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Abstract: Nanostructured materials are attracting interests and applications, thus; 
physical and electrical properties of Polymethylmethacrylate (PMMA) nanocomposite 
materials under various thermal conditions are currently being studied. The dielectric 
behavior of new nanocomposite materials of Polymethylmethacrylate filled with nano-
clay or nano-fumed silica has been measured at various frequency (0.1 kHz - 1 kHz) and 
temperatures (20°C-60°C). Dielectric spectroscopy has been used to characterize ionic 
conduction and state the effect of filler concentration on the dielectric permittivity and 
dielectric losses, therefore; the relative permittivity and the loss tangent are measured by 
dielectric spectroscopy for Polymethylmethacrylate with and without nanofillers. 
Finally, it has been compared between dielectric properties of new 
Polymethylmethacrylate nanocomposites which prepared by adding nanofillers of clay 
or fumed silica with different concentrations under various temperatures. 
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1. Introduction 
 Polymethylmethacrylate  (PMMA) is a versatile polymeric material that is well suited for 
many microelectronic applications. It is often preferred because of its moderate properties, easy 
handling and processing, and low cost. Its melting point it 160oC. Also, 
Polymethylmethacrylate is one of the most versatile polymeric materials that are well suited for 
many applications in micro electric and electro-optics areas. This polymer offers low costs, 
process ability, possibility of functionalization, and are semiconductor nanoparticles, which 
simultaneously show a size-dependent band gap shift, high carrier mobility, and nonlinear 
optical properties [1-5]. Fillers are used in polymeric dielectric materials for improving specific 
electrical and other properties, or for controlling costs. However conventional micro-sized 
fillers generally impact the electric strength of polymeric materials negatively. Recent 
applications have shown that composite dielectrics with nanosized fillers may exhibit more 
attractive electrical characteristics [6-10]. One of the advantages of nanometric fillers is their 
large specific surface area when compared with micronsized fillers. 
 A high surfactant concentration can also compromise the adsorption of the matrix polymer 
chains on the filler particles, so it is necessary to establish a balance between matrix adsorption 
and the dispersion of the particles [11]. Thus, nanotechnologies can have a powerful impact on 
the development of advanced electric and electronic products. In the case of polymer 
nanocomposites a few percent of functional nanofillers are sufficient to significantly modify 
polymer behavior, as regards mechanical, chemical, environmental and electrical properties. In 
contrast to conventional filled polymers, nanocomposites are composed of nanometer sized 
fillers, which are homogenously distributed within the polymer matrix [12-18].  
 Nowadays, dielectric materials of nano scale dimensions have aroused considerable 
interest. It is mention two examples. First, in the semiconductor industry, in order to keep pace 
with Moore’s law scaling, the thickness of the gate oxide dielectric material is reaching 
nanoscale dimensions [19, 20]. Second, the high energy density capacitors industry is currently  
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considering dielectric composites with a polymer host matrix filled with inorganic dielectric 
nanoparticles or polarizable organic molecules [21-27]. Work is underway to examine thermal 
electric and dielectric properties of nanocomposite materials composed of nanoparticles and 
their compounds stabilized within a polymeric dielectric matrix.  
 In this paper, Polymethylmethacrylate nanocomposites have attracted wide interest in 
regard to enhancing their properties and extending their utility. The electric and dielectric 
properties of PMMA nanocomposite materials have been demonstrated to be highly dependent 
on the size, structure, and concentration of the nanoparticles, as well as on the type of 
polymeric matrix. Significant efforts have been devoted for improving the dielectric properties 
of nanocomposites by nanosized filler within the polymer. Therefore, it has been concerned in 
this paper the effect of types of costless nanofillers on electrical properties of polymeric 
nanocomposite under various thermal temperatures. All experimental results of dielectric 
spectroscopy have been measured and compared to detect all effects of nanofillers on dielectric 
properties of polymethylmethacrylate nanocomposite industrial materials. 
 
2. Experimental Setup 
 HIOKI 3522-50 LCR Hi-tester device has been measured nanocomposite electrical 
parameters: |Z|, |Y|, θ, Rp (DCR), Rs (ESR, DCR),G, X, B, Cp, Cs, Lp, Ls, D (tan δ), at variant 
frequencies.  Specification of LCR is Power supply: 100, 120, 220 or 240 V(±10%) AC 
(selectable), 50/60 Hz, Frequency: DC, 1 mHz to 100 kHz, Display Screen: LCD with 
backlight / 99999 (full 5 digits), Basic Accuracy: Z : ± 0.08% rdg. θ : ± 0.05˚, and External DC 
bias ± 40 V max.(option) (3522-50 used alone ± 10 V max./ using 9268 ± 40 V max.).   Thus, 
it has been measured all dielectric properties for pure and nanocomposite industrial materials 
by using HIOKI 3522-50 LCR Hi-tester device. Figure 1 shows HIOKI 3522-50 LCR Hi-tester 
device for measuring characterization of nanocomposite insulation industrial materials. The 
industrial materials studied here is Polymethylmethacrylate which has been formulated 
utilizing variant percentages of nanoparticles of cay and fumed silica. The base of all these 
polymer materials is commercially available and already in use in the manufacturing of high-
voltage (HV) industrial products and their properties detailed are given in table 1. 
 
 

 
Figure 1. HIOKI 3522-50 LCR Hi-tester device 

 
 Additives of clay and fumed silica nanoparticles to the base industrial polymers have been 
fabricated by using mixing, ultrasonic, and heating processes under using SOL-GEL method. 
The distribution of nanoparticles within polymer matrix has been detected by using scanning 
electron microscope (SEM) as shown in figure 2.  
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hybrid materials. One method involves the polymerization of organic functional groups from a 
preformed sol–gel network. The sol- gel process is a rich chemistry which has been reviewed 
elsewhere on the processing of materials from glass to polymers. The organic–inorganic hybrid 
nanocomposites comprising of polymer, and nanoparticles were synthesized through sol–gel 
technique at ambient temperature [28]. 
 
3. Results and Discussion 
 Dielectric Spectroscopy is a powerful experimental method to investigate the dynamical 
behavior of a sample through the analysis of its frequency dependent dielectric response. This 
technique is based on the measurement of the capacitance as a function of frequency of a 
sample sandwiched between two electrodes. The tan δ, and capacitance (C) were measured as a 
function of frequency in the range 0 Hz to 1 kHz at variant temperatures for all the test 
samples. The measurements were made using high resolution dielectric spectroscopy. 
 
A. Characterization of PMMA Nanocomposites at Room Temperature (20oC) 
 Figure 3 shows loss tangent versus frequency for Clay/ PMMA nanocomposites at room 
temperature (20oC). The loss tangent decreases with increasing the percentage of clay 
nanoparticles percentage up to certain value (5%wt.), specially, at low frequencies but it 
increases with increasing clay nanoparticles percentage up to certain value (10%wt.), specially, 
at high frequencies. As shown in  
 

 
Figure 3. Measured loss tangent of Clay/PMMA nanocomposites at room temperature (20oC) 

 
 Figure 4, the measured loss tangent decreases with increasing percentage of fumed silica 
nanofillers in PMMA nanocomposite up to certain value (10%wt.) especially at room 
temperature (20oC). On the other wise, figure 5 contrasts on capacitance of Clay/PMMA 
nanocomposites as a function of frequency at room temperature (20oC). The measured 
capacitance decreases with rising the percentage of clay nanofillers in the nanocomposite up to 
certain value (5%wt.) but it increases with increasing clay percentage nanofillers up to 
percentage (10%wt.). 
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Figure 4. Measured loss tangent of Fumed silica/PMMA nanocomposites at room  
temperature (20oC) 

 

 
Figure 5. Measured capacitance of Clay/PMMA nanocomposites at room temperature (20oC) 

 
 However, figure 6 shows the capacitance versus frequency for fumed silica/ PMMA 
nanocomposites at room temperature (20oC); the measured results shows that the decreasing 
capacitance with increasing the percentage of fumed silica nanofillers in the nanocomposite 
continuously up to certain value (10%wt.). 
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Figure 6. Measured capacitance of Fumed Silica /PMMA nanocomposites at  
room temperature (20oC) 

 
B. Characterization of PMMA Nanocomposites at Temperature (T=40oC) 
 For medium soft temperatures, the electrical parameters of nanocomposite insulation 
specimens have been measured at 40oC and various frequencies. Thus, figure 7 shows the loss 
tangent of Clay/PMMA nanocomposite at (40oC) that decreases with increasing clay 
nanofillers percentage up to certain value (10%wt.).  
 

 
Figure 7. Measured loss tangent of Clay/PMMA nanocomposites at temperature (40oC) 

 
 Figure 8 shows the measured loss tangent of Fumed Silica/PMMA at (60oC) that decreases 
with increasing fumed silica nanoparticles percentage up to certain value (5%wt.) of fumed 
silica nanoparticles but, it increases with increasing percentage of fumed silica nanoparticles up 
to certain value (10%wt.). On the other wise, figure 9 shows the measured capacitance of 
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Clay/PMMA at temperature (40oC) that increases with increasing clay nanoparticles percentage 
up to certain value (5%wt.). However, the measured capacitance of Clay/PMMA decreases 
with increasing clay nanoparticles percentage up to certain value (10%wt.).  
 

 
Figure 8. Measured loss tangent of Fumed Silica /PMMA nanocomposites at temperature 

(40oC) 
 

 
Figure 9. Measured capacitance of Clay/PMMA nanocomposites at temperature (40oC) 

 
 Figure 10 illustrates that the capacitance of Fumed silica /PMMA at temperature (40oC) that 
draw decreasing with increasing fumed silica nanoparticles percentage up to certain value 
(5%wt.); then, the capacitance of Fumed silica /PMMA is increasing with increasing fumed 
silica nanoparticles percentage up to certain value (10%wt.). It is noticed that Clay 
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nanoparticles increases the capacitance of Polymethylmethacrylate more than increasing fumed 
silica nanoparticles at the same concentration values of percentages. 
 

 
Figure 10. Measured capacitance of Fumed Silica /PMMA nanocomposites at temperature 

(40oC) 
 
C. Characterization of PMMA Nanocomposites at Temperature (T=60oC) 
 Using vacuum oven and HIOKI 3522-50 LCR Hi-tester device, it can measure the electrical 
parameters of nanocomposite solid dielectric insulation specimens at various frequencies at 
high temperatures. Therefore; figure 11 shows the loss tangent versus frequency for 
Clay/PMMA nanocomposites at (60oC). The loss tangent of Clay/PMMA nanocomposite 
decreases with increasing clay nanofillers percentage up to certain value (10%wt.). Figure 12 
shows the loss tangent versus frequency for Fumed Silica/PMMA nanocomposites at (60oC).  
 
 

 
Figure 11. Measured loss tangent of Clay/PMMA nanocomposites at temperature (60oC) 

 
 The measured loss tangent of Fumed Silica/PMMA decreases with increasing fumed silica 
nanoparticles percentage up to certain value (5%wt.) of fumed silica nanoparticles but, it 
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increases with increasing percentage of fumed silica nanoparticles up to certain value 
(10%wt.). Noting that, the dielectric loss reduction of clay and fumed silica nanoparticles at 
environment temperature (40oC) is more effective than the environment temperature (60oC). 

 

Figure 12. Measured loss tangent of Fumed Silica /PMMA nanocomposites at temperature 
(60oC) 

 
 

 
Figure 13. Measured capacitance of Clay/PMMA nanocomposites at temperature (60oC) 
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percentage of fumed silica nanoparticles up to certain value (10%wt.). On the other wise, 
figure’s (9, 10) shows the measured capacitance increases with increasing clay nanoparticles 
but it is decreasing with increasing fumed silica nanoparticles percentage up to certain value 
(5%wt.). It is noticed that clay nanoparticles increases the capacitance of 
Polymethylmethacrylate more than increasing fumed silica nanoparticles at the same 
concentration values of percentages. However; at high temperature (60oC), the loss tangent of 
Clay/PMMA nanocomposite decreases with increasing clay percentage nanofillers up to a 
certain value (10%wt.) Clay. On the other wise, The measured loss tangent of Fumed 
Silica/PMMA decreases with increasing fumed silica nanofillers percentage up to certain value 
(5%wt.) fumed silica but, it increases with increasing fumed silica nanofillers percentage up to 
certain value (10%wt.). With respect to the measured capacitance of Clay/PMMA, it is obvious 
that the capacitance increases with increasing clay nanofillers percentage up to certain value 
(10%wt.). Although, the capacitance of Fumed silica /PMMA increases with increasing fumed 
silica nanofillers percentage up to certain value (5%wt.), then; the measured capacitance of 
Fumed silica/PMMA decreases with increasing fumed silica nanofillers percentage up to a 
certain value (10%wt.).  
 
5. Conclusion  
 Adding small or large percentages of different nanoparticles to PMMA has been reversed 
dielectric behavior characteristics gradually which depends on nature of nanoparticles structure 
in polymer matrix. Although, adding small or large percentages of the same nanoparticles to 
PMMA may be reversed dielectric behavior characteristics gradually depending on nature of 
accumulated distribution concentration of nanoparticles structure in polymer matrix. 
 At room temperature and with respect to pure PMMA characterization: addition of Clay 
nanoparticles decreases the permittivity and loss tangent of new PMMA nanocomposite 
materials but increases capacitance of the new nanocomposites. On the other hand, addition of 
small amount of fumed silica nanoparticles percentage to PMMA increases the relative 
permittivity, and loss tangent, specially, at low frequencies; but decreases capacitance of the 
new nanocomposites. 
 At medium temperatures and with respect to pure PMMA characterization: the loss tangent 
decreases with increasing clay and fumed silica nanoparticles percentage up to certain value 
(5%wt.); then, the loss tangent increases with increasing percentage of fumed silica 
nanoparticles up to certain value (10%wt.). On the other hand, the measured capacitance 
increases with increasing clay nanoparticles but it is decreasing with increasing fumed silica 
nanoparticles percentage up to certain value (5%wt.). Therefore, clay nanoparticles increases 
the capacitance of Polymethylmethacrylate more than increasing fumed silica nanofillers at the 
same concentration values of percentages. 
 At high temperatures and with respect to pure PMMA characterization: addition of clay or 
fumed silica nanoparticles is still decreasing the loss tangent of new PMMA nanocomposite 
materials; specially, at low frequencies. But, addition of clay or fumed silica nanoparticles on 
PMMA increases capacitance, specially, at low frequencies. Noting that, adding clay 
nanofillers increases capacitance of PMMA more than increasing fumed silica nanofillers in 
PMMA at the same percentages. 
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