
SUR

SURVEY

Theory in Practice for System Design and Verification

Rajeev Alur Thomas A. Henzinger Moshe Y. Vardi
Univ. of Pennsylvania IST Austria Rice University

1. INTRODUCTION
Methodology and tools for assisting developers in building high-confidence hardware
and software at a reasonable cost has been one of the central themes in computer sci-
ence since its inception. The formal methods research on this problem has focused on
two complimentary goals: to provide mathematical abstractions to manage the com-
plexity of the design and to develop analysis tools to check that the implementation
works correctly as intended. Achieving these goals has proved to be extremely chal-
lenging for two reasons. First, the scale and complexity of systems being designed
remains a moving target as computers have transformed from special-purpose and
stand-alone number-crunching processors to networked devices interacting with the
physical world. Second, once formalized, the computational problem of verifying that
a system meets its specification is undecidable in the general case and has intractable
complexity even in special cases.
Advances in theoretical foundations for system design have contributed in address-
ing these challenges partially by identifying logics and automata for specification and
modeling, and by developing efficient data structures and algorithms for analysis. In
Section 2, we discuss real-world impact of these advances in design automation for
hardware, software, and embedded control systems. Critical to each success story was
an initial demonstration of a compelling match between the capability of a research
prototype and an industrial need, followed by sustained research on improving the
scalability of the tools. It is worth noting that research on this topic has been recog-
nized by multiple notable awards in the last twenty years. These include: A.M. Tur-
ing Award to Pnueli for temporal logic in 1996 and to Clarke, Emerson, and Sifakis
for model checking in 2007, Paris Kanellakis Theory and Practice Award to Bryant,
Clarke, Emerson, and McMillan for symbolic model checking in 1998, to Holzmannn,
Kurshan, Vardi, and Wolper for automata-theoretic model checking in 2005, and to
Brayton for logic synthesis in 2006, and ACM Software System Award to the model
checker SPIN in 2001, to the Boyer-Moore theorem prover in 2005, and to Statemate
in 2007.

ACM SIGLOG News 99 January 2015, Vol. 2, No. 1



2. SUCCESS STORIES
In this section, we describe a few illustrative examples of how ideas originating in
academic research and rooted in theoretical foundations have matured into tools and
methodologies used in industry and other communities.

2.1. Constraint Solvers
The propositional satisfiability problem (SAT) is known to be NP-complete and un-
derstanding its structure has been a central theme in complexity theory for the past
forty years. A parallel thread of research in the verification community has been the
development of efficient solvers for SAT. Modern SAT solvers are capable of solving
instances with many thousands of variables due to sustained innovations in core algo-
rithms, data structures, decision heuristics, and performance tuning by exploiting the
architecture of contemporary processors [12].
A more challenging form of constraint satisfaction problem is to determine the truth of
a logical formula built from propositional as well as other types of variables. For exam-
ple, in linear real arithmetic, the input formula consists of propositional and real vari-
ables, logical connectives, and linear arithmetic operations. Theoretical understanding
of general ways of combining distinct decision procedures (in case of linear real arith-
metic, integrating the solver for propositional satisfiability with the solver for checking
consistency of conjunctions of linear inequalities) has paved the way for the so-called
SMT (Satisfiability Modulo Theories) solvers that can now solve constraint satisfaction
problems over a rich set of types.
Contemporary analysis and verification tools vary widely in terms of source languages,
verification methodology, and the degree of automation, but they all rely on repeatedly
invoking a SAT or an SMT solver for core computational tasks such as checking valid-
ity of a verification condition and automatically generating a candidate invariant (see
[3] for an introduction to decision procedures and program verification). Due to their
impressive scalability and maturity, SAT and SMT solvers are also used in many other
contexts such as planning and optimization (see [7] and smt-lib.org).

2.2. Hardware Design Automation
The key to managing the complexity of modern VLSI circuits has been the introduction
of industry-standard abstractions such as RTL (Register Transfer Level) and Hard-
ware Description Languages (such as Verilog and VHDL). The challenge in electronic
design automation then is to automatically map descriptions in such high-level ab-
stractions to a low-level circuit for fabrication while ensuring semantic correctness
and satisfying performance objectives related to area, power, and timing.
The significant advances in electronic design automation have originated in academic
tools. Prominent examples include: (1) SPICE for accurate and fast simulation of large-
scale circuits, (2) SIS for translating state machines to optimized netlists, and (3)
Espresso for minimizing the number of gates in a circuit. These tools rely on a vari-
ety of algorithmic techniques such as algebraic rewriting, heuristics for multiobjective
optimization, efficient techniques for simulation of differential equations, and equiva-
lence checking for finite-state machines.
The work on circuit simulation and logic synthesis in 1980s resulted in founding of
Cadence and Synopsis, which are still the two leading companies in EDA (Electronic
Design Automation). More significantly, EDA tools are used universally within the
semiconductor industry, and the contemporary computing infrastructure would not
exist without these advances in hardware design automation (see [13] for a survey of
the synergy between the academic research and EDA industry).

ACM SIGLOG News 100 January 2015, Vol. 2, No. 1



2.3. Temporal Logic Model Checking
Temporal logic offers a natural way of formally expressing requirements concerning
safety (avoidance of undesirable states) and liveness (eventual satisfaction of goals)
properties of reactive systems—systems that interact with their environment via in-
puts and outputs in an ongoing manner. Model checking, introduced in early 1980s,
is the problem of algorithmically checking that a finite-state abstraction of a system
satisfies its temporal-logic specification.
Model checking has been a topic of extensive theoretical research for the past thirty
years. Key theoretical advances include symbolic algorithms based on the data struc-
ture of BDDs (binary decision diagrams), an understanding of the expressiveness and
complexity of different variants of temporal logics, automata over infinite strings with
applications to decision procedures for temporal logics, reduction strategies for limit-
ing the search through the state-space of concurrent state-machines, and techniques
for automatic abstraction and refinement. Early research prototypes such as Cospan,
Murphi, SMV, and SPIN demonstrated how these theoretical ideas can lead to effi-
cient tools, and were successful in finding hard-to-find logical bugs in multiprocessor
coordination protocols and distributed algorithms.
In hardware design, it is now a common practice to augment the design with asser-
tions or monitors as correctness specifications. The specification language PSL (IEEE
1850 Standard Property Specification Language) is rooted in temporal logic, and sup-
ported by commercial simulation tools (see also the emerging standard SVA (System
Verilog Assertions). Companies such as Intel and Motorola have in-house verification
groups that routinely use model checkers to debug challenging designs such as cache
coherence protocols and pipelined microprocessor architectures. There are also new
companies focused primarily on tools and consulting for formal verification such as
Jasper (jasper-da.com) and Oski (oskitechnology.com).
We refer the reader to [5] for a technical introduction to model checking, and the 2009
ACM Turing Award lecture for an overview of its impact [4].

2.4. Software Analysis
The software verification problem is to check whether a program meets a correctness
specification. While this problem is undecidable, a number of algorithmic analysis
techniques have been developed to solve this problem approximately (in the sense that
the tool is not guaranteed to give the correct answer on every input instance).
In static analysis, a set of facts of a particular pattern relating program variables
are derived at every program location by propagation of constraints along the control-
flow graph of the program. Theoretical research on abstract interpretation, constraint
simplification, and algorithms for inter-procedural analysis has contributed to scal-
able tools such as Astrée (used by Airbus to check absence of floating point errors
in avionics software) [6] and PreFix/PreFast (used by Microsoft to ensure absence of
buffer overflow errors in Windows operating system). Companies such as Grammat-
ech (grammatech.com) and Coverity (coverity.com) originated from academic research,
and have developed industrial-strength static analysis tools [2].
In software model checking, automatic abstraction and static analysis are used to de-
rive a finite-state abstraction of a program, which is then subjected to exhaustive state-
space exploration using symbolic techniques developed for model checking. There have
been prominent successes of this approach recently: the SDV (Static Device Verifier)
tool is able to certify conformance of code for device drivers to the Windows API us-
age rules [1]; the C code running on NASA’s robotic vehicle Curiosity that success-
fully landed on Mars in August 2012 was extensively debugged using formal analysis

ACM SIGLOG News 101 January 2015, Vol. 2, No. 1



tools [9]; and the F-SOFT model checker is used in NEC on a regular basis to find bugs
in millions of lines of C/C++ code [10].
The objective of software testing is to select a representative set of inputs for executing
the code, and of dynamic analysis is to infer as much information as possible about
the program behavior based on observed executions. For these classical software engi-
neering problems, new algorithmic techniques have been recently developed based on
the use of constraint solvers and symbolic execution. Recently, the testing tool SAGE
based on symbolic execution was credited to have found roughly one third of all the
security vulnerabilities during the development of Microsoft’s Windows 7 software [8].
A promising new direction for software analysis combines constraint-based static ap-
proach with the execution-based dynamic approach.

2.5. Formal Models for Cyber-Physical Systems
Cyber-physical systems are networked computing devices interacting with the phys-
ical world. Model-based design is emerging as a promising approach for developing
this new class of complex systems in a principled manner, and the foundations of this
methodology lie in cross-fertilization of ideas from mathematical modeling and algo-
rithmic analysis.
Examples of modeling frameworks include Statecharts for visual and structured mod-
eling of reactive systems, Esterel for simplifying design abstractions based on syn-
chrony hypothesis, timed automata for integrating timing constraints in state ma-
chines, hybrid automata for integrating discrete behavior with continuous-time mod-
els of dynamical systems, and Ptolemy for unifying heterogenous models of interaction.
Examples of analysis techniques include algorithms for estimation of worst-case exe-
cution time and scheduling of computational resources, synthesis of code from models
subject to resource constraints, transformation and composition of models, verification
algorithms based on computing finite-state abstractions of timed and hybrid systems,
symbolic analysis of dynamical systems, and metric-based notions of abstraction and
refinement for hybrid systems. See [11] for an introduction to model-based design and
analysis of cyber-physical systems.
Model-based design and analysis is slowly being adapted by industry for design
of embedded control software in domains such as avionics, automotive, and medi-
cal devices. Mathworks, the leading tool vendor in this sector (see mathworks.com),
now supports modeling using notations such as Statecharts and hybrid au-
tomata, schedulability analysis, and test-case generation using symbolic techniques
(Simulink Design Verifier). Companies such as TTTech (tttech.com), Reactive Systems
(reactive-systems.com), and Uppaal (uppaal.com) originated from academic research,
and market tools for formal modeling and analysis. It is also worth noting the adop-
tion of concepts and tools from formal methods in disciplines such as control theory
and systems engineering, both in research and undergraduate education.

3. FUTURE DIRECTIONS
Realizing the full potential of emerging computing platforms requires that advances in
processing and communication technology are matched by advances in tools for design-
ing complex software systems and ensuring their safe and reliable operation. Thus,
the research goal of formal approaches to system design and analysis is as relevant
and as challenging today as it was fifty years ago, and the success stories discussed
in the previous section suggest that theory can be effective in this pursuit. Another
lesson is that the path to a successful technology transfer in this domain has been
typically long: small steps in advancing the scalability of tools collectively contribute
towards impressive results over decades. This calls for continued research in core ar-

ACM SIGLOG News 102 January 2015, Vol. 2, No. 1



eas of formal methods such as identification of analyzable design abstractions, analysis
algorithms, and scalability of tools.
We conclude this report by listing some new avenues for research.

— Synthesis: With maturing of verification technology that can check the confor-
mance of an implementation to its specification, it is natural to focus on synthesis—
automatic derivation of implementation from specifications, both to improve pro-
grammer productivity and to integrate verification with design so that bugs are found
in early stages. There is a growing research on this topic, for instance, on synthesizing
finite-state controllers from temporal logic specifications, on automatic completion of
partial programs based on user-supplied assertions, and synthesis of programs from
examples by exploiting the domain-specific knowledge. New theoretical approaches
that combine logical deduction with machine learning can offer scalable computa-
tional solutions for synthesis.

— Concurrency: While the methodology for design and verification of sequential pro-
grams is well understood, despite many proposals for programming languages and
verification techniques for concurrent programs, developing concurrent systems re-
mains a difficult and error-prone task. Emerging multiprocessor and multicore ar-
chitectures offer enormous computational power, but exploiting this parallelism effi-
ciently and correctly is challenging due to complex memory models for shared data.
The emergence of data-centers and cloud computing again offers exciting opportuni-
ties for concurrent computation, but need new programming abstractions to ensure
data consistency and fault tolerance. Research in formal methods can potentially
have significant impact on programming abstractions and languages for concurrent
systems.

— Probabilistic and Quantitative Models: Traditionally, models and techniques
used for establishing correctness and for evaluating performance have been disjoint.
A promising new direction in formal methods research these days is the development
of probabilistic models, with associated tools for quantitative evaluation of system
performance along with correctness. Concurrent software, distributed protocols, and
resource allocation for cloud computing, are potential application domains for such
work.

— Beyond Worst-Case Complexity: Classical computation theory focuses on estab-
lishing the worst-case complexity of problems. For verification problems, such es-
timates always indicate intractability, and yet, some of the modern SAT and SMT
solvers work well on many instances in this context. Theoretical tools for estimating
complexity on real-world instances of problems thus can provide useful insights into
the structure of these problems.

REFERENCES
T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with SLAM. Commun. ACM,

54(7):68–76, 2011.
A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-H. Gros, A. Kamsky, S. McPeak, and D. R.

Engler. A few billion lines of code later: using static analysis to find bugs in the real world. Commun.
ACM, 53(2):66–75, 2010.

A. R. Bradley and Z. Manna. The calculus of computation - decision procedures with applications to verifica-
tion. Springer, 2007.

E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: algorithmic verification and debugging. Com-
mun. ACM, 52(11):74–84, 2009.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.
P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does Astrée scale up? Formal

Methods in System Design, 35(3):229–264, 2009.

ACM SIGLOG News 103 January 2015, Vol. 2, No. 1



L. de Moura and N. Bjørner. Satisfiability Modulo Theories: introduction and applications. Commun. ACM,
54(9):69–77, 2011.

P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: whitebox fuzzing for security testing. Commun. ACM,
55(3):40–44, 2012.

G. J. Holzmann. Landing a spacecraft on Mars. IEEE Software, 30(2):83–86, 2013.
F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda, H. Tokuoka, T. Imoto, and

Y. Miyazaki. DC2: A framework for scalable, scope-bounded software verification. In Proc. 26th
IEEE/ACM Intl. Conf. on Automated Software Engineering, pages 133–142, 2011.

E. A. Lee and S. A. Seshia. Introduction to Embedded Systems, A Cyber-Physical Systems Approach. 2011.
S. Malik and L. Zhang. Boolean satisfiability: from theoretical hardness to practical success. Commun. ACM,

52(8):76–82, 2009.
A. L. Sangiovanni-Vincentelli. The tides of EDA. IEEE Design & Test of Computers, 20(6):59–75, 2003.

ACM SIGLOG News 104 January 2015, Vol. 2, No. 1


