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Abstract

In a previous paper [MR] the authors introduced the inverse measure u! of
a probability measure p on [0,1]. It was argued that the respective multifractal
spectra are linked by the ‘inversion formula’ fT(a) = af(1/a). Here, the statements
of [MR] are put in more mathematical terms and proofs are given for the inversion
formula in the case of continuous measures. Thereby, f may stand for the Hausdorff
spectrum, the packing spectrum, or the coarse grained spectrum. With a closer look
at the special case of self-similar measures we offer a motivation of the inversion
formula as well as a discussion of possible generalizations. Doing so we find a
natural extension of the scope of the notion ‘self-similar’ and a failure of the usual
multifractal formalism. (Facsimile for personal use) (©1997 Academic Press

1 Introduction

Let p be a probability measure on [0, 1] with its integral function M (t) = u([0,¢]). Then,
M is increasing and right-continuous. The differential of the inverse function MT of M,
defined as follows, is a probability measure denoted by p:
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We call uf the inverse measure of 1. As M7 is increasing and right-continuous, u is again
a probability measure.

We are interested in the relation between the spectra of 1 and u' and possible implications
of such a connection. In [MR] it was argued that the respective spectra should be related
by the so-called inversion formula

[M(e) = af(1/a). (1)

The practical use of such a formula is most evident when dealing with left-sided spectra
[M90, MEH, RM1] since it allows us to transform the infinite range [omin, 00| of Holder
exponents of a left-sided spectrum into the finite range [0, 1/cmin] of a right-sided spec-
trum.

A further application of the inversion formula is to self-similar measures which reveals
telling details on the multifractal formalism. Recall that a compactly supported measure
w is called self-similar ift

= imw;l(-)), (2)

where wo, ..., w,_; are similarity maps of IR* with contraction ratios r; € (0,1), and
where the probabilities p; > 0 satisly po + ...+ p,—1 = 1. As Hutchinson [H] showed,
such measures exist and are unique even under the weaker condition that the w; are
contractions.

Provided a condition on possible overlap in (2) holds, it can be shown [AP, R1, CM, F2, O]
that all reasonable definitions of the multifractal spectrum of p coincide. In particular,
all spectra equal the Legendre transform 5*(«) := inf,(ga — 3(q)) of § which is implicitly
defined by

u—1
Zpiqn_ﬁ(q) - 1. (3)
1=0

It is easy enough to verify the inversion formula (1) for self-similar measures with support
[0,1]: In this case we have rg 4+ ...+ ry—1 = 1 due to [0,1] = U;w;([0,1]). A moments
thought shows that the inverse measure u' is self-similar with ratios ] = p;, and prob-
abilities p;r = r;, whence ¢ = —31(q"), ¢' = —3(q). Now, (1) follows immediately from

fla) = inf,(qa — B(q)).

Section 2 is devoted to the inversion formula in the case where p and u' are continuous.
We introduce the fine multifractal spectra fy and fp in 2.1 and prove (1) for fy and fp
in 2.2. In 2.3 we comment on the ‘degenerated’ Holder exponents 0 and co. In 2.4, finally,
we turn to the coarse grained spectrum fg and the Legendre spectrum fi,, comparing them
to the fine multifractal spectra and establishing (1) for fq.

Revisiting the self-similar measures in Section 3 we leave the realm of continuous mea-
sures by showing that self-similarity can be naturally extended to discontinuous measures.
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Doing so we find a class of invariant measures for which the multifractal formalism does
not hold, which means that not all spectra coincide. This is a consequence of the fact

that (1) fails here for fq, while [RM2] establishes (1) for fi and fp also in the case of

discontinuous measures.

Discussing possible generalizations, we compare discontinuous self-similar measures with
equilibrium measures and comment on the second multifractal phenomenon found with
discontinuous self-similar measures: there are ‘right-sided’” multifractal spectra with a
tangent through the origin of slope strictly smaller than 1. This slope is directly related
to the particular way of renormalizing mass in an iterative construction of discontinuous
self-similar measures.

2 The inversion formula

2.1 Preliminaries

Let M be the distribution function of an arbitrary probability measure on [0, 1] as in
Section 1. In this section, an assumption will often appear which can be stated in several
equivalent ways:

e M is continuous and strictly increasing.
e M :[0,1] — [0,1] is onto and one-to-one with inverse M.
o s and u' are both continuous.

e 1 is continuous and no interval of positive length has zero p measure.

Given a number o > 0, the set K, is defined by

1 1
K, := {t €0,1] : aft) := Il_i}fg} % exists and equals a.} .
The limit a(t), if it exists, is called Hélder exponent of p at t. Here, I — {t} means that
I may run through any sequence ([)remw of intervals such that ¢ € I for all k € IN and

such that |I| — 0 as k — oo.

Definition 1 The two fine multifractal spectra are the Hausdor{f spectrum and the pack-
ing spectrum which are given by

fula) = dim(K,) and fe(a) = Dim(K,)

respectively, where dim and Dim denote the Hausdorff and the packing dimension respec-
tively.
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For completeness, we recall the definitions of the dimensions dim and Dim. Denoting by
n'(F) the v-dimensional Hausdorff measure of a set F, i.e.

W(B) =supni(E),  nd(E)=inf {3 |L[" : B C Unli and |I] < 6},
IN

§—0

the Hausdorff dimension is defined as
dim(E) =inf{y >0 : n"(F)=0} =sup{y >0 : n7(F) = oo}.
Following Tricot [Tr] one defines the v-dimensional packing pre-measure by

7(F) = inf 7§ (F), 7 (E) = sup { ST {Iibw is a §-packing of E}
N

Here, a §-packing { I} of £ is a collection of mutually disjoint, open balls, i.e. intervals,
each of length less or equal to § and each intersecting F. Then the vy-dimensional packing
measure is given by

T(E) = inf{z T(E,) : ECU, En}
(the sets E, are arbitrary here) and the packing dimension by

Dim(F)=inf{y >0 : 7"(F) =0} =sup{y >0 : 77(F) = c0}.

In [MR], the inversion formula was established heuristically by a counting argument,
covering K, by N(e,a) ~ =/(®) intervals of size c. As it was argued, M maps these
e-intervals to N(g,a) intervals, each of length approximately equal to &' := &%, covering
the set Klf of points # with pf-Hélder exponent af = 1/a. Thus, N(&, a) should behave

fi(1/a)

as ~ (5T)_ from which the inversion formula was deduced.

This proof will become rigorous for fi; and fp by considering coverings of K, by arbi-
trary sets I. A proof for fg, however, cannot follow the same lines because the coarse
graining approach fg estimates Holder exponents of intervals for which a precise relation

corresponding to af = 1/a (lemma 4) is not available.

The first step in the proof is to establish that the operation y — u! is inverse to itself.
This holds, though MT is not everywhere inverse to M.

Lemma 2 Fir at from [0,1). If M(t') > M(t) whenever 1 >t >t, then
MT(M(t)) = t.

Otherwise, MT(M(t)) > t.
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Proof

By definition we have
MY M) =inf {t’' - M(t") > M)} >sup{t' : M(t') = M(1)} > L.

This proves the inequality. Consider a sequence ¢, N\, t. If M(¢,) > M(t) for all n we
conclude MT(M(t)) < inf,t, = t. &

Proposition 3 We have MTT = p, in other words Mt =M.

Proof
Take ¢t < 1 and let 6 := M(¢). Recall that MTT(t) =inf {0 : MT(0') > t}.

Assume first that MTT(t) < 0. Then, we find 0" < 0 with MT(0") > t. Take ¢’ > ¢ with
MT(0") > #'. The definition of MT implies M(¥') < ¢’ < § = M(t), a contradiction to
monotony.

Assume now that MTT(t) > 0. Then, we find 0’ > 0 with MT(0') <¢. Take t' > ¢. The
definition of MT implies M (') > 0'. Letting ¢’ \ ¢ yields M(t+) > 0’ > 0, a contradiction
to right-continuity. &

Lemma 4 Assume that M is onto and one-to-one, or equivalently, that p is continuous
and non-vanishing. Then,
te K, e Mt)e K],

Proof
Consider any interval I containing § := M(¢) and let [ := M~'(IT). Since I N\, {t} iff
IT N, {0} and since
log st (1) log1
log [I1] log pu(1)
the claim follows. &

2.2 Hausdorff and Packing spectrum

Because the operation i +— u' is inverse to itself (proposition 3), estimates in one direction
only are sufficient. Therefore, we set

1 !
F, = {tE [0,1] : limsup og 1(1) < a}
1 log /]
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log (1
Goo= Lie]: timinr et
1-+{ty log ||
. log (1)
K= {0e0,1]: lim —2F ) 4t
ot { S0 i g~ @

and similarly for F;rT and GLT.

Proposition 5 For any p and any subset A of G, one has
dim(A) > a - dim(M(A)),

provided 0 < o < o0.

Proof
Fix o/ < a and let
Ap={te A () <|I|”ift € lTand [I] <1/m}. (4)

Since A is a subset of ¢, we have

A= U A,

m>1

Note, that for any interval [

|M(I)] < () (5)

even if M is not continuous. More precisely, if a is the left boundary point of an interval
I, then |M(I)| = pu(I\{a}) since M is right continuous. Thus, we have equality in (5) iff
[ is left open or p({a}) = 0.

Let {/;}; be a covering of A,, by intervals of length less than 1/n (n > m) and assume
that all /; intersect A,,. We have

IM(L)] < u(l;) < |G| < (1/n)~.

Consequently, {M(1;)}; forms a covering of M(A,,) by intervals of length less than §,, :=
(1/n)*" and we find

0l (M(AL) < S ML) < S ]
It is clear that the same estimate must hold also for arbitrary covers of A,,. Thus,
m (M) <y (An) < (A) <7 (A)

which proves that dim(M(A4,,)) < dim(A)/o’. Recalling the o-stability of Hausdorff
dimension dim(M(A)) = sup,, dim(M(A,,)), the claim follows by letting o/ 7 a. O
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Proposition 6 Assume that p is continuous and non-vanishing. Then
Dim(A) < a-Dim(M(A))

for any subset A of F,,, provided 0 < o < o0.

Proof
In its basic structure this proof is very similar to proposition 5. Note, that o = 0 is
allowed here. Fix o/ > a and let

Ap={teA: p(I)>|1|"ift € Tand |[I] <1/m}.

Since A 1s a subset of £}, we have

Fix m for the moment and let Fj denote an arbitrary subset of A,,. Consider a 1/n-
packing {/;}; of E} which is a collection of mutually disjoint, open intervals, each of length
less or equal 1/n and each intersecting E. Since M and MT = M~! are continuous, the
collection of all []fr := M(I;) provides a packing of M(FE}). The central estimate is here

11| = p(1;) > |1

which follows since we have equality in (5). To get the obvious argumentation started,
we need an upper estimate of the length of [}. Again, we use the continuity of M ; more
precisely, its uniform continuity. Choose é > 0. Then there is n such that /| < 1/n
implies [M ()| < 4.

In summary, {]}}j is a d-packing of M (FE}). This allows us to estimate the y-dimensional
packing pre-measure 7:

A (M(E) = 3 1M = 3|5
Since {I;}; is an arbitrary 1/n-packing it follows that
#(M(E)) > 73 (1) > 77 ()
and letting &\, 0, we obtain #7 (M (k) > 77 (Ey).

In order to estimate the packing measure of M(A,,), consider a countable cover, say
M(A,) C UkE,I. Then the sets £} = M_I(E,I N M(A)) form a cover of A,,. Since
E, C A, for all k, the previous reasoning applies, and by the definition of the packing
measure,

S #(Ef) > zkjfﬂ(Eg NM(A,)) > Zk:fr”“' () = 7" (An).

k



INVERSE MULTIFRACTALS 339

Taking the infimum over all possible covers {E,I} of M(An) we get, due to A D A,
w1 (M(A)) > 7 (M(A,)) > 7 (A,).

This proves that o - Dim(M(A)) > Dim(A,,). Finally, the o-stability of the packing
dimension, i.e. Dim(A) = sup,, Dim(A,,) yields the claim when letting o/ \, a. O

Corollary 7 (Inversion formula) Assume that M is onto and one-to-one, i.c. p is
continuous and nonvanishing. For any subset A of K, we have

dim(A) = a - dim(M(A)), and Dim(A) = a-Dim(M(A)),

provided 0 < o < o0.

This corollary implies, in particular,
fi(ah) = dim(KT)) = dim(M(Kja1)) = oldim(Kj.1) = o fi(1/al)
and similar for fp.

Proof
Note first that M(A) C K;r/a by lemma4, and that MT(M(A)) = A by lemma2. Applying

proposition 5 once to g and A C K, C G, and once to u! and M(A) C K;r/a C Gi/a

yields dim(A) > adim(M(A)) > dim(MT(M(A))) = dim(A). The argument for the

packing dimension is the same. &

Remark 8 Proposition 5 could be used to establish the inversion formula in general if it
were not for a generalization of lemma 4 which appears to be cumbersome. In the context
of [RM2] this generalization will be achieved more naturally.

Remark 9 In the definition of K, F, ... all the intervals are considered. In certain
situations, however, it is convenient to restrict attention to a family 7 of intervals. If so,
the sets KL, FL, and GLT have to be defined using the images by M of the intervals in
J, and the definitions of dimensions on ¢- and #-axis have to be modified accordingly in
order for the inversion formula to remain valid.

2.3 Holder exponents 0 and o~

As will be demonstrated with self-similar measures, it becomes natural to consider also
the degenerate Holder exponents 0 and oo when dealing with measures which can have
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atoms and gaps. It is worthwhile noting that these values @ = 0 and oo can occur not
only in the trivial places where M is constant or discontinuous, but also as non-trivial
limits. As an example we refer to the left sided multifractal presented in [MEH, RM1]
some of which are continuous and non—vanishing and have Holder exponent oo (Lebesgue)
almost everywhere [RM1, Example 1].

The sets of Holder exponent 0 or oo have to be treated seperately, since most of the results
of the preceding section do not apply. Only the following corollary of proposition 6 is
available:

Corollary 10 Assume that p is continuous and nonvanishing. Set

- i logp(l)
[XO = {t € [0, 1] : Il_l}f{r%}m

=0 and pu(I) =0 zﬁ[—>{t}}
Then,
dim(Ky) = Dim(Ky) = 0.

The points with Holder exponent 0 which are not included in Ky are the atoms. Being
countable they always form a set of Hausdorff and packing dimension 0.

The corresponding inversion result would be that M(Ky) has dimension 1. This is not
true in general, however, as Ky may be empty. Nevertheless, this phenomen occurs—as we
just mentioned—with left sided infinitely self-similar multifractals, at least if one restricts
the eligable intervals I in the definition of K,, F,, G,, dim(-) and Dim(-) to the ones
which occur naturally in the construction of the measure. (See the remark 9 at the end of
subsection 2.2.) This fact, i.e. Dim(Ky) = 0 and dim(M(Ky)) = 1, reflects the fact that
M is not Holder continuous of any order, though it is continuous.

2.4 The Coarse grained spectrum

In applications, fi and fp are often hard, if not impossible to calculate, and one might
prefer to work with the spectra fg and fi, obtained by a coarse graining approach instead.
We start by giving definitions and by comparing the new notions with the fine multifractal
spectra. Then we collect some results from [R1, R2] which are used to show that the
inversion formula (1) holds also for fq in the case of continuous and non—vanishing p. As
follows from section 3 this formula fails, though, for discontinuous self-similar measures.

The coarse grained spectrum fg(a) is defined by

L log Ns(a, e)
fala) = 11_1;% hf?_f;lp W
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where N5 denotes the number of ‘intervals of size § with coarse Holder exponent a(B) =
log 11( B)/ log | B| roughly equal to o’. As was described earlier in [PR, R1], the straight-
forward or naive way of counting gives poor results in theory as well as in numerical
application. Among the various possible improvements [R2], we favor the following for
its simplicity: Let Hs be the set of all intervals B = [l4, (I 4+ 1)d) with integer [ and with
u(B) # 0, and let By :=[({ —1)4, (Il 4 2)d). Then

Ns(o,e) =#{B € Hs : [Bi[*™* < p(B1) < |Bi[*~7}.

Though tempting it is wrong to interpret fg as the box dimension of K,. The truth
is that K, has the same box dimension as its topological closure which is, in the case
of self-simliar measures, equal to the whole support of the measure. In fact, letting
K, o =G, N F, and setting

Ay =t € Koy—ecoge : [I|*T <p(I) < |I|I**ift € T and |I| < 1/m}
we find
#{B cHs : BNA, 75 @} < Ng(Oz,QaS), (6)
provided 3§ < 1/m. Denoting the box dimension of a bounded set £ by A(FE), we have

A(Ay) :=limsu log#{B € Hs : BO A, # 0} < limsu log Nis(a, 2¢) N(a, 2¢)

It is well known that dim(£) < Dim(E) < A(FE) (see Tricot or Falconer [Tr, F1]).
Together with K, C Ko—c ate C Un A, and Dim(U,, A,,) = sup,, Dim(A,,), one concludes
fula) < fe(a) < fa(a). If the box dimension was o-stable like Hausdorff and packing
dimension, one could argue A(U,, A,,,) = sup,, A(An) < fa(a). This is obviously not true
for self-similar measures where U, A,,, = supp(pu).

Lemma 11

fu(a) < fe(a) < fa(a).

The spectrum fg is related to the partition function 7(q)

1 B!
7(q) := liminf 08 2B, n(B1)
5—0 log )

through the Legendre transform [R1]

7(q) = inf (qo = fa(a)). (7)

a€lR

This relation holds also in the much more general context of Choquet capacities (see
Levy-Vehel and Vojak [LV, Thm 3]). The tentative inversion formula (1) translates to:

q =-7 = —q. (8)
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Most evidently it holds for self-similar measures (compare (3) and (10)). In general,
however, (8) may fail, as is the case with discontinuous self-similar measures.

It is natural to introduce the Legendre transform of 7(¢) as a further multifractal spec-
trum:

fula) :=7"(a) = inf (qa - 7(q)).

9eR

An equivalent form of (7) is to say that fi, is the concave hull of fg. Consequently:

Lemma 12 For all o
fala) < fula),

with equality in points of strict concavity. Moreover [R2],

fala®) = qa* —1(q) (¢>0) (9)
fale™) = qa™ —7(q) (¢<0)

where at :=7'(q+) and o~ := 7'(¢—) denote the one-sided derivatives of 7(q).

We say that the multifractal formalism holds for a given measure p if the inequalities
in lemmata 11 and 12 can be replaced by equalities. To establish this formalism under
various assumptions has been a point of major interest in multifractal analysis [AP, O, R1].
In general, however, the estimate (6) can clearly be sharp, meaning that an interval B
can show a coarse Holder exponent o although it contains no point ¢ with a(t) = a.

The most simple example of this kind is the absolutely continuous measure p with density
o(t) = t on [0,1], i.e. M(t) = t?/2. Here, a(t) =1 for 0 < ¢t < 1 and «(0) = 2, hence
fu(l) =1, fu(2) = 0 and K, is empty otherwise. A direct calculation shows, on the
other hand, that fg(a) =2 —a for 1 < o < 2. What seems to be a paradox is readily
explained: while log u(1)/log|I| tends to 1 for all ¢ > 0 in the limit, a coarse graining on
any ‘pre-asymptotic’ level § > 0 will show a non—trivial distribution of Holder exponents.
The striking difference between fi; and fg in this example expresses the strong non-
uniformity of the convergence of the Holder exponents a(t). Further examples of this
kind are found with the inverse measures of self-similar measures which are presented in
section 3.

Consider now a continuous, non-vanishing measure p and its inverse measure uf. In order
to compute fé one divides the #-axis into intervals of equal lengths. Since M and M1 are
continuous this translates into dividing the t-axis into intervals of equal g-measure. (Note
that this is not true for discontinuous measures p.) This kind of partitioning of the t-axis
is exactly the procedure used when computing the so-called fized mass spectrum frpy of
p. As is shown in [R2], fry is related to fg by the formula

fala) = afrm(l/a)

where fq is strictly concave. We conclude:
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Proposition 13 Let p be continuous and non-vanishing. Then the inversion formula
holds for fg in points o where it is strictly concave.

Corollary 14 Assume that p is continuous and non—vanishing with strictly concave fq.
Then the multifractal formalism fg = fo holds either for both, p and ut, or for neither.

3 Self-similar measures

Let 1 be a self-similar measure as in (2):

u(E) = EW;%E».

As condition on possible overlap we will assume that (0, 1) satisfies the open set condition
which means that w;((0,1)) are mutually disjoint subsets of (0,1). It is then easy to see
that the unit interval [0,1] is divided into w subintervals V; (1 =0,...,u — 1), length and
mass of which are the r; and p; fraction of their ‘parent interval’ [0, 1]. The same applies
to the subintervals, and iteratively ad infinitum. More precisely, for all n € IN the mass
of u is located on u” intervals V,, ., of length r., -...-r. and mass p., -...- p.,. Define
the convex function 3(q) as in (3):

u—1
Zpiqri—ﬁ(q) — 1.
=0

Then, the following holds (see sections 2.2 and 2.4 for notation): The partition function
7(q) equals (3(q), and the multifractal spectra all coincide. In summary,

fH(Oé) = fp(a) = fG(Oé) — fL(Oé) _ 6*(@) _ T*(Oz) _ { q_ﬁ’(q) — ﬁ(q) for a = ﬁl(q)

00 otherwise.
(10)

First results in this direction are found with Kahane & Peyriere [KP], Cawley & Mauldin
[CM], Falconer [F2], Olsen [O], and Riedi [R1]. In the stated form, (10) is a special case
of the result by Arbeiter and Patzschke [AP].

3.1 The inverse of self-similar measures: Continuous case.

Here, we assume that the support of p, denoted supp(p), is all of [0,1]. As a self-similar
set (supp(p) = Usw;(supp(p))) it must have dimension D = —7(0) = —3(0) [H]. But
D =1 here, which is equivalent with > r; = 1.

In this case, the inverse measure u' is obtained simply by exchanging the ratios o, . .., 7u_1
and the probabilities po, ..., pu_1. In other words, u' is self-similar with probability vector
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(ro,...,ry—1) and with the unique linear maps w:»r which have the same orientation as w;
and for which w:»r([(), 1) =1Ipo+...+pi—1,p0+ ...+ pi]. Since (3) establishes a one-to-one
relation between 3 and ¢, we obtain 3T = —q, ¢' = —3. Applying (10) to g and u' this
yields (8) immediately, and the inversion formula (1) follows for all spectra by writing

#(a) = inf(ga — 5(q)) = ainf(q — §/a) = ainf(q'/a — 51) = o~ (31)(1/a).

Proposition 15 For self-similar measures supported on [0, 1] the inversion formula (1)

holds for all four spectra fu, fp, fa, and fi,.

3.2 Discontinuous self-similar measures

In this case supp(u) has dimension D = —7(0) < 1, consequently > r; < 1. Consider

r—1

[0, 10\ U wi([0,1]).

=0

This set has at the most v + 1 components which are open intervals. It is obvious how
to define maps w; (j = u,...,v — 1) such that (0,1) is still an open set and such that
ro+...+7r,—1 = 1. We assign the probabilities p; =0 (j = u,...,v—1) to the new maps

and define w:»r as before. Then u' is invariant under w/, . .., wl_l with probability vector
(p;r), . ,pI_l) = (rgy...,7y—1). As we will show in an example, the newly added maps
wl, ..., wl_l are constant functions and create the atoms of which pu' consists. With this

procedure we have actually performed the step toward generalized self-similar measures
which may include vanishing probabilities and/or vanishing contraction ratios, hence,
toward discontinuous self-similar multifractals.

Example 1 Consider a Cantor measure pi¢, i.e. a self-similar measure with u = 2, wo(t) =
rot, wy(t) = rit+1—ry, where we assume ro+r; < 1, and pg = p1 = 1/2. Then, the inverse
measure g}, is invariant under the maps wh(6) = 6/2, wi(8) = 1/2 and w!(8) = 6/2+1/2
with probabilities p;r) = To, pJ{ =r; and p; =1 —rg —ry. By invariance of ug or directly
from the definition of MT it follows that w; creates an atom at 6 = 1/2 of mass p;r
corresponding to the gap (ro,1 — r1) in the support of pc. Iterating, we find that other
atoms are present, corresponding to the gaps of supp(pc) at the various scales. Moreover,
since the length of these gaps adds up to 1, so must the masses of the atoms and /,LTC is
purely atomic. O

An analysis of the Holder exponents of uf starts with the simple observation that the
Holder exponent 0 is assumed in the atoms. In other words, af(8) = 0 uf-almost surely.
Alternatively, in the language of the specialist, D; := —(77)/(1) = 0. Assuming that the
inversion formula (1) is valid in general, it is also easy to determine the Hélder exponents
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af(0) # 0. Instead of giving a general proof of (1), though, we would like to give an
intuition of the singular behavior of ' in points other than atoms.

To this end, one has to consider a measure u! which concentrates on a suitable subset of
nonatomic points. (We use the letter s instead of ¢! for ease of notation.) This ‘zooming
in’, however, is only useful for fy and fp: since they are defined pointwise they provide a
‘local” analysis. It has no implication on fg, which is defined in ‘global’ terms. The reader
familiar with the usual arguments in this context (see e.g. [CM, R1]) will not be surprised
that this measure ul is closely related to the inverse measure of p,, the measure which
concentrates on the points of y-Holder exponent o, = 3'(¢). The value of ¢ being fixed,
[ty 18 a self-similar measure like g itself, with the only difference that its probabilities in
(2) are p;?r;~% rather than just p;.

Translating this to ', fix a real number s and let u! be the self-similar measure invariant

under w), ..., w!_, and with the probabilities

Bl = (pl)* ()™ = ritp (t=0,...,u—1).

Here, v has to be chosen such that the new probabilities }_7;[ sum up to 1, i.e.

u—1 u—1
ST =3 =
=0 =0

(We use the letter 4 instead of 3T for ease of notion.) With the convention 0° := 0 for
all @, the definition of v generalizes (3). By (3) we find the same simple relation between
the auxiliary functions of 4 and p' as in the continuous case:

(=B(q9)) = —q.

Note, that we disregard the additional maps since we want to avoid atoms. This has
the further advantage of providing a natural encoding of nonatomic points # by infinite
sequences of intervals V! _ which are non-degenerate, i.e. of length rf -....7! > 0. (In
the simple case of the inverse Cantor distribution, where v = 2 and rg = TI = 1/2, this
is exactly the binary representation of §.) Following the usual arguments [R1, CM] one
writes the Holder exponents af(t) of u' as

logpl -...-pf 1/n) 27, log p!
ozT(t) = lim ngfrl p;" = lim (1/ )Zi_l gpfrk.
e Jogrd, ., (1 n) YoFL log e,

Clearly, the Holder exponents a[ul](t) of uf can be written in a similar fashion, replacing
f o ot
pi by pi-

The Law of Large Numbers implies now that for pf-almost all ¢

u=d ot t
> Dilogp
= =0 ='(s) =: al

S

B log p;r

ol(1)

- t u—1
Flogri 5 pllog !
=0
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and, simultaneously,

St
Z:()pi log p, :
1= ! *
= = =s-9(s) =7 =7"(ey).
IE, log ! “_1—T1 t
1 . O T'
;0 p; logr;

_ IE;log }_7;[

Fixing af = al = +/(s) for ease of notation, the first property implies that KL has full
pl-measure. The second property means that ul is equivalent to the v*(al)-dimensional
Hausdorfl measure restricted to KL, allowing the estimate dim([&”lT) > v*(af). A com-
pletely rigorous argument, which is beyond the scope of this paper, is contained in [RM2].
It applies the main result of [AP] to uf. Finally, the usual covering methods [F2, lem 4.3]
[RM1, prop 4] [RM2, thm 16] yield the upper bound for dim(KlT). In summary,

Proposition 16 The inversion formula for discontinuous self-similar measures holds for
Ju and fp:
flia) = fia’) = y7(al) = o13"(1/a’) = al fu(1/ah),

A special role is played by the zero of ~, i.e. v(D) = 0 where

To the contrary with 3 where 3(1) = 0, the zero of v will be strictly less than 1. This is,
of course, just another way of expressing that the support of ¢ has dimension D less than
1. Again in other words, while 11 = y none of the ul will coincide with x': A self-similar
measure constructed with the probabilities p;r would ‘die out’. To obtain a non-trivial
distribution using p;r, the mass of the intervals V;gsn had to be normalized on each level
n. This could be achieved in the way it is done with equilibrium measures of dynamical
systems (compare subsection 3.6) or by ‘putting mass aside in atoms’ as it is done with
discontinuous self-similar measures. Let us be more specific.

For the Cantor distribution, e.g. the mass of /,LTC at a given level n is distributed as atoms

in the dyadic points of order n and in the intermediate open intervals. The evolution of

the mass in these intervals follows the rules of a multiplicative process with probabilities
T T

po and py.

This has immediate and important consequences for the partition function 71: For s > D,
the contribution coming from these ‘intermediate’ intervals is overwhelmed by the constant
contribution of the atoms; the contrary is true for s < D.

Proposition 17 For the Cantor measure e (Frample 1) and its inverse measure /,LTC we
have
o s s <
(s) = { ; logy(ro* +11*) fors <D ()

otherwise.



INVERSE MULTIFRACTALS 347

Comparing this with (3) and (10) it becomes apparent that the inversion formula (8)
holds exactly in the region s < D, i.e. ¢ <0.

Proof

First note, that it is sufficient to consider grids H,, of size § = 1/2" [R1]. The support
of ul. is all of [0, 1], so, all intervals [(1 — 1)/2", (I +2)/2") contribute. Consider a dyadic
point # of order n, i.e. § = .£1...¢, in dyadic representation. For 6 # 0 we have

ph (0,0 +1/2%)) =re e, and  pl({0Y) =r., v T (12)

where k = max{l <n : ¢ =1}. We may call k& the minimal dyadic order of 6 since
6 = .¢y...e is the shortest possible dyadic representation of #. From this it becomes
clear that the atoms at the left boundary point dominate the measure of the intervals
from H,. Writing such intervals as [#,0 + 27") with § as in the preceding text, we find

3 MTO([(979_|_2—”))5 = fnnz_: Yo (re ey

f=.c1...en k=0 ¢;..e,€{0,1}F
=&n nz_:l (ro" + T15)k = (1= +m")"),
k=0

where the error terms ¢, and £, are bounded independently of n, i.e. &, lies between r§
and (r9 + max; r;)®, and £ = (1 —ro® — r1*)&,. Finally, we stress that we do not have to
pass to the enlarged intervals B; since /,LTC is supported on an interval. Instead of giving
a general proof, we provide a short argument adapted to this case.

First, it follows by induction that among two neighboring atoms the one with the smaller
‘minimal dyadic order’ has the larger mass. Using this fact and denoting by 6 the dyadic
point with largest mass in By one obtains that u&([0,04+27")) < pul(By) < 3¢"ul,({0}) <
357/1/#2«([(9, 0+27")) with ¢ bounded as £!/*. Estimating for all B in this way, one obtains a
new sum where none of the # of order n will contribute, but all of order < n—1 contribute
at least once and at the most three times. Hence, Y gcp, /,LTC(Bl)S =& (1 —(ro*+r*)" )
with bounded ¢’. This completes the proof. &

Proposition 18 For the coarse grained spectrum fé of the inverse measure /,LTC of the
Cantor distribution pc we find

Fra) — fHa) — D-a for0<a<~(D)
fala) = fi )_{ fgl(a) fora=+"(s) and s < D

Proof

Take an arbitrary number v € (0,1]. We will show that a lower bound on fé(oz) is found in
the Legendre transform of v-v, i.e. in I/-fgl(oz/l/). Proposition 17 yields sup, l/fgl(oz/l/) =
fﬁ(oz), whence fq > f1,, and the claim follows from lemma 12.
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Again, we can restrict our attention to § = 1/2" [R1, R2] and to non—enlarged dyadic
intervals B (see the preceding proof). From (12) we get the distribution of Hélder expo-
nents immediately. Looking at those § with k = |vn], the largest integer smaller than
vn, we derive the necessary estimate.

To do so, however, we will need a large deviation result of Ellis-Géartner [E]. Define random
variables X, = log /,LTC(B), where B is chosen randomly, i.e., each with probability 1/2%,
out of those intervals from I /,» with left boundary point  being dyadic of minimal order
k = |vn|. First, we need the moment generating function of X,,. By (12),
cn(s) := IEfexp(sX,)] = £,27F - > (rey +vovore ),
61...6k_1€{0,1}k_1

where ¢, is bounded. Letting a,, := nlog 2 we find that

kE—1

¢(s) := lim —loge,(s) = lim

n—0oo an n—0oo n

k
logy(ro® +11°) — — = —vy(s) —v

This being a convex and differentiable function, Ellis’ theorem I1.2 [E] applies. Denote
by P,(U) the probability that (1/a,)X, lies in U for a randomly picked B. If U is open,
then low (U

1) < tim i 0 )

n— 0o an
where [(U) := inf{I(a) : a € U} and I(a) = sup,(sa — ¢(s)). Choosing U = (—a —
g,—a +¢) we have P,(U) < 27%Ns (a,¢) since (1/a,)X, is the coarse Holder exponent
of B. Noting that

I(a) = —inf(c(s) - sa) = —vinf(s(~a/v) = 3(s) = 1) = —v(ff(~a/v) - 1),

we obtain

log N,
vsup {fi(alfv) : a—= < o < a+e} < liminf 2B (0E)
n o0 an

By continuity the left hand side tends to l/fgl(oz/l/) as ¢ — 0 from which fé(oz) >
I/fIJ&(Oé/I/). The proof is complete.

Using techniques introduced in [R2], in particular the so-called semi-spectra, one can use

fo < fu and the estimate of liminfs_, given previously to show that the limsup;_,, is
actually a limit. &

Nothing is special about p¢ in propositions 17 and 18: appart from technical details the
same proofs work for general self-similar measures as is shown in [RM2].

3.3 Impact on the multifractal formalism

A weak form of the so-called multifractal formalism is said to hold if

fa = Ju
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(Compare lemma 12.) Examples to which the formalism applies are the ‘classical’ self-
similar measures [AP, O, R1], as well as the discontinuous ones as we just saw for /,LTC and
as is shown in general in [RM2]. The linear part we found with the spectrum fé of /,LTC is
a consequence of the presence of a whole hierarchy of atoms which produces a non-trivial
range of ‘frequently occuring’ coarse Holder exponents.

The more important strong form of the multifractal formalism states that

fu=Jfa

(Compare lemma 11.) This property has been shown to hold for quite general con-
structions of (random) self-similar measures (see Arbeiter and Patzschke, Olsen, and
Lau [AP, O, L] and also Kahane and Peyriere, Cawley and Mauldin, and Falconer
[KP, CM, F2]) as well as in the context of dynamical systems (see Rand, and Pesin
and Weiss [R, PW] and also Brown, Michon and Peyrere, as well as Collet, Lebovitc and
Porcio [BMP, CLP]).

For /,LTO, however, we find
fo=f# 1= 1

The difference between fine multifractal spectra and coarse grained spectrum expresses,
therefore, the strong dependence of the convergence rate of log uuf(1)/log|I| — af() on
0. Yet, fé is the concave hull of f{& This fact confirms our point of view which is to
include all points of [0, 1], and, hence, also the vanishing Holder exponents in the fine
multifractal spectra. Otherwise, a convincing connection between fé and f{& would not
exist.

3.4 Conservative random case

The random self-similar measures ® considered in [M74, KP, AP, F2, O] are obtained by
randomizing the usual multiplicative process as follows. Take a codespace {0, ... ,u—1}T.
To each finite sequence i € U,{0,...,u— 1}" assign independent random variables r; and
pi such that r; ;. and p;, . ;, are of equal distribution as r;, and p;,, respectively, and
such that Y~ p; = 1 almost surely. When assuming in addition that 3" r; = 1 almost surely
there is no difficulty in understanding the construction of a random self-similar measure
generalizing (2). The inverse random measure ®' is obtained simply by exchanging the
random variables r; and p;. Doing so, corresponding realizations will indeed be inverse to
each other.

Thus, provided the open set condition holds, the results of [AP, F2, O] imply the inversion
formula (1) for the fine multifractal spectra fy and fp. Note, that we have fy = fp =
max( fi,,0). Using large deviation principles [R2] shows that a properly defined fq satisfies
fala) = fu(a) for all a. This yields the inversion formula for the coarse graining approach.
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In [M89] negative values fa(a) < 0 have been called negative dimension for reasons of
analogy. One should keep in mind, however, that fg(«) is not a dimension in the strict
sense (compare subsection 2.4). If negative, fg(a) cannot be a ‘counting function’ either.
The correct interpretation is rather as follows: the probability that the coarse Holder
exponent log u(1)/log|I| ~ o for a random measure p and a randomly picked interval [
from the d-grid is roughly equal to §'=/5(®). Since there are only §~! such intervals one
has to sample p itself 6/6(*) times in order to ‘observe’ the Hélder exponent a.

3.5 Higher embedding dimension

A generalization to self-similar measures in d-dimensional Euclidean space is possible in
special cases. In order to carry out a construction analogous to the one dimensional case,
one will assume in a first case that the measure is supported on the unit d-cube [0, 1]%.
Then it is straightforward to define an ‘inverse’ measure on the -line, making the natural
choice p;r = rd, r:»r = p;. An adapted form of the inversion formula will hold due to (3),
when adding the term d at the right places.

There is a freedom in choosing the order of the maps w:»r. In addition, the inverse measure
will live on the interval [0, 1]. This reflects the fact that the spectra of self-similar measures
depend in fact very little on the geometry of the construction, i.e.; only on the numbers
r; and p;, and on respecting a separation condition.

This comes to its extreme when the measure lives on a fractal set of dimension D. One
may then construct an ‘inverse’ self-similar measure using p;r = rP (destroying the usual
inversion formula) or by adding maps with zero probability as in subsection 3.2. It has to
be assumed, then, that the extended family produces a tiling of the space. (See Strichartz
[S, thm. 5.2] and references therein. More general cases might become treatable when
considering infinite systems of maps. See Mauldin and Urbanski [MU] and [RM1].) In
any case, it is not clear how to interpret the inverse measure.

A generalization to vector-valued self-similar measures [FO] in d-dimensional Euclidean
space might appear more natural. Again, a procedure is only clear in very special cases
and similar problems as mentioned arise. A duality as desired between two vector-valued
self-similar measures can be found, e.g., in the following situation. In the notation of [FO]
assume that [0,1]? is self-similar under the maps S; (: = 0,...,u — 1) as well as under ST
(1=0,...,0—1). Let Ti(x) := (r:»r)d - and TZ»T(J}) := 7% . z. Then, the inversion formula
holds due to the results of Falconer and O’Neil [FO], again provided that the term d has
been added at the right places.



INVERSE MULTIFRACTALS 351

3.6 Equilibriumm measures

A natural generalization of the notion of self-similar measures are the equilibrium measures
which appear in the theory of dynamical systems. In a typical situation on the line, one
will consider a conformal mapping ¢ which maps some disjoint intervals /; C [0, 1] onto
[0,1] such that —log |¢'| is negative and Holder continuous. The invariant measure in
question will then live on the repeller of g, more precisely, it will be the equilibrium
measure of another Holder continuous function ¢. This scheme reduces to the self-similar
case if g is such that the w; are its inverse branches and if ¢ takes the constant value log p;
on I;.

The multifractal formalism fij(«) = fi(a) has been established for Cookie-cutters
by Rand [R], and for equilibrium measures of certain Moran constructions by Pesin and

Weiss [PW]. Set ¢ = exp(¢ — P{¢}) with P denoting the pressure function, and let 3 be
(uniquely) defined through

P{qlogy — B(—log|g')} = 0.

Then, 7 equals , and the spectra of p collapse with the Legendre transform g*. Note,
that the definition of 3 reduces to the usual one (3) in the self-similar case.

Reciprocal equilibrium measures: It is tempting to produce new measures analo-
gously to self-similar measures, i.e., to exchange the roles of ‘geometry’ —log|¢’| and
‘mass’ ¢, and to compare this procedure with the inversion. Assume, therefore, that
¢ = —log |h'| for some function h with properties analogous to g. Denote the h-invariant

equilibrium measure corresponding to ¢ := —log |¢'| by 7.

First, the fine multifractal spectra of ! can be obtained through the inversion formula
[RM2], hence by taking the Legendre transform of the inverse 37!, In analogy with (11),
especially since gaps are present, we conjecture that the partition function of uf equals

min{3~*!,0}.

Secondly, being an equilibrium measure, & has its fine multifractal spectra equal to 3
where, as before, P{tlogy — B(—log|h'|)) = 0 with 1 = exp(é — P{¢}). Though very
closely related, the spectra of u' and 7 are very well distinguished, i.e. 3 # 37!, unless
P{¢} and P{¢} vanish. But this is the degenerate case when 7 and p are supported on
all of [0, 1].

Special feature of the spectra: One particular difference between the spectra of pf
and [ is the slope of their tangent through the origin. Recall that this slope is the zero of
B3 and 37" respectively. With the continuous 7, this slope is 1 and its spectra must touch
the bisector since 7(1) = 3(1) = 0. For u', on the other hand, the slope of the tangent
through the origin is strictly less than 1 since 81(D) = 0, D = —3(0) being the dimension
of the support of p.

This fact reflects the fundamentally different way of dealing with the fact of ‘loosing mass’
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when approximating the measure iteratively. With uf, loss of mass in the generating
process is compensated by producing atoms (compare (12)). The contrary is true with
7 which is ‘renormalized’ in each step by a factor e~F in order to prevent it from dying
out or exploding (compare [R, p 389]). (For equilibrium measures, the sets corresponding
to the intervals V., ., in (12) are obtained iteratively as the components of the sets
h="(]0,1]).) This renormalization by e~* brings a shift in the Holder exponents which
causes the distinct yet closely related shape of the spectra of uf and 7.

It is this different way of compensating mass which causes the failure of the multifractal
formalism for the inverse measure uf.
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