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Abstract

In many machine learning and statistical tasks, gatheatgid time-consuming and costly;
thus, finding ways to minimize the number of data instancémeficial. In many cases,
active learning can be employed. Here, we are permittedtieeficchoose future training
data based upon the data that we have previously seen. Whareweren this extra flex-
ibility, we demonstrate that we can often reduce the neethfge quantities of data. We
explore active learning for three central areas of macl@aming: classification, parameter
estimation and causal discovery.

Support vector machine classifiers have met with signifisantess in numerous real-
world classification tasks. However, they are typicallydsggth a randomly selected train-
ing set. We present theoretical motivation and an algorfitmperforming active learning
with support vector machines. We apply our algorithm to te&tegorization and image
retrieval and show that our method can significantly redbeented for training data.

In the field of artificial intelligence, Bayesian networks/dgecome the framework of
choice for modeling uncertainty. Their parameters arendftarned from data, which can
be expensive to collect. The standard approach is to datastr@domly sampled from
the underlying distribution. We show that the alternatippraach of actively targeting data
instances to collect is, in many cases, considerably better

Our final direction is the fundamental scientific task of @ssructure discovery from
empirical data. Experimental data is crucial for accontytig this task. Such data is often
expensive and must be chosen with great care. We use activerlg to determine the
experiments to perform. We formalize the causal learnisg & that of learning the struc-
ture of a causal Bayesian network and show that active legu@n substantially reduce the
number of experiments required to determine the underlgagal structure of a domain.
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Chapter 1

Introduction

“Computers are useless. They can only give answers.”
— Pablo Picasso, (1881-1973).

1.1 Whatis Active Learning?

The primary goal of machine learning is to derive generalgpas from a limited amount
of data. The majority of machine learning scenarios gehliall into one of two learning
tasks:supervised learningr unsupervised learning

The supervised learning task is to predict some additiospéet of an input object.
Examples of such a task are the simple problem of trying tadliptea person’s weight
given their height and the more complex task of trying to ptethe topic of an image
given the raw pixel values. One core area of supervisedilegia theclassificationtask.
Classification is a supervised learning task where the iatditaspect of an object that we
wish to predict takes discrete values. We call the additiaspect thdabel. The goal in
classification is to then create a mapping from input objextabels. A typical example
of a classification task is document categorization, in Wwhve wish to automatically label
a new text document with one of several predetermined tqpics, “sports”, “politics”,
“business”). The machine learning approach to tackling thsk is to gather a training set
by manually labeling some number of documents. Next we usaraertogether with the
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labeled training set to generate a mapping from documentgptos. We call this mapping
aclassifier We can then use the classifier to label new, unseen documents

The other major area of machine learning is the unsupeneseding task. The dis-
tinction between supervised and unsupervised learningtiemtirely sharp, however the
essence of unsupervised learning is that we are not giverw@myrete information as to
how well we are performing. This is in contrast to, say, dfasgion where we are given
manually labeled training data. Unsupervised learningpempasseslustering(where we
try to find groups of data instances that are similar to eaerdaindnodel buildingwhere
we try to build a model of our domain from our data). One majeaaof model building
in machine learning, and one which is central to statistsgsarameter estimationHere,
we have a statistical model of a domain which contains a nuwiygarameters that need
estimating. By collecting a number of data instances we saralearner to estimate these
parameters. Yet another, more recent, area of model bgildithe discovery of correla-
tions and causal structure within a domain . The task of daisacture discovery from
empirical data is a fundamental problem, central to sdien¢éindeavors in many areas.
Gathering experimental data is crucial for accomplishimg task.

For all of these supervised and unsupervised learning taskglly we first gather
a significant quantity of data that is randomly sampled frova tinderlying population
distribution and we then induce a classifier or model. Thisho@ology is callegpassive
learning. A passive learner (Fig. 1.1) receives a random data settinerworld and then
outputs a classifier or model.

Often the most time-consuming and costly task in these egijdns is the gathering
of data. In many cases we have limited resources for caligaich data. Hence, it is
particularly valuable to determine ways in which we can ma&e of these resources as
much as possible. In virtually all settings we assume tha&andomly gather data instances
that are independent and identically distributed. Howguenany situations we may have
a way of guiding the sampling process. For example, in theiehent classification task
it is often easy to gather a large poolwilabeleddocuments. Now, instead of randomly
picking documents to be manually labeled for our training we have the option of more
carefully choosing (oguerying documents from the pool that are to be labeled. In the
parameter estimation and structure discovery tasks, webeaagudying lung cancer in a
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Model or
Classifier

Data Passive
Learner

Output

World

Figure 1.1: General schema for a passive learner.

Query (

Model or
Classifier

Active
» Learner

Responsg \_

Output

World

Figure 1.2: General schema for an active learner.

medical setting. We may have a preliminary list of the agessanoking habits of possible
candidates that we have the option of further examining. ¥e lthe ability to give only a
few people a thorough examination. Instead of randomly simgpa subset of the candidate
population to examine we may query for candidates that fiageprofiles (e.g., “We want
to examine someone who is over fifty and who smokes”).

Furthermore, we need not set out our desired queries in advamstead, we can choose
our next query based upon the answers to our previous qué&hesprocess of guiding the
sampling process by querying for certain types of instabesed upon the data that we
have seen so far is calledtive learning

1.1.1 Active Learners

An active learner(Fig. 1.2) gathers information about the world by askingregseand

receiving responses. It then outputs a classifier or modemting upon the task that it
is being used for. An active learner differs from a passiaerier which simply receives a
random data set from the world and then outputs a classifieroodiel. One analogy is that
a standard passive learner is a student that gathers infonay sitting and listening to

a teacher while an active learner is a student that asks d@lcbde questions, listens to the
answers and asks further questions based upon the teadsgtnse. It is plausible that
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this extra ability to adaptively query the world based upastpesponses would allow an
active learner to perform better than a passive learnetipaieegd we shall later demonstrate
that, in many situations, this is indeed the case.

Querying Component

The core difference between an active learner and a passvedr is the ability to ask
gueries about the world based upon the past queries andnsesgpoThe notion of what
exactly a query is and what response it receives will depgmh the exact task at hand.
As we have briefly mentioned before, the possibility of usaugive learning can arise
naturally in a variety of domains, in several variants.

1.1.2 Selective Setting

In the selectivesetting we are given the ability to ask for data instancesftha certain
profile; i.e., if each instance has several attributes, weask for a full instance where
some of the attributes take on requested values. The selecienario generally arises in
the pool-basedsetting (Lewis & Gale, 1994). Here, we have a pool of instartbat are
only partially labeled. Two examples of this setting wereganted earlier — the first was
the document classification example where we had a pool airdents, each of which
has not been labeled with its topic; the second was the lungecastudy where we had a
preliminary list of candidates’ ages and smoking habitsqu&ryfor the active learner in
this setting is the choice of a partially labeled instanc@pool. Thaesponsas the rest
of the labeling for that instance.

1.1.3 Interventional Setting

A very different form of active learning arises when the tearcan ask for experiments
involving interventions to be performed. This type of aetiearning, which we calin-
terventiona) is the norm in scientific studies: we can ask for a rat to beoieel sort of
food or another. In this case, the experiment causes cgrtababilistic dependencies in
the model to be replaced by our intervention (Pearl, 2000)e—+at no longer eats what it
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would normally eat, but what we choose it to eat. In this sgtiqueryis a experiment
that forces particular variables in the domain to be settatevalues. Theesponsas the
values of the untouched variables.

1.2 General Approach to Active Learning

We now outline our general approach to active learning. Téye dtep in our approach
is to define a notion of anodel M and itsmodel quality (or equivalentlymodel loss
Losg.M)) . As we shall see, the definition of a model and the assocratetel loss can be
tailored to suit the particular task at hand.

Now, given this notion of the loss of a model, we choose the qegry that will result
in the future model with the lowest model loss. Note that #pproach isnyopicin the
sense that we are attempting to greedily ask the single mesttduery. In other words the
learner will take the attitude: “If | am permitted to ask juste more query, what should
it be?” It is straightforward to extend this framework so aoptimally choose the next
qguery given that we know that we can ask, say, ten queriestah télowever, in many
situations this type of active learning is computationatiigasible. Thus we shall just be
considering the myopic schema. We also note that myopia taralard approximation
used in sequential decision making problems (Horvitz & Buadle, 1991; Latombe, 1991,
Heckerman et al., 1994) .

When we are considering asking a potential qugryve need to assess the loss of the
subsequent modelM'. The posterior modeM’ is the original modelM updated with
gueryq and responseg. Since we do not know what the true resposs® the potential
qguery will be, we have to perform some type of averaging oreggtion. One natural
approach is to maintain a distribution over the possiblpaases to each query. We can
then compute thexpectednodel loss after asking a query where we take the expectation
over the possible responses to the query:

Losgq) = ExLosgM"). (1.1)

If we use this definition in our active learning algorithm wewld then be choosing the
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For i:= 1 to totalQueries

ForEach ¢ in potentialQueries

Evaluate Losgq)

End ForEach

Ask queryq for which Losgq) is lowest

Update model M with queryq and response
End For
Return modelM

Figure 1.3: General schema for active learning. Here weaakQueriesgueries and then
return the model.

guery that results in theinimum expectechodel loss.

In statistics, a standard alternative to minimizing theestpd loss is to minimize the
maximum loss (Wald, 1950) . In other words, we assume thetwarse scenario: for us,
this means that the responsewill always be the response that gives the highest model
loss.

Losgq) = max LosgM'). (1.2)

If we use this alternative definition of the loss of a queryum active learning algorithm
we would be choosing the query that results intliaimaxmodel loss.

Both of these averaging or aggregation schema are usefuve/shall see later, it may
be more natural to use one rather than the other in diffeeamhing tasks.

To summarize, our general approach for active learning islksvs. We first choose a
modelandmodel lossfunction appropriate for our learning task. We also choosethod
for computing the potential model loss given a potentialrgu&or each potential query
we then evaluate the potential loss incurred and we theredioassk the query which gives
the lowest potential model loss. This general schema isnewtin Fig. 1.2.

1.3 Thesis Overview

We use our general approach to active learning to develapetieal foundations, sup-
ported by empirical results, for scenarios in each of thedlpreviously mentioned machine
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learning tasks: classification, parameter estimationsémndture discovery. We tackle each
of these three tasks by focusing on two particular methoegabent in machine learning:
support vector machines (Vapnik, 1982) and Bayesian nésy@tearl, 1988).

For the classification task, support vector machines hawagtheoretical foundations
and excellent empirical successes. They have been sudibesgiplied to tasks such as
handwritten digit recognition, object recognition, andttelassification. However, like
most machine learning algorithms, they are generally agplising a randomly selected
training set classified in advance. In many classificatidtinggs, we also have the option
of using pool-based active learning. We develop a framevarlperforming pool-based
active learning with support vector machines and demotesthat active learning can sig-
nificantly improve the performance of this already strorasslfier.

Bayesian networks (Pearl, 1988) (also called directedimay@phical models or belief
networks) are a core technology in density estimation anattsire discovery. They permit
a compact representation of complex domains by means ofphiged representation of a
joint probability distribution over the domain. Furtherrepunder certain conditions, they
can also be viewed as providing a causal model of a domaiml(R680) and, indeed, they
are one of the primary representations for causal reasohingrtually all of the existing
work on learning these networks, an assumption is made thatrevpresented with a data
set consisting of randomly generated instances from thenyidg distribution. For each
of the two learning problems of parameter estimation andatsire discovery, we provide
a theoretical framework for the active learning problemd am algorithm that actively
chooses the queries to ask. We present experimental reghith confirm that active
learning provides significant advantages over standamsly@kearning.

Much of the work presented here has appeared in previoudliisbed journal and
conference papers. The chapters on active learning withastipector machines is based
on (Tong & Koller, 2001c; Tong & Chang, 2001) and work on aetarning with Bayesian
networks is based on (Tong & Koller, 2001a; Tong & Koller, 20,
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Related Work

There have been several studies of active learning in thergiged learning setting. Algo-
rithms have been developed for classification, regressidriunction optimization.

For classification, there are a number of active learningrétyms. the Query by Com-
mittee algorithm (Seung et al., 1992; Freund et al., 199@}s w@s prior distribution over
hypotheses. The method samples a set of classifiers frondigitioution and queries an
example based upon the degree of disagreement betweemtingttee of classifiers. This
general algorithm has been applied in domains and with ifilexssfor which specifying
and sampling from a prior distribution is natural. They h&réen used with probabilis-
tic models (Dagan & Engelson, 1995) and specifically with tlagdve Bayes model for
text classification in a Bayesian learning setting (McQall& Nigam, 1998). The naive
Bayes classifier provides an interpretable model and piediways to incorporate prior
knowledge and data with missing values. However, it tyyadbes not perform as well as
discriminative methods such as support vector machinescplarly in the text classifica-
tion domain (Joachims, 1998; Dumais et al., 1998). LiereBaukpalli (1997) tackled the
task of active learning for text classification by using a cattee-like approach with Win-
now learners. In Chapter 4, our experimental results shawathr support vector machine
active learning algorithm significantly outperforms thesenmittee-based alternatives.

Lewis and Gale (1994) introducexhcertainty samplingvhere they choose the instance
that the current classifier is most uncertain about. Theyiegjft to a text domain using
logistic regression and, in a companion paper, using dectisees (Lewis & Catlett, 1994).
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In the binary classification case, one of our methods for sttpgector machine active
learning is essentially the same as their uncertainty sagnphethod, however they pro-
vided substantially less justification as to why the aldornitshould be effective.

In the regression setting, active learning has been imgagsiil by Cohret al. (Cohn
et al., 1996). They use squared error loss of the model aseasure of quality and
approximate this loss function by choosing queries thaticedhe statistical variance of
a learner. More recently it has been shown that choosingepigrat minimize the sta-
tistical bias can also be an effective approximation to ttp@ased error loss criteria in
regression (Cohn, 1997). MacKay (MacKay, 1992) also exgsldhe effects of different
information-based loss functions for active learning iregression setting, including the
use of KL-divergence.

Active learning has also been used for function optimizatiblere the goal is to find
regions in a spac&’ for which an unknown functiorf takes on high values. An example
of such an optimization problem is finding the best settingdotory machine dials so as
to maximize output. There is a large body of work that ex@dhes task both in machine
learning and statistics. The favored method in statistic$tis task is the response surface
technique (Box & Draper, 1987) which design queries so aslitalhmb in the spaceX’.
More recently, in the field of machine learning, Moatal. (Moore et al., 1998) have
introduced the&)2 algorithm which approximates the unknown functipiy a quadratic
surface and chooses to query “promising” points that atbést away from the previously
asked points.

To our best knowledge, there is considerably less publisim#t on active learning
in unsupervisedettings. Active learning is currently being investigaitedhe context of
refining theories found with ILP (Bryant et al., 1999). Suchyatem has been proposed
to drive robots that will perform queries whose results widogé fed back into the active
learning system.

There is also a significant body of work on the design of expenits in the field of
optimal experimental design (Atkinson & Bailey, 2001);hehe focus is not on learning
the causal structure of a domain, and the experiment desitypically fixed in advanced,
rather than selected actively.

One other major area of machine learningasmforcement learningKaebling et al.,
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1996). This does not fall neatly into either a supervisediieg task, or an unsupervised
learning task. In reinforcement learning, we imagine thatoan perform some series of
actions in a domain. For example, we could be playing a gameldr. Each action moves
us to a different part (ostatg of the domain. Before we choose each action we receive
some (possibly noisy) observation that indicates the atigtate that we are in. The domain
may be stochastic and so performing the same action in the state will not guarentee
that we will end up in the same resulting state. Unlike suigsen/learning, we are often
never told how good each action for each state is. Howevkeain unsupervised learning,
we are usually told how good a sequence of actions is (althewg still may not know
exactly which states we were in when we performed them) by afagceiving areward
Our goal is find a way of performing actions so as to maximizerdward. There exists
a classical trade-off in reinforcement learning calledekploration/exploitation trade-off:
if we have already found a way to act in the domain that gives ieasonable reward, then
should we continue exploiting what we know by continuing ¢tbthe way we are now, or
should we try to explore some other part of the domain or wagctan the hope that it
may improve our reward. One approach to tackling the rea&fimrent problem is to build
a model of the domain. Furthermore, there are model basedtalgs that explicitly have
two modes of operation: an explore mode that tries to estigad refine the parameters of
the whole model and an exploit mode that tries to maximize¢leard given the current
model (Kearns & Singh, 1998; Kearns & Koller, 1999). The explmode can be regarded
as being an active learner; it tries to learn as much aboutldh@ain as possible, in the
shortest possible time.

Another related area to active learning is the notion of @atiinformation in deci-
sion theory. The value of information of a variable is theentpd increase in utility that
we would gain if we were to know its value. For example, in anf@i troubleshooting
task (Heckerman et al., 1994), where the goal is to sucdedisignose the problem, we
may have the option of observing certain domain variablesh(gs “ink warning light on”)
by asking the user questions. We can use a value of informatimputation to determine
which questions are most useful to ask.

Although we do not tackle the reinforcement or value of infation problems directly
in this thesis, we shall re-visit them in the concluding dleap
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Chapter 3

Classification

“When you have eliminated the impossible,
whatever remains, however improbable, must be the truth”
— Sherlock Holmes,
The Sign of the Four.

3.1 Introduction

Classification is a well established area in engineeringstatistics. It is a task that humans
perform well, and effortlessly. This observation is hardiyprising given the numerous
times in which the task of classification arises in everydi@y reading the time on one’s
alarm clock in the morning, detecting whether milk has goae imerely by smell or taste,
recognizing a friend’s face or voice (even in a crowded osy@nvironment), locating
one’s own car in a parking lot full or other vehicles.

Classification also arises frequently in scientific and eegiing endeavors: for ex-
ample, handwritten character recognition (LeCun et al95)90object detection (LeCun
et al., 1999), interstellar object detection (Odewahn gt1#92), fraudulent credit card
transaction detection (Chan & Stolfo, 1998) and identigyabnormal cells in cervical
smears (Raab & Elton, 1993). The goal of classification imthuce orlearn a classi-
fier that automatically categorizes input data instances. kamele, in the handwritten

13
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digit task, we would like the learned classifier to classfgrsned handwritten digit image
data into one of the ten possible digits.

We now come to the issue of how to learn such classifiers. Bldkiat we ourselves
are very good at recognizing the gender of a person’s faceveMer, if we are asked to
manually list the set of rules that a computer could use téoparsuch a task we find
it particularly hard. Rather than being manually encodechbsans, classifiers can be
learned by analyzing statistical patterns in data. To leagtassifier that distinguishes
between male and female faces we could gather a number afgraphs of people’s faces,
manually label each photograph with the person’s genderuaedhe statistical patterns
present in the photographs together with their labels taged classifier. One could argue
that, for many tasks, this process mimics how humans leastassify objects too — we are
often not given a precise set of rules to discriminate betwe® sets of objects; instead
we are given a set of positive instances and negative instagied we learn to detect the
differences between them ourselves.

3.2 Classification Task

3.2.1 Induction

By far the most standard and general classification tasleimtiuctiveclassification task.
This task is broken into two phases. The first phase isrtiring phase

e Input: independent and identically distributed data from soméeulying popula-
tion: {x;...x,} where each data instance resides in some spac¥&Ve are also
given their labelqy; ...y, } where the set of possible labé&ls is discrete. We calll
this labeled data thieaining set

e Output: a classifier. This is a functiory: : X — V.

Once we have a classifier, we can then use it to automatidalgify new, unlabeled
data instances in thesting phase
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e We are presented with independent and identically digeibulata from the same
underlying population as in the training phage; . ..x/}. This previously unseen,
unlabeled data is called thest set

e We use our classifief to label each of the instances in turn.

We measure performance of our classifier by seeing how wp#ritorms on the test
set.

3.2.2 Transduction

An alternative classification task is thensductivaask. In contrast to the inductive setting
where the test set was unknown, in the transductive settegnew our test set before we
start learning anything at all. The test set is still unladebut we know{x ...x/,}. Our
goal is to simply provide a labeling for the test set. Thus,task now consists of just one
phase:

e Input: independent and identically distributed data from someeulying popula-
tion: {x;...x,} where each data instance resides in some spac¥Ve are also
given their labeldy; ...y, } where the set of possible labdls is discrete. We are
also given unlabeled i.i.d. dafx ...x!,}.

e Output: a labeling{y} ...y} for the unlabeled data instances.

Notice that we can simply treat the transductive task as @duncitive task by pretending
that we do not know the unlabeled test data and then proagedinhe standard inductive
training and testing phases. However, there are a numbdgarfithms (Dempster et al.,
1977; Vapnik, 1998; Joachims, 1998) that can take advardhfee unlabeled test data
to improve performance over standard learning algorithrhichvjust treat the task as a
standard inductive problem.

3.3 Active Learning for Classification

In many supervised learning tasks, labeling instancestatera training set is time-consuming
and costly; thus, finding ways to minimize the number of ladehstances is beneficial.
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Usually, the training set is chosen to be a random sampliimgstdinces. However, in many
cases active learning can be employed. Here, the learnaaataely choose the training
data. Itis hoped that allowing the learner this extra fldiibwill reduce the learner’s need
for large quantities of labeled data.

Pool-based active learning was introduced by Lewis and (3&i@4). The learner has
access to a pool of unlabeled data and can request the tasdatbe| for a certain number of
instances in the pool. In many domains this is a reasonapl®aph since a large quantity
of unlabeled data is readily available. The main issue witiva learning in this setting is
finding a way to choose good queries from the pool.

Examples of situations in which pool-based active learcigng be employed are:

e Web searching. A Web based company wishes to gather particular types ofgpage
(e.g., pages containing lists of people’s publicationspnmploys a number of people
to hand-label some web pages so as to create a training sah fantomatic clas-
sifier that will eventually be used to classify and extraajgsmfrom the rest of the
web. Since human expertise is a limited resource, the coynpesies to reduce the
number of pages the employees have to label. Rather thamiglpages randomly
drawn from the web, the computer uses active learning toastdargeted pages that
it believes will be most informative to label.

e Email filtering. The user wishes to create a personalized automatic junk éiesi
In the learning phase the automatic learner has access tséhnis past email files.
Using active learning, it interactively brings up a past é@arad asks the user whether
the displayed email is junk mail or not. Based on the usersaan it brings up
another email and queries the user. The process is repeatedrsumber of times
and the result is an email filter tailored to that specific pers

e Relevance feedback.The user wishes to sort through a database/website for items
(images, articles, etc.) that are of personal interestl’kfiow it when | see it” type
of search. The computer displays an item and the user tellletrner whether the
item is interesting or not. Based on the user’'s answer thededorings up another
item from the database. After some number of queries th@deahen returns a
number of items in the database that it believes will be adret to the user.
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The first two examples involve induction. The goal is to ceeatclassifier that works
well on unseen future instances. The third example is an pkaof transduction. The
learner’s performance is assessed on the remaining iestamt¢he database rather than a
totally independent test set.

We present a new algorithm that performs pool-based adamming with support vec-
tor machines (SVMs). We provide theoretical motivationsdar approach to choosing
the queries, together with experimental results showiagahtive learning with SVMs can
significantly reduce the need for labeled training instance

The remainder of this chapter is structured as follows. i8e@&.4 discusses the use of
SVMs both in terms of induction and transduction. SectidntBen introduces the notion
of aversion spaceSection 3.6 provides theoretical motivation for using\kesion space
as ourmodel and its size as the measurerabdel quality leading us to three methods
for performing active learning with SVMs. In the followindpapter, Sections 4.1 and 4.2
present experimental results for text classification arab@retrieval domains that indicate
that active learning can provide substantial benefit intprac

3.4 Support Vector Machines

3.4.1 SVMs for Induction

Support vector machines (Vapnik, 1982) have strong theatdbundations and excellent
empirical successes. They have been applied to tasks suw@mdsvritten digit recogni-

tion (LeCun et al., 1995), object recognition (Nakajima let 2000), and text classifica-
tion (Joachims, 1998; Dumais et al., 1998).

We consider SVMs in the binary classification setting. We gixen training data
{x;...x,} thatare vectors in some spateC R?. We are also given their labe{g, ...y, }
wherey; € {—1,1}. In their simplest form, SVMs are hyperplanes that sepdregérain-
ing data by a maximal margin (see Fig. 3.1(a)). All vectoiadyon one side of the hy-
perplane are labeled asl, and all vectors lying on the other side are labeled as 1. The
training instances that lie closest to the hyperplane dledcsupport vectors

More generally, SVMs allow one to project the original tiagndata in spac&’ to a
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(a) (b)
Figure 3.1: (a) A simple linear support vector machine. (b$¥M (dotted line) and a
transductive SVM (solid line). Solid circles representab#@led instances.

higher dimensional feature spagevia a Mercer kernel operatdt . In other words, we
consider the set of classifiers of the forin:

f(x) = (2 K (x;, x)> . (3.1)

WhenK satisfies Mercer’s condition (Burges, 1998) we can wil{éu, v) = ®(u) - &(v)
whered : X — F and “” denotes an inner product. We can then rewfitas:

f(x) =w - ®(x), wherew = Xn: a; P (x;). (3.2)
=1

Thus, by using’ we are implicitly projecting the training data into a diert (often
higher dimensional) feature spage It can be shown that the maximal margin hyperplane
in F is of the form of Eq. (3.1%. The SVM then computes thes that correspond to the
maximal margin hyperplane i. By choosing different kernel functions we can implicitly
project the training data fromt” into spacesF for which hyperplanes it correspond to
more complex decision boundaries in the original sp&ce

Two commonly used kernels are the polynomial kernel giveikiy, v) = (u-v+1)?

Note that, as we define them, SVMs are functions that map distirices into the real ling — oo, +00),
rather than to the set of classgs1, +1}. To obtain a class label as an output, we typically threskiuéd
SVM output at zero so that any poiktthat the SVM maps td—oc, 0] is given a class of 1, and any point
x that the SVM maps t@0, +oo] is given a class of-1.

2In our description of SVMs we are only considering hypergkthat pass through the origin. In other
words, we are asuming that there is no bias weight. If a biaghwés desired, one can alter the kernel or
input space to accomodate it.
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which induces polynomial boundaries of deggei@ the original input spadeX’, and the
radial basis function kernét (u, v) = (e~?("=v):(u=v)) which induces boundaries by plac-
ing weighted Gaussians upon key training instances. F2gsi3ws the decision boundary
in the input spac&’ of an SVM using a polynomial kernel of degree 5. The curvedsii@c
boundary int’ corresponds to the maximal margin hyperplane in featur&set

Algorithmically, the«; parameters that specify the SVM can be found in polynomial
time by solving a convex optimization problem (Vapnik, 1995

maximize, >, o; — %Zi,j a0y, K (x4, X)

subject to: a; >0 i=1...n.

For the majority of this chapter we assume that the modultiseofraining data feature
vectors are constant , i.e., for all training instanggg|®(x;)|| = A for some fixed\. The
quantity||®(x;)|| is always constant for radial basis function kernels, antisassumption
has no effect for this kernel. Fd®(x;)|| to be constant with the polynomial kernels we
require that|x;|| be constant. It is possible to relax this constrain®gr;) and we discuss
this possibility at the end of Section 3.6.

We also assume linear separability of the training datagri¢ature space. This restric-
tion is much less harsh than it might at first seem. First, gla¢ure space often has a very
high dimension and so in many cases it results in the dataes®j bnearly separable. Sec-
ond, as noted by Shawe-Taylor and Cristianini (1999), itasgible to modify any kernel
so that the data in the new induced feature space is linegplyrablé.

3.4.2 SVMs for Transduction

The previous section discusses SVMs within the framewotkadiction. It assumes a la-
beled training set of data and the task is to create a clagsifiehas good performance on

3Note that, unlike the simple Euclidean inner product, a potyial kernel of degree one induces a hy-
perplane int’ that does not need to pass through the origin.

4This modification is done by redefining for all training instasx;: K(x;,x;) := K(x;,%;) + v where
v is a positive regularization constant. This transfornraigsentially achieves the same effect as the soft
margin error function (Cortes & Vapnik, 1995) commonly uge@®VMs. It permits the training data to be
linearly non-separable in the original feature space.
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Figure 3.2: A support vector machine using a polynomial &eafidegree 5.

unseertest data. In addition to regular induction, SVMs can also$ed for transduction.
Here, we are first given a set of both labeled and unlabeleal ddte learning task is to
assign labels to the unlabeled data as accurately as pasSMMs can perform transduc-
tion by finding the hyperplane that maximizes the margintredato both the labeled and
unlabeled data. See Figure 3.1(b) for an example. Rec#rahsductive SVMETSVMSs)
have been used for text classification (Joachims, 1999)inaiy some improvements in
precision/recall breakeven performance over regulardtidel SVMs.

Unlike an SVM, which has polynomial time complexity, the tosfinding the global
solution for a TSVM grows exponentially with the number ofalveled instances. Intu-
itively, we have to consider all possible labelings of théabeled data, and for each la-
beling, find the maximal margin hyperplane. Therefore omeegaly uses an approximate
algorithm instead. For example, Joachims (Joachims, 199€5 a form of local search to
label and relabel the unlabeled instances in order to ingtio® size of the margin.

3.5 Version Space

Given a set of labeled training data and a Mercer kefhdhere is a set of hyperplanes that
separate the data in the induced feature sgac®é/e call this set of consistent hypotheses
theversion spac€Mitchell, 1982) . In other words, hypothesfss in the version space if
for every training instance; with labely; we have thaf (x;) > 0if y; = 1 andf(x;) <0

if y; = —1. More formally:
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(a) (b)
Figure 3.3: (a) Version space duality. The surface of theehgghere represents unit weight
vectors. Each of the two hyperplanes corresponds to a @edaing instance. Each
hyperplane restricts the area on the hypersphere in whiokigient hypotheses can lie.
Here version space is the surface segment of the hypersplosest to the camera. (b)
An SVM classifier in a version space. The dark embedded sphketee largest radius
sphere whose center lies in version space and whose surdasendt intersect with the
hyperplanes. The center of the embedded sphere correspmtitks SVM, its radius is
proportional to the margin of the SVM it and the training points corresponding to the
hyperplanes that it touches are the support vectors.
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Definition 3.5.1 Our set of possible hypotheses is given as:

w - d(x)

[[wil

where ourparameter spaci is simply equal taF. Theversion spaceV is then defined

3

H:{f | f(x) = WhereweW}

as:
V={feH|Vie{l...n} yf(x;) >0}

Notice that sincé{ is a set of hyperplanes, there is a bijection between unioveey and
hypotheseg in H. Thus we will redefin® as:

V={weW]||w| =1, ys(w-®(x;)) >0,i =1...n}.

Definition 3.5.2 The size orareaof a version space, Ar¢®) is the surface area that it
occupies on the hypersphefe|| = 1.

Note that a version space only exists if tin@ining data are linearly separable in the
feature space. As we mentioned in Section 3.4.1, this céistniis not as limiting as it first
may seem.

There exists a duality between the feature sgaead the parameter spake (Vapnik,
1998; Herbrich et al., 1999) which we shall take advantage tife next section: points in
JF correspond to hyperplanesMy andvice versa

By definition points inWW correspond to hyperplanes jf. The intuition behind the
converse is that observing a training instargen the feature space restricts the set of
separating hyperplanes to ones that classjfgorrectly. In fact, we can show that the set
of allowable pointsw in W is restricted to lie on one side of a hyperplanéih More
formally, to show that points itF correspond to hyperplanes W, suppose we are given
a new training instance; with label y;. Then any separating hyperplane must satisfy
yi(w - ®(x;)) > 0. Now, instead of viewingv as the normal vector of a hyperplane#i
think of ®(x;) as being the normal vector of a hyperplanéih Thusy;(w - ®(x;)) > 0
defines a half space W. Furthermorew - ®(x;) = 0 defines a hyperplane i that acts
as one of the boundaries to version specélotice that version space is a connected region
on the surface of a hypersphere in parameter space. See Bi@(a) for an example.
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SVMs find the hyperplane that maximizes the margin in theureaspacer. One way
to pose this optimization task is as follows:

maximize, . » ming{y;(w - ®(x;))}
subject to: |wl =1

yi(w-®(x;)) >0i=1...n

By having the conditiongw| = 1 andy;(w - ®(x;)) > 0 we cause the solution to lie
in the version space. Now, we can view the above problem am{jritie pointw in the
version space that maximizes the distana@y; {y;(w - ®(x;))}. From the duality between
feature and parameter space, and sjnkex;)|| = A, each@ is a unit normal vector of
a hyperplane in parameter space. Because of the constygmts®(x;)) >0 i=1...n
each of these hyperplanes delimit the version space. Thessipny;(w - ®(x;)) can be
regarded as:

A x the distance between the powtand the hyperplane with normal vectd(x;).

Thus, we want to find the point™* in the version space that maximizes the minimum
distance to any of the delineating hyperplanes. That is, S¥iMl the center of the largest
radius hypersphere whose center can be placed in the vespame and whose surface
does not intersect with the hyperplanes correspondingddatieled instances, as in Fig-
ure 3.3(b).

The normals of the hyperplanes that are touched by the méaxadas hypersphere
are the®(x;) for which the distance;(w* - ®(x;)) is minimal. Now, taking the original
rather than dual view, and regarding as the unit normal vector of the SVM aidqdx;) as
points in features space we see that the hyperplanes thaateed by the maximal radius
hypersphere correspond to the support vectors (i.e., ieddd points that are closest to the

SVM hyperplane boundary).

The radius of the sphere is the distance from the center o§phere to one of the
touching hyperplanes and is given fgyw* - @) where®(x;) is a support vector. Now,
viewing w* as a unit normal vector of the SVM aritx;) as points in feature space, we
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have that the distangg(w* - 251) is:

1 . .
1 the distance between the support ved¢x;) and the hyperplane with normal vectet

which is the margin of the SVM divided by. Thus, the radius of the sphere is proportional
to the margin of the SVM.

3.6 Active Learning with SVMs

3.6.1 Introduction

In pool-based active learning we have a pool of unlabelethimtes. It is assumed that
the instances are independently and identically distributed and thdiela are distributed
according to some conditional distributiét{(}” | x).

Given an unlabeled podl, anSVM active learnef has three componentsf, ¢, X).
The first component is an SVM classifigr,: X — |1, 1], trained on the current set of
labeled dataX (and possibly unlabeled instancedirtoo). The second componef(tX )
is the querying function that, given a current labeled’$etlecides which instance iri to
guery next. The active learner can return a classjfieiter each queryopline learning or
after some fixed number of queries.

The main difference between an active learner and a passavedr is the querying
componeny. This component tells us which unlabeled pool instance &rygnext, which
brings us to the issue of how to design such a function. Weus@lour general approach for
active learning presented in Section 1.2. We shall first dedimodel andmodel quality
or, equivalently, itamodel loss We shall then choose the pool instance that improves the
model quality the most.

3.6.2 Model and Loss

We choose to use the version space asmadel , and the size of version space as the
model loss. Thus, we shall choose to query pool instances that attesmptiuce the size
of the version space as much as possible. Why should this bedaaoice of model and
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model loss? Suppose* € W is the unit parameter vector corresponding to the SVM that
we would have obtained had we known the actual labetdla#f the data in the pool. We
know thatw* must lie in each of the version spacés> V, D Vs..., where); denotes
the version space afteiqueries. Thus, by shrinking the size of the version spaceurhm
as possible with each query, we are reducing as fast as po#s#space in whickvy* can
lie. Hence, the SVM that we learn from our limited number oédges will lie close tow*.

We need one more definition before we can proceed:

Definition 3.6.1 Given an active learnef, let V; denote the version space bfafter i
queries have been made. Now, given(the 1)th queryx; ., define:

Vi = Vin{weW | —(w-2(x;i41)) > 0},

)

Vil = vin{weW | +(w-d(x;41)) > 0}

2

SoV; andV;" denote the resulting version spaces when the next gueryis labeled as
—1 and1 respectively.

We wish to reduce the version space as fast as possibletivatyi one good way of
doing this is to choose a query that halves the version sgdoee formally, we can use
the following lemma to motivate which instances to query:

Lemma 3.6.2 Suppose we have an input spatefinite dimensional feature spade (in-
duced via a kernek(), and parameter spac®’. Suppose active learnét always queries
instances whose corresponding hyperplanes in parametaredpy halves the area of the
current version space. Létbe any other active learner. Denote the version spacée$ of
and ¢ after i queries asV; and V), respectively. Le® denote the set of all conditional
distributions ofy givenx. Then,

Vi e NT sup Ep[AreaV;)] < sup Ep[AreaV;)],
pPeP pep

with strict inequality whenever there exists a query {1...:} by ¢ that does not halve
version spacé’;_;.
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Proof. The proof is straightforward. The learn€ralways chooses to query instances
that halve the version space. Thiea(V;,,) = 3AreaV;) no matter what the labeling
of the query points are. Letdenote the dimension of feature spaeThenr is also the
dimension of the parameter spadé Let S, denote the surface area of the unit hypersphere
of dimension-. Then, under any conditional distributidh Area(V;) = .

Now, supposé does not always query an instance that halves the area ottb®n
space. Then after some numbky,of queries/ first chooses to query a poigt,,; that
does not halve the current version sp¥gelLety,.; € {—1, 1} correspond to the labeling
of x;,1 that will cause the larger half of the version space to be&hos

Without loss of generality assundeea(V, ) > Area(V;") and say,,; = —1. Note that
Area(V, ) + Area(V|) = 2t, so we have tharea(V, ) > 58+

Now consider the conditional distributiap:

1
P[](—1X):{ 5 Ifx# x4

1 ifx = x5

Then under this distributiorv: > £,

1 B S,
Ep,[AreaV;)| = %TArea(Vk ) > 5

HenceY: > k,

sup Ep[AredV})] > sup Ep[AreaV;)].
PeP PeP

O

This lemma says that, for any given number of queri&sninimizes the maximum
expected size of the version space, where the maximum is taler all conditional distri-
butions ofy givenx. In other words’* will be choosing queries that reduce timenimax
loss of the model.

Seung et al. (Seung et al., 1992) also use an approach thagpeints so as to attempt
to reduce the size of the version space as much as possiblee 1§ willing to assume that
there is a hypothesis lying withiH that generates the data and that the generating hypoth-
esis is deterministic and that the data are noise free, themgsgeneralization performance
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(a) (b)
Figure 3.5: (@MaxMin Margin will queryb. The two SVMs with margins:~ andm™* for
b are shown. (bMaxRatio Margin will querye. The two SVMs with marging:~ andm™
for e are shown.

properties of an algorithm that halves version space carb@shown (Freund et al., 1997).
For example one can show that the generalization error dseseexponentially with the
number of queries.

3.6.3 Querying Algorithms

The previous discussion provides motivation for an apgrosbere we query instances
that split the current version space into two equal parts ashnas possible. Given an
unlabeled instance from the pool, it is not practical to explicitly compute thees of the
new version spaceg andV* (i.e., the version spaces obtained wheis labeled as-1
and+1 respectively). We next present three ways of approximatirggprocedure.
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e Simple Margin. Recall from Section 3.5 that, given some dgta. . . x; } and labels
{v1 ...y}, the SVM unit vectosw; obtained from this data is the center of the largest
hypersphere that can fit inside the current version spacdhe position ofw; in
the version spac®; clearly depends on the shape of the regignhowever, it is
often approximately in the center of the version space. Neswcan test each of the
unlabeled instancesin the pool to see how close their corresponding hyperplenes
W come to the centrally placesl;. The closer a hyperplane W is to the pointw;,
the more centrally itis placed in the version space, and thre b bisects the version
space. Thus we can pick the unlabeled instance in the poadeviwgperplane iV
comes closest to the vectar;. For each unlabeled instangethe shortest distance
between its hyperplane iW and the vectosv; is simply the distance between the
feature vector(x) and the hyperplane; in F,. This distance is easily computed
by: |w; - ®(x)|. This results in the natural rule: learn an SVM on the exgslabeled
data and choose as the next instance to query the instaria®thas closest to the
hyperplane inf.

Figure 3.4(a) presents an illustration. In the stylizeduyiewe have flattened out the
surface of the unit weight vector hypersphere that appeafgure 3.3(a). The white
area is version space which is bounded by solid lines corresponding to labeled
instances. The five dotted lines represent unlabeled ics$an the pool. The circle
represents the largest radius hypersphere that can fit wetiseon space. Note that
the edges of the circle do not touch the solid lines — just asltltk sphere in 3.3(b)
does not meet the hyperplanes on the surface of the largerspipere (they meet
somewhere under the surface). The instandg closest to the SVMv; and so we
will choose to quenp.

Two other studies (Campbell et al., 2000; Schohn & Cohn, 200@ependently
developed oubimple method for active learning with support vector machines and
provided different formal analyses. Campbell, Cristiamind Smola extend their
analysis for theSimple method to cover the use of soft margin SVMs (Cortes &
Vapnik, 1995) with linearly non-separable data. Schohn@aln note interesting
behaviors of the active learning curves in the presence tieaaiand both suggest
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the heuristic optimal stopping criterion of “stop queryiwhen there are no more
pool instances within the margin of the current hyperpla#dso, as we mentioned
in Chapter 2, Lewis and Gale’s (1994) uncertainty samplingssentially the same
as theSimple method.

e MaxMin Margin. TheSimple Margin method can be a rather rough approximation.
It relies on the assumption that the version space is faytyrsetric and thaww;
is centrally placed. It has been demonstrated, both in yhad practice, that these
assumptions can fail significantly (Herbrich et al., 1998jleed, if we are not careful
we may actually query an instance whose hyperplane doesveatistersect the
version space. ThiglaxMin approximation is designed to somewhat overcome these
problems. Given some dafx; ...x;} and labels{y; ...y;} the SVM unit vector
w; is the center of the largest hypersphere that can fit insidectirent version
spaceV; and the radiusn, of the hypersphere is proportioRdb the size of the
margin ofw;. We can use the radius; as an indication of the size of the version
space (Vapnik, 1998). Suppose we have a candidate unlahstadcex in the pool.
We can estimate the relative size of the resulting versi@tesp~ by labelingx
as —1, finding the SVM obtained from adding to our labeled training data and
looking at the size of its margim —. We can perform a similar calculation for" by
relabelingx as classt1 and finding the resulting SVM to obtain margin".

Since we want an equal split of the version space, we wisia()~) andArea(V ")
to be similar. Now, considenin(Area(V ), Area V™)). It will be small if Area(V ™)
and Area V") are very different. Thus we will consideiiin(m—, m™) as an ap-
proximation and we will choose to query tikefor which this quantity is largest.
Hence, theMaxMin query algorithm is as follows: for each unlabeled instarce
compute the margins,~ andm™ of the SVMs obtained when we labelas—1 and
+1 respectively; then choose to query the unlabeled instasrosHich the quantity
min(m~, m") is greatest.

Figures 3.4(b) and 3.5(a) show an example comparin§ithgle Margin andVlaxMin

5To ease notation, without loss of generality we shall assiin@¢he constant of proportionality is 1, i.e.,
the radius is equal to the margin.
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Margin methods.

e Ratio Margin. This method is similar in spirit to thBlaxMin Margin method. We
usem~ andm™ as indications of the sizes ®f andV*. However, we shall try to
take into account the fact that the current version spaamay be quite elongated
and for somex in the poolbothm™ andm™ may be small simply because of the
shape of version space. Thus we will instead look atetativesizes ofrn~ andm™
and choose to query thefor which min (2, %f) is largest (see Figure 3.5(b)).

The above three methods are approximations to the quergingpaonent that always
halves version space. After performing some number of gaeve then return a classifier
by learning a SVM with the labeled instances. Tieple method is significantly less
computationally intensive than the other two methods sinoeeds to learn only one SVM
per querying round, while th®laxRatio and MaxMin methods need to learn two SVMs
for each pool instance during each querying round. Notie¢we are not forced to stay
with just one of these querying methods for all of our roundgueries. For computational
reasons, it may be beneficial to swap between the differetitode after a number of
gueries have been asked: we call this type of querying medlitythrid method.

We now address the assumption of having training featurekewith constant mod-
uli. The notions of a version space and of the size of versiaee still hold without the
assumption. Furthermore, the margin of an SVM can be used asl&ation of a version
space size irrespective of whether the feature vectors t@avsetant moduli (see (Vapnik,
1998) for further details). Thus the explanation for iexMin and MaxRatio methods
still holds even without the constraint on the modulus ofttaening feature vectors.

The constant moduli assumption was necessary for our geicietwv of version space
to hold. TheSimple method can still be used when the training feature vectorsotibave
constant modulus, but the motivating explanation no lorgeds since the SVM can no
longer be viewed as the center of the largest allowable sphdowever, for the&Simple
method, alternative motivations have recently been pregpry Campbell, Cristianini and
Smola (2000) that do not require the constraint on the madulu

For inductive learning, after performing some number ofrggsawe then return a classi-
fier by learning a SVM with the labeled instances. For trantde learning, after querying
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some number of instances we then return a classifier by leenTransductive SVM with
the labeledandunlabeled instances.

3.7 Comment on Multiclass Classification

A number of scenarios are inherently multiclass classiboaproblems. For example,
detecting which of several topics a particular documentmage is about. Furthermore,
there are two different types of multiclass settings. On#iolass setting is theverlapping
classes setting where each data instance can belong tplaudlasses at the same time
(for example, a news article could belong to multiple diiartopics). The second type
of multiclass setting is theon-overlapping or mutually exclusiveetting where each data
instance belongs to exactly one of several classes.

A basic SVM is a binary classifier. SVMs can be easily extenmetthe overlapping
multiclass setting by using thene-vs-alltechnique. For am-class problem we learh
classifiersf, . ..

There are a number of techniques for extending SVMs to the smmplicated mutually-

, [ where classifierf; determines if an instance is in classr not.
exculsive multiclass case (Vapnik, 1998; Platt et al., 200tdman, 1996). In this sce-
nario theone-vs-alltechnique is one of the best performing and more commonjtalbe
perhaps not the most computationally efficient, strateghedifficulty arises because the
outputs of thek different SVMs are uncalibrated reals valGe&or example, it could be
the case thaf,(x) = 2 means thaf; is very confident about’s label wheread,(x) = 2
may mean thaf; is only marginally confident abouts label. So, for the specific purpose
of measuring an SVM’s confidence in its prediction relativeother SVMs’ predictions,
the output of an SVM is uncalibrated. There have been a nupftetudies (Hastie & Tib-
shirani, 1998; Vapnik, 1998; Platt, 1999; Sollich, 1999ttbxplore ways of transforming
each SVM’s output into a calibrated conditional probapilit(i | x). Nevertheless, for
mutually exclusive multiclass classification, uncalilechtvalues are typically used as mea-
sures of eaclf; classifier's confidence, and the approximation of takingatteglicted class

Although still uncalibrated, the output of an SVI(x) is typically normalized by the margin, so that
all of the support vectors are distance 1 from the hyperplane
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label to be:
y = argmax f(x),

appears to work well in practice (Vapnik, 1998; Platt et2000).

In both of these settings, we focus on the one-vs-all algaritDesigning active learn-
ing algorithms for the alternative ways of performing melliss classification is left as
future work. With the one-vs-all approach we haveersion spaces, one for each classi-
fier. If we wish to use active learning we need to determinentbéel loss. In the binary
classification task we used the area of the version spaceravadel loss. The area of
the version spac@rea)’) can be regarded as being proportional to the probabilitydaha
hypothesis chosen at random will correctly classify theenitrtraining data. Extending
this notion to the multiclass case, our hypothesis is howt @fsehyperplanes and if we
sample a hypothesis uniformly at random, the probabiligt the will have a hypothesis
that correctly labels every point in our training set is prdjonal to:

[] Area(v®). (3.3)

Thus, perhaps one possible measure of model loss is theqirafdthe version space areas.
Fig. 3.6 shows why, intuitively, this measure of model lasgétter than, say, the sum of
areas. Class 3 is easily separated from the other two classkeso the version space of
f3 is much larger than that of, and f,. Querying points between classeand2 would
intuitively be most useful since they will narrow down whefieand f, should lie. The
product of version spaces criterion will query these positge they tend to halve the
version spaces fof; and f,. The sum of version spaces loss criterion will be distracted
by the unlabeled points near classince, although they do not halve the version space of
3, knowing their labels will remove a large area of the totahsaf version space simply
becausef;’s version space is naturally large.

Eq. (3.3) is oumodel loss. Recall from Section 1.2 that we want to choose the unla-
beled pool instance that minimizes the maximum model loss:

Losgx) = max I1 Area(V{)), (3.4)
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Figure 3.6: Multiclass classification

wherev,((g is the version space after having askednd received the labegl Note that,
unlike in the binary classification case, this method no érgduces to finding the pool
instance bisects each of theversion spaces.

Now, evaluating the volumes of these versions spaces &ctatble. To obtain an effi-
cient algorithm we need to use an approximation to enable asmpute the model loss.
The above definition of model loss allows us to extend\ha@Ratio andMaxMin approxi-
mation methods to the multiclass case in the obvious magxéending th&imple method
is more subtle.

For theSimple method, recall that the margin is proportional to the radiuke largest
sphere that we can embed in the version space. Thus, unlike itask of measuring an
SVM’s confidence in its own prediction, here the quanfitix) (where we normalize the
output so that support vectors are distance one from therplgme) is actually a calibrated
approximation of the extent to which splits the version space. It is calibrated for this
purpose since the scale of eag¢fix) distance is measured relative to the radius of the
sphere for thaf;.

Given the SVMs learned on the current labeled ddta,. ., f;, and a pool instance
x, we wish to approximate the quantitiésea(V{") ) for eachi and each possible labg!

In Fig. 3.7 we have the version space for one of ffee Imagine we are looking at pool
instancex and we are considering the case wheris labeled as class Thus we wish to
approximately find the area of the regidri.

Notice that if f;(x) = 0 then we are approximately halving the version space; ()
is close tol thenx is a hyperplane that nearly touches the edge of the spheresaitide
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\

Figure 3.7: A version space.

area of the new version space will be close to the area of thmatversion space. If;(x)
is close to—1 thenx is also a hyperplane that nearly touches the edge of theesgdhérthis
time the new version space lies on the side of the hyperplatieefst from the center of the
spheré and so the area of the new version space will be close o Fig. 3.7, fi(x) = 0.5
and the area ofi™ is approximately 0.75 of the old version space. When we |lddke
case where is not labeled as clagsthen we will wish to approximate the regiotr. In
this case,f;(x) = 0.5 still, and the area ofi~ is approximately 0.25 of the old version
space.

These observations prompt the following mapping frfx) distances to sizes of ver-
sion spaces:

e If the labely for pool instancex is class;, then:

Area(V{)) ~ (%) Area(VV). (3.5)

e If the labely for pool instancex is not clasg, then:

Area(V{)) ~ (%"CZ(XU Area(V\¥). (3.6)

’One way to see this is because the center of the sphere istte®c8VM, and it does not classify
correctly, so is cannot be in the new version space.
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Notice that this approximation breaks downjif(x)| > 1. However, we are performing
a minimax computation, and so these outlkemstances will either be discarded at the
“max” step if they causérea(V") ) to be too large and negative, or they will get rejected
at the “min” step if they causArea(V,(c{?y) to be too large and positive.

Thus, by viewing the distancg(x) as an approximate to how much the current version
space is split, we get the following extension to 8waple algorithm:

Learn k classifiersf1, ..., fx, one for each class.
For eachunlabeled pool instance
For eachpossible labe}, for x
For eachclassifierf;
Compute approximation toArea(V)(({)y) using either Eq. (3.5) or Eq. (3.6
End For
End For
Losgx) = maaz, [1; AreaV{))
End For
Query pool instancex for which Losgx) is lowest
Receivetrue labely’
Repeat

This multiclassSimple approximation is still very efficient: for each querying ralwe
need to only leark SVMs (one for each class), and we need to only sweep throwgh th
pool once for each classifier (to compuftéx) for all x).
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SVM Experiments

4.1 Text Classification Experiments

Text classification is the task of determining to which pedited topic a given text docu-
ment belongs. Text classification has an important role &y, @specially with the recent
explosion of readily available text data. There have beenynapproaches to providing
effective, automatic classification systems (Rocchio,11®umais et al., 1998). Further-
more, it is also a domain in which SVMs have shown notable esg¢Joachims, 1998;
Dumais et al., 1998) and it is of interest to see whether ad&arning can offer further
improvement over this already highly effective method.
For our empirical evaluation of the above methods we useddabworld text classi-

fication domains: th&®euters-21578 data set and tiNewsgroups data set.

4.1.1 Text Classification

Rather than working directly with the raw text, learnersdgtly work with features that are
extracted from the document. The “bag-of-words” represt@mt is particularly common:
the ordering of the words within each document is ignoredthedeatures are chosen to
be particular words.

Sometimes some preprocessing of the documents is done. @omards on a stop list

(such as “to”, “it”, “and”) are ignored since they providé&li discriminative information.

36
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Also, words in the documents are stemmed so that, for exartgaquire”, “acquiring”,
“acquired” all get mapped to the same stem (Porter, 1980¢.d@imer form of preprocessing
is similar to stop list removal, but more extreme. One carigper feature selection and
remove all words that are not “informative” with respecthe particular set of pre-defined
topics (Yang & Pedersen, 1997). In our experiments we onhsicler stop word removal
and stemming.

Given a set ofn documents, a typical representation for documents iSTHEDF
weighting (Salton & Buckley, 1988). There are a number dedént variants of the TFIDF
weighting scheme (Manning & Schitze, 1999). We descril@sodthe commonly used ver-
sions. Each document is represented by a fixed length urntbnecof dimensiond. Each
one of thed featuresy;, corresponds to a particular word (for examplemay correspond
to the word “dog”). The vocabulary efwords is often chosen to be the words occurring in
the entire set of (preprocessed) documents. Given a dodumerconstruct the value for
the j-th component of its corresponding vectqgras follows: letT' F'(w,) be the number
of times the wordu,; occurs in the document. L&D F'(w;) = log(n/N,) whereN; is the
number of documents that contain the ward Then give the j-th component &f a value
of T'F(w;).I DF(w;). Intuitively, w; is given a large value for a particular document if that
word occurs many times in the document and very rarely in theralocuments.

4.1.2 Reuters Data Collection Experiments

TheReuters-21578 data séis a commonly used collection of newswire stories categolriz
into hand labeled topics. Each news story has been hantbthibéth some number of
topic labels such as “corn”, “wheat” and “corporate acdioss”. Note that some of the
topics overlap and so some articles belong to more than degarg. We used the 12902
articles from the “ModApte” split of the data and we consgtithe top ten most frequently
occurring topics. We learned ten different binary classsfiene to distinguish each topic.
Each document was represented as a stemmed, TFIDF weigbtddnequency vectdt.
Each vector had unit modulus. A stop list of common words vesliiand words occurring
in less than three documents were also ignored. Using thigsentation, the document

1Obtained from www.research.att.com/ lewis.
2We used Rainbow (www.cs.cmu.edu/"mccallum/bow) for tertpssing.
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Figure 4.1: (a) Average test set accuracy over the ten nmexgiéntly occurring topics when
using a pool size of 1000. (b) Average test set precisioallrbeeakeven point over the ten
most frequently occurring topics when using a pool size @QL0

vectors had around 10000 dimensions.

We first compared the three querying methods in the indutdaming setting. Our
test set consisted of 3299 documents.

For each of the ten topics we performed the following. Wetea pool of unlabeled
data by sampling 1000 documents from the remaining dataeandwving their labels. We
then randomly selected two documents in the pool to give asnitial labeled training
set. One document was about the desired topic, and the ablisannt was not about
the topic. Thus we gave each learner 998 unlabeled docuraedt2 labeled documents.
After a fixed number of queries we asked each learner to retatassifier (an SVM with
a polynomial kernel of degree ohkearned on the labeled training documents). We then
tested the classifier on the independent test set.

The above procedure was repeated thirty times for each amgi¢he results were aver-
aged. We considered tl%mple Margin, MaxMin Margin andMaxRatio Margin querying
methods as well as Random Sample method. ThRandom Sample method simply ran-
domly chooses the next query point from the unlabeled pduk [&st method reflects what

3For SVM and transductive SVM learning we used T. JoachimgV8yht:
ais.gmd.de/thorsten/svhght/.
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Table 4.1: Average test set accuracy over the top 10 mosidrety occurring topics (most
frequent topic first) when trained with ten labeled docureeBbldface indicates first place.

Topic Simple MaxMin MaxRatio Equivalent
Random size
Earn 86.39 £ 1.65 | 87.75+1.40 | 90.24 + 2.31 34
Acq 77.04+£1.17 | 77.08+2.00 | 80.42+1.50 > 100
Money-fx | 93.82+0.35 | 94.80+0.14 | 94.83 +£0.13 50
Grain 95.53 +0.09 | 95.29+0.38 | 95.55 +1.22 13
Crude 95.26 +£0.38 | 95.26 £0.15 | 95.35 +0.21 > 100
Trade 96.31 £0.28 | 96.64 + 0.10 | 96.60 = 0.15 > 100
Interest 96.15£0.21 | 96.55 £ 0.09 | 96.43 £ 0.09 > 100
Ship 97.75£0.11 | 97.81 £0.09 | 97.66 £0.12 > 100
Wheat 98.10+0.24 | 98.48 +0.09 | 98.13+0.20 > 100
Corn 98.31+0.19 | 98.56 +0.05 | 98.30 +£0.19 15

happens in the regular passive learning setting — the tigiset is a random sampling of

the data.

To measure performance we used two metrics: test set ctassifi error and, to stay

compatible with previous Reuters corpus resultsptieeision/recall breakeven poifitoachims,

1998).Precisionis the percentage of documents a classifier labealslagant that are truly

labeled aselevant.* Recallis the percentage of truly relevant documents that areealee
relevant by the classifier. By altering the decision threshold on tli&Sve can trade pre-
cision for recall and can obtain a precision/recall curvetfie test set. The precision/recall

breakeven point is a one-number summary of this graph: tagbint at which precision

equals recall.

Figures 4.1(a) and 4.1(b) present the average test setaagcand precision/recall

breakeven points over the ten topics as we vary the numberasfes permitted. The hori-

zontal line is the performance level achieved when the SViveised on all 1000 labeled

documents comprising the pool. Over feauters corpus, the three active learning methods
perform almost identically with little notable differente distinguish between them. All
three methods also appreciably outperforms random sagqlables 4.1 and 4.2 show the
test set accuracy and breakeven performance of the actithodseafter they have asked

4For example, if our goal is to detect documents about cotpa@requisitions, then articles about corpo-
rate acquisitions would be truly labeled mdevant and every other document would have a true label of
irrelevant.
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Table 4.2: Average test set precision/recall breakevem poker the top ten most frequently
occurring topics (most frequent topic first) when trainethvien labeled documents. Bold-

face indicates first place.

Topic Simple MaxMin MaxRatio Equivalent
Random size
Earn 86.05+0.61 | 89.03+0.53 | 88.95+ 0.74 12
Acq 54.14 £+ 1.31 56.43 +1.40 | 57.25 +1.61 12
Money-fx | 35.62+2.34 | 38.83 +£2.78 | 38.27+2.44 52
Grain 50.25 + 2.72 58.19+2.04 | 60.34 +1.61 51
Crude 58.22 + 3.15 55.52 +2.42 | 58.41 + 2.39 55
Trade 50.71 +2.61 | 48.78+2.61 | 50.57 £ 1.95 85
Interest 40.61£2.42 | 4595+ 2.61 | 43.71+2.07 60
Ship 53.93 +£2.63 | 52.73+£2.95 53.75 + 2.85 > 100
Wheat 64.13+2.10 | 66.71 =1.65 | 66.57 + 1.37 > 100
Corn 4952+ 2.12 | 48.04 +2.01 46.25 + 2.18 > 100

for just eight labeled instances (so, together with thdaahttvo random instances, they
have seen ten labeled instances). The tables demonstathdlthree active methods per-
form similarly on this data set after eight queries, with kf@Min andMaxRatio methods
showing a very slight edge in performance. The last columreach table are of more
interest. They show approximately how many instances wbeldeeded if we were to use
Random to achieve the same level of performance asvlagRatio active learning method.
In this instance, passive learning on average requiressivémes as much data to achieve
comparable levels of performance as the active learninpoadst The tables indicate that
active learning provides more benefit with the infrequeatses, particularly when mea-
suring performance by the precision/recall breakeventpdinis last observation has also
been noted before in previous empirical tests (McCallum &axn, 1998).

We noticed that approximately half of the queries that thvatearning methods asked
tended to turn out to be positively labeled, regardless ettihe overall proportion of pos-
itive instances in the domain. We investigated whether tiaggthat the active learning
methods had over regul&ndom sampling were due to this biased sampling. We created
a new querying method calleghlancedRandom which would randomly sample an equal
number of positive and negative instances from the pool.i@isly in practice the ability
to randomly sample an equal number of positive and negatstamces without having to
label an entire pool of instances first may or may not be resserdepending upon the
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Figure 4.2: (a) Average test set accuracy over the ten nexgiéntly occurring topics when
using a pool size of 1000. (b) Average test set precisioallrbeeakeven point over the ten
most frequently occurring topics when using a pool size @QL0

domain in question. Figures 4.2(a) and 4.2(b) show the geeaacuracy and breakeven
point of theBalancedRandom method compared with thidaxRatio active method and reg-
ular Random method on thekeuters dataset with a pool of 1000 unlabeled instances. The
MaxRatio andRandom curves are the same as those shown in Figures 4.1(a) anjl A héb
MaxMin andSimple curves are omitted to ease legibility. TBelancedRandom method has
a much better precision/recall breakeven performancettieregulaRandom method, al-
though it is still matched and then significantly outperfedvby the active method. For
classification accuracy, thHgalancedRandom method initially has extremely poor perfor-
mance (less than 50% which is even worse than pure randonsigggsnd is always
consistently and significantly outperformed by the activethmnd. This behavior indicates
that the performance gains of the active methods are notlyrdue to their ability to bias
the class of the instances they query. The active methodsha@sing special targeted
instances and approximately half of these instances hapg®ve positive labels.

Figures 4.3(a) and 4.3(b) show the average accuracy ankdwezapoint of thé/laxRatio
method with two different pool sizes. Clearly tRendom sampling method’s performance
will not be affected by the pool size. However, the graphsciaie that increasing the pool
of unlabeled data will improve both the accuracy and breakgserformance of active
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Figure 4.3: (a) Average test set accuracy over the ten meguéntly occurring topics
when using a pool sizes of 500 and 1000. (b) Average breakswen over the ten most
frequently occurring topics when using a pool sizes of 500 H00.

learning. This behavior is quite intuitive since a goodactnethod should be able to take
advantage of a larger pool of potential queries and ask naogeted questions.

We also investigated active learning in a transductivargett Here we queried the
points as usual except now each metHichple andRandom) returned a transductive SVM
trained on both the labeled and remaining unlabeled datseipool. The breakeven point
for a TSVM was computed by gradually altering the number dabeled instances that
we wished the TSVM to label as positive. This approach ineslke-learning the TSVM
multiple times and was computationally intensive. Sincesaiting was transduction, the
performance of each classifier was measured on the pool afrdtter than a separate
test set. This experiment reflects the relevance feedbaakductive inference example
presented in the introduction.

Figure 4.4 shows that using a TSVM provides a slight advantegr a regular SVM in
both querying method®éndom andSimple) when comparing breakeven points. However,
the graph also shows that active learning provides notabhlernenefit than transduction.
Indeed, using a TSVM with Random querying method needs over 100 queries to achieve
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Figure 4.4: Average pool set precision/recall breakeventmver the ten most frequently
occurring topics when using a pool size of 1000.

the same breakeven performance as a regular SVM \itlhgle method that has only seen
20 labeled instances.

4.1.3 Newsgroups Data Collection Experiments

Our second data collection was Ken Laniffswsgroups collection® We used the five
comp.x groups, discarding the Usenet headers and subject linespridessed the text
documents exactly as before resulting in vectors of aro@@dQ@ dimensions.

We placed half of the 5000 documents aside to use as an indepetest set, and
repeatedly, randomly chose a pool of 500 documents fromdhmining instances. We
performed twenty runs for each of the five topics and averdlgedesults. We used test
set accuracy to measure performance. Figure 4.5(a) certtariearning curve (averaged
over all of the results for the fiveomp.x topics) for the three active learning methods and
Random sampling. Again, the horizontal line indicates the perfante of an SVM that has
been trained on the entire pool. There is no appreciablerdifice between thdaxMin
and MaxRatio methods but, in two of the five newsgroupsp.sys.ibm.pc.hardware

SObtained from www.cs.cmu.edu/ textlearning.
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Figure 4.5: (a) Average test set accuracy over thedowe .« topics when using a pool size
of 500. (b) Average test set accuracy éomp.sys.ibm.pc.hardware with a 500 pool size.

andcomp.os.ms-windows.misc) theSimple active learning method performs notably worse
than theMaxMin andMaxRatio methods. Figure 4.5(b) shows the average learning curve
for the comp.sys.ibm.pc.hardware topic. In around ten to fifteen per cent of the runs for
both of the two newsgroups tls&émple method was misled and performed extremely poorly
(for instance, achieving only 25% accuracy even with fifgiimg instances, which is
worse than random guessing!). This experiment indicatstieSimple querying method
may be more unstable than the other two methods. Lewis arel (6894) also noted that
the performance of the uncertainty sampling method (whsaburSimple method) can be
variable, performing quite poorly on occasions.

One reason for this instability could be that Sienple method tends not to explore the
feature space as aggressively as the other active methatisaa end up ignoring entire
clusters of unlabeled instances. In Figure 4.6(a)Singple method takes several queries
before it even considers an instance in the unlabeled clusdtde both theMaxMin and
MaxRatio query a point in the unlabeled cluster immediately.

While MaxMin andMaxRatio appear more stable they are much more computationally
intensive. With a large pool of instances, they require aroufd SVMs to be learned
for each query. Most of the computational cost is incurreegénvthe number of queries
that have already been asked is large. The reason is thabeotctraining an SVM
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Figure 4.6: (a) A simple example of querying unlabeled drsst (b) Macro average test
set accuracy fotomp.os.ms-windows.misc andcomp.sys.ibm.pc.hardware whereHybrid
uses theMaxRatio method for the first ten queries aBanple for the rest.

grows polynomially with the size of the labeled trainingaetl so now training each SVM

is costly (taking around a minute to generate the 50th querg &un Ultra 60 450Mhz
workstation with a pool of 1000 documents). However, whendhantity of labeled data
is small, even with a large pool sizBlaxMin and MaxRatio are fairly fast (taking a few
seconds per query) since now training each SVM is fairly phelaterestingly, it is in
the first ten queries that tifg@mple method seems to suffer the most through its lack of
aggressive exploration. This observation prompts us teiden aHybrid method. We
can useMaxMin or MaxRatio for the first few queries and then use thienple method

for the rest. Experiments with thidybrid method show that it maintains the stability of
the MaxMin and MaxRatio methods while allowing the scalability of ti&mple method.
Figure 4.6(b) compares thtybrid method with theMlaxRatio andSimple methods on the
two newsgroups for which th&mple method performed poorly. The test set accuracy of
the Hybrid method is virtually identical to that of thilaxRatio method while theHybrid
method’s run time was about the same asSiheple method, as indicated by Table 4.3.
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Table 4.3: Typical run times in seconds for the Active method theNewsgroups dataset

Query | Simple | MaxMin | MaxRatio | Hybrid
1 0.008 3.7 3.7 3.7
5 0.018 4.1 5.2 5.2
10 0.025 12.5 8.5 8.5
20 0.045 13.6 19.9 0.045
30 0.068 22.5 23.9 0.073
50 0.110 23.2 23.3 0.115
100 0.188 42.8 43.2 0.2
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Figure 4.7: (a) Average breakeven point performance overGbrn, Trade and Acq
Reuters-21578 categories. (b) Average test set accuracy over fhéetoReuters-21578
categories.

4.1.4 Comparision with Other Active Learning Systems

There have been a number of alternative approaches to éetingng for text classifica-
tion. McCallum and Nigam used a general purpose activeilegualgorithm calledQuery
by Committe€Seung et al., 1992; Freund et al., 1997) together withise BayegDuda

& Hart, 1973) model. They also used tBgpectation Maximization (EMPempster et al.,
1977) algorithm to take further advantage of the unlabatethinces. We re-created Mc-
Callum and Nigam'’s (1998) experimental setup onRbeters-21578 corpus and compared
the reported results from their algorithmi-algorithm hereafter) with ours. In line with
their experimental setup, queries were asked five at a tintethes was achieved by picking
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the five instances closest to the current hyperplane. Figa) compares McCallum and
Nigam’s reported results with ours. The graph indicatestti®Active SVM performance
is significantly better than thigiN-algorithm.

An alternative committee approach to Query by Committeeexgdored by Liere and
Tadepalli (1997, 2000). Although their algorithmaTtalgorithm hereafter) lacks the the-
oretical justifications of the Query by Committee algorithimey successfully used their
committee based active learning method with Winnow claassifin the text domain. Fig-
ure 4.7(b) was produced by emulating their experimentaipseh theReuters-21578 data
set and it compares their reported results with ours. Thgariéthm does not require a posi-
tive and negative instance to seed their classifier. Ratiagrseeding our Active SVM with
a positive and negative instance (which would give the Ac®¥M an unfair advantage)
the Active SVM randomly sampled 150 documents for its firdd fibieries. This process
virtually guaranteed that the training set contained atleae positive instance. The Ac-
tive SVM then proceeded to query instances actively usia§itihple method. Despite the
very naive initialization policy for the Active SVM, the grh shows that the Active SVM
accuracy is significantly better than that of thealgorithm.

SVM active learning outperforms the other systems for twanmeasons. First, SVMs
are already a highly competative method for text classiioatJoachims, 1998; Dumais
et al., 1998). Second, our active method boosts the SVM pedionce so as to maintain
the performance advantage over other classifiers when geyheir own active learning
methods.

4.2 Image Retrieval Experiments

4.2.1 Introduction

One key design task, when constructing image databasds ir¢ation of an effective
browsing and searching component. While it is sometimesiplesto arrange images
within an image database by creating a hierarchy, or by hameling each image with de-
scriptive words, it is often time-consuming, costly andjsabve. Alternatively, requiring

the end-user to specify an image query in terms of low levafuiees (such as color and
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texture) is challenging to the end-user, because an imagey gai hard to articulate, and
articulation can again be subjective.

Thus, there is a need for a way to allow a user to implicithomi a database of his
or her desired output aquery concept To address this requirememglevance feedback
can be used as a query refinement scheme to derive or learmsaqusery concept. To
solicit feedback, the refinement scheme displays a few inregjances and the user labels
each image agelevant or irrelevant. Based on the answers, another set of images from
the database are brought up to the user for labeling. Afteeesaumber of such querying
rounds, the refinement scheme returns a number of items idatadase that it believes
will be of interest to the user.

A query refinement scheme that uses relevance feedback cagdreled as a pool-
based active learning task. In pool-based active learfiaddgarner has access to a pool
of unlabeled data and can request the user’s label for arcemanber of instances in the
pool. In the image retrieval domain, the unlabeled pool wdé the entire database of
images. An instance would be an image, and the two possiixdings of an image would
berelevant andnot relevant. The goal for the learner is to learn the useygry concept
In other words, the goal is to give a label to each image withendatabase such that for
any image, the learner’s labeling and the user’s labelinigagree.

In general, and for the image retrieval task in particulachsa learner must meet two
critical design goals. First, the learner must learn tacgetcepts accurately, with only a
small number of labeled instances. Second, the learneraslisfueries quickly since most
users do not wish to wait around.

4.2.2 TheSVM.qe Relevance Feedback Algorithm for Image Retrieval

Given the interactive nature of image retrieval, we usedbthsle querying method only.
The other querying methods proved too computationallyigasthis domain.

For the image retrieval domain, we also have a need for panfigr multiple queries at
the same time. It is not practical to present one image ataftimthe user to label because
the user is likely to quickly lose patience after a few rouafiguerying. Hence, we would
like to present the user with multiple images (say, twentgezh round of querying. Thus,
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for each round, the active learner has to choose not justoage to be labeled but twenty.
Theoretically it would be possible to consider the size @f tbsulting version spaces for
each possible labeling of each possible set of twenty guide clearly this approach is
impractical. Instead our system takes the simple approbchomsing the queries to be the
twenty images closest to its separating hyperplane.

In our text experiments, we noted that Sienple querying algorithm used VM acive
can sometimes be unstable during the first few queries. Teoeaddhis iSSUESV M aciive
always randomly chooses twenty images for the first relevdeedback round. Then it
uses th&imple active querying method on the second and subsequent rounds.

To summarize, ousVMagive System performs the following:

1. Initialize with onerelvant and ondrrelevant image.

2. Forthe first round of querying, ask the user to label tweamtiglomly selected images.
3. Learn an SVM on the current labeled data

4. Ask the user to label the twenty pool images closest to Yid Boundary.

5. Perform additional querying rounds by going to step 3.

After the relevance feedback rounds have been perforsvddacive retrieves the top:
most relevant images:

1. Learn a final SVM on the labeled data.

2. The final SVM boundary separatedevant images fromirrelevant ones. Display
thek relevantimages that are farthest from the SVM boundary.

The follow section describes the features that we used 0% Bl Active IMage retrieval
system.

4.2.3 Image Characterization

In order to be able to perform relevance feedback we first teeécide how to represent
an image. We extract two key types of features from each imageolor and texture.
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| Filter Name | Resolution| Representation |

Color Masks Coarse Appearance of culture colors

Color Spread Coarse Spatial concentration of a colar

Color Elongation | Coarse Shape of a color

Color Histograms| Medium Distribution of colors

Color Average Medium Similarity comparison within
the same culture color

Color Variance Fine Similarity comparison within
the same culture color

Table 4.4: Multi-resolution Color Features.

Clearly a great deal of additional information is lost whesing these simple types of
features. However, just as document classifiers that igmorel ordering are still very
effective, the image retrieval retrieval task can be eifety performed just by using these
two simple types of features.

Color

Although the wavelength of visible light ranges from 400 ovaeters to 700 nanometers,
research (Goldstein, 1999) shows that the colors that camabeed by all cultures are
generally limited to eleven. In addition tdack andwhite the discernible colors amed,
yellow, green blue, brown purple pink, orangeandgray.

We first divide color intal 2 color bins includingl 1 bins for culture colors and one bin
for outliers (Hua et al., 1999). At the coarsest resolutie@characterize color using a color
mask of12 bits. To record color information at finer resolutions, wea eight additional
features for each color. These eight features are colaodrasins (the percentage of that
color in the image), color means in the hue (H), saturationaf® value (V) channels,
color variances in the H, S and V channels, and two shape dleastics: elongation and
spreadness. For each color bin, the color means indicassénage shade of that particular
color. The color variances characterize the number ofdiffeshades of that color that are
present in the image. For example, in a forest image we wouldat a large variance for
the H, S and V channels in the green color bin. Color spreadisegiven by the second
moment of that color’s pixels’ locations. Spreadness attarees how that color scatters
within the image (Leu, 1991). Color elongation charactsithe shape of a color and, for
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efficiency, it is compute simply by taking the ratio of the iagices of that color’s pixels’
locations in the vertical and horizontal directions. Tadblé summarizes color features in
coarse, medium and fine resolutions.

Texture

Texture is an important cue for image analysis. Studies (Mwth et al., 2001; Smith
& Chang, 1996; Tamura et al., 1978; Ma & Zhang, 1998) have shihat characterizing
texture features in terms of structuredness, orientasind scale (coarseness) fits well with
models of human perception. A wide variety of texture analysethods have been pro-
posed in the past. We choose a discrete wavelet transfam@WwWT) using quadrature
mirror filters(Smith & Chang, 1996) because of its compotai efficiency.
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Figure 4.8: Multi-resolution texture features.

Each wavelet decomposition on a 2-D image produces founsades: a;— X % scaled-
down version of the input image and its wavelets in threenbaions: horizontal, vertical
and diagonal. The energies of the horizontal, vertical aagahal wavelet images capture
the amount of fine texture present for those particular tait@ns in the original image.
Now, applying the wavelet transformation to tbe< % scaled-down version of the original
image produces another set of four subimages. This timegrikggies of the horizontal,
vertical and diagonal wavelet images capture the amountealiim texture present in the
original image. Similarly, applying the wavelet to thex I version of original image
yields a measure for the amount of coarse texture. Thus, t&nob total of nine texture
combinations from subimages of three scales and threetatiemns.
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Each of the wavelet images is similar to the result produgedding a standard edge
dectection filter in that it maintains spatial informatidtar example. if there is a large de-
gree of fine horizontal texture in the center of the origin@ge (e.g, because the center of
the image contains a tree trunk) then the will be a high degfreeergy in the center of the
corresponding wavelet image for horiziontal fine texturéud, we can also extract elon-
gation and spreadness information from the nine waveleg@naFigure 4.8 summarizes
texture features.

4.2.4 EXxperiments

For our empirical evaluation of our learning methods we udede real-world image
datasets: a four-category, a ten-category, and a fifteegag image dataset where each
category consisted of 100 to 150 images. These image dataset collected from Corel
Image CDs and the Internet.

e Four-categoryset. The 602 images in this dataset belong to four categemaeshi-
tecture flowers landscapeandpeople

e Ten-categorget. The 1277 images in this dataset belong to ten categeaiehitec-
ture, bears clouds flowers landscapepeople objectionable imagegigers tools
andwaves In this set, a few categories were added to increase leadifficulty.
The tiger category contains images of tigers on landscagevater backgrounds to
confuse with the landscape category. The objectionablgésaan be confused with
people wearing little clothing. Clouds and waves have suttitl color similarity.

e Fifteen-categorget. In addition to the ten categories in the above datdmetotal of
1920 images in this dataset includgdsphantsfabrics fireworks food, andtexture
We added elephants with landscape and water backgroundsréase learning dif-
ficulty between landscape, tigers and elephants. We addedwdabrics and food
to interfere with flowers. Various texture images (e.g.nskrick, grass, water, etc.)
were added to raise learning difficulty for all categories.
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To provide an objective measure of performance, we assunatd uery concept was
an image category. TH&/Magive l€arner has no prior knowledge about image catecfories
It treats each image asla4-dimension vector described in Section 4.2.3. The goal of
SVMaciive IS tO learn a given concept through a relevance feedbaclepsodn this process,
at each feedback rourtd/Ma.iive S€lects twenty images to ask the user to labeébevant
or irrelevant with respect to the query concept. It then uses the labeldnoes to suc-
cessively refine the concept boundary. After the relevaaedlfack rounds have finished
SVMacive then retrieves the top-most relevant images from the dataset based on the final
concept it has learned.

Accuracy is then computed by looking at the fraction of theeturned result that be-
longs to the target image category. Notice that this is edent to computing the precision
on the topk images. This measure of performance appears to be the npsipajate for
the image retrieval task — particularly since, in most casesall of the relevant images
will be able to be displayed to the user on one screen. As indke of web searching, we
typically wish the first few screens of returned images tatamna high proportion of rel-
evant images. We are less concerned that not every singémnoesthat satisfies the query
concept is displayed.

As with all SVM algorithms SVMacive requires at least one relevant and one irrelevant
image to function. In practice a single relevant image cdagrovided by the user (e.g.,
via an upload to the system) or could be found by displayirgygel number of randomly
selected images to the user (where, perhaps, the imagedaadctors are chosen to be
mutually distant from each other so as to provide a wide @gef the image space). In
either case we assume that we start off with one randomlgteeleelevant image and one
randomly selected irrelevant image.

SVMadive EXperiments

Figures 4.9(a-c) show the average topecuracy for the three different sizes of data sets.
We considered the performancefM e after each round of relevance feedback. The

5Unlike some recently developed systems (Wang et al., 20@0rbntain a semantic layer between image
features and queries to assist query refinement, our sysiearet have an explicit semantic layer. We argue
that having a layer can make a retrieval system restriclRagher, dynamically learning the semantics of a
guery concept is more flexible and hence makes the systemusefel.
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graphs indicate that performance clearly increases adieln eound. Also, th&VMaciive
algorithm’s performance degrades gracefully when theairkcomplexity of the database
is increased — for example, after four rounds of relevanedldack it achieves an average of
100%, 95%, 88% accuracy on the top-20 results for the thfeint data sets respectively.
It is also interesting to note th&VMaive IS NOt Only good at retrieving just the top few
images with high precision, but it also manages to sustaily taigh accuracy even when
asked to return larger numbers of images. For example, fafeerounds of querying it
attains 99%, 84% and 76% accuracy on the top-70 results éothttee different sizes of
data sets respectivély

SVMaciive USES th&imple active querying method outlined in Section 3.6. We examined
the effect that the active querying method had on performaRigures 4.10(a) and 4.10(b)
compare the active querying method with the regular passethod of sampling. The
passive method chooses random images from the pool to Hedialddis method is the one
that is typically used with SVMs since it creates a randorelgsted data set. It is clear that
the use of active learning is beneficial in the image rettideanain. There is a significant
increase in performance from using the active method antddbst in performance grows
with the number of querying rounds.

SV M aciive displays 20 images per pool-querying round. There is a tfadbetween the
number of images to be displayed in one round, and the nunflepresying rounds. The
fewer images displayed per round, the lower the performahtmvever, with fewer im-
ages per round we may be able to conduct more rounds of qgeayith thus increase our
performance. Figure 4.11 considers the effect of disptaglifferent images per round. In
Figures 4.11(a-b) we consider one of the topics in the faegory dataset. We start out by
initializing with one relevant and one irrelevant image nein ask 20 randomly selected
images. We then compare asking different numbers of imagiesopnd. Fig. 4.11(a) dis-
plays the top-100 accuracy for different numbers of imagessand Fig. 4.11(b) displays
the top-100 accuracy for different numbers of rounds. In Eig1(c) we consider the fif-
teen category dataset. We initialize with one relevant argioelevant image. Our first

"We note that, in general, the state-of-the-art performaeesls of classifiers in the image domain is
worse than in the text classification domain. This is becasi$arder to find meaningful image features.
Thus the image features that are typically used are lessniaiive about the topic of an image than the
words features are about the topic of a document.
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Figure 4.9: (a) Average top-accuracy over the four-category dataset. (b) Average:top-
accuracy over the ten-category dataset. (c) Average aquracy over the fifteen-category
dataset. Standard error bars are smaller than the curveddyize. Legend order reflects
order of curves.

round consisted of displaying twenty random images and, therthe second and subse-
guent rounds of querying, active learning with 10 or 20 insaiganvoked. We notice that
in all graphs there is indeed a little benefit to asking (2@can + two rounds of 10 images)
over asking (20 random + one round of 20 images). This ob8ernves unsurprising since
the active learner has more control and freedom to adapt w&bkking two rounds of 10
images rather than one round of 20. What is interesting isabking (20 random + two
rounds of 20 images) is far better than asking (20 random +wods of 10 images). The
increase in the cost to users of asking 20 images per rouriteis wegligible since users
can pick out relevant images easily. Furthermore, thergtisally no additional computa-
tional cost in calculating the 20 images to query over thenifges to query. Thus, for this
particular task, we believe that it is worthwhile to dispipund 20 images per screen and
limit the number of querying rounds, rather than displaydewnages per screen and use
many more querying rounds.

We also investigated how performance altered when variepsas of the algorithm
were changed. Table 4.5 shows how all three of the textuodutdsns are important. Also,
the performance of the SVM appears to be greatest when aleotexture resolutions
are included (although in this case the difference is naissizally significant). Table 4.6
indicates how other SVM kernel functions perform on the imegjrieval task compared to
the radial basis function kernel. It appears that the rdzhals function kernel is the most
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Texture Top-50

features | Accuracy
None 80.6 2.3
Fine 85.9+ 1.7
Medium | 84.7 + 1.6
Coarse | 85.8+1.3
All 86.3+ 1.8

Table 4.5: Average top-50 accuracy over the four-categatg det using a regular SVM
trained on 30 images. Texture spatial features were omitted

| Top-50 Top-100 Top-150

Degree 2 Polynomial 95.9+0.4 86.1+05 728404
Degree 4 Polynomial 92.7+0.6 82.8+0.6 69.0+0.5
Radial Basis 96.8 0.3 89.1+04 76.0+04

Table 4.6: Accuracy on four-category data set after thresrygig rounds using various
kernels. Bold type indicates statistically significantulés

suitable for this feature space.

One other important aspect of any relevance feedback #igois the wall clock time
that it takes to generate the next pool-queries. Relevasaiback is an interactive task, and
if the algorithm takes too long then the user is likely to |pstience and be less satisfied
with the experience. Table 4.7 shows tB&tMaive averages about a second on a Sun
Workstation to determine the 20 most informative imagesHerusers to label. Retrieval
of the 150 most relevant images takes an similar amount & &nd computing the final
SVM model never exceeds two seconds.

Scheme Comparison

Relevance feedback techniques proposed by the databaseagelretrieval communities
also perform non-random sampling and are closely relatexttive learning. The study

Dataset| Dataset round of 20 Computing Retrieving top
Size queries (secs) final SVM 150 images

4 Cat 602 0.34 £ 0.00 0.5+0.01 0.43 £0.02
10Cat | 1277 0.71+0.01 1.03+£0.03 0.93£0.03
15Cat| 1920 1.09+£0.02 1.74+£0.05 1.37+0.04

Table 4.7: Average run times in seconds
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Figure 4.12: (a) Average top-accuracy over the ten-category dataset. (b) Averagé: top-
accuracy over the fifteen-category dataset.

of (Porkaew et al., 1999b) puts these relevance feedbadbagipes into two categories:
guery reweighting/query point movemamtquery expansion

e Query reweightingandquery point movemerfQPM) (Ishikawa et al., 1998; Ortega
et al., 1999; Porkaew et al., 1999a). Both query reweighaimg) query point move-
ment use nearest-neighbor sampling: They return top raoiedts to be marked by
the user and refine the query based on the feedback.

e Query expansiofQEX) (Porkaew et al., 1999b; Wu et al., 2000). Tdngery ex-
pansionapproach can be regarded as a multiple-instances samplprigach. The
samples of the next round are selected from the neighborframichecessarily the
nearest ones) of the positive-labeled instances of thaquevound. The study of
(Porkaew et al., 1999b) shows that query expansion ach@vgsa slim margin of
improvement (about0% in precision/recall) over query point movement.

We compare®dVMagive With these two traditional query refinement methods. In this
experiment, each scheme returned 2hanost relevant images after up to five rounds of
relevance feedback. To ensure that the comparis&V M Was fair, we seeded both
schemes with one randomly selected relevant image to genbeafirst round of images.
On the ten-category image dataset, Figure 4.12(a) shows$YHd e achieves nearly
90% accuracy on the top-20 results after three rounds of retevéeedback, whereas the
accuracies of both QPM and QEX never re&ett and do not tend to improve significantly
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after just five querying rounds. On the fifteen-image catgdataset, Figure 4.12(b) shows
that SVMaciive OUtperforms the others by even wider margi¥M acive reachess0% top-

20 accuracy after three rounds and; after five rounds, whereas QPM and QEX cannot
achieves5% accuracy.

Traditional information retrieval schemes often requiru@e number of image in-
stances to achieve any substantial refinement. By refiningmrurelevant instances both
QPM and QEX tend to be fairly localized in their exploratidrtte image space and hence
rather slow in exploring the entire space. During the retleeafeedback phas®/Mactive
takes both the relevant and irrelevant images into accotsenvehoosing the next pool-
gueries. Furthermore, it chooses to ask the user to labegJamthat it regards as most
informative for learning the query concept, rather than those that Hevebst likelihood
of being relevant. Thus it tends to explore the feature spame aggressively.

Figures 4.13 and 4.14 show an example run of K& e System. For this run,
we are interested in obtaining architecture images. Inreigul3 we initialize the search
by giving SVMacive ONE relevant and one irrelevant image. We then have threlbdek
rounds. The images th&YMaive asks us to label in these three feedback rounds are images
that SVMaiive Will find most informative to know about. For example, we skeat it asks
us to label a number of landscape images and other imagea Witle or gray background
with something in the foreground. The feedback rounds algM s to Narrow down the
types of images that we like. When it comes to the retrievabph(Figure 4.143VM aciive
returns, with high precision, a large variety of differentlatecture images, ranging from
old buildings to modern cityscapes.

4.3 Multiclass SVM Experiments

The previous two domains both involved binary classificatiove were interested in dis-
tinguishingrelevant instances fronirrelevant ones. We now consider using the extension
to the multiclass scenario discussed in Section 3.7.

Recall that, in the binary classification setting, Gimple method is essentinally the
same as Lewis and Gale’s uncertainty sampling method siecguery the pool instance
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that is closest to the current SVM decision boundary; ite jmstance that we are most un-
certain about. In the multiclass case, howeverSihele method and uncertainty sampling
differ. TheSimple method attempts to approximatedly reduce the size of trearespace
and using the current SVMs as a guide via Eqg. (3.5) and Eq). (8lBcertainty sampling
explicitly chooses points that are closest to all of the mglames. For example, given the

k current SVMsf1, ..., fi, uncertainty sampling will choose to query the pool instaxc
for which:

H fi(x) (4.1)
is smallest

We compared the version spaSenple active method with the uncertainty sampling
active method and regular random sampling on a variety ofiolags data sets: the iris,
vehicle and wine UCI Irvine datasets (Blake et al., 1998)thedour-class Corel photo CD
image dataset (text domain experiments were not performedaltime constraints). We
initialized each of the learners with one instance from ez#dhe classes. Figures 4.15(a-
e) show the test set accuracy for the different datasets. é&/dhat ourSimple method,
which takes a version space reduction view of active legrrgenerally performs signifi-
cantly better than uncertainty sampling and random sampkurthermore, although the
uncertainty sampling criteria for choosing a pool instafteg (4.1)) seems intuitively rea-
sonable, it can sometimes perform significantly worse tnadom sampling. This observa-
tion suggests that designing effective active learningyjng components is a subtle task.
Furthermore, viewing the binary classificati®imple method as a version space reduction
method enables us to extend Sienple method to an effective querying algorithm for the
multiclass case. In contrast, viewing the binary clasgificebimple method as uncertainly
sampling produces a less effective extension to the matsctase. This observation in-
dicates that the version space reduction interpretatiahebinary classificatioBimple
method, rather than the uncertainty sampling interpi@tats the more consistent view.

8Rather than taking the product ¢fs, we could instead look at the sum. Empirically, minimizihg
product of f;s performs significantly better.
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Figure 4.13: Searching for architecture imag®éM e Feedback phase.
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First Screen of Results

Fourth Screen of Results

Fifth Screen of Results

Figure 4.14: Searching for architecture imag®éM e Retrieval phase.
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Chapter 5

Bayesian Networks

5.1 Introduction

We often wish to build models that describe domains of irgierelowever, uncertainty is
inherent in the world. In order to provide a realistic moaet, would like to encode such
non-determinism explicitly. Probability theory provides with a sound, principled frame-
work for describing and reasoning about uncertainty. Irfigdd of Artificial Intelligence,
Bayesian networks (BN$lave emerged as the representation of choice for multtearia
probability distributions. In the next two chapters we ssvithe main areas of Bayesian
network representation, inference and learning which vedl ghen use in order to tackle
active learning in Bayesian networks.

Bayesian networks are a compact graphical representatifmind probability distri-
butions. They have been successfully used as models of avartkty of complex sys-
tems. For example, medical diagnosis (Heckerman, 19&8&ihkeshooting in the Microsoft
Windows operation system (Heckerman et al., 1994), mangaelectric generators (Mor-
jaia et al., 1993), filtering junk email (Sahami et al., 199isplaying information for
time-critical decision making (Horvitz et al., 1992) andetenining the needs of software
users (Horvitz et al., 1998).

The key property of Bayesian networks is that they permitekglicit encoding of
conditional independencies in a natural manner. Thus, Bageetworks allow qualitative,
structural aspects of a domain to be represented and hathess

65
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| P(can,) P(can;)
1099 0.01

P(tumg|Can) P(tum,|Can) | P(calylCan) P(cal|Can)

Calcium

cany| 0.95 0.05
can;| 0.8 0.2

cang| 0.8 0.2
can;| 0.2 0.8

Increase

P(papg|Tum) P(pap,|Tum) \P(comolTum,Cal) P(com,|Tum,Cal)

tumg 0.99 0.01 tumg cal, | 0.95 0.05

tumy 0.4 0.6 tumgy cal; | 0.3 0.7
tum, cal,| 0.1 0.9
tum, cal; | 0.2 0.8

Figure 5.1:.CancerBayesian network modeling a simple cancer domain. “Carsbenbdtes
whether the subject has secondary, or metastatic, canGailciim increase” denotes if
there is an increase of calcium level in the blood. “Papdled” is a swelling of the optical
disc.

A Bayesian network consists of a graph structure togethtr cal probability mod-
els for each node of the graph. See Fig. 5.1 for an example. gfdgeh structure of a
Bayesian network encodes conditional independenciesdlitribution and the parame-
ters at each node in the BN encode the local conditionalibiigions of each node given
its parents. The network structure, together with the satuaiferical parameters, specify a
joint distribution over the domain variables. The graphrepresentation is both compact
and natural. Furthermore, the factored representatiohoea conditional distributions
enables a Bayesian network to support both efficient inferemd learning from datfa.

5.2 Notation

Before we proceed to the formal definition of a Bayesian netwid will be helpful to
introduce a little notation. We shall be frequently talkialgout probability distributions

1The term Bayesian network is a bit of a misnomer. There isingtinherently Bayesian about a Bayesian
network — any form of statistical parameter estimation caunged to learn a Bayesian network.
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over sets of random variables. We shall use the shortidid, . . ., X,,) to denote:
Vay, ...,z P(Xy=21,..., X, =1,),

and we usé’(x, ..., z,) to denote:

P(Xi=21,..., X, = x,).
For example, when we writB( X, X,) = P(X;)P(X, | X;) we mean:
Va Vg P(Xy =21, Xo = x9) = P(Xy =21)P( Xy =25 | X1 = 1),

and when we writé”(z1, z3) = 0.4 we mean:

P(X) =2, Xy = 129) = 04.

We use boldface to denote a vector of variab¥es= (X;,...X,), or instantiations
x=(Xy=z,..., X, =1,).

Definition 5.2.1 We say thakX is conditionally independerdf Y givenZ if:

P(X|Y,Z)=P(X|2Z)

3

and we denote this relationship by the statemé(X;Y | Z).

5.3 Definition of Bayesian Networks
The formal definition of a Bayesian network is:

Definition 5.3.1 LetX = { X1, ..., X,,} be a set of random variables. L&tbe a directed
acyclic graph overt. LetU; be the set of parents of,. Let# be a set of parameters
which specifyconditional probability distributions (CPD$} (X; | U;). Then aBayesian
networkover X' is a pair (G, 9).
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The structurej of a Bayesian network asserts conditional independentenséats
given by the following definition:

Definition 5.3.2 A Bayesian network structui@ encodes the conditional independence
statement “Every node is independent of its non-descesdpvn its parents”:

VX, I(X;;Non-descendanty;) | U;).

Given the above definitions it is possible to show that antribistion P satisfying the
conditional independencies in Definition 5.3.2 can be eadas a BN witl§ as a structure
and with CPDs corresponding to the corresponding localitiondl distributions ofP, and
it can be shown that the joint distributidhcan be expressed by theain rule for Bayesian
networks

P(X1,.... X,) = [[ P(X | U)). (5.1)

When a distributionP satisfies the conditional independencies in DefinitionZ.®e
say that the distributio® is consistentith the structureg, or thatG is anindependency
mapping (I-MAP)of P. Finally, given a Bayesian network;, 8), we denote the distribu-
tion that it induces over the entire set of variableé G by: P(X | 6,G).

5.4 D-Separation and Markov Equivalence

The graph structure of a Bayesian network asserts a set ditamral independencies that
can be derived from Definition 5.3.2. For example, supposéave a five node network
(U <+ V = X « Y — Z). Then, it is actually possible to prove, using the statesient
given in Definition 5.3.2, thalt/ is independent of for every distribution that is consistent
with G.

Definition 5.4.1 Given a Bayesian network graph struct@edefine thesntireset of con-
ditional independence statemeiit§) thatG asserts as the set of conditional independence
statements for which every distributiéhconsistent witly must satisfy.
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Now, given an arbitrary BN graph, we can deduce the set ofitiondl independence
statements that it encodes by considering which ndlased-separatedrom other nodes
Y given node<Z. Before we proceed with looking at d-separation, there isaply sub-
structure that is important to define first:

Definition 5.4.2 A v-structure is a graph substructure of the form— B « C. We also
say thatB is thecenterof the v-structure.

We can now formally define d-separation:

Definition 5.4.3 Given a Bayesian network graph struct@esingle nodeX, single node
Y and set of nodeZ, we say thatX is not d-separatedrom Y givenZ if there exists an
(undirected) path P fronX to Y such that:

e Whenever a nod&’ in P is the center of a v-structure, eith&’ or one of W'’'s
descendants is i#.

e \Whenever a nod8’ in P is not the center of a v-structure it is notth

We say thatX is d-separateffomY givenZ if no such path exists.

The definition can be extended to accommodate sets of vesixbbndY: X is d-
separated fron¥ givenZ if every X in X is d-separated from evety in Y. It can be
shown that a conditional independence stateni€Rt Y | Z) is in 1(G) if and only if X
is d-separated fronlY givenZ.

It is possible for two different network structures to eneddentical sets of conditional
independence statements. For example, the networks Y and X «+ Y both encode
no conditional independence statements. When two netwerksde precisely the same
conditional independence statements we say that theyaneov equivalen(Pearl, 1988).

Definition 5.4.4 Let X; denote the set of variables in gragh Then the Markov equiva-
lence class of a Bayesian network structdres:

G| X =X, 1(G) = 1(G)}.
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All networks in a Markov equivalence class have the sakeeton(the set connected
(X,Y) pairs). For some of the pairs, the direction of the edge islfiwdile the other edges
can be directed either way (Spirtes et al., 1993). See Fxgfos.an example of networks
in the same Markov equivalence class.

5.5 Types of CPDs

In much of our work we shall assume that the CPD of each nodsistsrof a separate
multinomial distribution oveDom X;] for each instantiatiom of the parentdJ;. The BN
in Fig. 5.1 is of this form. We have a parametgr |, for eachr;; € Dom X;]; we usefx, |,
to represent the vector of parameters associated with thieomial P(X; | u).

In general, any conditional distribution can be used as a.GPber common types
of CPDs are: tree CPDs (Boutilier et al., 1996), Gaussian £RRuritzen, 1996) and
Conditional Linear Gaussian CPDs (Lauritzen, 1996).

5.6 Bayesian Networks as Models of Causality

A Bayesian network represents a joint distribution overdéeof variablest’. Viewed as
a probabilistic model, it can answer any query of the faPY | Z = z) whereY and

Z are sets of variables andan assignment of values #. However, a BN can also be
viewed as a&ausal mode{Pearl, 2000). Under this perspective, the BN can also be tase
answelinterventional querieswvhich specify probabilities after we intervene in the mipde
forcibly setting one or more variables to take on particukdues.

In Pearl’s framework (Pearl, 2000), an intervention in asedmodel that sets a single
node X := x replaces the standard causal mechanisn¥ afith one whereX is forced
to take the valuer. In graphical terms, this intervention correspondsrtotilating the
model G by cutting the incoming edges t8. Intuitively, in the new model, X does not
directly depend on its parents; whereas in the original hdde fact thatX = x would
give us information (via evidential reasoning) abdds parents, in the intervention, the
fact thatX = z tells us nothing about the values &fs parents. For example, in a fault
diagnosis model for a car, if we observe that the car battenyot charged, we might
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Figure 5.2: The entire Markov equivalence class forGamcer network
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Figure 5.3: MutilatedCancer Bayesian network after we have forc€dl := cal,.

conclude evidentially that the alternator belt is possidyective, but if we deliberately
drain the battery, then the fact that it is empty obviousiyegius no information about the
alternator belt. Thus, if we s& := x, the resulting model is a distribution where we
mutilateG to eliminate the incoming edges to nodeXinand set the CPDs of these nodes
so thatX = x with probability 1.

Fig. 5.3 demonstrates what happens when we intervene Daheer network by forc-
ing there to be a high calcium level in the blood, i.e., by fiegcCal to becal,. If we
simply observe that there is a high blood calcium level, ttienprobability of the mouse
subject having cancer can be computed td§€an = can, | Cal = cal) = 0.0567, but
if we purposely inject the mouse subject with calcium salatithen the fact that it has a
high blood calcium level gives us no information about wieetih has cancer and so the
probability that the mouse has cancer given that we havE€alet= cal, is just the prior
probability: P(Can= can, | Cal := cal;) = P(Can= can) = 0.001.

More formally, we use define a mutilated Bayesian network thsults from perform-
ing an intervention as:

Definition 5.6.1 Let (G, ) be a Bayesian network. L& be some set of nodes (
Define themutilated Bayesian netwonesulting from the interventiolyY := y to be the
pair (Gy.—y, Oy.—y) Where:
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e Gy.—y is the same ag except any incoming edgesYoare removed.

e Oy._y is the same a# exceptfy._, no longer contains parameters fét(Y" | U)
for eachY € Y. Insteadfy.—, contains parameters that define:

1 if y; is consistent witly
0 otherwise

Poy (Y =y) = {

foreachY € Y.

We now define a causal Bayesian network as follows:

Definition 5.6.2 Let P*(X) be a probability distribution on a set of variablés. Let
P*(X | Y := y) denote the distribution resulting from intervening by fogrY to have
valuesy whereY is any subset XK. The Bayesian networkg, 6) is a causal Bayesian
networkfor the distributionP* if:

o P*(X)=P(X|G.0),

e VY C X, P*(X |Y :=y) = P(X | Gy.—y, Oy.—y).

5.7 Inference in Bayesian Networks

One of the main tasks of a probabilistic modehiference The task of inference is to deter-
mine the value of a probabilistic expression involving tleendin variables. For example,
given theCancer network (Fig. 5.1) we may wish to know the marginal distribatof
coma: P(Com). Whilst in general the task of inference in BNs is NP-hardqer, 1990),
in a great many cases the factored representation of a Bawyestwork allows us to com-
pute this type of expression efficiently.

5.7.1 Variable Elimination Method

Let’s consider computing the marginal distributiBiCom) in the Cancer network. By the
Bayesian network chain rule we have:
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P(Com (5.2)

— Y P(ComTumCal, Pap Can) (5.3)
TumCal,Pap,Can

= > > > > P(Com| Tum Cal)P(Pap| Tum P(Cal | Can)P(Tum| Can)P(Can).
Tum Cal Pap Can

(5.4)

Notice that if we naively compute this expression we will lnéndj a lot of unnecessary
work. For example, some of the terms do not involve the véi@an Hence, it is un-
necessary, and inefficient, to have the scope for the sumGasto be all of the terms. In
general, we can simplify the computation of this expresbyppushing the summations in
as far as they can go:

> > P(Com| TumCal) Y P(Pap| Tum » _ P(Cal | Can)P(Tum| Can)P(Can).(5.5)
Tum Cal Pap Can

Now let us consider how to evaluate this expression effiiem/e first consider the
innermost summation:

> P(Cal| Can)P(Tum| Can)P(Can). (5.6)

Can
This expression is a sum ov&an of an expression involving the variabl€al, Can
andTum Note thatP(Cal | Can), P(Tum| Can) and P(Can) can be represented as tables,
with each row of the table corresponding to a different insédion of the variables. For
example the table foP(Cal | Can) is:

Cal | Can | P(cal | can)

cal, | can 0.8
caly | can 0.2
cal, | can 0.2

cal, | can 0.8
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We combineP(Cal | Can)P(Tum | Can)P(Can) into one function,h;, whereh,
is a function ofCal, Canand Tum We call h; a factor. In fact we call all such func-
tions involved in the inference computation, factors. TR{€al | Can), P(Tum| Can)
and P(Can) are also called factors. We can represent the facta@s a table where the

(cal, can tum) entry is equal to:

P(Cal = cal | Can= can)P(Tum= tum| Can= can)P(Can= can).

In other words, by multiplying the tables fét(Cal | Can), P(Tum| Can) and P(Can)
together we obtain the factay.? The table forh, is then:

Cal | Can | Tum | h,(cal, can tum)
cal, | cany | tum, 0.7524
caly | cany | tum 0.0396
caly | can, | tum, 0.0016
cal, | can, | tumy 0.0004
cal, | cany | tum, 0.1881
cal, | cany | tum 0.0099
cal, | can, | tum, 0.0064
cal, | can | tum 0.0016

Now, returning to our inference computation, after sumnaogCanwe end up with a

function involving onlyTumandCal.

> P(Cal| CanP(Tum| CanP(Can = > hi(Cal, Can Tum (5.7)

Can

Can

— g,(Cal, Tum. (5.8)

The factorg, can be represented as a table, where we sur@antn h;:

2More formally h, (Cal, Can Tum is theouter-producbf P(Cal | Can), P(Tum| Can) andP(Can).
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Cal | Tum | ¢;(cal, tum)
caly | tumy 0.754
caly | tum; 0.04
cal; | tumy 0.1945
cal; | tum 0.0115S

Substitutingg; back into Eq. (5.5) we obtain:

P(Com)

= > Y P(Com|TumcCal))»_ P(Pap| Tum ) _ P(Cal | Can)P(Tum| Can)P(Can)
Tum Cal Pap Can

= > Y P(Com| TumcCal) ) P(Pap| Tumg;(Cal, Tum.
Tum Cal Pap

We have eliminated one of the summations, and hence we hiavea&ied one of the
variables in the expression. Notice that to eliminate thi@atde Canwe didnothave to sum
over all of the terms in the expression. We only had to sum thestermsP(Cal | Can),
P(Tum| Can) and P(Can). This is essentially where we gain computational efficiency
over the naive evaluation of the expresston.

We can proceed similarly, multiplying and summing out fastdo eliminate the other

variables:
P(Com) (5.9)

= Y > P(Com|TumCal)>_ P(Pap| Tum > h;(Cal,Can Tum (5.10)
Tum Cal Pap Can

= > Y P(Com| TumcCal) )  P(Pap| Tumg;(Cal, Tum) (5.11)
Tum Cal Pap

= Y > P(Com|TumcCal) | Y hy(Pap Tum | gi(Cal, Tum (5.12)
Tum Cal Pap

3The general paradigm for the variable elimination algoniis dynamic programming. We solve a large
problem by solving subproblems, storing their results, asidg them to solving other subproblems until we
have solved the large problem.
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— YY" P(Com| Tum Cal)g,(Tum)g, (Cal, Tum) (5.13)
= TESE hs(Com Tum Cal) (5.14)
= g;a |(Com Tum (5.15)
= Tg/u(c:om Tum) (5.16)
= .ZTCom)- (5.17)

The final factorg,(Com) is equal toP(Com):

Com ‘ ga(com)
comy | 0.781
com 0.219

We now consider the computational cost. All of our operatianvolve multiplying
and summing out factors. Each of these operations is lime#ned number of elements
in the tables. Thus the computational complexity is deteeiby the size of the largest
factor encountered in the computation. In our above exathgléargest factor involved 3
variables, and has si2é = 8. The total number of additions and multiplications is 52.

If we were to naively evaluat®(Com) directly from Eg. (5.4) we would first need to
create a factor over all variables instead and so the largest factor will have Zize 32.
The total number of multiplications and additions required58.

The above computation was performed by first choosing arr ardehich to eliminate
the variables (we chose the ordean Cal, Tum Pap). The complexity is dependent upon
the choice of ordering. The optimal choice of ordering is @ iNard problem (Arnborg
et al., 1987), but heuristics can be used to choose a redsardering (Kjaerulff, 1990).

In general, the variable elimination algorithm (Zhang & Rpd994) for computing
the marginal distributior?(Y) is described in Fig. 5.4. The essential algorithm is to pick
a variable to eliminate next, gather terms involving thatalzle, sum out the variable over
those terms and then repeat.
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VariableElimination (BN over X, ))

Checkthat) is a subset o’

Initialize F :={P(X; | U;) | i=1,...,n}

Z=X-=-Y)

For Each Z; € Z // this is where the choice of ordering is important
Extract and remove fron¥ all factorsg,, . .. g, involving Z;
h:=1l;9;
g:=>zh
Insert g into F

End For

Return (Hgg g)

Figure 5.4: The variable elimination algorithm for compgtimarginal distributions.

Conditional Queries

The above algorithm is used to compute marginal distrimstieuch ag”(Can Com and
P(Tum Pap). We often wish to consider posterior distributions such 28Can | com)
and P(Tum| pap,). The variable elimination algorithm can be easily adaptecoimpute
such distributions. Suppose we have evideGoen = com, and we want to compute
P(Can| com). By definition:

P(Can com)

P(Can| comy) = P(com)

Thus, to compute”?(Can | comy) we just need to comput®(Can comy) and then
renormalize. Computing’(Can com) is straightforward:

P(Can comy) (5.18)
= >~ P(comy, Tum Cal, Pap Can) (5.19)
TumCal,Pap
= Y > > P(com | Tum Cal)P(Pap| Tum P(Cal | Can) P(Tum/| Can)P(Can).
Tum Cal Pap
(5.20)

Now, we can evaluate Eq. (5.20) just like we did before in thergmal distribution
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case (Eq. (5.4)). Like before, we have a sum of product obfactThe only difference is
that we have slightly different factors than before.

Notice that, because we are conditioning on evidélma = comy, P(com, | Tum Cal)
is now not a function oCom It is just a function ofTumandCal. The table representing
P(com, | Tum Cal) can be obtained byeducingthe table forP(Com| Tum Cal). That s,
the table forP(Com| Tum Cal):

Com | Tum| Cal | P(com| tum cal)
com, | tumy | caly 0.95
com, | tumy | cal, 0.3
com, | tum, | caly 0.1
com, | tum, | cal; 0.2
com | tumy | caly 0.05
com | tum, | cal, 0.7
com | tum, | caly 0.9
com | tum, | cal 0.8
reduces to:

Tum | Cal | P(com, | tum cal)

tum, | caly 0.95

tum, | cal; 0.3

tum, | caly 0.1

tum, | cal, 0.2

Definition 5.7.1 Given a factorg(Xy, ..., X,), and instantiationX; = z;; then there-

ducedfactor g|,,; is defined as:

i (T T, T, ) = G0, T, T, Tigrs ey Ty

g

This definition can be extended in the obvious way to redufaotprs by an instantia-
tion that involves more that one variable.
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CondVariableElimination (BN over X', Y, W, w)
Checkthat), W andw only contain variables itX’
Initialize F :={P(X; |U;) | i=1,...,n}
Reduceeachg € F' to g|w
Z=X-Y-W
ForEach Z; € Z

Extract and remove fronf all factorsg,, . .. g, involving Z;
h = I1; 9;
g:=>zh
Insert g into F
End For

Return renormalizeé]‘[gef g)

Figure 5.5: The Variable Elimination Algorithm.

Fig. 5.5 describes the general variable elimination atgorifor computing the distri-
butionP(Yi,..., Y, | W =w).

5.7.2 The Join Tree Algorithm

The join tree algorithm (Lauritzen & Spiegelhalter, 1988;ad1dg & Darwiche, 1996) is
another method for computing marginal and posterior distions. It is also known as
the cluster tree, clique tree and junction tree algorithtris very similar to the variable
elimination algorithm. It is slightly more complicated baitows one to simultaneously
compute distributions over different sets of variables @ample, it can simultaneously
derive P(Can| comy), P(Tum Cal | com,) and P(Pap| comy)). This is in contrast to the
variable elimination algorithm which can only compute omgribution at a time.

We shall describe the essence of this algorithm. A more ldéetaccount can be found
in (Huang & Darwiche, 1996). To gain an understanding of hbig algorithm works,
let us first take another look at the variable eliminatioroatpm for computing marginal
distributionsP(Y). Consider theCancer example that we presented in Equations 5.9 to
5.17. We can take a more graphical view of this computatioveiGthe elimination order-
ing Can Pap Cal, Tum the variable elimination algorithm creates a series @rmediate
factorshy, ... h;. Let us represent eachfactor that we create as a node in an undirected
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Can Cal Tum
Tum Cal
Root Node
Com Tum Cal

Figure 5.6: Initial join tree for th&€ancer network constructed using the elimination or-
deringCan Pap Cal, Tum

graph. We call the node corresponding to the lasteated as theot node. We label the
node with the variables that appearinWhenever we use @(obtained by summing out a
variable inh) to compute another’ we draw an edge between the node/fa@and the node
for ' and we label the edge with the variables present iRor each node, there is an edge
that leads towards the root. We call such an edgeothigoingedge and we call all other
edges théncomingedges. We call such a grapljoén tree. See Fig. 5.6 for an example.
Given a join tree obtained from a given ordering, the vagaimination algorithm for
computing marginal distribution8(Y7, . .., Y,,) can then be restated as follows:

e Insert each CPDP(X; | U;) into a node that is labeled with at least the variables
{X;}uU,.

e Starting from the leaf nodes, multiply incoming factors twény factors resident
within the node. (This creates oarfactors). Then sum out all variables not present
in the variables on the outgoing edge (this createsydactors) and pass this factor
along the outgoing edge.

See Figures 5.7(a) and 5.7(b) for an example . By the end sfpidcess we end up
with a factor at the root node which is equal to the marginsiritiution for the variables
in the root node. Since the root node corresponded to the:lastated in the variable
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elimination algorithm, it contains all of the variablés, ..., Y,,. We then sum out the
extraneous variables in the root node factor to obf(m, . .., Y,,).

The join tree algorithm works in a very similar manner to tHis the terminology of
the join tree algorithm, we have just performed the “upwardss of the algorithm — we
have passed factors from leaves to the root. After the uppasd the root node contains
the marginal probability of the variables labeling that eoéHowever, in general, for any
other node, thé factor in that node is not equal to the marginal distribubbthe variables
labeling that node.

The join tree algorithm has a second phase called the “dowdivpass. Here we pass
factors from the root down towards the leaves. Figures pad 5.8(b) show how this
process is performed. After the second phase, it can be stitmt®ach node’s factor
is the marginal distribution of the variables within thatdeo(Lauritzen & Spiegelhalter,
1988). After performing these two passes we say that thenaedeertalibrated

The cost of this algorithm is at most twice that of the vamablimination algorithm,
but we have now managed to compute many different margisé#iiolitions at once. We
also note for future reference that each CPD factor belomgsrtode, and so a calibrated
join tree contains, in an accessible form, the marginal8(@f;) for each node;.

Dealing with evidenc®V = w, is a straightforward modification, just as it was with the
variable elimination algorithm. Before performing the @ and downward passes we
reduce all the factors to be consistent with the evidemcé\fter calibrating the tree with
the upward and downward passes the factors at each nodetodetere distributions of the
form: P(Y1,...,Y,, w). Renormalizing such factors will then yiel®(Y;,...,Y,, | w)
for each node.

We have briefly described the essence of the join tree atgoriiThere are number of
extensions and improvements to the algorithm that can beembudreality, the structure
of the join tree is constructed by a different method, rathan by using an ordering for
variable elimination. It can be shown that, so long as theigs&onstructed to obey certain
properties, the upward and downward passes are guaraofeextitice the correct marginal
distributions at each of the tree’s nodes. Furthermor@easd’t matter which join tree node
we choose as the root node. See (Lauritzen & Spiegelhal®88)Ifor a more detailed
explanation. The upward and downward passes need not b@mped in series; they can
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VWXY

h 1(VIWIX/Y)

O\ Towards

P(v12) Root Node
P(X]Y,2)
RSZ
h,(R,S,Z)
(a)
VWXY
h]_(VlWIXIY)
Towards
94X.2) Root Node
h3(X,Y,2) XZ
RSZ
h,(RS,2) h3(X,Y,2)=P(X|Y,Z) P(Y|Z) 94(X,Y) 95(2)
93 (X,2)=x Yh 3(X1Y/Z)

(b)

Figure 5.7: Processing the node XYZ during the upward passBéfore processing the
node. (b) After processing the node.
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VWXY
S Towards
94X.2) Root Node
XYZ
<« g;5(X,2)
h3(X/le) XZ
RSZ
hZ(RISIZ)
(a)
VWXY
e Towards
Root Node
h’5(X,Y,2) 95(%2)
3\ Ty XZ
RSZ h5(X,Y,2)=h3(X,Y,2) g5(X,2)/g5(X,2)
h,(R,S,2) g1(X,Y)=2,h5(X,Y,2)
9(2)=Zyy 5(X,Y,2)
(b)

Figure 5.8: Processing the node XYZ during the downward.da$8efore processing the
node. (b) After processing the node.
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be interleaved to create a distributed algorithm. Alsoegian calibrated tree, there are
ways of efficiently recalibrating the tree in light of new degnce (Huang & Darwiche,
1996).

The variable elimination and join tree algorithms mentminere are exact inference
methods — they will always produce the exact answer. If exdetence is too costly for a
given network there are a variety of approximate infereec@rniques that one can resort
to. The most popular of these methods are likelihood samgiihachter & Peot, 1989),
Markov Chain Monte Carlo techniques (Geman & Geman, 1983],N©93), variational
approximations (Jordan et al., 1998) and loopy belief pgagian (Murphy & Weiss, 1999;
Yedidia et al., 2001).



Chapter 6

Parameter Estimation

6.1 Introduction

A Bayesian network consists of two components — the grapictstre and the parameters.
In a number of situations the graph structure is easier @oktan the parameters, particu-
larly when working with a domain expert. Human experts oftaxe the ability to describe
the qualitative correlations in a domain but, typicallyeyhfind it harder to pinpoint the
exact parameter values.

Our first area of focus is thparameter estimatiotask. Suppose we are given data
D = {d[1],d[2],...,d[M]}, where the instances are independent and identically dis-
tributed (i.i.d.). We are given the network structgfeand our goal is to use the data to
estimate the network parametés

Much of the work on parameter estimation for BNs has focusedhe case where
we are presented with discrete data and wish to find the paeasnef CPDs that take
the form of tables of multinomials (with one multinomial feach possible assignment of
the parents). We shall restrict our attention to this casse Hg. 6.1 for an example of
such a network. We lex,,, denote the set of parameters associated with the conditiona
distributionP(X; | u) and we denote the entire set of parameters for every pogsibdat
instantiationu of a nodeX; by 6 x,uy,. We also introduce another piece of useful notation:

Definition 6.1.1 Given discrete datd) and lety be a partial instantiation. Denote the
number of data instances i that are consistent with the partial instantiatigrby: N (y).

86
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P(s,) P(s)
0s, 1-0g,

| P(co IS) P(cy]S)
6C0|So 1'9colso
eCO|51 1-9‘30|51

So
S1

Figure 6.1:Smoking Bayesian network with its parameters.

6.2 Maximum Likelihood Parameter Estimation

A standard approach to parameter estimation in generat malximum likelihoodanethod.
The intuitive idea is to choose the parametthat best explain the observed dataMore
formally:

Definition 6.2.1 Given a family of distribution®(.|@) parameterized b9, and i.i.d. data
D, themaximum likelihood estimator (MLEJ is given by:

6 — argmaxP(D | 6). (6.1)

As a simple example, suppose that we have a single binary meteork: X. The
CPD of X is parameterized by a single parametgrthat corresponds to the probability
that X = z,. Suppose that our dat@ consists ofN(z,) occurrences ok, and N (z;)
occurrences aof;. Then the MLE is:

éxo = argma)éwOP(D ‘ 0930) (62)
— argmaﬁmoex(“)(l — 0,V (6.3)
N{z) (6.4)

N(zo) + N(x1)
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Smoker| Cancer| Frequency
No No 80
No Yes 0
Yes No 19
Yes Yes 1

Figure 6.2: An example data set for tBenoking network

In general the following theorem is a well known result (Hexckan, 1998):

Theorem 6.2.2 The MLE for a discrete Bayesian network with graph structGreand
multinomial table CPDs is given by:

N(zij, 1)

N (6.5)

Viviva 0, . =

whereégﬁi],‘u is the parameter for thg-th value of the-th node with parent instantiation.

MLE gives an intuitive, natural form of estimation. Furthere, it is an objective
estimator and does not rely on any subjectivity on the pati@human designer. However
its main drawback is that it can tend to “overfit” the data. sTjplhenomenon is particularly
acute with discrete data and low probability events (a verpmon situation with medical
diagnosis). For example, suppose we wish to fit parameteitsetS moking network in
Fig. 6.1. Assume that we see a sample consisting of 100 peaplef whom smoke.
Furthermore, suppose one smoker develops cancer and nitvee88f non-smokers develop
cancer. This set of data is summarized in Fig. 6.2. Our mamirikelihood estimates for
the network parameters are then:

Oy = 0.95.
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Thus we are asserting that if someone does not smoke he oiilsimeverdevelop can-
cer — an extremely strong statement. It asserts thatriipessibleo develop cancer if we
do not smoke. This claim is very different than saying thaté¢hs a very small, but non-
zero, chance of a non-smoker developing cancer. Our estiofdt,,, = 1 came about
because we did not have enough data to provide sufficienutesoof the low probability
event of developing cancer. There are a number of techniguegan use to address this
issue (Lehmann, 1986; Lehmann & Casella, 1998). We nex¢wethe Bayesian method-
ology which has become one of the cornerstones of learnitiyBayesian networks and
it is a framework which tackles this issue of “overfitting”am elegant manner.

6.3 Bayesian Parameter Estimation

6.3.1 Motivation

The reason why we find the estimatetpf,, = 1 unsatisfying is that we think that there
is some non-zero chance of developing cancer even if we demoke. Similarly, if
we have a coin and we wish to estimate the probability of heawld if we toss the coin
only once and it lands as heads, then we find it unreasonahisetthe ML estimate of
0, = 1. Intuitively, we find it unreasonable because we have sonoe knowledge that
coins generally do not land only on one side. If, however, anin lands heads after a
hundred tosses then we may be more willing to accept thatdheis biased; in other
words our prior knowledge becomes less important the mdeavdareceive. The Bayesian
framework formalizes these intuitions as well as allowisgaincorporate other types of
prior knowledge.

6.3.2 Approach

In the coin example, rather that ascribing a single numbéy tee maintain a density over
its possible values. The initial density in the absence td,@&, ), is called theprior, and
it encodes our prior beliefs of the parameter. If we have guidtle prior knowledge and
are unsure of;’s value then this density will be fairly flat. On the other daif we have a
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fairly strong prior belief of the value df, then this prior density will be more peaked. As
we gather more dat&, we update this density(6,) to get theposteriordensityp(6;, | D).

Bayesian parameter estimation in Bayesian networks workss same way. We keep
a density over possible parameter values. We will make themoon assumption gba-
rameter independendéleckerman et al., 1995)i(6) = I1, [1, p(0x,u)- This assumption
allows us to represent the prior distributip(®@) as a set of independent distributions, one
for each multinomiab ..

We now have to choose the functional form of our densities pagameterd ..
One desirable property of a parameter deng{#x,..) is that, when we gather data and
obtain the posteriop(@x,, | D), then the posterior density has the same functional form
as the prior. In other words, when we update our prior parantnsities, we would like
the posterior densities to remain in the same family. We siath families of densities
conjugate priors

For multinomials, the conjugate prior i€arichlet distribution (DeGroot, 1970), given

by:
F(O/*) . 0%'*]

io1 D) j=1 T

p(0y,...,0,) = Dirichlet(ay, ..., q,) = (6.6)

which is parameterized blgyperparametersy; € R™, with o, = >; a5, andl is the
gamma function. Alsoy_ 0, = 1, 6, > 0.

The Dirichlet family of distributions are conjugate pridos multinomials: if we obtain
anew instanc& = z; sampled from this distribution, then our posterior disitibnyp’ ()
is also distributed Dirichlet with hyperparametérs, ..., a; +1,..., «,). In general the
following is a standard result (DeGroot, 1970):

Theorem 6.3.1Let X be distributed multinomial with parametefis= (6, ..., 6,) and let
p(@) = Dirichlet(ay, ..., «,). Given i.i.d dataD we have that:
p(@ | D) = Dirichlet(ay + N(z4),...,a, + N(z,)). (6.7)

Intuitively, o; represents the number of “imaginary instances” observed prior to
observing any actual data. In particular the follow well Wwmoresult holds (DeGroot,
1970):
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2
1.4
1.5 1.2
1
1 0.8
0.6
0.5 0.4
0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Dirichlet(1, 1) Dirichlet(2, 2)
3 2.5
2.5 2
: 1.5
1.:5l )
0.5 0.5
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Dirichlet(9, 9) Dirichlet(6, 2)

Figure 6.3: Examples of the Dirichlet distributiofiis on the horizontal axis, ang ) is
on the vertical axis.

Theorem 6.3.2 Let X be distributed multinomial with parametefis= (6, ..., 6,) and let
p(@) = Dirichlet(c, . . ., o). The probability that our next observationas is:

Thus, the relative sizes of the different's determine our prior beliefs in the probabil-
ities of the different outcomes foX. The absolute sizes of the’'s determine our confi-
dence in the estimate; the higheris, the longer it will take for our posterior distribution
to be influenced by new data. See Fig. 6.3 for examples of saneh[®t densities.

In a BN with the parameter independence assumption, we hBveécailet distribution
for every multinomial distributio x, ,,. Given a distributiorp(8), we usen,, |, to denote
the hyperparameter corresponding to the paranfgtey.
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6.3.3 Bayesian One-Step Prediction

In most cases we are not necessarily interested in the ssnsiter the parametep$f) in

a BN. We are often more interested in distribution over thendim variablesX,, ..., X,,.
For example, given complete daty we may wish to know the probability of next seeing
a data instance. Using Theorem 6.3.2, the following corollary can be showhald:

Corollary 6.3.3 Let (G, 8) be a Bayesian network ov& = (X;,...,X,). LetD be
i.i.d complete data, and let the prior density over paranmeeig8) = [, [1, »(0x,.) be
a product of Dirichlet densities. Then the Bayesian one-ptediction of next observing
data instancex is given by:

P(x|D) = EeyenlP(x|O) (6.8)
_ /BP(X | 0)p(6 | D) db (6.9)
Oém,;j\u + N(Iij./ 11)

N : 6.10
1;[ 5 (@ o+ Ny, w)) (640

wherez;; is the value ofX; in x, andu is the value olU; in x.

As an example, let us suppose we are givermoking network and we have a prior
distribution as follows"

p(fs,) = Dirichlet(5,5), (6.11)
p(0ey1s,) = Dirichlet(2.5,2.5), (6.12)
p(bes,) = Dirichlet(2.5,2.5). (6.13)

Now suppose we observe the data in Fig. 6.2. Then the postiEnisities over param-
eters will be:

p(fs,) = Dirichlet(85,25),

1Such a prior is called BDe uniform priorwith equivalent sample size of 10. Itis as if we have imagined
10 instances that are uniformly distributed. The reasoa firichlet(2.5, 2.5) density ford,., ,, is that only
half of the 10 imaginary uniform instances would be non-semsk
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p(0ey1s,) = Dirichlet(82.5,2.5),
p(bes,) = Dirichlet(21.5,3.5).

The probability of observing a non-smoker without cancext s

85 82.5

P(co, 0 | D) = Ee~pop)P(co, S0 | ©) =

The probability of observing a non-smoker next is:

85 17
P(so | D) = Ee~pep)P(s50 | ©) =

T 85+25 22

3

T 85+25 825425 4

93

(6.14)

(6.15)

And the probability of observing a person without cancertigéxen that he or she is a

non-smoker is:

P(cy, 80 | D) 82.5 33
P D) = = BEYS
(ol 50 D) = =5 D) = %25+ 25 34

This is in contrast to the ML estimate, which asserted that:
Pé(CO ‘ So) = 1
Similarly we have that:

Plcy, D 21.5 43
P(Co|51,D): ((’0,91| )_

P(s, | D) 2155435 50

Notice that these Bayesian one-step predictions are dgqoiva setting:

17

030 = ﬁa
33

gco\so ﬁ:
43

060‘81 %

(6.16)

(6.17)

(6.18)

(6.19)
(6.20)

(6.21)

in the Smoking network in Fig. 6.1 and then performing inference in thisnogk with

these parameters.
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Figure 6.4: Bayesian point estimate foDaichlet(6, 2) parameter density using KL diver-
gence lossf = 0.75.

6.3.4 Bayesian Point Estimation

In the Bayesian learning framework, we maintain a distidyup(0) over all of the param-
eters. However, when we are asked to reason using the moeleft@n wish to “collapse”
this distribution over parameters, generate a single septative vector of parametefis
and answer questions relative to that. If we choose t@yusehereas the “true” parameters
are#*, we incur some lossoss( || %)2. In Bayesian point estimation, our goal is to
pick a single vector of parameters that minimize this patamess. Of course, we do not
have access t8*. However, our posterior distribution @) represents our “optimal” be-
liefs about the different possible values@f given our prior knowledge and the evidence.
Therefore, we can define thisk of a particulam® with respect tg as:

Fop6)Loss(© || 6) = /9 Loss(8 || 8)p(8) d6. (6.22)

We then define thBayesian point estimat® be the value o that minimizes the risk.
See Fig. 6.4 for an example.
There are many possible choices of parameter loss fungtiahperhaps one of the best

2Note that this parameter loss is between two sets of paraseand#*. This function should not be
confused the active learnimgodel quality or model lossof our model.
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justified is therelative entropyor Kullback-Leibler divergence (KL-divergenc@ullback
& Leibler, 1951; Cover & Thomas, 1991):

L@ | 0) = ZPH

(6.23)

The KL-divergence has several independent justificatiand,a variety of properties that
make it particularly suitable as a measure of distance ltwléstributions.
Another very common parameter loss functiohag loss

LB O Z Py(x) In Py(x). (6.24)
The squared error loss is also commonly used in statistics:

L2(0 ]| 6) =" (0 — 0x)*. (6.25)

k

However, squared error loss is not frequently used with Biayenetworks because it
does not possess useful factorization properties thatttiex two loss functions have.

For all of these parameter loss functions, one can showtitkdayesian point estimate
(the valued that minimizes the risk relative t0) is the mean value of the parameters:

0 = Founyob. (6.26)

Notice that, if we insert this Bayesian point estimate battk the expression for the
risk (Eq. (6.22)) this risk expression now just depends uperparameter densigy

Definition 6.3.4 The risk of a density is given by:
Risk(p(8)) = Eo~pe)Loss(© || 0), (6.27)
where@ is the Bayesian point estimate.

We can then observe the following:
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o If we are using KL-divergence, theRisk(p(0)) is the expected KL-divergence 6f
from the “true”0.

e If we are using log loss, theRisk(p(8)) is the negative expected log likelihood of a
future data instance.

e If we are using squared error loss, tHisk(p(0)) is the variance of.

Finally, notice from Eq. (6.26) that, for all of these paraenéoss functions, the Bayesian
point estimates are equivalent to the Bayesian one-stejictins. For example, given the
Cancer network with the same prior (Equations 6.11 to 6.13) and datgFig. 6.2) the
Bayesian point estimates will be:

~ 17

030 = E(—)mp(ﬂ)eso = ﬁ-/ (628)
~ 33
Ocojs0 = Eonpo)leolso = 37 (6.29)
~ 43
060\51 = E@Np(a)gco\sl = % (630)

which are identical to Equations 6.19, 6.20 and 6.21.



Chapter 7

Active Learning for Parameter
Estimation

“A prudent question is one-half of wisdom.”
— Francis Bacon, (1561 - 1626).
English philosopher, statesman, essayist.

7.1 Introduction

The possibility of active learning in Bayesian networks eaise naturally in a variety of
ways. Inselectiveactive learning, we have the ability of explicitly asking fin example
of a certain “type”; i.e., we can ask for a full instance whesoene of the attributes take
on requested values. For example, if our domain involvegpagés, the learner might be
able to ask a human teacher for examples of homepages ofageagtudents in a Computer
Science department. Thmol-basedvariant of active learning also arises in many cases.
For example, one could redesign the U.S. census to haveaneefil out only the short
form; the active learner could then select among the respasdor those that should fill
out the more detailed long form. Another example is a cantetysin which we have a
list of people’s ages and whether they smoke, and we can asksatsof these people to
undergo a thorough examination.

97
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A very different form of active learning arises with Bayesraetworks when the learner
can ask for experiments involving interventions to be penked. This type of active learn-
ing arises naturally in several domains, for example médiegnosis, microbiology and
manufacturing.

In such active learning settings, where we have the abdigctively choose instances
on which to train, we need a mechanism that tells us whictantss to select. We shall
use the general approach that was outlined in Section 1.2ite @t a formal framework
for active learning of parameters in Bayesian networks. Weassume that the graphical
structure of the BN is fixed, and focus on the task of paranestmation. We will define
a notion of anodel andmodel quality, and provide an algorithm that selects queries in a
greedy way, designed to improve model quality as much aslgess

At first sight, the applicability of active learning to detysestimation is unclear. After
all, if we are trying to estimate a distribution, then randsamples from that distribution
would seem the best source. Surprisingly, we provide englievidence showing that, in a
range of interesting circumstances, our approach leaons significantly fewer instances
than random sampling.

7.2 Active Learning for Parameter Estimation

Assume that we start out with a network structgrend a prior distributiorp(8) over
the parameters of. The distributionp(€) is our model. In a standard machine learn-
ing framework, data instances are independently, randsartypled from some underlying
distribution. In an active learning setting, we have thdigbio request certain types of
instances. We formalize this idea by assuming that someesgilng the variables areon-
trollable. The learner can select a subset of variali}es C and a particular instantiation
qto Q.

The reques) := q is called aguery The result of such a query is called tlesponse
and it is a randomly sampled instangeof all the non-queryvariables, conditioned on
Q := q. Thus(q, x) is acompletedata instance.

The interpretation of such a request depends on our activeitey setting. In gelective
query, we assume thag, x) is selected at random from instances satisfying the query.
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Hence,(q, x) is a random instance frof*(X | Q = q). (The same statement holds for
the pool-based variant of selective active learning.) linggrventionalquery, we assume
that our graphg is a causal model and thatis the result of an experiment where we
intervene in the model and explicitly set the variable§)ito take the values.

In the Bayesian network parameter estimation task, aneatd@rner has a querying
function that takeg andp(8), and selects a que := q. It takes the resulting complete
instanceq, x), and uses it to update its distributip(®) to obtain a posterigr’'(0). It then
repeats the process, usipidor p. We note that the parameter distributjai®) summarizes
all the relevant aspects of the data seen so far, so that weta@ed to maintain the history
of previous instances. To fully specify the algorithm, wed¢o address two issues: we
need to describe how our parameter distribution is updatesh ghat(q, x) is not a random
sample, and we need to construct a mechanism for selectmgttt query based gn

7.2.1 Updating Using an Actively Sampled Instance

Clearly, the answer to the first of these questions depentieearctive learning mechanism
since the sampling distribution fgg, x) is different in the two cases.

Let us first consider the case of selective active learningsufne for simplicity that
our query is) = ¢ for a single nod€). First, it is clear that we cannot use the resulting
instance(q, x) to update the parameters of the n@gléself: the fact that we deliberately
sought and found an instance whépe= ¢ does not tell us anything about the overall
probability of such instances within the population.

However, we also have a more subtle problem. Consider a fpéren ). Although
(q,x) does give us information about the distribution(of it is not information that we
can conveniently use. Intuitively? (U | @ = ¢) is sampled from a distribution specified
by a complex formula involving multiple parameters. Forrexde, consider th&moking
network: Cancer— Smokingwhere we musthoosethe value ofSmokingn advance. It
then hard to get a coherent idea of the prior probability ofcea. We sidestep this problem
simply by ignoring the information provided ly, x) on nodes that are “upstream” @f

Definition 7.2.1 A variableY is updateable in the context of a selective qu@rif it is not
in Q or an ancestor of a node Q.
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Update(p, Q := q, x)
For eachvariable X; updateable relative tQ := g
Let u be the instantiation dt; in (q, x)
Letz;; be the instantiation ok; in x
Setay, |, = Qayju + 1
Definep’ according tan’

Figure 7.1: Algorithm for updating’ based on quer@) := q and response.

The case of interventional queries is much simpler. Hereh emde in the query is
forced to have no ancestors, as all of its incoming edges weéreThus, for example, the
parentU of X in an interventional querx := z is sampled from the original distribution
P*, and hence we can easily use the information aboint (q, x).

Definition 7.2.2 A variableY is updateable in the context of an interventional qu@rif
itis notinQ.

For Bayesian parameter estimation, our update rule is noywsmple. Given a prior
distributionp(@) and an instancég, x) from a queryQ := q, we do standard Bayesian
updating, as in the case of randomly sampled instances, éuipdate only the Dirichlet
distributions of updateable nodes. See Fig. 7.1 for therélgn. We usep(0 | Q := q, x)
to denote the distributiopl (#) obtained from this algorithm; this expression can be read as
“the density off after performing query; and obtaining the complete response Note
that this expression is quite different from the dengit§ | q, x) which denotes standard
Bayesian conditioning.

7.2.2 Applying the General Framework for Active Learning

Our second task is to construct an algorithm for deciding onrext query given our
current distributiorp. From Section 1.2 our general approach is to define a measure f
the model quality of our learnednodel p(€). We can then evaluate the extent to which
various instances would improve the quality of our modedrély providing us with a way
to select the next query to perform.
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Our formulation for the quality of the model is based on trenfework of Bayesian
point estimation. We are maintaining a distributipover our parameters and hencées
our model.

Recall from section 6.3.4 that the Bayesian point estimsthe value of) that mini-
mizes the risk and that the risk of a densRisk(p(8)), is the risk usind as the estimate.

The risk of our density(8) is our measure for theodel quality of our current state of
knowledge, as represented py9).! In a greedy scheme, our goal is to obtain an instance
(q,x) such that the risk of thg’ obtained by updating with (q, x) is lowest. Of course,
we do not know exactly which responseve are going to get. We know only that it will be
sampled from a distribution induced by our query. We can,dw@s, consider the expected
quality or risk of asking a query. O@xpected posterior risis given by:

ExPRisk(p(0) | Q := d) = Eo~p9)Ex~rexi/qQ:=q)Risk(p(8 | Q := q,x)). (7.1)

We have now defined thmodelandmodel quality. When we consider a quefy := q
we look at theexpectedquality of the posterior model. Using our general template f
active learning (Section 1.2) leads immediately to theofsihg simple algorithm: For
each candidate que@ := q, we evaluate the expected posterior risk, and then select th
guery for which it is lowest.

7.3 Active Learning Algorithm

To obtain a concrete algorithm from the active learning gammrk shown in the previ-
ous section, we must pick a parameter loss function. As wetioreed in Section 6.3.4,
although there are many possible choices, perhaps one dietstejustified is the KL-
divergence (Cover & Thomas, 1991). We therefore proceatgusL-divergence as our

The notions ofmodel quality andmodel lossare identical, however to avoid confusion with tha-
rameterloss we will only use the terrmodel quality in this chapter. To clarify, the parameter loss (e.g.,
KL-divergence) is used to define the risk of our density, dredrisk of our density is our measure of model
quality.
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parameter loss function. An analogous analysis can beedatrrough for another very nat-
ural parameter loss function: log loss (which correspondbé negative log-likelihood of
future data). In the case of multinomial CPDs with Dirichdeinsities over the parameters
this alternative parameter loss results in an identical filgorithm. See appendix A.2.2
for detalils.

7.3.1 The Risk Function for KL-Divergence

We now want to find an efficient approach to computing the magdelity which, in the
case of parameter estimation, is the risk. Two propertidsloflivergence turn out to be
crucial. The first is that the valug that minimizes the risk relative tois the mean value
of the parametersks..,)0. The second observation is that, for BNs, KL-divergence
decomposes with the graphical structure of the network Keigcan et al., 1995):

KL(O || 6') = > KL(Po(X; | Us) || Por(Xi | Uy)), (7.2)

whereKL(P(X; | U;) || P'(X; | Uy)) is theconditional KL-divergencand is given by
Yu P(W)KL(P(X; | u) || P'(X; | u)). With these two facts, we can prove the following:

Theorem 7.3.1LetI'(«) be the Gamma functiod(«) be thedigamma function” («) /T'(«),
and H be the entropy function. Define:

T

5(041,...704T):Z{&(\If(ozj—i—l)—\Il(a*+1))+H<ﬂ,...,%)}.

payen Qs Qs

Then the risk decomposes as:

Risk(p(0)) =Y > Py(u)d(ay,ju,-- - Oy, u)- (7.3)

t uebomU;,]

Proof. See Appendix A.2.
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Figure 7.2: Single familyl, .. ., U, are query nodes.

7.3.2 Analysis for Single CPDs

Eq. (7.3) gives us a concrete expression for evaluatinggkefp(6). However, to evaluate
a potential query, we also need its expected posterioriRskall that the expected posterior
risk (Eq. (7.1)) is the expectation, over all possible arrsvie the query, of the risk of the
posterior distribution’. In other words, it is an average over an exponentially |argjeof
possibilities.

To understand how we can evaluate this expression effigjeng! first consider a much
simpler case. Consider a BN where we have only one child noded its parentdJ, i.e.,
the only edges are from the nodEsto X. We also restrict attention to queries where we
control all and only the parenis. In this case, a query is an instantiation tdJ, and the
possible outcomes to the query are the possible values ohtiable X. See Fig. 7.2.

The expected posterior risk contains a term for each vari&blnd each instantiation
to its parents. In particular, it contains a term for eachhefparent variables. However,
as these variables are not updateable, their hyperpanamneteain the same following any
queryq. Hence, their contribution to the risk is the same in eygfy/| U := q, =), and in
our priorp(@). Thus, we can ignore the terms corresponding to the par@mtsfocus on
the terms associated with the conditional distributitX' | U). Hence, we define:
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Definition 7.3.2

Riskx (p(0)) = > P3(0)d(aiuyju, - s O ju), (7.4)

ExPRiskx(p(0) | U :=q) = Z Py(x; | Q) D Py(u)d(ay, s -5 )y (7.5)

wherea; |, is the hyperparameter ip(@ | U := q,z;) and 6 is the Bayesian point
estimates for the posterign@ | U := q, z;).

Rather than evaluating the expected posterior risk direett will evaluate the reduc-
tion in risk obtained by asking a quelty := q:

A(X | q) = Risk(p(0)) — ExPRisk(p(0) | q) = Riskx (p(8)) — ExPRiskx (p(0) | q).

Our next key observation relies on the fact that, since thabkesU are not updateable
for this query, their hyperparameters do not change ang;sm) and Py (u) are the same.
The final observation is that the hyperparameters for the @RiddeX corresponding to
an instantiatiora are the same ip andp’ except foru = q. Hence, terms cancel and the
expression simplifies to:

P;(q) ((5((%1017 ooy Ogylq) — ZP‘;(.?:J- | q)(S(oz;]‘q, . O‘.Imq)> )
J
By taking advantage of certain functional propertie¥ofve obtain the following theorem:

Theorem 7.3.3 Consider a simple network in whicki has parent€). Then:

zxla

A(X | ) = Py(a) (H (5222, 22a) = 3" Py(ay | @) H <Z_Z_>) . (76)
i o

wherea, g = ¥ ay,)q- AlSO,a) = (au,q+1) ifi = janda) , = a,,q Otherwise. So,

ila
/ _
Wy 1q = Qala + 1.

Proof. See Appendix A.2.
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If we now select our query so as to maximize the difference between our current risk
and the expected posterior risk, we get a very natural behawe will choose the query
q that leads to the greatest reduction in the entropy (onredtevely, greatest increase in
information) of X given its parents.

It is also here that we can gain an insight as to where actaraileg may have an edge
over random sampling. Consider one situation in whighis 100 times less likely than
q-. Let us suppose that we have previously observed 202 raydiamipled instances, 2 of
which are consistent with; and 200 of which are consistent wiifa. If we proceed with
random sampling, we are most likely to observe a data inetatdch is consistent withs.
Notice that if we were to sef;, it will lead us to update a parameter whose current density
is Dirichlet(1,1), whereas setting, will lead us to update a parameter whose current
density isDirichlet(100, 100). According toA, updating the former is wortimorethan the
latter. Thus, we should be gathering a data instance thanisistent withg; rather than
q». In other words, if we are confident about commonly occursitgations, it is worth
more to ask about the rare cases.

7.3.3 Analysis for General BNs

We now generalize this derivation to the case of an arbitBiyand an arbitrary query.
Here, our average over possible query answers encompagsaseatially many terms.
Fortunately, we can utilize the structure of the BN to avaiceahaustive enumeration.

Unfortunately, in the case of general BNs, we can no longpltoixone of our main
simplifying assumptions. Recall that, in the expressiantiie risk (Eq. (7.4)), the term
involving X; andu is weighted byP;(u). In the expected posterior risk, the weight is
Py (u). Inthe case of a single node and a full parent query, the ipgpameters of the
parents could not change, so these two weights were neitgdbarsame. In the more
general setting, an instantiati¢d, x) can change hyperparameters all through the network,
leading to different weights.

2We also note that this rule is very similar to the decisiom tsplitting rule used in the decision tree
learnerdD3 andC4.5(Quinlin, 1986). In the decision tree splitting rule we wishchoose an attribute to
split a subset of the data on that will provide us with the tgstagain in information of the class label given
the splits.
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However, we believe that a single data instance will not ipde@ad to a dramatic
change in the distributions. Hence, these weights areyliikebe quite close. To simplify
the formula (and the associated computation), we therefowese to approximate the pos-
terior probability Py (u) using the prior probability”; (u). Under this assumption, we can
use the same simplification as we did in the single node case.

Assuming that this approximation is a good one, we have th@fmmg theorem:

Theorem 7.3.4The change in risk of a Bayesian network over varialtesshen asking
queryQ := q is given by:

A(X|q) = Risk(p(8)) — ExPRisk(p(6) | q) (7.7)
~ Y > Pa(u|Qi=q)A(X; | ), (7.8)
i ueDomUyj]

whereA(X; | u) is as defined in Eqg. (7.6). Notice that we actually only neeslito over
the updateable;s sinceA(X; | u) will be zero for all non-updateabl&’;s.

Proof. See Appendix A.2.

7.4 Algorithm Summary and Properties

The above analysis provides us with an efficient implementatf our general active learn-
ing scheme. We simply choose a set of variables in the Bayestwork that we are able
to control, and for each instantiation of the controllaldei&bles we compute the expected
change in risk given by Eq. (7.7). We then ask the query wighgiteatest expected change
and update the parameters of the updateable nodes. See3Higy. the general algorithm.
We now consider the computational complexity of the ald¢ponit For each potential
queryQ := q we need to compute the expected change in risk. The most gixperom-
putation in evaluating the expected change is risk is comgut;(u | Q := q) andP(u)
for each instantiatiom of each set of parenis;. However, as discussed in Section 5.7.2,
all of the P3(u | Q := q) terms can be found in just one regular join tree inferenceatind
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ActiveLearn(p)
For eachcandidate quer® := q
Compute the expected change in risk:
2 ZueDom[U,;} Pé(u ‘ Q:= Q>A(Xi | u)
Ask queryQ := q with greatest expected chang
Receivecomplete response
p := Update(p, Q := q, x)
Repeat

D

Figure 7.3: Active learning algorithm for parameter estiorain Bayesian networks.

of the P(u) terms can be found in another standard join tree inferenkas,Tthe run time
complexity of the algorithm isO(|Q| - cost of BN join tree inferendewhere@ is the set
of candidate queries.

Our algorithm (approximately) finds the query that redutesexpected risk the most.
Given that we are not simply sampling from the underlyingrdistion, it is initially un-
clear that our active learning algorithm learns the cordectsity. In fact, we can show that
our specific querying scheme (including the approximatisigpnsistent- in other words
each parameter will tend towards the tfifehat is generating the data (i.e., the long term
relative frequencies of the relevant quantities).

Theorem 7.4.1 LetU be the set of nodes which are updateable for at least one dateli
guery at each querying step. Assuming that the underlyung distribution has the same
graphical structure as our network and is not deterministieen our querying algorithm
produces consistent estimates for the CPD parameters of evember ot/.

Proof. See Appendix A.2.
O

The restriction to consistency of updateable nodes in b@erem is quite reasonable.
If we have the network™ — X and we are forced talwayschoose a value fo¥” then
it is impossible to get a consistent estimate fofy) and it is impossible even if we do

3In fact, in some cases we could possibly do even better byfyindithe join tree algorithm and evalu-
ating all queries together rather than in separate joingasses.
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not do active learning and resort to some form of random sagstead, since we are
forced to pick a value fot”. The restriction to considering true distributions that@ate

at least the same conditional independencies as our gedggiacture is also reasonable.
If our graph structure consists of just two separate nodend (), it asserts thaX and

@ are independent. Thus, no matter what we seletd be, we should be able to use the
X instantiations in the resulting data cases to find the matglistribution of X. This

is only a valid step to take iK' and( are independent in the true distribution. Without
resorting to maintaining a distribution over possible grafructures, the only general way
to consistently find the parameters of the CPD of a nddes to assert no control over
the query node) whatsoever and just sample randomly — and if we are alwayedoto
choose a value for the query node there exists no way to ¢entisfind the parameters
for node X since we can’t even do random sampling.

7.5 Active Parameter Experiments

We performed experiments on three commonly used netwdrkdarm, Asia and Can-
cer. Alarm has 37 nodes and 518 independent paramedaig, has eight nodes and 18
independent parameters, a@dncer has five nodes and 11 independent parameters.
We first needed to set the priors for each network. We use dinelatd approach (Heck-
erman et al., 1995) of eliciting a network and an equivalantggle size. In our experiments,
we assume that we have fairly good background knowledgeeafdimain. To simulate this
setup, we obtained our prior by sampling a few hundred icgtsufrom the true network
and used the counts (together with smoothing from a unifaior)pas our prior. This ar-
rangement is akin to asking for a prior network from a domaipeet, or using an existing
set of complete data to find initial settings of the paranset®¥ve then compared refining
the parameters either by using active learning or by randammping. We permitted the
active learner to abstain from choosing a value for a coletlalode if it did not wish to;
that node is then sampled as usual. For each network we cbose ®ot nodes to be
controllable. Controlling the root nodes can be donesékectiveor interventionalactive
learning — there is no difference in this case. We also censttla situation where we

4e.g., obtainable from www.norsys.com/networklibramht
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Figure 7.4: (a)Alarm network with three controllable root nodes. @®gia network with
two controllable root nodes. The axes are zoomed for rasolut

0.7

controlled non-root nodes via selective active learning.

We used the true BN to simulate responses to queries askdx bgarners. Thean-
dom query method would sample randomly from the entire jointrdigtion and theactive
method would ask queries.

Figures 7.4 and 7.5 present the results for the three neswdihe graphs compare the
KL-divergence between the learned networks and the truganktthat is generating the
data.

We see that active learning provides a substantial imprewnenm all three networks.
The improvement in thAlarm network is particularly striking given that we had contrbl o
just three of the 37 nodes. The extent of the improvementratépen the extent to which
gueries allow us to reach rare events. For exampiapkingis one of the controllable
variables in théAsia network. In the original networkl”(Smoking = 0.5. Although there
was a significant gain by using active learning in this nekware found that there was a
greater increase in performance if we altered the gengragtwork to have”(Smoking =
0.1; this is the graph that is shown. This increase reinforceguition that active learning
boosts performance more when there are more pronouncesf ‘and “common” cases.
We found a similar situation with th@ancer network.
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Figure 7.5: (a)Cancer network with one controllable root node. (Bancer network
with two controllable non-root nodes using selective quayy The axes are zoomed for

resolution.
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We also experimented with specifying uniform priors withraadl equivalent sample
size. Here, we obtained significant benefit in f&a network, and some marginal im-
provement in the other two. One possible reason is that theavement is “washed out”
by randomness, as the active learner and standard leamégaaining from different in-
stances. Another explanation is that the approximationgn(E£7) may not hold as well
when the priop(8) is uninformed and thereby easily perturbed even by a simgkaince.
This observation indicates that our algorithm may perfoastlwhen refining an existing
domain model.

We investigated how altering the extent to which a query naflaences the rest of
the network can affect the performance of our active legr@lgorithm. Intuitively, if
our query node€) have a large influence on the distribution, than there shbelcore
advantage in controling them with active learning. In th&a network, the CPDs for
P(Cancer| Smoking, P(Bronchitis| Smoking and P(Tuberculosig VisitAsig are given

by:
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Smoking‘ P(cancep | Smoking P(cancef | Smoking
smoking ‘ 0.1 0.9

smoking 0.01 0.99

Smoking‘ P(bronchitis, | Smoking P (bronchitis | Smoking
smoking 0.05 0.95
0.01 0.99

smoking

VisitAsia ‘ P(tuberculosig | VisitAsig P(tuberculosis | VisitAsig
0.6 0.4
0.3 0.7

VisitAsia
VisitAsig

We altered the extent to whidhsitAsiaandSmokingnfluence the distribution by mod-
ifying these CPDs. We created a new CPD ffiCancer| Smoking by having a mixture
of the original CPD and:

Smoking‘ P(cancep | Smoking P(cancef | Smoking

smoking 1 0
0 1

smoking

So, for example P("®W (canceg | smoking) = (1 — A) x 0.1 + A x 1. Thus, the
closer the mixture components to 1, the greater the difference between the distrubutions
P(Cancer | smoking) and P(Cancer| smoking). We did a similar transformation for
the other two CPDs. The parametecan be regarded as the “degree of control” for the
SmokingandVisitAsianodes. Fig. 7.6 shows the effect that changirgas on the perfor-
mance of the active learning algorithm. It shows that theentamtrol the active learning
algorithm has, the greater the gain in performance overaangbmpling.

Overall, we found that, in almost all situations, activerteag performed as well as
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or better than random sampling. The situations where aldasmming produced most ben-
efit were, unsurprisingly, those in which the prior was coatfidand correct about the
commonly occurring cases and uncertain and incorrect aheutare ones (Fig. 7.7(a)).
Clearly, this is the precisely the scenario we are mostyikelencounter in practice when
the prior is elicited from an expert or obtained from randpisdmpled data. By experi-
menting with forcing different priors we found that actiealning was worse in one type of
situation: where the prior was confident yet incorrect altloetcommonly occurring cases
and uncertain but actually correct about the rare ones {Figb)). This type of scenario is
unlikely to occur in practice.



Chapter 8

Structure Learning

8.1 Introduction

The task of causal structure discovery from empirical data fundamental problem in
many areas. In Section 5.6, we saw that Bayesian networkd bewsed provide a causal
model of a domain. If we assume that the graphical structismime BN represents the
causal structure of the domain, we can formalize the proldéuliscovering the causal
structure of the domain as the task of learning the BN strecitom data. This chapter
reviews the standard techniques used for structure legarnin

Over the last few years, there has been substantial worksmowkring BN structure
from purely observational data (Heckerman, 1998). Howetwre are inherent limita-
tions on our ability to discover the structure based on ramgsampled data. Randomly
sampled data will only enable us, in the limit, to recover harkov equivalence class
(see Section 5.4) of the underlying structure. Experinmetdta, where we intervene in
the model, is vital for a full determination of the causausture. By observing the results
of these experiments, we can determine the direction ofatanuence in cases where
purely observational data is inadequate. The problem obwering the causal structure
from observational and experimental data has been tadkladhon-active learning setting
by Heckerman (1995) and Cooper and Yoo (1999). Furthernatttgugh Cooper and Yoo

114
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derived a closed-form scoring metric for full networkihey only apply their technique to
learn the relationship between single pairs of variableglvthey further assume are not
confounded (do not have a common cadise)

8.2 Structure Learning in Bayesian Networks

Our goal is to learn the causal structure from data. In ordelotthis, we need to make
a number of standard assumptions. We assume that there arddsm variables and we
make two further assumptions:

e Causal Markov assumption: The data is generated from an underlying causal
Bayesian networkG*, 8*) over X.

e Faithfulness assumption The distributionP* over X’ induced by(G*, 8*) satisfies
no independencies beyond those implied by the structugé.of

Our goal is to reconstrugt* from the data. Clearly, given enough data, we can recon-
struct P*. However, in generalP* does not uniquely determirg*. For example, if our
networkG* has the formX — Y, thenY — X is equally consistent witl#*. Given only
samples fron’*, the best we can hope for is to identify the Markov equivagetiass of;:

a set of network structures that induce precisely the sadepigndence assumptions (see
Section 5.4).

If we are given experimental as well as observational dataability to identify the
structure is much larger (Cooper & Yoo, 1999). Intuitivelgsume we are trying to de-
termine the direction of an edge betweErandY . If we are provided with experimental
data that intervenes af, and we see that the distribution ovérdoes not change, while
intervening att” does change the distribution ov&r, we can conclude (based on the as-
sumptions above) that the edgeris— X.

They derived a closed for expression for the probability sfracture given the experimental and obser-
vational data.

2In the next chapter we show that, even setting aside theedetarning aspects of our work, our frame-
work permits combining observational and experimentad dat learning the structure ovall variables in
our domain, allowing us to distinguish the structure at a Imfiicer level, taking into consideration both
indirect causation and confounding influences.
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Figure 8.1: A distribution over networks and parameters.

8.3 Bayesian approach to Structure Learning

There are a number of techniques for performing structamiag. One common approach
is to performmodel selectionwhere we search for a good single representative structure
and then perform all subsequent analyses and inferenckesesipect to that single struc-
ture. There are a number of criteria for selecting a goodcsira (Heckerman, 1998),
for example: maximum likelihood, minimum description Iémgnd Bayesian marginal
likelihood. An alternative approach, and one which we usgule our active learning
algorithm, is the full Bayesian framework. Rather than catting to a single structure, in
the full Bayesian framework we keep a distribution and penfall inferences with respect
to the entire distribution.

We now describe how to represent and maintain a distribdtostructure learning.
We maintain a distribution over the set of structures and @ssociated parameters (see
Fig. 8.1 for a simple illustration on a two variable domainye begin with a prior over
structures and parameters, and use Bayesian conditiomingdate it as new data is ob-
tained. Following (Heckerman et al., 1995), we make sesteaidard assumptions about
the prior:

e Structure Modularity : The prior P(G) can be written in the form:

P(g) = [I P(Pa(X;) = UY). (8.1)
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Thus, thea priori choices of the families for the different nodes are indepand

e Parameter Independence
p(6g | G) = HHp (Ox,1u | G). (8.2)

In other words, as in Chapter 6, we can decompose the joirsityesver the vector
of network CPD parameters as a product of localized dessitie

e Parameter Modularity : For two graphsj andg’, if U9 = UY' then:
POy, us | G) =p(Oy, ye | G). (8.3)

Thus, the density for each parameter only depends upon therkestructure that is
local to the variable that the parameter is over.

We also assume that the CPD parameters are multinomialanthe associated param-
eter distributions are the conjugate Dirichlet distribng where we denote the Dirichlet
hyperparameter for the parameter corresponding tgtmevalue of X; given parenta,
Oz lu» DY 0z, ju. HOwever, some of our analysis holds for any distributiotnséging the
parameter independence and parameter modularity assumsptihere are a number of
different ways to choose the structure prior (Buntine, 2938dckerman, 1998), although a
common choice for the structure prior is a uniform prior csteuctures.

Given these assumptions, we can represent a distributienstructures and parame-
ters P(G, 65) by maintaining a structure prior compondntPa( X;) = U) for each valid
(node, parents) paitX;, U) and a Dirichlet distribution for each nodé and each instan-
tiation of each the possible sets of parents. Now, given tcpéar prior distribution over
Bayesian network structures and parameters, when we ecaeiew data instance (either
observational or experimental) we update our distribufioto obtain the posterior distri-
bution P'. We then usé’ as our new distribution over structures and parameters.aXe n
show how to update the prior distribution with a data inséas@ as to obtain the posterior
distribution.
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8.3.1 Updating using Observational Data

Given a complete, randomly sampled single instahoger X', we define how to update the
distributionP (G, 6;). We break this distribution into two problems by using thertity:

P(G,0g | d) =p(bg|d,G) PG ]|d).

Thus we need to determine how to update the parameter defhsistructure and also how
to update the distribution over structures themselves.

For the first term in this expression, consider a particukgwork structure; and a
prior distributionp(68;) over the parameters ¢f. To obtain the posterior distribution over
the parametersP(6; | d,G), we simply use standard Bayesian updating of each of the
Dirichlet parameter distributions associated with thigpyr as described in Section 6.3.
Note that this updating still preserves parameter modylarid parameter independence.

Now consider the distribution over structurB¢g). We need to compute the posterior
distribution over structure®B (G | d). We first introduce the following definition:

Definition 8.3.1 Let X; be a node andU be its parents. We define the score of a family as:
ScordX;, U | d) = /P(xi |0, 0x,1)p(Ox, ) A0y, = P(z; | u).

The following well-known theorem (Heckerman, 1998) telsshow we can compute
P(G | d):

Theorem 8.3.2 Given a complete data instandeif P(G, 8¢) satisfiestructure modular-
ity, parameter independenaad parameter modularitythen:

P(G|d) = ﬁ H P(Pa(X;) = UY)Scord X;, UJ | d).

Notice thatP(d) is just a normalizing factor which is independent of the grapructure
and parameters that we are considering, and so it can beeiginalso, notice that, just like
the prior, the posterior distribution over structures abeys structure modularity, i.e., it is
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also a product of terms, one for each family. To obtain thegyas, we essential just need
to multiple the term in the prior corresponding to each fgrby the score for that family.

We are using multinomial CPDs with Dirichlet distributiooger the parameters. The
following standard result (Heckerman, 1998) shows us hoaotapute the score in this
case:

Theorem 8.3.3 Letd be a complete data instance. For multinomial CPDs with Dikat
distributions over the parameters we have:

F(O‘mm\u) ) F(O‘wmlJ
F(O‘xi*\u +1) F(axij\u + 1)7

ScoréX;, U | d) = (8.4)

whereu andz;; are the values ol and X; in d and o, ju = X2 g u-

Thus, given a data instanek to update the prior distributioR (G, ;) to obtain the
posteriorP(G,0; | d), we need to update the hyperparameters of all of the Ditichle
distributions by using Eqg. (6.7) and we need to updatgffea( X;) = U;) components of
the modular structure prior. The updated components ofttiietare prior are computed
by:

P(Pa(X,) = U, | d) = C - P(Pa(X;) = U,) - Scord X, U, | d) (8.5)

3

whereC' is a normalizing constant. In all of the computations thapegorm in this thesis,
we can ignore the normalizing constant since the constdingitvier cancel out, or will just
require us to perform a simple re-normalization step at titk e

8.3.2 Updating using Experimental Data

Now, instead of having a complete random instance, suppaseve have an experiment,

or query, that set := q, and are given the resulting resporsé&Ve need to define how to
update the distributio® (G, 8;) given this query and response. As before, we decompose
this problem into two subproblems by using the identity:

P(g709 | Q:: q,X) :p(gg ‘ Q:: qxag)P(g ‘ Q:: q7X)'
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For the first term in this expression, given structdrand a prior distributiomp(8;) over
the parameters @, our update rule for the parameter density is identical éogpiftocedure
for interventional queries described in Section 7.2.1. threowords, we perform regular
Bayesian updating for all of the parameter densities aatatiwith the non-query nodes.
We also note that performing such an interventional upaetieet parameters still preserves
parameter modularity.

Now consider the distribution over structures. We #4€¢ | Q := q, x) to denote the
posterior distribution over structures after performing tjuery and obtaining the response.
The following theorem tells us how we can easily update thetgrmr overG given an
interventional query:

Theorem 8.3.4 (Cooper and Yoo, 1999%iven a quen := q and complete response
if P(G, 6g) satisfiegparameter independenaad parameter modularitythen:

o _ 1 \— Uyl U9 1 x
P(G1Q:=q,x)= Px Q= i:)gQP(Pa(XZ) = U7)Scord X;, U7 | x,q).

After we have seen a que€y := g and response, we can use the updated distribution
P(G,0; | Q := q,x) as our new “prior” distribution. As in the observational easotice
that the posterior distribution over structures maintéesstructure modularity condition,
and that updating the Dirichlet parameter distributioresprves parameter independence
and parameter modularity.

To summarize, to update our distributié®{g, 85 ), we update the hyperparameters of
the set of Dirichlet distributions that we are maintainiidne updated components of the
structure prior forP (G, g | Q := q, x) are computed by:

3Notice that we are assumirigterventionalqueries. If we were to usselectivequeries then parameter
modularity no longer holds. Recall that, given a selectivergQ := g and response, the variabiéin
a graph is updateable if it is not an ancestopf But this ancestor-o@Q property is dependent upon the
graph. So for some graphg, will be updateable and for others it will not. Thus, the pagéen modularity
assumption is violated when we observe selective data wifienefore, makes the task of representing and
updating the distributio®(G, 6¢) extremely hard.
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where( is a normalizing constant arcoré X;, UY | x, q) = 1 if X; is a query variable.
As we mentioned in the previous section, in all of the comiponia that we perform in this
thesis, we can ignore the normalizing constant.

8.4 Computational Issues

To represent a distribution over structures and parameterseed to maintain a Dirichlet
distribution for each nod&; and each instantiation of each the possible sets of parents.
Similarly, we need to maintain the structure prior compdsét(Pa(X;) = U;) for each
node and parent set. In practice this is often infeasible fitmber of Dirichlet distribu-
tions and structure prior components grow exponentialhwhe number of variables in
our domain. Instead, we can implicitly maintain these Dilét and structure component
distributions by storing the daf® that we have collected, and then only reconstruct the
desired quantities (such &Pa(X;) = U; | D)) when required by applying the update
formulae mentioned in the previous two sections. Furtheemall of the update formulae
generalize to take into account multiple observations Kdenan, 1998; Cooper & Yoo,
1999). Hence, if we are implicitly maintaining the distrilaun over graphs and parameters
and have seen, say, five past data instances, then ratherdimgnthe single-instance up-
date formula five times to reconstruB{Pa(X;) = U; | D), we need only perform one
generalized update step.



Chapter 9

Active Learning for Structure Learning

“The art of discovering the causes of phenomena,
or true hypothesis, is like the art of deciphering,
in which an ingenious conjecture greatly shortens the road.
— Gottfried Whilhem Leibniz, (1646-1716).
New Essays Concerning Human Understanding, 1V, XII.

9.1 Introduction

Experimental data is crucial for determining the undegdytausal structure of a domain.
However, obtaining experimental data is often time consignaind costly. Thus the ex-
periments must be chosen with care. Our goal is not merelyptate the distribution
over causal Bayesian networks based on experimental dagawahit toactively choose
instances that will allow us to learn the structure better.

We provide an active learning algorithm that selects irgetional experiments that are
most informative towards revealing the causal structure. présent a formal framework
for active learning of causal structure in Bayesian netwpitlased on the principles of
Bayesian learning. Ounodelis a distribution over Bayesian network structures, which
is updated based on our data. We define a notioguadity of our model, and provide
an algorithm that selects queries in a greedy way, design@dgrove model quality as
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much as possible. We provide experimental results on atyasfelomains, showing that

our active learning algorithm can provide substantiallyenaccurate estimates of the BN
structure using the same amount of data. Interestinglyaotive learning algorithm pro-

vides significant improvements even in cases where it cantervene in the model, but

only select instances of certain types. Thus, it is applecatzen to the problem of learning
structure in a non-causal setting.

9.2 General Framework

Our goal is to use active learning to learn the BN structureafrling from data where
we are allowed to control certain variables by interveninthair values. As in the active
parameter case, we have some sufisgftthe variables that are controllable. The learner
can select a subset of variables ¢ C and a particular instantiatiog to Q. We use
the same notion of aimterventional queryas before, and the result of a quey:= ¢

is the respons& which is a randomly sampled instance of all the non-queryales,
conditioned onQ := q. We do not consider selective queries for structure esiimat
In addition to the computational complications mentionedsection 8.3.2, the value of
selective queries is far less than those of interventionatigs. As with randomly sampled
data, they do not intervene in the domain and, hence, thgyparmit us to resolve up to
the Markov equivalence class, rather than determine thedukal structure of the network.

For the case of causal structure learning, the queryingtiiumén an active learner
selects an interventional que€y := q based upon its current distribution ov@randé,.

It takes the resulting responsgeand uses it to update its distribution ogeandég. It then
repeats the process. We described the update process ietheys chapter. Our task now
is to construct an algorithm for deciding on our next quemegiour current distribution
over structures and paramte?r$g, 6;).

Our distribution over graphs and parameters will be madel. We shall need to de-
fine itsmodel quality. To this end, we will define anodel loss functiomas the notion of
model quality. We can then use this measure of quality touatalthe extent to which
various instances would improve the quality of our disttid, thereby providing us with
an approach for selecting the next query to perform.
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More formally, given a distribution over graphs and parareP (G, ;) we have a
model loss function Lo§®) that measures thmodel quality of our distribution over the
graphs and parameters. Given a qu@ry= q we define theexpected posterior losH the
query as:

ExPLos$P (G, 0;) | Q := q)
= Ex.rxjqi=qL0S$P(G,0; | Q := q,x)). (9.1)

Applying our general approach (Section 1.2) for activerieay we have the following
algorithm: for each candidate quegy := ¢, we evaluate the expected posterior loss, and
then select the query for which it is lowest.

Although this idea seems good in principle, note that theeetqa loss appears to be
very computationally expensive to evaluate. We need to ta@ia distribution over the set
of structures, and the size of this set is super-exponanttak number of nodes. Further-
more, given a query, to compute the expected posterior ledsave to perform a compu-
tation over the set of structures for each of the exponemtiadber of possible responses to
the query.

One possibility is to approximate the distribution oveustures by sampling a number
of them. We could then compute the expected posterior loaskihg a query with respect
to this representative set of structures by sampling pless#isponses to the query. How-
ever, this method has serious shortcomings. First, thalaison over structures is often
very “uneven”, requiring a great many sample structurepfp@imate it to a reasonable
degree (Friedman & Koller, 2000). Second, the effect of angle query and response
on the distribution over structures is very small (sincesitnerely a single data instance)
and so it is very likely that the small difference in effectasking different queries will be
overwhelmed by the variance introduced by the samplingrataires and completions.

Ideally, we would like to have a close form, yet efficientlyngoutable expression for
the expected posterior loss of asking a query. We show thagrhe degree, this is possible
to achieve.
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9.3 Loss Function

To make the high-level active learning framework concrete, must first pick a model
loss function. We wish the model loss function to reflect caalgf determining the causal
structure, and we also wish it to decompose in such a way thatw evaluate it efficiently.
Our goal is to be as certain about the network structure aslges Thus, one natural choice
of model loss functions for a modél(G, 8;) is the entropy of the marginal distribution
over graphs:H(P(G)). It can be shown (Chaloner & Verdinelli, 1995) that the expdc
posterior loss using this model loss criterion correspaadiseD-optimalitycriterion used
in optimal experimental design for linear regression. Utfieately, H (P(G)) does not
have useful decomposition properties (for example, it dadsreak down into a sum or
product of localized terms) and so computing it in closedféor each and every structure
and query response is intractable.

However, a reasonable alternative can be found that is ctatipoally tractable. Recall
that our goal is to learn the correct structure; hence, wendeeested in the presence and
direction of the edges in the graph. For two nodesind X ;, there are three possible edge
relationships between them: eith& — X;, or X; <— X; or X; Xj;. Our distributionP
over graphs and parameters induces a distribution ovee these possible edge relation-
ships. We can measure the extent to which we are sure absutethtionship using the
entropy of this induced distribution:

H(X; & X;) = —P(X; = X;)log P(X; — X))
~P(X; Xj)logP(X; Xj). (9.2)

The larger this entropy, the less sure we are about theoekitip betweenX; and X;.
This expression forms the basis for aage entropynodel loss function:

Los{P(G,0;)) = 3" H(X; & X;). (9.3)

i!j

In certain domains we may be especially interested in detémmthe relationship between
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particular pairs of nodes. We can reflect this desire in owlehlmss function by introduc-
ing scaling factors in front of differentf (X; <> X;) terms. In Section 9.5, the fact that
this loss function decomposes as a sum of local terms pensits efficiently evaluate the
expected posterior loss of a query.

Now that we have defined thguality for a model P(G, 8;), our task is to find an
efficient algorithm for computing the expected posterigslof a given quer := q
relative toP. We note thafP is our current distribution, conditioned on all the dataaitéd
so far. Initially, it is the prior; as we get more data, we usgy®&sian conditioning (as
described in Chapter 8) to update and then apply the same algorithm to the posterior.

Our approach to obtaining a tractable algorithm is basethedieas of Friedmaet al.
(1999) and Friedman and Koller (2000). First, we restriet ¢t of possible parents of a
node during each querying round. Second, we consider thaesiproblem of restricting
attention to network structures consistent with some wtaéring,<; then, we relax this
restriction by introducing a distribution over the ordegsn

9.4 Candidate Parents

Following Friedmaret al. (1999), we assume that each natighas a seW; of at most

m possiblecandidateparents that is fixed before each query round. In certain dwna
we can use prior knowledge to constridt;. In other domains we can use a technique
discussed by Friedmaet al. (1999) where we can use randomly sampled observational
data to point out nodes that are more likely to be directlsite= to.X;: one way to do this

is to choose then variables which have the highest individualtual informationwith

X. The mutual information (Cover & Thomas, 1991) between tadablesX; and X is
given by the following expression:

P('Iiv Ij)

—_ 9.
P P(r,) 64

MI(X3X;) = 3 P(xi,2) In

Ty

For this computation it is reasonable to use the maximunlitiked estimates for
P(x;, z;) since we are just estimating the distribution over two \@&a and only wish
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to determine the pairs of nodes that have the highest muté@mination. However, we
may choose to use any other form of estimator if we désire.

9.5 Analysis for a Fixed Ordering

Let < be a total ordering ot’. We restrict attention to network structures that are &iast
with <, i.e., if there is an edg& — Y, thenX < Y. We also assume that, given the
structure priorP (G |<) is modular. We note that, from Chapter 8, given d@ta= q, x,
the posterio? (G | Q := q, x, <) will also then be modular.

Recall that each nod&; has a set of at most candidate parenf&v,;. We define the
set of candidate parents for a naligthat are consistent with our ordering as:

ui7< = {U U < XZU g Wz}

whereU < X; is defined to hold when all nodes U precedeX; in <.

We note that the number of structures induced<bgnd by having a set of candidate
parentsW; for each nodey; is still exponential in the number of variables i, even
when we hold the maximum number of candidate parents candthe key impact of the
restriction to a fixed ordering is that the choice of parentsone node is independent of
the choice of parents for another node (Buntine, 1991; Rraad& Koller, 2000). Three
important consequences are the following two theorems aradlary, which give us closed
form, efficiently computable expressions for key quanditie

lUnfortunately, we cannot useterventionaldata to estimate the mutual information between two nodes.
If we are using interventional data, we may produce incéesisestimates for the mutual information. This
inconsistency is not just because we are forcing the valfis®me nodes thus affecting the correlation
between a forced node and other variables. The problem ie sudntle, and even affects the estimate of the
mutual information between two nodes that are non-quergsoBor example, suppose the true network is
X — Y « Z andthe CPD ot is such that ifZ = 2, thenX andY are independent, and # = z; then
X andY are totally dependent (i.e., deterministic). Also, sugpibsitP(z,) = 0.01. Now suppose that we
always intervene at, and we tend to sef := z; much more thar¥ := z;. It will then appear to us that the
two non-query nodeX andY are only slightly correlated when in fact they are very hiyazorrelated.
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Theorem 9.5.1 Given a quenQ := q, the probability of a responseto our query is:

Px|Q:=q,<)
= Y [[P(PaX;)=U7 |<) J] Scordx;, UY|x,q)

Ge< 1 ]X7$Q

= Aq H Z P(Pa(X;) = U |<)Scoré X;, U | x,q),

:X;¢Q Ueld;
whereAq = [li.x,cq Xueu, . P(Pa(X;) = U [<).
Proof. See Appendix A.3.

O

Theorem 9.5.2 (Friedman and Koller, 2000)We can write the probability of an edgg, —
X; as:

P(X; = Xi <) =
ZUeui,<,U9Xj P(Pa(Xi) =U ‘<)
Yueu . P(Pa(X;) = U [<)

Intuitively, we are dividing the probability mass for sttuces that haveX; — X; by the
total mass for all of the structures. Most of the terms fothea@ression cancel out leaving
just the terms involving the families fox;. Notice that since we are performing Bayesian
averaging over multiple graphs the probability of an edge— X, will generally only be
high if X; is adirectcause ofX rather than ifX; merely has some indirect causal influence
on X;. A simple corollary of the previous theorem is:

Corollary 9.5.3 Given queryQ := q and completiorx we can write the probability of an
edgeX; — X, as:

PX; = Xi[Qi=qx,<) =
Yueu, . usx, P(PaX;) = U |<)Scoré X;, U | x, q)
Yveu, . P(PAX;) = U |<)Scoré X;, U | x,q)

where we define Scdi¥;, U | x,q) = 1if X; € Q.
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Now, consider the expected posterior loss (Eg. (9.1)) gixen

ExPLoss (P(G.6q) | Q == q)
= Ex~P(X\Q::q,<) Z H(X7 <~ Xj ‘ Q =q, X, -<). (95)
irj
We can compute the distribution fdt(X; < X, | Q := q,x, <) by using Corol-
lary 9.5.3. The formula for computing the probability of asige X; — X; depends on
Scord X;, U | x, q) for eachU € U; . Recall from Theorem 8.3.4 that:

SCOI’QXDU | X, q) = P($7 ‘ u)'/
wherez; andu are the values of; andU in the data instanciy, x). For allU € U, _,
we haveU C W, and henceScoré X;, U | x,q) only depends upon the values that
andx give to X; and W,. Therefore, the expressidi(X; — X, | Q := q,x, <) only
depends upon the values thpandx give to X; andW,. Similarly, the expression for the
probabilty of an edge fronX; to X;, P(X; «+ X; | Q := q,x, <) only depends upon the
values thaty andx give to X; andW,. Thus,H (X, + X; | Q := q,x, <) depends only
on the values thaj andx give to X;, X;, W; andW;.

Using this fact and then applying Theorem 9.5.1, we can tewiie expected posterior
loss as described in the follow theorem:

Theorem 9.5.4 Given a quenQ := q, the expected posterior loss can be written as:

ExPLoss(P(G,6q) | Q := q)
= QXD Ul(xiz,wi,wy) I o(ak, wi), (9.6)

ij x kX Q

where
77Z)($7/:1:]7W7/W]) = H(X7 <~ X] | Ly, Xj, Wi, Wi, —<>7

UEI/{k_K

Proof. See Appendix A.3.
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O

Notice that we have successfully decomposed the loss savthab longer encounter
the computational blow-up from the exponential number nfctires. However, this ex-
pression still involves summations over the exponentiatlner of possible completions of
a query. We can deal with this second form of exponentiahatability by taking another
look at Eq. (9.6). Notice that, for eacghand; in Eq. (9.6), the summation over comple-
tionsx resembles the expression for computing a marginal prabainilBayesian network
inference where we are marginalizing autin other words:

Z V(w4, 25, Wi, Wj) H P(z, W), (9.7)
x k:Xp¢Q
is similar to Eq. (5.4). Itis a sum of product of factors eattvbich is dependent on only a
small number of variables. Regardingand eachy as factors, we can then use the variable
elimination algorithm presented in Section 5.7.1 to evi@tlais expression effectively. The
restriction to a candidate set of parents for each node esshat each factaf is over at
most(m + 1) variables, and each factgrover at mosm + 1 variables. After applying
the variable elimination algorithm we end up with a factoeothe variable€) where for
each possible query we have the value of the expression in Eq. (9.7).

We need to perform such an inference for eaghpair. However, since we restricted
to at mostm candidate parents, the number of possible edges is atmmostThus, the
computational cost of computing the expected posteria fosall possible queries is the
cost ofmn applications of Bayesian network inference.

9.6 Analysis for Unrestricted Orderings

In the previous section, we obtained a closed form expregsiocomputing the expected
posterior loss of a query for a given ordering. We now gelmgdhis derivation by remov-
ing the restriction of a fixed ordering.

Primarily for computational reasons, we start with a unifgrior over structures given
an orderingP(G |<) and a uniform prior over ordering8(<). As discussed by Fried-
man and Koller (2000), a uniform prior over structures gia@nordering together with a
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uniform distribution over orderings does not correspond tmiform prior over structures.
This is because simpler structures (e(d, Y')) are consistent with more orderings than
more complex structures (e.dX — Y’)). On the other hand, structures that make more
assumptions about the ordering of the nodes are making rsoegtions about the causal
ordering or the domain variables. Our prior makes thesestgpestructures less likelg
priori, which is arguably a reasonable prior to start off with.

We also note that our structure priB{G) does not satisfy structure modularity. How-
ever, for any given ordering, the structure prior given that orderifiG |<) does statisfy
structure modularity. This is all that we require in our ys& since we shall first condition
on a fixed ordering and then perform computations with reSjpetat ordering.

The expression for the expected posterior loss can be tewas:

ExPL0S$P(G, 05) | Q := q) (9.8)
= Ex pxjq:=qL0s$P(G,0; | Q := q, X)) (9.9)
= ELExup(x/Qi=q,<)L0SIP(G, 05 | Q := q,X)) (9.10)
= EiExr-a~ 2 H(Xi & X; [ Q:=q,X). (9.11)

i,J

The expectation over orderings can be approximated by sagnpbssible orderings
from our current distribution over graphs and parameters. shown by Friedman and
Koller (2000), sampling from orderings can be done veryaifely using Markov chain
Monte Carlo (MCMC) techniques.

The expression inside the expectation over orderings ig sienilar to the expected
posterior loss of the query with a fixed ordering (Eqg. (9.50he only difference is that
we now must compute the entropy terig.X; < X, | x, Q := q) without restricting
ourselves to a single ordering. This entropy term is basegdrobability expressions for
relationships between nodes:

P(X; = X; [ Q:=q,x)
= Elq=axP(Xi = X; | Q= q,%, <). (9.12)

Each of the terms inside the expectation can be computed tisieorem 9.5.3.



CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 132

Naively, we can compute the expectation for each q@ry= q and completionk
by sampling orderings fron®(<| Q := q,x) and then computing(X; — X, | Q :=
q,x, <). Clearly, this approach is impractical. However, we can asgmple approxi-
mation that substantially reduces the computational cOsir general MCMC algorithm
generates a set of orderings sampled frBfx). In many cases, a single data instance
will only have a small effect on the distribution over oraeys; hence, we can often use our
samples fronP (<) to be a reasonably good approximation to samples from tiéxison
P(<]| Q := q,x). Thus, we approximate Eq. (9.12) by:

PX; = X; [ Q:=q,x)
= ElQ=axP(Xi = X; | Q:=q,x, <) (9.13)
~ B P(X;— X; | Q:=aq,x,<) (9.14)

3

where the expectation over orderings is computed with otreatiset of MCMC sampled
orderings. Note that this small approximation error wilt ascumulate since we are not
using the approximation to update any of the parametersrahodel, but merely to predict
the value of candidate queries in this current round.

With the above approximation, we can compéfeX; <> X; | Q := q, x) efficiently.
We note that, as in the fixed ordering case, the entropy #(h; <> X, | Q := q,x)
depends only on the values given to the variablgsX;, W, andW;. Thus, we can use
the same variable elimination method to compute the exjoness

Eme(X\Q::q,—<) Z H(XZ < X7 ‘ Q =q, X). (915)
irj
In other words, we evaluate the above expression for a p&tiorder< by computing:

)\szw(mi7ﬂf,j7wi,w,j) H d(Tr, W), (9.16)

ij x k:Xp¢Q
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where,
0 X;€Q UEZ/{1<
O, xj, Wi, wi) = H(Xi & X [ 23,25, Wi, w;),
¢(:17k7wk) = Z P(Pa(Xk) =U |<)SCOf€{Xk7U ‘ ."Ek,Wk).
UEI/{k_K

This expression is the same as equation Eq. (9.6), excephtmawe average over
the set of sampled orderings when computingthend ¢ factors. Notice that) does not
depend upon the particular ordering that we are currentigidering, and so we need only
compute this expression once.

We can now compute expression (9.15) efficiently for a giveleong. We compute
the expectation over orderings in EqQ. (9.11) by computireg taveraging these expressions
for each of the sampled orderings.

We made two approximations to enable us to relax the rastmicif a fixed ordering,
each of which introduces some small amount of error. First, @most significantly, we
sample over orderings. As noted by Friedman and Koller (200@like the distribution
over structures, the distribution over orderings appesie far more amenable to sampling
methods. Secondly, we made a small approximation to enahie evaluate the expected
posterior loss component given a fixed ordering (Eqg. (9.1%®) Section 9.9, we show
empirically that our (almost) exact closed form expectest@aor loss computation for all
of the structures consistent with a fixed ordering togethtr the effectiveness of sampling
over orderings is accurate enough to determine the moailesgferiments to perform.

9.7 Algorithm Summary and Properties

To summarize the algorithm, we first sample a set of ordeffirogs the current distribution
over graphs and parameters. We then use this set of ordearagenpute and cache the
Y term present in Eqg. (9.16). Next, for each ordering, we cdeig. (9.16) by using
the variable algorithm to obtain a factbr, (Q) over all possible queries. This factor gives
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ActiveLearn(P)
Sampleorderings using MCMC
Compute and cache) functions for each¥;, X; pair
For eachset of candidate query variabl&s
For eachordering
Computethe loss factoh . (Q) associated with the
ordering by using variable elimination with Eq. (9.16)
End For
Averagethe loss factoré . (Q) obtained from each ordering
to obtain the expected posterior loss fadiof)
End For
Scanexpected posterior loss factb(Q) for queryq with lowest value.
Ask queryQ := q
Receivecomplete response
Update PP
Repeat

Figure 9.1: Active learning algorithm for structure leargin Bayesian networks.

us the value offx.px|qQi=q,<)H(Xi < X; | Q := q,x) for each quenQ := q. We
then average all of these query factors obtained from easériog. For example, if we
maintain three orderings, we obtain three factors(Q), /<, (Q), h,(Q). We then create
a new factorh(Q) in which eachh(q) entry is the average of the entries of the three
original factors. This process of averaging factors cormptite expectation over orderings
in Eq. (9.11). The final result is a query factofQ) that, for each possible quetyover
variablesQ, gives the expected posterior loss of asking that query.

We then choose to ask the query that gives the lowest exppotdrior loss. After
weq ask a querf) := q and receive the respongeave then update our modél to get the
posterior”’ and we use”’ in place of P to find our subsequent query. The algorithm is
summarized in Fig. 9.1.

We now consider the computational complexity of the aldonit For each ordering
we need to computdy.. p(x|q:—q,<) 2i; H(Xi <+ X; | Q := q,x). This involves at
mostmn Bayesian network inferences. Each inference returns arfaster all possible
gueries involvingQ and so the inference will take time exponential in the nunabguery
variables inQ.
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The above computation was for one particular set of quengbbsQ. We may also
have the ability to choose different subs€f<f queries variables from some set of con-
trollable variable€. Thus we would do the aboven inference computations for each of
those subset§. Hence, the time complexity of our algorithm to generatertbet query
is:

O(# of sampled orderingsnn - # of query subsets @ - cost of BN inferenceg (9.17)

In addition, we need to generate the sampled orderings #ieess Friedman and Koller
(2000) provide techniques, such as caching of statistidscammonly used expressions,
that greatly reduce the cost of this process. They also shattlie Markov chain mixes
fairly rapidly, thereby reducing the number of steps in thaio required to generate a
random sample. In our setting, we can reduce the number o ségjuired even further.
Initially, we start with a uniform prior over orderings, frowhich it is easy to generate
random orderings. Each of these is now the starting poina figlarkov chain. As we do
a single query and get a response, the new posterior digtribaver orderings is likely
to be very similar to the previous one. Hence, our old set déongs is likely to be be
fairly close to the new stationary distribution. Thus, aywemall number of MCMC steps
from each of the current orderings will give us a new set oedrdys which is very close
to being sampled from the new posterior.

9.8 Comment on Consistency

We now comment on the issue of consistency. Ideally we wakédtb have a guarentee
that our algorithm always finds the correct underlying dticee There exist a number of
matters to address. First, unlike the active parametanasbn algorithm in Chapter 7, it
is possible that our active strucutre algorithm will end opaentrating its efforts to learn
about one part of the domain, while ignoring certain impatr@her queries. In practice,
this does not tend to happen to a great extent. Neverthebassnedy this shortcoming, we
could simply modify our algorithm so that it chooses an ekpent uniformly at random

after every, say, twenty queries.
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The second matter we need to address is more subtle, andgadsy to resolve. It has
less to do with the active learning aspect of our algorithma, @ore to do with how we treat
experimental data. Recall from Section 7.4 that our paramgtdates for a given gragh
may not be consistent if the data is really being generatau & different graplg*. For
example, suppogg consists of just two separate nodésand(). We update the Dirichlet
distribution for@ y no matter what we set the query nageo be, since we assume that the
data values fofX' are coming from the true marginal distributiéti(X). However, if the
true graphG* is reallyQ — X then theX value of a new data instance is not distributed
according toP*(X), but insteadP*(X | Q := q) for whatever quenQ := q we have
chosen. Hence, our parameter &y will not converge to the true parameter in the limit.
We also note that this (inconsistent) assumption of alwaysgbable to update a non-query
node no matter how we set the query nodes appears to be itlyadissumed in Cooper and
Yoo’s (1999) proof of Theorem 8.3.4.

One way to view the inconsistent parameter estimates isallaing. Suppose that
our domain consists of two variable¥, and@. Also, rather than perform active learning,
suppose we set queri€s := ¢ according to some distributioR(Q). Then theX values
of the data instances we receive are distributed accordifigy **(X | Q := ¢)P(q), and
this quantity is what ouf x parameters will converge to in the limit.

Despite this drawback, we still believe that our algorithogsl find the correct under-
lying structure, and in practice this seems to be the casdic&jahat the inconsistent
parameters will only be those that correspond to the fasibose parents are not super-
sets of a family present in the true structure. In particulse parameters of the CPDs for
families that are present in the true structure will be cstesit. It is plausible that, as we
gather more data, the probability mass associated withrdieestructure will dominate our
distribution so much so that the inconsistent parametémasts for the other structures
will have an inconsequential effect on any inferences thaperform. The true structure
should dominate since it will explain the data far bettenthay other structure.

Based on the ideas outlined in this section, we believe tishbiuld be possible to show
that our algorithm determines the correct strucutre andrpaters in the limit, however
such a proof would be a serious undertaking, and some assunspbay have to be made
about way we perform the active queries.
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9.9 Structure Experiments

We experimented with three commonly used networ&@sncer, with five nodes;Asia,
with eight nodes; an@ar Troubleshooter, with twelve nodes. We evaluated the ability of
our algorithm to reconstruct a network structure by using danerated from that network
and then measuring how close the algorithm’s estimate oftheture was to the true
network. For each test network, we maintained 50-75 ordgsyias described above. We
restricted the set of candidate parents to haversize 5.

We compared our active learning method with both random 8agand uniform
guerying, where we choose a setting for the query nodes fronifarm distribution. Each
method produces estimates for the probabilities of edgeeeesm each pair of variables in
our domain. Our goal is to learn the correct causal struaifieedomain. Thus we would
like all of the edges in our method’s estimate to match thddbetrue networlg*. We
compared each method’s estimate with the true networlby using thel; edge errorof
the estimate:

Error(P) = ‘Z‘Ig* (Xi = X5)(1 = P(X; — Xj))

+1g-(X; < X;)(1 — P(X; + Xj))

(X X)(1— P(X: X)) (9.18)

wherelg-(A) = 1if A holds inG* and is zero otherwise.

We first considered whether the active method provides angflie@ver random sam-
pling other than the obvious additional power of having asde queries that intervene in
the model. Thus, for the first set of experiments, we elinedahis advantage by restricting
the active learning algorithm to query only rootsgf When the query is a root, a causal
guery is equivalent to simply selecting a data instancertteithes the query (e.g., “Give
me a 40-year-old male”); hence, there is no need for a canigal/ention to create the re-
sponse. Situations where we can only query root nodes arisany domains; in medical
domains, for example, we often have the ability to selecjesuib of a certain age, gender,
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Figure 9.2: (a)Cancer with one root query node. (Ifar with four root query nodes. (c)
Car with three root query nodes and weighted edge importancgends reflect order in
which curves appear. The axes are zoomed for resolution.
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or ethnicity, variables which are often assumed to be rodeso All algorithms were in-

formed that these nodes were roots by setting their caredpaent sets to be empty. In this
batch of experiments, the candidate parents for the othdeswere selected at random,
except that the node’s true parents in the generating nktwere always in its candidate
parent set. It typically took a few minutes for the active hogt to generate the next query.

Figures 9.2(a) and 9.2(b) show the learning curves foiGaecer andCar networks.
We used a uniform prior over the structures and experimesitdcising uniform Dirichlet
(BDe) priors and also more informed priors (simulated by giamy 20 data instances from
the true network). The type of prior made little qualitative difference irethomparative
performance between the learning methods (the graphs sahmwwith uniform priors).
In both graphs, we see that the active method performs signify better than random
sampling and uniform querying.

In some domains, determining the existence and directimaws$al influence between
two particular nodes may be of special importance. We erparted with this possibility
in the Car network. We modified the L1 edge error function Eq. (9.18) #mel edge
entropy Eq. (9.3) used by the active method to make detengithie relationship between
two particular nodes (theuelSubsystemndEngineStarhodes) 100 times more important
than a regular pair of nodes. We used three other nodes irethvrk as query nodes. The
results are shown in Fig. 9.2(c). Again, the active learmmeghod performs substantially
better.

Note that, without true causal interventions, all methaggeithe same limited power to
identify the model: asymptotically, they will identify trekeleton and the edges whose di-
rection is forced in the Markov equivalence class (rathentlentifying all edge directions
in the true causal network). However, even in this setting active learning algorithm al-
lows us to derive this information significantly faster.

Finally, we considered the ability of the active learningalthm to exploit its ability
to perform interventional queries. We permitted our acsigorithm to choose to set any
pair of nodes or any single node or no nodes at all. We comphredpproach to random
sampling and also uniformly choosing one of our possibleigagsetting a single node,

2In general, information from observational data can edséyincorporated into our model simply by
settingQ to be the empty set for each of the observational data instafdy Theorem 8.3.4, the update rule
for these instances is equivalent to standard Bayesiartinga# the model.
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Figure 9.3:Asia with any pairs or single or no nodes as queries. Legends trefider in
which curves appear. The axes are zoomed for resolution.

pair of nodes, or no nodes). Experiments were performed ®@Aska, Cancer, andCar
networks with an informed prior of 20 random observatiomsthis batch of experiments,

we also experimented with different methods for choosirgetindidate parents for a node
X. As an alternative to using random nodes together with tne parents, we chose the

m = 5 variables which had the highest individual mutual inforimatwith X .2 Empiri-

cally, both methods of choosing the candidate parents gayesimilar results, despite the
fact that for one node in th@ar network, a true parent of a node happened not to be chosen
as a candidate parent with the mutual information methodpk&sent the results using the
mutual information criterion for choosing parents.

Figures 9.3, 9.4(a) and 9.4(c) show that in all networks ativea method significantly
outperforms the other methods. We also see, in Figures)&ad{9.4(d), that the prediction
error graphs are very similar to the graphs of the edge epntfign. (9.3)) based on our
distribution over structures. Recall that the edge entisjpyr model’s internal measure of
quality — the model doesn’t have access to the true causal netwadtwte that it is trying
to find and so cannot use thd edge error as its measure of quality. Ideally we would
like the internal measure of quality to match closely wittwhoear we really are to the
true network structure. These graphs show that the edgepynis, indeed, a reasonable
surrogate for predictive accuracy.

3As we mentioned in Section 9.5, in practice this informatian be obtained from observational data.
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Figures 9.5(b), 9.5(c) and 9.5(d) show typical estimatatsahedge probabilities in
these experiments for random sampling, uniform querying active querying respec-
tively for the Cancer network (Fig. 9.5(a)). Figure 9.5(b) demonstrates thatreqaires
more that just random observational data to learn the dresbf many of the edges, and
Fig. 9.5(d) shows that our active learning method creatét®bestimates of the causal
interactions between variables than uniform querying. alet,fin some of the trials our
active method recovered the edges and direction perfestigrf discarding low probabil-
ity edges) and was the only method that was able to do so dgieehnbitation of just 50
gueries. Also, our active method tends to be much better taplacing edges between
variables that are only indirectly causally related; fastance in the network distribution
learned by the active method (summarized in Fig. 9.5(dg) piobability of an edge from
Cancerto Papilledemais only 4% as opposed to 49% for uniform querying and 22% for
random sampling.



CHAPTER 9. ACTIVE LEARNING FOR STRUCTURE LEARNING 143

Cancer
Calcium Brain Calcium
Increase Tumor Increase
Papilledema Papilledema
(a) (b)

Brain
Tumor

Calcium
Increase

Calcium
Increase

Brain
Tumor
@
(©) (d)

Figure 9.5: (a) OriginaCancer network. (b)Cancer network after 70 observations. (c)
Cancer network after 20 observations and 50 uniform experimerds Céancer network
after 20 observations and 50 active experiments. The ddr&esdges the higher the proba-
bility of edges existing. Edges with less than 15% probgbére omitted to reduce clutter.
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Chapter 10

Contributions and Discussion

“Questions are the creative acts of intelligence.”
— Frank Kingdon, (1885-1958)
British botanist.

The goal of machine learning is to extract patterns from tbddwvhich can then be used
to forward scientific understanding, create automatedga®es, assist with labor intensive
tasks, and much more besides. However, much of machinengarelies on data, and
gathering data is typically expensive and time consuming NAve demonstrated that,
in a variety of widely applicable scenarios, active leagn@an be used to ask targeted,
poignant and informative questions thereby vastly redytire amount of data that needs
to be gathered while, at the same time, increasing the guafithe resulting models,
classifiers and conclusions.

We have tackled active learning by first creating a genenalagrh whereby we define
amodel and itsquality. We then myopically choose the next query that most improves
the expected or minimaguality. We then have applied this general decision theoretic
approach to the task at hand. In particular, we have addte¢bsee different tasks: clas-
sification using support vector machines, parameter esBimand causal discovery using
Bayesian networks.

145
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10.1 Classification with Support Vector Machines

In the first part of this thesis, we introduced techniquegpfaforming active learning with
SVMs. We used the notion of a version space ashoodel and its size as thquality . By
taking advantage of the duality between parameter spacéatute space, we arrived at
three algorithms that approximately reduce the versiogespa much as possible at each
guery round.

Empirically, these techniques can provide considerallesga both the inductive and
transductive settings for text classification — in some gasducing the need for labeled
instances by over an order of magnitude, and in almost aflsceesaching the performance
achievable on the entire pool having seen only a fractiomefdata. Furthermore, larger
pools of unlabeled data improve the quality of the resultlagsifier by providing a wider
range of potential queries for the active learner to choas®a f Support vector machines are
already one of the most effective classifiers for text cfasgion, and our active learning
methods improve their performance even further.

We have also demonstrated that active learning with sumeetbr machines can pro-
vide a powerful tool for searching image databases, oudpeihg a number of traditional
guery refinement schemes. Our image retrieval algorithvti acive, NOt ONly achieves
consistently high accuracy on a wide variety of user quebasalso does it quickly and
maintains high precision when asked to deliver large gtiestof images. Also, unlike
recent systems such as SIMPLIcity (Wang et al., 2000), isdu& require an explicit
semantic layer to perform well.

Of the three main methods presented,Sheple method is computationally the fastest.
However, theSimple method would seem to be a rougher and more unstable approxima
tion, as we witnessed when it performed poorly on two of the fewsgroup topics. If
asking each query is expensive relative to computing tirea tising either thiaxMin or
MaxRatio may be preferable. However, if the cost of asking each querglatively cheap
and more emphasis is placed upon fast feedback, as in the iretageval domain, then the
Simple method may be more suitable. In either case, we have showththase of these
methods for learning can substantially outperform stash@assive learning. Furthermore,
experiments with thélybrid method indicate that it is possible to combine the benefits of
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the MaxRatio andSimple methods.

The work presented on support vector machines leads us tp di&ations of interest.
Several studies have noted that gains in computationatisyaeebe obtained at the expense
of generalization performance by querying multiple insnat a time (Lewis & Gale,
1994; McCallum & Nigam, 1998). Viewing SVMs in terms of thersi®n space gives
an insight as to where the approximations are being mademarydorovide a guide as to
which multiple instances are better to query. For instands,suboptimal to query two
instances whose version space hyperplanes are fairlylgla@leach other. There may
exist a reasonable tradeoff between how well an instaneetsishe version space and how
mutually perpendicular it is to the other instances that wWebe asking as queries.

Bayes Point Machine@Herbrich et al., 1999) also take advantage of the versiacesp
framework. They approximately find the center of mass of thesion space. Using the
Simple method with this point rather than the SVM point in versioagpmay produce an
improvement in performance and stability. The use of Moradd@methods (Applegate &
Kannan, 1991; Herbrich & Graepel, 2001) to estimate versjmace areas may also give
improvements.

Monte Carlo methods may also permit us to maintain a digiobuwover the version
space. One way of viewing the strategy of always choosingteetthe version space is
that we have essentially placed a uniform distribution dliercurrent space of consistent
hypotheses and we wish to reduce the expected size of vespame as fast as possible.
Rather than maintaining a uniform distribution over cotgsis hypotheses, it is plausible
that the addition of prior knowledge over our hypothesiscspanay allow us to modify
our query algorithm and provided us with an even bettereggsatFurthermore, the PAC-
Bayesian framework introduced by McAllester (1999) coassthe effect of prior knowl-
edge on generalization bounds and this approach may lehddcetical guarantees for the
modified querying algorithms.

For the image retrieval task, the running time of our aldonitscales linearly with the
size of the image database both for the relevance feedbademnd for the retrieval of
the top4 images. This linear scaling is because, for each queryimgd.onve have to scan
through the database for the twenty images that are clasdsé tcurrent SVM boundary,
and in the retrieval phase we have to scan the entire dat&twates topkt most relevant
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images with respect to the learned concédtM aqive IS practical for image databases that
contain a few thousand images; however, we would like to fiagsior it to scale to larger
sized databases.

For the relevance feedback phase, one possible way of capithga large image
database is, rather than using the entire database as the@sample a few thousand
images from the database and use these as the pool of pbiteaties with which to query
the user. The technique of subsampling databases is oféehafiectively when perform-
ing data mining with large databases (e.g., (Chaudhuri.etl@P8)). It is plausible that
this technique will have a negligible effect on overall a@ay, while significantly speed-
ing up the running time of thB8VMive algorithm on large databases. Retrieval speed of
relevant images in large databases can perhaps be speaifgamdly by using intelligent
clustering and indexing schemes (Moore, 1991; Li et al., 12208n online version of the
SVMacive SyStem is available at: http://www.robotics.stanford/éstong/svmActive.html.

It already incorporates some of these clustering techsique

Another direction we wish to pursue is an issue that facesymalevance feedback
algorithms: that of designing methods to seed the algoréfiactively. At the moment we
assume that we are presented with one relevant data insadoene irrelevant instance.
It would be beneficial to modif$VMaciive SO that it is not dependent on having a relevant
starting instance. We are currently investigating wayssaigiSVM acive'S OUtput to explore
the feature space effectively until a single relevant imadgeund.

Finally, theMaxRatio andMaxMin methods are computationally expensive since they
have to step through each of the unlabeled data instancdsamdan SVM for each pos-
sible labeling. This limits their use for interactive redexe feedback tasks in particular,
and for active learning with large datasets in general. Hewehe temporarily modified
data sets will only differ by one instance from the origirethéled data set and so one can
envisage learning an SVM on the original data set and therpating the “incremental”
updates to obtain the new SVMs (Cauwenberghs & Poggio, 200&gnch of the possible
labelings of each of the unlabeled instances. Thus, onedNoapefully be able to obtain
a much more efficient implementation of tMaxRatio and MaxMin methods and hence
allow these active learning algorithms to scale up to langachine learning problems and,
in interactive relevance feedback tasks, to provide sefiity fast responses.
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10.2 Parameter Estimation and Causal Discovery

We have also explored active learning for Bayesian netwdi®ur knowledge, this study
is one of the first applications of active learning in an uresujzed context.

We have demonstrated that active learning can have sigmifachvantages for the task
of parameter estimation in BNs, particularly in the case nebmur parameter prior is of
the type that a human expert is likely to provide. We used tsigiblution over parameters
as ourmodel and the expected KL-divergence to the “true” parametersalernatively,
the expected log likelihood of future data) as our notion afdel quality. Intuitively,
the benefit of active learning comes from estimating the rpatars associated with rare
events. Although it is less important to estimate the prabs of rare events accurately,
the number of instances obtained if we randomly sample fitoendistribution is still not
enough. We note that this advantage arises even though ose fuhction that considers
only the accuracy of the distribution. In many practicatisgs such as medical or fault
diagnosis, the rare cases are even more important, as theftan the ones that it is critical
for the system to deal with correctly.

We have also considered the fundamental task of causatwteutiscovery. Here we
used a distribution of graphs and parameters. Unlike tla¢e@lnon-active work of Cooper
and Yoo (1999), our framework permits us to efficiently congbobservational and ex-
perimental data for learning the structure ogéirvariables in our domain, rather that just
non-confounded pairs of variables. Thus we can take a much giobal view of causal
structure learning by taking into account indirect cawsatind confounding influences.

We demonstrated that active learning can provide signifibanefits for causal struc-
ture discovery. We used the distribution over structures@arameters as oanodel and
the entropy of the existence of edges between variables rasiodel quality. Our ac-
tive method provides substantially better predictionsrdong structure than both random
sampling, and a process by which interventional querieseleeted at random. Somewhat
surprisingly, our algorithm achieves significant improess over these other approaches
even when it is restricted to querying roots in the network] therefore cannot exploit the
advantage of intervening in the model.
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10.2.1 Augmentations

There are many interesting directions in which our work véyesian networks can be
extended. For example, a treatment of continuous variatbesd be worthwhile. Two
key issue to address are how to choose an query if the quaables are continuous, and
whether the terms involving the continuous variables indkpected quality expression
have a closed form and are decomposable.

In many domains there are missing data values (for exampht&apexperimental re-
sults) and hidden variables (variables that we never measuobserve) and it would be
useful to explore how our algorithms could be extended t@®ith such situations. Main-
taining a distribution over graphs and parameters in thegmee of missing data or hidden
variables quickly becomes intractable (Heckerman, 1988)ong other things, the distri-
bution over parameters becomes heavily multi-modal (tlmakipiting an efficient, closed
form representation of the individual parameter distitng) and the parameters become
dependent (thus preventing prohibiting us from factogzihe joint density over param-
eters into individual, smaller terms). Thus it remains allehging research problem to
extend Bayesian network active learning to cope with thesaarios.

Active learning can be regarded as being part of the larggdiedecision theory (Howard,
1970). Decision theory tackles the problem of decide hovetdia our case, which queries
to ask) so as to maximum some utility function. The generld tiédecision theory tackles
a great number of issues such as multiple decision makingpuating the value of extra
information, modeling people’s utility functions and ugidecision theory as a framework
for rationality.

Markov decision processes (MDR®uterman, 1994) are a framework for represent-
ing the type of sequential decision making problems mosteelto active learning. They
can potentially be used to relax the myopia approximatiahearable us to introduce more
advanced aspects of decision theory. For example, we maydikompute the next best
query given that we can perform, say, twenty queries in totahat we have, sa,10, 000
in total and each different type of query costs a certain arhdsuch a setup also enables
us to determine optimal stopping rules when performing igger the point at which the
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expected future information gleaned from queries is ougtved by the expected cost. Un-
fortunately, even using the simplest networks, expressurgactive learning problems as
full MDPs becomes intractable. We would have a special typ@@P called abelief state
MDP. The state space of our MDP would be huge: it would be the spbs$ible mod-
els, and each model is a distribution over parameters (anctstes in the causal structure
learning case). Approximate algorithms for dealing withssige state space sizes as well
as algorithms for tackling belief state MDPs do exist (Bekts & Tsitsiklis, 1996; Kael-
bling et al., 1998; Bouitilier et al., 1999; Koller & Parr, 193Guestrin et al., 2001) although
their applicability to active learning for Bayesian neti®iis unclear. The use of MDPs
for augmenting the power of active learning in Bayesian net®& remains an open issue.

Some of the benefits of the full decision theoretic framevemdd, perhaps, be approx-
imately obtained without resorting to an MDP. For example,active learning algorithms
maintain an internal notion of model quality and thus we dcan ghe curve of model qual-
ity versus number of queries that we've asked so far. We camextrapolate this learning
curve and use the curve to decide whether to stop askingagueri

10.2.2 Scaling Up

Handling larger domains and larger data sets is an impaoataat of research for most ma-
chine learning techniques. We would like to explore ways hicl our active learning
algorithms can be scaled up to cope with complex domains.reTaee a number of is-
sue to tackle here. In our active learning for structure, & MCMC methods to sample
node orderings. MCMC methods often become infeasible wheed with a large data set
size or a large dimensional problem. With a large amount &d tlee posterior distribu-
tion landscape often becomes much more “peaked”, whichesaMiCMC methods great
difficulty with slow convergence. Friedman and Koller (fhean & Koller, 2000) note
that this landscape is often much smoother when we sampleoaderings as opposed to
graph structures, but nevertheless, with enough data,tbeqrosterior over orderings will
become sharply peaked. Fortunately, this difficultly iglsilly assuaged in the case of ac-
tive learning because we typically wish to use active leagnio reduce the amount of data
we wish to collect. With very high dimensional problems @ning several thousands of
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variables, the posterior distribution is often concertilain a lower-dimensional subspace,
which again can lead MCMC methods to suffer from slow conerog (Breiman, 1997).
One can envisage scenarios in which we have combinationsanf@ quantity of data, a
high dimensional domain and active learning. In the casereviie have large data set
sizes, we may be able to take advantage of the possibilityttieae will only be a few
graphs (and hence orderings) that fit the data well. Thufigpsrmaintaining a small set
of key orderings would be enough to account for most of théglodity mass of the distri-
bution over orderings. If we are faced with a very high dimenal problem the problem
of convergence using MCMC will only be one of several issthes heed to be addressed.
Our Bayesian network algorithms currently evaluate theeetgrl posterior quality for
everypossible query. The number of possible queries grows exyi@tig with the number
of query variables that we can control at once. There are deuof approaches one could
explore to reduce the number of queries that are evaluatedaith round of querying.
For example, we could make use of the observation that iftpeaed quality of a query
Q := q is high last querying round, then, because the model doeshatged much
in response to a single query, it is likely th@t := g will produce a large increase in
expected quality in the next querying round as well. Thusgfcan only afford to evaluate,
say, 100 candidate queries, we could perform some form opkagnin which the most
promising queries (the queries that gave a large expectegise in quality in the previous
few querying rounds) are sampled with higher likelihoodhtkize less promising ones.

10.2.3 Temporal Domains

Discrete time-step temporal processes can be representchamicBayesian networks
(Dean & Kanazawa, 1989) (see Fig. 10.1 for an example). Thpaeal aspect of a domain
defines a natural partial causal ordering on the nodes ine¢hgonk: nodes in the past
cannot be causally dependent upon those in the future. Ifssanae that we know the
edges present within each discrete time-slice (but thatomé& decessarily know the edges
between time-slices), then this constraint enforces ddadaring on the nodes. Thus, there
is no need to sample node orderings to compute the expec®dHarthermore, given that
we have just one ordering, we may be able to use a wider vaoielyss functions to
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Figure 10.1: Three time-slices of a Dynamic Bayesian networ

measure the model quality — for example the entropy of theilligion over structures.

Using active learning to uncover the parameters or undeglyiructure of a DBN could
be extended to the problem of active learning for optimalt@dr(Boyan, 1995). This
problem is closely related to that of reinforcement leagnim the optimal control problem,
at each time-step, one observes some variables and themmsttpd to perform some
actions. The goal is to find the best actions to perform giverent and past observations
SO0 as to maximize some utility. Such a task can be represdaytedMarkov decision
process which can be regarded as a DBN augmented with nagtegpinesent actions and
nodes that represent utilities.

10.2.4 Other Tasks and Domains

There exist many other problems related to Bayesian nesvamkrelated representations
that we would like to explore. Relating active learning te tralue of information, we
might be able to use active learning to decide which extraalbe to observe or which
extra piece of missing data we should try to obtain in ordebdst learn the model. In
practice, data instances are not always complete, or at@lpam purpose. For example,
doctors may always take a patient’'s temperature, but maginetevery patient a X-ray. It
may be useful to suggest which extra readings will be moshwing to take.

Another exciting direction is the potential of using actiearning in order to try to
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Observational

ata
Experimental @ @
Data

Figure 10.2: A hidden variabl®# makesX andY appear correlated in observational data,
but independent in experimental data.

uncover the existence of a hidden variable in our domain. Aswted in Section 10.2.1,
representing a distribution over structures and paramétethe presence of hidden vari-
ables can be very difficult. Intuitively, the task of seanghfor hidden variables should
not have to involve such a complex setup. If we believe thateths a hidden variable
H betweenX andY that is makingX andY appear to be causally dependent then one
easy way to ascertain whethHrexists is first to se’ and observé” and then set” and
observeX. If X andY appear independent then it is likely that there is a hiddeiabke
(see Fig. 10.2). One possible direction to explore in formnad this intuition is to gather
observational data and consider the distribution of grapltiires given the data. If there
is a high probability of an edge between nodésindY’, then, if there are no hidden vari-
ables, it should be due to a direct causal influence fforto Y or fromY to X. If there
were a hidden variable, then when we just look at experinhelaitza where we intervene
at X or Y, there will be a much lower probability of an edge betweéérandY. Thus,
we could attempt to choose queries so as to maximize somedbdiscrepancy between
the distribution over graphs obtained by using observatidata, and the distribution over
graphs obtained using experimental data.

Object oriented Bayesian networks (OOBNS) (Koller & PfeffeE997) and, more gen-
erally, probabilistic relational models (PRMs) (Pfeff2g00) are effective frameworks for
enabling Bayesian networks to scale-up to very large dosn&RMs extend the standard
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attribute-based Bayesian network representation to jpacate a richer relational structure.
These models allow the specification of a probability modeldasses of objects rather
than simple attributes; they also allow properties of araotijo depend probabilistically on
properties of other related objects. PRMs augment the septational power of Bayesian
networks — for example they enable one to model structuraiainty over the very exis-
tence or number of objects in our domain. A possibly fruifuénue to pursue would be to
investigate how the methods and techniques presented &gyeover to these new repre-
sentations. Potential research issues are how to reprggsenes (in a relational database
the notion of a set of data instances no longer exists), vendiie parameter sharing nature
of these models can be exploited efficiently in the querylggrthm, and whether one can
actively choose queries that uncover or reveal the new typsisuctural uncertainty.

10.3 Epilogue

We hope that the work presented here will provide motivalooriurther work into explor-
ing the uses of active learning within machine learning aatistics. There are numerous
applications of active learning to real-world domains, enber of which have been demon-
strated, and many of which have been alluded to in this testiva learning provides clear
productivity and financial benefits in industrial settingsrbducing the expensive task of
gathering data and performing experiments. In additioa,inkiestigation of active learn-
ing can provide a useful insight into how automated deviegsh®e designed so as to ask
meaningful and apparently intelligent questions in orddearn about a domain. We have
also outlined an number of open issues that now present gleassto us with respect to
improving and extending the current work. In the words ofradas American economist,
social commentator and former Stanford professor:

"The outcome of any serious research can only be
to make two questions grow where only one grew before.”
— Thorstein Veblen, (1857-1929).
The Place of Science in
Modern Civilization.



Appendix A

Proofs

A.1 Preliminaries

We shall frequently use the following identity:
Vz 2I'(z) =T (2 + 1). (A.1)

We shall also use the following equivalence frequently. &@ayesian network parem-
terized by multinomial table CPDs with independent Direthdistributions over the CPD
parameters:

éﬂw\u = /gﬂﬂz‘j\up(g%ﬂu) A0z (A.2)
_ Qayfu (A.3)
Qxi*\u

which is equivalent to the standard (Bayesian) approact imsecollapsing a distribution
over BN parameters into a single parameter vector for ogstediction. We shall also
make use of the following well know result (DeGroot, 1970):
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Lemma A.1.1 Suppose(t,, ..., 0,) = Dirichlet(ay, ..., «,). Then,

p(0;) = Betaa;, > ).

ki

Lemma A.1.2 Suppose(f) = Betda, b). Then,

a

/01 (61n6) p(6) df = —"—(W(a+1) — W(a+b+ 1),

a+b
. . 1)
whereV is thedigamma functiori5y .
Proof.

/0] (01n.6) p(0) df

_ Tla+b) 1, b1
= /U 6°(1 — )= In g do.

Using a standard table of integrals, the above expressiobe&ae-written as:

 +b) T'(a+1)I(b)
') T'(a+b+1)

= (T(a+1) —P(a+b+1)).

A.2 Parameter Estimation Proofs

A.2.1 Using KL Divergence Parameter Loss

: (U(a+1)—W¥(a+b+1))

157

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

Theorem A.2.1 LetT'(«) be the Gamma function(«) be thedigamma functiorand H

be the entropy function. Define:

T

5(041,...704T):Z{%(\Il(aj+1)—\ll(a*+1))—|—}[<

payen Qs

(67F] /
_7---7
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Then the risk decomposes as:

Risk(p =y > Py(0)6(0gyjus - - - 5 Qi Ju)- (A.10)
¢ uebomU;]
Proof.
Risk(p(8)) = FEep@)KL(O || 6) (A.11)
- /KL(GHé)p(e) 40 (A.12)

[ 305 PowKL(Py(X; | w) | Py(X; | w))p(0)d6.  (A13)

Now, using parameter independence, which allows us to agharintegratePy(u),
and noticingf Pp(u)p(0) d@ = P;(u), expression (A.13) becomes:

1 97” u
Y P Y /0 Oyl 5 0y ) B, (A.14)
i u Jj z5(u
Using thatd,, ju = Jo 0u;, jup (0 ju) 021w = P(x; | u) we have that this expression

is equal to:
ZZPé (Z/ slulnfeia) P0s; 1) dbs,j — ZP(%‘ | u) In P(z; | u))
ZZP,; (Z/ S lnbs ) p0s, ) demu+H(p(Xi|u))). (A.15)

Applying Lemma A.1.1 and Lemma A.1.2 we finally obtain:

Qaijlu (W (i + 1) — V(0,1 +1)) + H(P(X; | u))] . (A.16)

am*\u

2.2 Fy(w) 2

J

O
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Theorem A.2.2 Consider a simple network in whicki has parent€). Then:

zxla

A(Xq):pé(q)(y(j:—iz,._,,a wq) ZP (z; | Q) H ( a—>) (A.17)

wherea,. g = ¥ ayyjq- AlSO,a; o = (agq +1) if i = janda , = a4 Otherwise.
! —
Thusa,, |, = a;,q + 1.

Proof. To ease notation, let,,q = o; foralli = 1,...,randa, = >7j_, a;.
By the discussion in Section 7.3.2,

A(X | q) (A.18)
= Py(q) {(5((1]7...,%) — zr:Pé(a?j lq)d(aq, ..., q; +1,...,ar)} . (A19)
Let
K(oy,. ZQ—’ (o +1) +H<a %)
and

Hj:H( o a; +1 Q >

a,+177 o, +1 Ta,+ 1

Also, using the fact thatyz W¥(z + 1) = ¥(z) + 1 and Py(z; | q) = &+, after some
algebraic manipulation we obtain:

A(X |q) ] (A.20)

= Py(q)

+K(on,...,0r) =Y Pylaj | q)K(a],...,aj—I—l,...,ar)J (A.21)

1\11(()4]' + 2) + H])J (A22)




APPENDIX A. PROOFS 160

B A : V(o +2)+H; || .
;Pg(n @ (kl Ot +1\P(ak th+ (o +1) (o + 1) e (05 +2)+ ]>J
(A.23)
Gathering¥ (a; + 1) terms in Eq. (A.23) and then expandifida; +2) = ¥(a; + 1) + — we obtain:
[ 1 . Q; (651 Q.
Qj o 1
- v 1 H
ZOZ* ((a*—l—l)(a] 1)+a*—|—1< (a7+)+a] 1)"’ 7>J
1 (073] Ay r -|
= 0 — ., — | = I E— p .
PB(q) a*+1+H<04*1 ()/*> 7’2:;(0/*4-1 Z :L’,|q J (A.24)
o Q. r
= Pyla) |H <a—] ,a—> =) Pylz; \q)H7J (A.25)
i =
(Il

Theorem A.2.3 The change in risk of a Bayesian network over varialstea/hen asking
queryQ := q is given by:

A(X [aq) = Risk(p(8)) — ExPRisk(p(0) | a) (A.26)
Y Y P(u]Qi=qAX; | ), (A.27)
¢ uebDomU;]

whereA(X; | u) is as defined in Eq. (A.17). Notice that we actually only neexlim over
the updateabléeX;s sinceA(X; | u) will be zero for all non-updateabl&;s.

Proof.

ExPRisk(p(6) | Q :=q)
= Eoup(6) Ex~roxiq:=q)Risk(p(0 | Q := q,x))
= Exwryxiq=oRisk(p(0 | Q := q,x)).
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Let ' be the point estimate fg#(0 | Q := q,x). Then using the fact that the KL
divergence decomposes (Eq. (7.2)) we have that this expressequal to:

~/
ExpyxiQi=a) Fo'npoiq—ax KL(O' | 6)
= EXNPG(X\Q::q)E@’mp(O\Q::q,x) Z Z Per(W)KL(Per (X; | u) || Py (Xi | u))

i ueDomU;]

= ZEmeé(X\Q::q) Z E@’Np(H\Q::q,x)P('D'(u)KL(P(-D'(Xi [a) || Py (Xi [u))
i ueDomU;]

= > 2. Px|1Q:=ad) )  Eepeq=qxPe(0)KL(Pe(X;| )|l Py(X;|u)).
i X ucDomU;|

First using parameter independence and then supposingjtial ~ F;(u) we have
that this expression becomes:

Z Z Pa(x | Q:=aq) Z (E@fmp(g\Q;:q,x)P@/(u)x

uGDOI’T{Ui}
For-poiaaxKL(Por(X; | 1) | Py (X, | u)))

~ DY PBx|Q=a) Y Pyu)Eepyeq-qoKL(Pe (X ) || Py (X |u)).
i ox uebomU;]

Notice thatkL(Pe/ (X; | u) || Py (X; | u)) is just dependent upon the parames,,
(i.e., ;Mu for all ). Now, p(@x,. | Q := q,x) is only dependent upon the values.of
andU; within the instantiatiorQ := q, x.

Also, notice that ifX; is not updateable, thelL(Pe (X; | u) || Py (X; | u)) =
KL(Pe(X; | u) || P3(X; | u)) and so the loss does not depend upon the compleation
that we are summing over. FurthermoreXif is an updateable node, then the node®in
are not descendents a&f; (by definition of updateable in the selectional query casd, a
because of mutilation in the interventional query caselsly is independent of) given

the value of its parent,. Hencep(fx,u | Q := q,x) = p(fx,u | u, z;). We now have:

Zzpé(xivUi:ul‘Q5: q) Z P@(u)x

i zi,u uebDomU;]

Fe KL(Pey, | (Xi|w)[| Py, (X;|u))(A.28)

!
Xz\ump(gxz\u‘u’ml) |u Ju
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= > X P@(uI‘Q::q)ZPé(xi‘Ui:ul) > Py(u) x

i u’eDomU;] ueDomU;]
Ee KL(Pey, | (Xi [u) [| By (X; [ u))(A.29)

PO 00) " "

Let us take a look at the regular risk:

Risk(p(0)) = Fonpe)KL(O | 0)
= Bowwy, Y. PoWKL(Py(X;|u) | Ps(X; )

i ueDomU;]
= 2 2 BWEe, iy, KL(Pey,, (Xi [u) | Py, (Xi]w)).
¢ uebDomU;]
(A.30)
When we take the difference of Eq. (A.30) and Eq. (A.29) wawbt
Risk(p(8)) — ExPRisk(p(0) | q) (A.31)
~ Z Z Py(u' | Q:=q) x
i u' eDomUu;]

Y. FaWEe, . p0r,KL(Po,  (Xi|u) | Py (Xi|u)
ueDomU;] ‘

ilu

(Xi [ w) || Py, (X | u))) .

(A.32)

- ZPé(%’ |U; =) Z Fa(w)Egy  ~p®). e KL(Pory
zi ueDomU;]

From the proof of Theorem A.2.1 we have that:
EQXHuNp(BX,L'\u)KL(PeX”u(Xi ‘ 11) || PéX”u(Xi ‘ u)) = (S(O{%’]\U'/ T awm\u)'

Using this, together with Eq. (A.19), the expression (A.B&yomes:

o Y B[ Qi=q)AX; | u),

t u'eDomU;y]

whereA(X; | u') is defined as in Eq. (A.17).
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Theorem A.2.4 LetU be the set of nodes which are updateable for at least one datedi
guery at each querying step. Assuming that the underlyung distribution has the same
graphical structure as our network and is not deterministieen our querying algorithm
produces consistent estimates for the CPD parameters of evember ot/.

Proof. Let P* by the underlying true distribution that is generating th&ad Notice that
no query node is a descendentgfin the interventional case (because we sever the edges
from incoming edges to query nodes) or in the selective dasealise of the definition of
updateable node, and becau¥ehas the same network structure as our network).
Furthermore, from the definition of a Bayesian network, yvavde is conditionally
independent of its non-decendents given its parents. Miusn we perform a selective
or interventional quer{d := q, and have that the parents of and updateable dgdake
valuesu, we have thatX; is sampled from the distribution:

PY(X; | Q:=q,u) = P(X; | u).

So, whenever we update a paraméter,, from data instancd, the valuer;; present ind

is generated fronP*(X; | u). Thus, since Bayesian point estimate updating is known to
be consistent, the parametgr |, will converge to the true limiting probability”*(X; =

Tij | w).

Thus, each of our point estimate parameters will convergleg@orrect quantities. We
only need to show that we will update each parametéy &n infinite number of times.
Since the true distribution is not deterministic, the ordygmeters that could possibly not
be updated infinitely many times aflg |, whereU contains a query node.

In Eq. (A.17), we can use standard results from informatieoty (e.g., from (Cover
& Thomas, 1991)) to show that(X | u) — 0 as«a,, — oo and thatA(X | u) > 0, where
u is a complete instantiation of’s parents.

Now, suppose we have a domain where we set or select the Viadusigle node).
Let us consider a candidate quepy:= ¢ and let.X, be a child of(). We wish to show
that this query is asked infinitely often. Our algorithm uaeseasure omodel quality to
evaluate the benefit of askirg := ¢, and this quantity is given by Eq. (A.26):
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Yo Y Py(u]Q:=qA(X;]|u) (A.33)
¢ ueDomU;]
> Y. P(u|Q:=q)A(X |u) (A.34)
ueDomUy]
- ueD%\:{UA,} Pé (u | Q . L]) veDon{Uk}glé(IJlnsistent With;A(Xk | V) (A-35)
- Ay (A.36)
- (A.37)

where the instantiatiom is consistent witly. Now, asking any other query := ¢' causes
that query’s quality to tend to zero:

Y PulQ=d)AX;|u) -0 (A.38)
¢ uebDomU;]
Furthermore, asking := ¢’ does not alter any of the parametéfs . since it always sets
(@ to some other value. Thusyremains constant. Thus, eventualyyill be greater than
the score for any other query and so we shall eventually asgulery( := q.
By using a similar argument, we can extend the proof to accateosets of candidate
queries.

A.2.2 Using Log Loss

The theorems in this subsection show that when we use logrbtber than KL divergence)
as our parameter loss function we get an identical algoritithe upcoming series of
theorems follow the same progression as the KL divergendeatien. We first show that
the risk decomposes. We then analyze the case for a singily faetwork and then we
generalize to general Bayesian networks.
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Theorem A.2.5 The risk when using log loss as the loss function decompases a
Risk. . (p(0)) = ZH(Xi |U,). (A.39)
Proof.
Risk; 1 (p(6)) = Forpe)LL(O || 8) = Forpe) Ex-rgx) — In P(X | 0),  (A.40)

which is the negative expected loglikelihood of future datd is equal to:

— /p(e)z P(x|6)InP(x| 0)d6 (A.41)
- _zlnpx\e/p P(x| 6)d6 (A42)
- fzp )In P(x | 6) (A.43)
_ *Z P(x)In P(x (A44)
- fzp me i | ) (A.45)
— —ZZZP zi,w;) In P(z; | w;) (A.46)
— —ii]l;(ui)zp(xi ;) In P(z; | u;) (A.47)
B VAL (A48)

(Il

Theorem A.2.6 Consider a simple Bayesian network in whikhhas parentd). Define
ArL(X | q) = Riskr,(X) — ExPRisk, (X | Q := q). Then:

zxla x|

ALL(X | @) = Pyla) (H (Gata,.., 22n) - S Py, | @l (——)) L (a49)
J

wherea,. g = ¥ ayjq- AlSO,a) = (ag,q +1) if i = janda , = a4 Otherwise.
! —
Thusa, |, = a;,q + 1.
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Proof. This is immediate from Theorem A.2.5 and the fact that:

H(X|q):H<a””—1“ “—> (A.50)

’ )
Qzylq’ Qzy|q

O

Now, notice that\,; (X | q) is identical toA(X | q) from Eq. (A.17). In other words,
for this simple network, the difference in expected posteldss when using log loss is
the same as when using KL divergence. Thus, the proof for fEined\.2.3 can be used to
prove the analogous theorem:

Theorem A.2.7 The change in risk of a Bayesian network over varialstea/hen asking
queryQ := q is given by:

A(¥ |a) = Riskp(p(8)) — ExPRisky (p(6) | a) (A51)
~ > Y Ppu|Qi=q)AL(X]|u), (A.52)
1 uebDomU,]

whereA,, (X; | u) is as defined in Eq. (A.49). Notice that we actually only neesiim
over the updateabld’;s sinceA;;,(X; | u) will be zero for all non-updateabl&’;s.

Thus, we have exactly the same algorithm as before, and guroloé for consistency
also holds.

A.3 Structure Estimation Proofs

Theorem A.3.1 Given a queryQ := q, we can write the probability of a responseto
our query as:

P(x|Q:=q,<)
~ o II Y P(PA(X) = U <)ScordX,, U] x,q),

X ¢QUClU;

whereAq = [li.x,cq Xueu, . P(Pa(X;) = U [<).
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Proof. Applying Theorem 8.3.4 and parameter modularity we have:

P(x|Q:=q,<)
= Y P(x|Q:=q.6)PG |<)

ge<
= Y [[P(Pa(X;)=U7 |<) [] Scoréx;, UY | x,q)
ge< i J:X;¢Q
> ( I Peax,) - U <>) ( [ P(Palx,) = US |<)Scord.X, US |x q>)
ge< \J:X;€Q :X;¢Q
(‘.HQ Z P(Pa(X;) =U <)> X

( II > P(PaX;)=U |<)ScordX; U |x, q)) .

i X;¢Q UEl; <

The last step relies on parameter modularity and the obsenvhat:

LI =]] 3 (X 0).
O

Theorem A.3.2 Given a quenQ := q, the expected posterior loss can be written as:

ExPLoss (P(G,65) | Q :=q)

= )\szw(%-ﬁﬁwi,wﬂ H d(Tr, W), (A.53)
77] X kagQ
where,
IZ)([Ei, Tj, Wi, Wj) = H(X7 < Xj | Ty Tjy, Wi, Wi, -<)
¢(Tk,Wk Z P Pa(Xk) U |<)SCOf€{Xk7U ‘ Tk,Wk)
Uely, =
Proof.

ExPLoss (P(G,0) | Q :=q) (A.54)
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- Eme(X\Q::q.,—<) ZH(X7 <~ Xj | Ly Xj, Wi, Wi, '<)

Z'/.7
= Y. Y Px|Q:=q,)HX; < Xj | 2,25, wi, W, <)

ij X
1y X
Ao [T Y P(Pa(Xy) =U|<)ScoréX;, U |x,q)

k:X¢QUeU, <

= Ao > Wz zwiwy) [T ek, w).

Z,j X ka%Q
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(A.55)

(A.56)

(A.57)

(A.58)
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