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Abstract 
We introduce a high performance programming model for 
large-scale molecular dynamics calculations on 
reconfigurable hardware. The programming model is based 
on a methodology to leverage legacy code and accelerate 
calculations running on reconfigurable supercomputers. We 
discuss the steps taken in the formulation of scalable, 
arbitrarily-sized, parallel 3-Dimensional FFT kernels 
implemented on networks of FPGAs. We achieve 
sustainable speedup and scaling by exchanging the concept 
of a network processing-based architecture with gather-
scatter operations for a network of streams and accelerator 
kernels. 

Introduction 
Accelerating computational chemistry calculations is the 
ansatz to solve important problems that are otherwise 
outside the scope of scientific effort due to realistic 
computational constraints. Molecular dynamics (MD) is a 
method used to simulate molecular systems solving 
Newton’s equations numerically. Large-scale biomolecular 
MD simulations for the study of protein folding require 
calculation of long-range electrostatic forces. Methods 
based on Ewald sums on the reciprocal space are utilized to 
further speedup the computation. In order to transform 
between real and reciprocal domains, we use 3-Dimensional 
Fast Fourier Transforms (FFTs). Among the methods used 
to calculate the 3-Dimensional FFTs efficiently, one 
commonly used is slab decomposition (SD). The SD 
method allows the use of 1-Dimensional FFTs as a basic 
module for multi-dimensional FFT calculations. FFTs are 
ubiquitous in digital signal processing (DSP); however, the 
scope of operation and data utilized for MD define a totally 
new and challenging problem for parallelization. The 
problem is aggravated because of the data movement and 
accesses while computing over multi-dimensional array-
based data structures. 

Previous work 
The authors are unaware of any previous large-scale MD 
floating-point implementation on FPGAs giving context to 
3-Dimensional FFT kernels. However, here we discuss 
independent attempts towards parts of the problem. The de 
facto parallelization methods for distributed and parallel 
computing architectures use message-passing mechanisms 
(such as MPI) and multi-threading interfaces (such as 
OpenMP) in addition to specialized library capabilities such 

as FFTW [1] for FFT kernels. Other attempts to massively 
parallelize codes and to dramatically reduce inter-processor 
communication for the FFT portion of the calculations 
using CPUs is found in [2]; although a great effort was 
made to vectorize the code, the improvement would have 
yielded better performance if limitations of the 
communication between processing elements (PE) were 
addressed. Unfortunately, the inefficiency of PEs is 
inherent in the von Newmann computing model. 
Furthermore, another salient case is the Blue Gene project’s 
attempt to devise an architecture that effectively deals with 
the characteristics of MD calculations [3,4,5,6]. The 
algorithm is “spread-out” on the architecture with multiple-
interconnect levels and it implements a volumetric 3-
Dimensional FFT instead of the SD method. However, the 
trade-off between PE and network efficiency remains 
unsolved because of the difference in bandwidth of the PE 
and network layers. Conversely, FPGA trends promise to 
leverage a greater growth than CPUs in explicit parallelism 
with new generations of devices. Attempts to parallelize 
floating-point FFTs in reconfigurable hardware demonstrate 
an already competitive profile between state-of-the-art 
CPUs and field programmable gate arrays (FPGAs) [7]. 
One FPGA FFT implementation, reported in [8], is 
designed to specifically target semi-empirical Car-
Parrinello MD types of calculations. When FPGAs are 
used, bandwidth limitations—indicative of the parallel 
input format of an FFT—force more effective 
implementations using FIFO-based producer-consumer 
models. Examples of such implementations introduce a 
serial collapsed version of the FFT’s butterflies [9]. Finally, 
the implementation in [10] is optimized for continuous data 
FFTs in FPGAs and ASICs. The approach extensively uses 
a corner turn module that we have previously studied and 
benchmarked in [11]. 

Reconfigurable computers and Legacy codes 
Reconfigurable computing (RC) applications quite often 
involve the streaming of data past processing logic. The 
performance advantage gained from reconfigurable 
computing is largely due to: (1) the ability to process data 
in a pipelined fashion with “configurable specific 
instructions,” and with spatial parallelism and thus achieve 
multiple operations per second—note the elimination of 
instruction fetch and decode steps plus the savings in 
store/fetch of data from registers across the spatial 
architecture layout; and (2) data reuse and the ability to 
exploit the streaming nature of algorithms and its 



 

intertwined feature in the way of kernel-stream-kernel 
compute patterns. We notice that most time consuming 
portions of legacy code can be rewritten using such 
compute patterns. Additionally, working with legacy codes 
allows us to leverage the research hours invested in these 
algorithms supported by a large variety of theoretical and 
computational chemistry communities. 

High Performance Programming Model 
Unlike the standard trend of having a fast network and 
multiple number of processing elements, we introduce an 
architectural model on the other side of the spectrum, 
having processing elements with more computation 
efficiency and explicit parallelism and a network that is 
based on algorithmic data flow—streams—rather than a 
globally addressable space. We achieve sustainable speedup 
and scaling by exchanging the concept of a network 
processing-based architecture with gather-scatter operations 
for a network of streams and accelerator kernels. Therefore, 
instead of incurring an increased inter-processor 
communication because of poor system data locality, the 
algorithm maps spatially over the hardware platform 
comprised of FPGA chips linked in a reconfigurable array-
interconnect. Stream language compilers exist but they do 
not target the topologies and interconnect available in 
reconfigurable supercomputers [12]. Data is laid out with 
high level of reusability and possessing a highly efficient 
scheme of fetching and feeding data to the pipeline with no 
conflicts. Consequently, by interleaving communication 
with computation, the overhead of memory accesses is 
significantly reduced between processes. Our 
implementations adapt and integrate [9,10,11] together with 
our model into an standalone MD application. We use and 
propose new transformation [13] techniques to map 
algorithms to hardware with high level compilers. We 
analyze and accelerate at the application level a total of four 
legacy codes, two internal kernel codes and two well known 
packages, namely LAMMPS and Amber. The optimization 
was performed on the FFT portion of the codes where a 
large percentage of the computation time is spent. We also 
compare the performance of our ports with the version of 
the codes utilizing the FFTW [1] libraries. Our 
programming model allows us to explore the trade-off 
between fine vs. coarse grain granularity PEs and data-
paths per PE to maximize application scaling. The 
programming model mapping makes extensive use of the 
general purpose I/O (GPIO) parallel links and serial links or 
chain ports (CPIO) implemented using the multi-gigabit 
transceivers (MGTs) available on the advanced FPGAs. 

Evaluation 
We validate our techniques by performing tests on two of 
the most representative state-of-the-art reconfigurable 
architectures, namely Cray XD1 [14] and the SRC 
MAPstation [13] both comprising FPGAs, microprocessors, 
memory, and interconnect. Finally, we discuss limitations 
and lessons learned of our programming model and also 
propose architectural enhancements to future generation of 
reconfigurable supercomputers. 
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