX . Node X initialized its routing table by obtaining thieth row of its
routing table from theé-th node encountered along the route fradnto Z.
The property we wish to maintain is that all routing tableriestrefer to a node that
is near the present node, according to the proximity medneong all live nodes with
a prefix appropriate for the entry. Let us assume that thipgnty holds prior to node
X's joining the system, and show how we can maintains the ptpjps nodeX joins.
First, we require that nodé is nearX, according to the proximity metric. Since the
entries in row zero ofd’s routing table are close td, A is close toX, and we assume
that the triangulation inequality holds in the proximityesge, it follows that the entries



are relatively nead. Therefore, the desired property is preserved. Likewibégiaing
X's neighborhood set froml is appropriate.

Let us next consider row one df's routing table, which is obtained from nodz
The entries in this row are ned, however, it is not clear how closB is to X . Intu-
itively, it would appear that foX to take row one of its routing table from nodkdoes
not preserve the desired property, since the entries ase ¢33, but not necessarily
to X. In reality, the entries tend to be reasonably clos&tdRecall that the entries in
each successive row are chosen from an exponentially d#ogeset size. Therefore,
the expected distance from to its row one entries®;) is much larger than the ex-
pected distance traveled from nodeto B. As a result,B; is a reasonable choice for
X:. This same argument applies for each successive level aidgstep, as depicted
in Figure 2.

Fig. 2. Routing step distance versus distance of the represesdativeach level (based on exper-
imental data). The circles around the n-th node along theerisam A to Z indicate the average
distance of the node’s representatives at levéllote thatX lies within each circle.

After X has initialized its state in this fashion, its routing tadtel neighborhood set
approximate the desired locality property. However, thalify of this approximation
must be improved to avoid cascading errors that could eedigtiead to poor route
locality. For this purpose, there is a second stage in wichquests the state from each
of the nodes in its routing table and neighborhood set. Ih tt@mpares the distance
of corresponding entries found in those nodes’ routinggslaind neighborhood sets,
respectively, and updates its own state with any closersindiads. The neighborhood
set contributes valuable information in this process, bsedt maintains and propagates
information about nearby nodes regardless of their nodedtbp

Intuitively, a look at Figure 2 illuminates why incorponagj the state of nodes men-
tioned in the routing and neighborhood tables from stagepvoeides good represen-
tatives forX. The circles show the average distance of the entry from eadk along
the route, corresponding to the rows in the routing tablesédie thatX lies within
each circle, albeit off-center. In the second sta§epbtains the state from the entries
discovered in stage one, which are located at an averagandesequal to the perimeter
of each respective circle. These states must include eritra are appropriate fox,
but were not discovered h¥ in stage one, due to its off-center location.



Experimental results in Section 3.2 show that this proceduaintains the locality
property in the routing table and neighborhood sets witln ffidelity. Next, we discuss
how the locality in Pastry’s routing tables affects Pastytes.

Route locality The entries in the routing table of each Pastry node are chimsbe
close to the present node, according to the proximity metmaong all nodes with
the desired nodeld prefix. As a result, in each routing stepessage is forwarded to a
relatively close node with a nodeld that shares a longer compnefix or is numerically
closer to the key than the local node. That is, each step ntbeesiessage closer to
the destination in the nodeld space, while traveling thetlpassible distance in the
proximity space.

Since only local information is used, Pastry minimizes tts¢eshce of the next rout-
ing step with no sense of global direction. This procedueady does not guarantee
that the shortest path from source to destination is chdsamever, it does give rise to
relatively good routes. Two facts are relevant to this steget. First, given a message
was routed from nodel to nodeB at distancel from A, the message cannot subse-
quently be routed to a node with a distance of less thitom A. This follows directly
from the routing procedure, assuming accurate routingetabl

Second, the expected distance traveled by a messages daghguccessive rout-
ing step is exponentially increasing. To see this, obsdraé dn entry in the routing
table in row! is chosen from a set of nodes of si2&/2". That is, the entries in suc-
cessive rows are chosen from an exponentially decreasimipeuof nodes. Given the
random and uniform distribution of nodelds in the netwohls means that the expected
distance of the closest entry in each successive row is exyiatly increasing.

Jointly, these two facts imply that although it cannot bergngeed that the distance
of a message from its source increases monotonically atgapha message tends to
make larger and larger strides with no possibility of retngnto a node withind; of
any nodel encountered on the route, whetgis the distance of the routing step taken
away from nodeé. Therefore, the message has nowhere to go but towards tieatés.
Figure 3 illustrates this effect.

Locating the nearest amorignodesSome peer-to-peer application we have built using
Pastry replicate information on thikePastry nodes with the numerically closest nodelds
to a key in the Pastry nodeld space. PAST, for instance,capk files in this way to
ensure high availability despite node failures. Pastryrally routes a message with
the given key to the live node with the numerically closesi&id, thus ensuring that
the message reaches one of theodes as long as at least one of them is live.

Moreover, Pastry’s locality properties make it likely thatong the route from a
client to the numerically closest node, the message firshessa node near the client, in
terms of the proximity metric, among tikenumerically closest nodes. This is useful in
applications such as PAST, because retrieving a file fronagbyasnode minimizes client
latency and network load. Moreover, observe that due to dimelam assignment of
nodelds, nodes with adjacent nodelds are likely to be widelgersed in the network.
Thus, it is important to direct a lookup query towards a ndu ts located relatively
near the client.



Fig. 3. Sample trajectory of a typical message in the Pastry netviiaded on experimental data.
The message cannot re-enter the circles representingstamde of each of its routing steps away
from intermediate nodes. Although the message may pairtiy ‘back” during its initial steps,
the exponentially increasing distances traveled in eaghcaduse it to move toward its destination
quickly.

Recall that Pastry routes messages towards the node wittottedd closest to the
key, while attempting to travel the smallest possible distain each step. Therefore,
among thek numerically closest nodes to a key, a message tends to fish @ node
near the client. Of course, this process only approximaigesirg to the nearest node.
Firstly, as discussed above, Pastry makes only local rgutétisions, minimizing the
distance traveled on the next step with no sense of globedtitim. Secondly, since Pas-
try routes primarily based on nodeld prefixes, it may missimgaodes with a different
prefix than the key. In the worst cageg,2 — 1 of the replicas are stored on nodes whose
nodelds differ from the key in their domain at level zero. Aseault, Pastry will first
route towards the nearest among & + 1 remaining nodes.

Pastry uses a heuristic to overcome the prefix mismatch tsseribed above. The
heuristic is based on estimating the density of nodeldsemthdeld space using local
information. Based on this estimation, the heuristic distetien a message approaches
the set oft numerically closest nodes, and then switches to numeyinekrest address
based routing to locate the nearest replica. Results pesdén Section 3.3 show that
Pastry is able to locate the nearest node in over 75%, andfdhe two nearest nodes
in over 91% of all queries.

2.6 Arbitrary nodefailuresand network partitions

Throughout this paper, it is assumed that Pastry nodesifailtly. Here, we briefly
discuss how a Pastry network could deal with arbitrary ndedigres, where a failed
node continues to be responsive, but behaves incorrealyesr maliciously. The Pastry
routing scheme as described so far is deterministic. Thisyulnerable to malicious
or failed nodes along the route that accept messages butt@omectly forward them.
Repeated queries could thus fail each time, since they rilyrtaie the same route.



In applications where arbitrary node failures must be ttkl, the routing can be
randomized. Recall that in order to avoid routing loops, essage must always be
forwarded to a node that shares a longer prefix with the det#bim, or shares the same
prefix length as the current node but is numerically closeéh@nodeld space than the
current node. However, the choice among multiple nodessthizfy this criterion can
be made randomly. In practice, the probability distribntétould be biased towards the
best choice to ensure low average route delay. In the eveniralicious or failed node
along the path, the query may have to be repeated severd hignthe client, until a
route is chosen that avoids the bad node. Furthermore, tteqals for node join and
node failure can be extended to tolerate misbehaving nddhesdetails are beyond the
scope of this paper.

Another challenge are IP routing anomalies in the Interdmat tause IP hosts to be
unreachable from certain IP hosts but not others. The Pasttjng is tolerant of such
anomalies; Pastry nodes are considered live and remaihabbgcin the overlay net-
work as long as they are able to communication with their irdiaie neighbors in the
nodeld space. However, Pastry’s self-organization patoray cause the creation of
multiple, isolated Pastry overlay networks during perioti§ routing failures. Because
Pastry relies almost exclusively on information exchanghiwthe overlay network to
self-organize, such isolated overlays may persist aftetFiconnectivity resumes.

One solution to this problem involves the use of IP multicBsistry nodes can pe-
riodically perform an expanding ring multicast search ftiey Pastry nodes in their
vicinity. If isolated Pastry overlays exists, they will biscbvered eventually, and rein-
tegrated. To minimize the cost, this procedure can be paddrrandomly and infre-
quently by Pastry nodes, only within a limited range of IPtiog hops from the node,
and only if no search was performed by another nearby Pasitg mecently. As an
added benefit, the results of this search can also be usegtovmthe quality of the
routing tables.

3 Experimental results

In this section, we present experimental results obtainédavprototype implementa-
tion of Pastry. The Pastry node software was implementeaMa.Jo be able to perform
experiments with large networks of Pastry nodes, we alsdeémented a network em-
ulation environment, permitting experiments with up to D Pastry nodes.

All experiments were performed on a quad-processor ComgphaServer ES40
(500MHz 21264 Alpha CPUs) with 6GBytes of main memory, ruigriTrue64 UNIX,
version 4.0F. The Pastry node software was implementedvim dad executed using
Compag’s Java 2 SDK, version 1.2.2-6 and the Compaq Fast¥iMion 1.2.2-4.

In all experiments reported in this paper, the Pastry nods® wonfigured to run
in a single Java VM. This is largely transparent to the Pdstplementation—the Java
runtime system automatically reduces communication antioadastry nodes to local
object invocations.

The emulated network environment maintains distance mé&ion between the
Pastry nodes. Each Pastry node is assigned a location ima;plaordinates in the
plane are randomly assigned in the raf@e 000]. Nodes in the Internet are not uni-



formly distributed in a Euclidean space; instead, there s&r@ng clustering of nodes
and the triangulation inequality doesn’t always hold. We @urrently performing emu-
lations based on a more realistic network topology modedridkom [26]. Early results
indicate that overall, Pastry’s locality related routingperties are not significantly
affected by this change.

A number of Pastry properties are evaluated experimentHtlg first set of results
demonstrates the basic performance of Pastry routing.ditteng tables created within
the Pastry nodes are evaluated in Section 3.2. In Sectione8e¥aluate Pastry’s ability
to route to the nearest among thenumerically closest nodes to a key. Finally, in 3.4
the properties of Pastry under node failures are considered

3.1 Routing performance

The first experiment shows the number of routing hops as atitmof the size of
the Pastry network. We vary the number of Pastry nodes fr@¥@QLto 100,000 in a
network wheré = 4, |L| = 16, |M| = 32. In each of 200,000 trials, two Pastry nodes
are selected at random and a message is routed betweenrthsipgiPastry.
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Fig. 4. Average number of routing hops versus number of Pastry nédest, |L| = 16, |M| =
32 and 200,000 lookups.

Figure 4 show the average number of routing hops taken, asdidn of the net-
work size. “Log N” shows the valukg,: N and is included for comparisoni6g.» N'|
is the expected maximum number of hops required to route ietaark containing
N nodes). The results show that the number of route hops sdtiethve size of the
network as predicted.

Figure 5 shows the distribution of the number of routing htgken, for a network
size of 100,000 nodes, in the same experiment. The results ghat the maximum
route length is [log,s N ([log,:100,000] = 5), as expected.

The second experiment evaluated the locality propertigRastry routes. It com-
pares the relative distance a message travels using Pastrding to the proximity
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metric, with that of a fictitious routing scheme that maintacomplete routing tables.
The distance traveled is the sum of the distances betweesecotive nodes encoun-
tered along the route in the emulated network. For the fiet#irouting scheme, the
distance traveled is simply the distance between the sanddhe destination node.
The results are normalized to the distance traveled in thigdigs routing scheme. The
goal of this experiment is to quantify the cost, in terms ataince traveled in the prox-
imity space, of maintaining only small routing tables in fPas
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lookups.

The number of nodes varies between 1,000 and 100/0804, |L| = 16, |M| =
32. 200,000 pairs of Pastry nodes are selected and a messageedd between each
pair. Figure 6 shows the results for Pastry and the fictiteieme (labeled “Complete
routing tables”). The results show that the Pastry routesaty approximately 30% to
40% longer. Considering that the routing tables in Pastrjtaio only approximately



[logss N x (20 —1) entries, this result is quite good. For 100,000 nodes thyPasit-
ing tables contain approximately 75 entries, compared t8¥®in the case of complete
routing tables.

We also determined the routing throughput, in messagesguoemsl, of a Pastry
node. Our unoptimized Java implementation handled ové&Bnlessages per second.
This indicates that the routing procedure is very lightvirig

3.2 Maintaining the network

Figure 7 shows the quality of the routing tables with respetie locality property, and
how the extent of information exchange during a node joirrafien affects the quality
of the resulting routing tables vis-a-vis locality. Ingtexperiment, 5,000 nodes join the
Pastry network one by one. After all nodes joined, the rautables were examined.
The parameters afe= 4, |L| = 16, |M| = 32.

Three options were used to gather information when a noaes j6EL" is a hypo-
thetical method where the joining node considers only the@griate row from each
node along the route from itself to the node with the closgstiag nodeld (see Sec-
tion 2.4). With “WT”, the joining node fetches the entiretstaf each node along the
path, but does not fetch state from the resulting entriegs iBhequivalent to omitting
the second stage. “WTF”" is the actual method used in Pastrgrevstate is fetched
from each node that appears in the tables after the first.stage

15 — 1
|| DEmpty

B Sub-Optimal
131 [ | [ | [ | [ |@optimal 1 [

Numbeeéntrieoutingable

o Rr N W h OO N ® ©
A T

sL ‘ wT ‘WTF
Leved

SL‘WT‘WTF SL‘WT‘WTF

Level

sL ‘ wT ‘WTF
Leved

Leve?

Fig. 7. Quality of routing tables (locality}y = 4, |L| = 16, | M| = 32 and 5,000 nodes.

The results are shown in Figure 7. For levels 0 to 3, we showgtradity of the
routing table entries with each method. With 5,000 nodesbaadt, levels 2 and 3 are
not fully populated, which explains the missing entriesvgho“Optimal” means that
the best (i.e., closest according to the proximity metraj@appeared in a routing table
entry, “sub-optimal” means that an entry was not the clogegias missing.



The results show that Pastry’s method of node integratidil{") is highly effec-
tive in initializing the routing tables with good localit@n average, less than 1 entry
per level of the routing able is not the best choice. Moreghercomparison with “SL”
and “WT” shows that less information exchange during theenjoth operation comes
at a dramatic cost in routing table quality with respect waldy.

3.3 Replicarouting

The next experiment examines Pastry’s ability to route te ohthek closest nodes
to a key, where: = 5. In particular, the experiment explores Pastry’s abildydcate
one of thek nodes near the client. In a Pastry network of 10,000 noddsbat 3 and
|L| = 8, 100,000 times a Pastry node and a key are chosen randordlg, message is
routed using Pastry from the node using the key. The first®kthumerically closest
nodes to the key that is reached along the route is recorded.
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Fig. 8. Number of nodes closer to the client than the node discovéred 3, |L| = 8, |M| = 16,
10,000 nodes and 100,000 message routes).

Figure 8 shows the percentage of lookups that reached tisestimode, accord-
ing to the proximity metric (O closer nodes), the secondesbsiode (1 closer node),
and so forth. Results are shown for the three different paitofor initializing a new
node’s state, with (“Estimation”) and without (“Standaydfie heuristic mentioned in
Section 2.5, and for an idealized, optimal version of theristia (“Perfect estimation”).
Recall that the heuristic estimates the nodeld space cgeerfaother nodes’ leaf sets,
using an estimate based on its own leaf sets coverage. ThietPestimation” ensures
that this estimate of a node’s leaf set coverage is corre@very node.

Without the heuristic and the standard node joining prot@é6orF), Pastry is able
to locate the closest node 68% of the time, and one of the topbaes 87% of the time.
With the heuristic routing option, this figures increase 6&/and 92%, respectively.



The lesser routing table quality resulting from the “SL” &éMIT” methods for node
joining have a strong negative effect on Pastry’s abilitjoiwate nearby nodes, as one
would expect. Also, the heuristic approach is only appratity 2% worse than the
best possible results using perfect estimation.

The results show that Pastry is effective in locating a naghe the client in the vast
majority of cases, and that the use of the heuristic is gffect

3.4 Nodefailures

The next experiment explores Pastry’s behavior in the masef node failures. A
5,000 node Pastry network is used with= 4, |L| = 16, |M| = 32, k = 5. Then,
10% (500) randomly selected nodes fail silently. After théalures, a key is chosen
at random, and two Pastry nodes are randomly selected. Aagess routed from
these two nodes to the key, and this is repeated 100,000 (2063000 lookups total).
Initially, the node state repair facilities in Pastry werisabled, which allows us to
measure the full impact of the failures on Pastry’s routisgggrmance. Next, the node
state repair facilities were enabled, and another 200,00KuUps were performed from
the same Pastry nodes to the same key.
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Figure 9 shows the average routing table quality acrossalea for levels 0-2,
as measured before the failures, after the failures, ared &fe repair. Note that in
this figure, missing entries are shown separately from qutbral entries. Also, recall
that Pastry lazily repairs routing tables entries when taeybeing used. As a result,
routing table entries that were not used during the 200,60RUps are not discovered
and therefore not repaired. To isolate the effectivene&asfry’s repair procedure, we
excluded table entries that were never used.



The results show that Pastry recovers all missing tabléesntand that the quality
of the entries with respect to locality (fraction of optineaitries) approaches that before
the failures. At row zero, the average number of best enétfies the repair is approx-
imately one below that prior to the failure. However, altghuhis can’t be seen in the
figure, our results show that the actual distance betweesutbeptimal and the optimal
entries is very small. This is intuitive, since the averaggahce of row zero entries is
very small. Note that the increase in empty entries at levelad 2 after the failures is
due to the reduction in the total number of Pastry nodes, minicreases the sparseness
of the tables at the upper rows. Thus, this increase doesnstitute a reduction in the
quality of the tables.

Figure 10 shows the impact of failures and repairs on theerouality. The left
bar shows the average number of hops before the failureanttidle bar shows the
average number of hops after the failures, and before tHegatere repaired. Finally,
the right bar shows the average number of hops after therréfaé data shows that
without repairs, the stale routing table state causes a#fis@nt deterioration of route
quality. After the repair, however, the average number gishis only slightly higher
than before the failures.
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Fig. 10. Number of routing hops versus node failurés= 4, |L| = 16, |[M| = 32, 200,000
lookups and 5,000 nodes with 500 failing.

We also measured the average cost, in messages, for repthieitables after node
failure. In our experiments, a total of 57 remote procedattsavere needed on average
per failed node to repair all relevant table entries.

4 Reated Work

There are currently several peer-to-peer systems in uskmmamy more are under de-
velopment. Among the most prominent are file sharing faedlitsuch as Gnutella [2]
and Freenet [8]. The Napster [1] music exchange servicagedwmuch of the original
motivation for peer-to-peer systems, but it is not a purerpegeer system because
its database is centralized. All three systems are prignariended for the large-scale



sharing of data files; reliable content location is not gatgad or necessary in this
environment. In Gnutella, the use of a broadcast based gobtionits the system’s
scalability and incurs a high bandwidth requirement. Bottutella and Freenet are not
guaranteed to find an existing object.

Pastry, along with Tapestry [27], Chord [24] and CAN [19hresent a second gen-
eration of peer-to-peer routing and location schemes tlea¢\wspired by the pioneer-
ing work of systems like FreeNet and Gnutella. Unlike thatieawork, they guarantee
a definite answer to a query in a bounded number of network, vapite retaining the
scalability of FreeNet and the self-organizing propertiEsoth FreeNet and Gnutella.

Pastry and Tapestry bear some similarity to the work by Bladt al [18] and
to routing in the landmark hierarchy [25]. The approach aftiog based on address
prefixes, which can be viewed as a generalization of hypercotiting, is common to
all these schemes. However, neither Plaxton nor the landapproach are fully self-
organizing. Pastry and Tapestry differ in their approachdahieving network locality
and to supporting replication, and Pastry appears to betasplex.

The Chord protocol is closely related to both Pastry and 3apebut instead of
routing towards nodes that share successively longer aslgnefixes with the desti-
nation, Chord forwards messages based on numerical differeith the destination
address. Unlike Pastry and Tapestry, Chord makes no eixpffort to achieve good
network locality. CAN routes messages indalimensional space, where each node
maintains a routing table wit®(d) entries and any node can be reache@{@dN'/¢)
routing hops. Unlike Pastry, the routing table does not gnatl the network size, but
the number of routing hops grows faster thap.V.

Existing applications built on top of Pastry include PAST [21] and SCRIBE [22].
Other peer-to-peer applications that were built on top ofaggic routing and location
substrate like Pastry are OceanStore [15] (Tapestry) arfsl [@F(Chord). FarSite [5]
uses a conventional distributed directory service, butccpotentially be built on top
of a system like Pastry. Pastry can be seen as an overlay rketinad provides a self-
organizing routing and location service. Another examglarooverlay network is the
Overcast system [12], which provides reliable single-seunulticast streams.

There has been considerable work on routing in general, gerecube and mesh
routing in parallel computers, and more recently on routingd hoc networks, for ex-
ample GRID [17]. In Pastry, we assume an existing infrastmecat the network layer,
and the emphasis in on self-organization and the integraifccontent location and
routing. In the interest of scalability, Pastry nodes ordg local information, while tra-
ditional routing algorithms (like link-state and distanestor methods) globally prop-
agate information about routes to each destination. Thibajlinformation exchange
limits the scalability of these routing algorithms, nedtdig a hierarchical routing
architecture like the one used in the Internet.

Several prior works consider issues in replicating Web eonin the Internet, and
selecting the nearest replica relative to a client HTTP gi#rl3, 14]. Pastry provides
a more general infrastructure aimed at a variety of pegreer applications. Another
related area is that of naming services, which are largahogonal to Pastry’s content
location and routing. Lampson’s Global Naming System (GNS$J is an example
of a scalable naming system that relies on a hierarchy of resmeers that directly



corresponds to the structure of the name space. Cheritoand [7] describe another
scalable naming service.

Finally, attribute based and intentional naming system8][@s well as directory
services [20, 23] resolve a set of attributes that deschibeptoperties of an object to
the address of an object instance that satisfies the givgrepres. Thus, these systems
support far more powerful queries than Pastry. Howeves, lmwer comes at the ex-
pense of scalability, performance and administrative loead. Such systems could be
potentially built upon Pastry.

5 Conclusion

This paper presents and evaluates Pastry, a generic ppeetaontent location and
routing system based on a self-organizing overlay netwériodes connected via the
Internet. Pastry is completely decentralized, faultliesi, scalable, and reliably routes
a message to the live node with a nodeld numerically cloeeskey. Pastry can be used
as a building block in the construction of a variety of pempker Internet applications
like global file sharing, file storage, group communicatiod @aaming systems.

Pastry routes to any node in the overlay network in O(log Hjpstin the absence of
recent node failures, and it maintains routing tables witly ©(log N) entries. More-
over, Pastry takes into account locality when routing mgssaResults with as many as
100,000 nodes in an emulated network confirm that Pastryi@esft and scales well,
that it is self-organizing and can gracefully adapt to nakifes, and that it has good
locality properties.
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