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Abstract— We present aDeryaft, a novel technique for automat-
ing the writing of specifications in Alloy—a first-order relational
logic with transitive closure. Alloy is particularly suitable for
specifying structural properties of software, and has steadily been
gaining popularity due to the rapid feedback that its SAT-based
analyzer provides fully automatically. Alloy users however, still
have to manually write specifications in adeclarative language
and use a paradigm that is different from the commonly used
imperative programming paradigm.

aDeryaft assists Alloy users in writing their specifications
by providing a novel specification-writing approach, which is
particularly tailored to users, such as engineers or practitioners in
industry, who may not have much prior experience or proficiency
in Alloy or similar logics. The user constructs by hand a few small
concrete instances that represent the constraints of the software
structure they want to specify. aDeryaft then fully automatically
generates an executable Alloy specification, which represents the
constraints that summarize the given structures. The generated
specification is fully executable. For example, the Alloy Analyzer
can use it to systematically enumerate a large number of concrete
instances that satisfy the same constraints as the given instances.
Indeed, a user may use aDeryaft to generate partial specifications
while the user writes the rest of the specification by hand.

To efficiently generate Alloy specifications, aDeryaft exploits
the relational basis of Alloy and formulates graph properties
that are likely to hold for the given instances. It then checks the
properties for these instances and translates the valid properties
into Alloy constraints, which it outputs as an Alloy specification.
We illustrate aDeryaft’s constraint generation on a variety of
commonly used data structures.

I. I NTRODUCTION

As software systems steadily grow in complexity and size,
designing such systems manually becomes more and more
error-prone. The last few years have seen a new generation
of lightweight design tools that allow formulating designs
formally, as well as checking their correctness to detect crucial
flaws that, if not corrected, could lead to massive failures. The
Alloy tool-set is one such design tool that is rapidly gaining
prominence [1], [2]. The user formulates their design in the
Alloy language, which is a first-order logic (with transitive clo-
sure) based on relations, and checks the correctness properties
using the Alloy Analyzer.

The Alloy tool-set has been used successfully to check
designs of various applications, such as Microsoft’s Common
Object Modeling interface for interprocess communication [3],
the Intentional Naming System for resource discovery in

mobile networks [4], and avionics systems [5], as well as
designs of cancer therapy machines [6].

The Alloy Analyzer provides bounded exhaustive analysis
and translates Alloy formulas using a givenscope, i.e., a bound
on the universe of discourse, to propositional formulas, which
are solved using state-of-the-art satisfiability (SAT) solvers.
Given an Alloy specification, which consists of declarations of
sets and relations and constraints on their values, the analyzer
computesinstances, i.e., assignments to the sets and relations,
which satisfy the given constraints. The analyzer’s ability to
rapidly solve constraints makes the Alloy tool-set particularly
attractive.

Practitioners new to Alloy, however, face a very basic
challenge: the need to learn a newdeclarative language—a
language that requires using a programming paradigm different
from the imperative programming paradigm that is predomi-
nantly used in industry. Indeed, one of the motivating factors
behind the design of Alloy is to keep the language simple and
small. In particular, Alloy’s support of path expressions using
transitive closure enables intuitive and succinct formulation
of specifications, and minimizes the learning burden on new
users. Nonetheless, automated tool support in assisting with
writing Alloy specifications is valuable in several aspects. To
illustrate, for beginner users, it can help with learning the
basics of the language; for advanced users, it can help with
checking whether they formulated their constraints correctly
or whether they need additional constraints.

We present aDeryaft, a novel technique for automating the
writing of Alloy specifications. Instead of writing a complete
specification by hand, the user constructs a few small concrete
instances that represent the constraints of the software struc-
ture they want to specify. aDeryaft then fully automatically
generates an executable Alloy specification, which summarizes
the given structures as Alloy constraints.

To efficiently and effectively generate Alloy specifications,
aDeryaft exploits the relational basis of Alloy and formulates
properties of graphs that are likely to hold for the given
instances. Our current prototype focuses on generating con-
straints that define heap-allocated data structures, such as lists
and trees, which pervade modern software and can be viewed
as rooted edge-labeled graphs.

aDeryaft incorporates a number of heuristics, which allow
it to focus on relevant structural properties. For example, it



identifies acoreset of fields such that for any given structure,
all the objects that are reachable from the root along any field
are also reachable from the root along the core fields only.
aDeryaft conjectures reachability properties, such as acyclicity,
only for the fields in the core set. aDeryaft treats the fields not
in the core set asderived and conjectures relations between
derived and core fields, e.g., whether a derived field is the
transpose of a core field. For non-linear structures, aDeryaft
also conjectures properties that relate path lengths from the
root. Thus, the conjectured properties include both local and
global properties. aDeryaft checks the conjectured properties
for the given instances and translates the valid properties into
Alloy.

The undecidability of the problem that aDeryaft addresses
necessitates that its constraint generation, in general, cannot be
sound and complete [7]. The generated constraints are sound
with respect to the set of given instances. Of course, unseen
instances may or may not satisfy them. aDeryaft’s generation
is not complete: it may not generate all possible constraints
that hold for the given set of instances.

Nevertheless, the constraints that aDeryaft generates serve
several useful purposes. The constraints can be viewed as
drafts that include data declarations and constraints that are
of interest to the user, who may refine them. The user
could indeed choose to put together a specification by using
different sets of inputs to generate different constraints, which
represent different parts of a desired specification. The user
can then combine the parts using standard logical operators
to form a complete specification. It is worth pointing out
that the Alloy Analyzer can directly use the specifications
generated by aDeryaft to systematically enumerate a large
number of instances that satisfy the same constraints as the
given instances. Indeed the generated specifications can be
used to check the soundness and completeness of hand-written
specifications.

aDeryaft’s approach has the potential to change how practi-
tioners develop software designs and specifications. It not only
makes writing them easier and enables various design-level
and specification-level analyses, it also enables automated test
input generation: the constraints generated by aDeryaft can be
used directly by a test generation tool, such as TestEra [8], to
enumerate a high quality test suite.

We make the following contributions:
• Specification generation.We introduce the idea of using

a given set of Alloy instances to generate Alloy formulas
that are fully executable and can also be used to augment
or correct existing Alloy specifications;

• Graph view. We introduce a rooted edge-labeled graph
view of the program heap where the set of edges is
partitioned into core and derived sets to enable efficient
and effective constraint generation;

• Algorithm. We present an algorithm for generating Alloy
specifications using a small number of instances.

• Experiments. We present experiments that show the
feasibility of generating Alloy constraints for a variety
of commonly used data structures.
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Fig. 1. Three acyclic singly-linked lists, one each containing zero, one, and
three entries, as indicated by the value of thesize field. Small hollow
squares represent the list atoms. The labeled arrows represent the fields
header and next . E0, E1, E2, andE3 represent the identities of entry
atoms. The entries also contain the integer elements.

The rest of the paper is structured as follows. Section II
describes an example to illustrate aDeryaft’s specification
generation and to introduce basics of Alloy. Section III defines
core and derived fields and describes the aDeryaft algorithm.
Section IV illustrates the algorithm using a case study with
heaps implemented using binary trees. Section V discusses
limitations of our current prototype and presents some threads
of future work. Section VI compares our approach to previous
approaches and Section VII concludes our paper.

II. EXAMPLE

This section presents an example of using aDeryaft to
generate an Alloy specification that represents the structural
invariants of a singly-linked acyclic list. We also use the
example to introduce the basics of Alloy; details can be found
elsewhere [1].

For a given set of instances, aDeryaft generates an ex-
ecutable Alloy specification, which includes both the data
declarations and the constraints in Alloy. It generates the data
declarations as Alloysignatures, and generates the constraints
as Alloy facts and predicates. It also generates appropriate
commands to execute the analyzer.

Consider providing aDeryaft as input the three lists il-
lustrated in Figure 1. Our current prototype takes the input
instances as a hash-set of Java objects, and based on the classes
of the objects, it generates appropriate Alloy specifications
using a simple traversal of the given structures and reflection
to determine the types of objects and their fields. We describe
in Section III how an instance can be described in Alloy as
well as how it can be described in Java. Here, we assume a
set of instances is given.

Figure 2 shows the specification aDeryaft generates for the
three list instances shown in Figure 1.

The keywordmodule names a specification. Asig dec-
laration introduces a set of atoms; the signaturesList and
Entry declare sets of list and entry atoms. Thefields of a
signature declare relations. The fieldheader introduces a
binary relation of typeList x Entry , while size has the
type Entry x Int , where Int is a built-in Alloy type that
represents the domain of integers;elem and next introduce
relations of typeEntry x Int and Entry x Entry . The
keywordset declares a field to be an arbitrary relation;lone

andone declare partial functions and total functions.
A fact states constraints that any instance of a specification

must satisfy. The operator ‘. ’ represents relational composi-



module list

sig List {
header: set Entry,
size: set Int

}

sig Entry {
elem: set Int,
next: set Entry

}

fact ListFieldConstraints {
all l: List {

// at most one header
lone l.header

// exactly one size
one l.size

}
}

fact EntryFieldConstraints {
all n: Entry {

// exactly one elem
one n.elem

// at most one next
lone n.next

}
}

pred RepOk(l: List) {
/ * acyclicCore * /
all n: l.header. * next | n !in n.ˆnext

/ * sizeOk * /
int l.size = #l.header. * next

}

run RepOk

Fig. 2. Alloy specification generated by aDeryaft for singly-linked acyclic
lists with integer elements.

tion. If o is a scalar, andr a binary relation,o.r denotes the
image ofo underr . ListFieldConstraints uses universal
quantification over the domain of lists and implicit conjunction
to constrainheader to be a partial function andsize to be
total. Similarly, EntryFieldConstraints constrainselem

to be total andnext to be partial.
A predicate is a parameterized formula that can be invoked

elsewhere or executed directly using therun command, as we
show here. The body ofrepOk uses universal quantification
to constrain the lists to be acyclic, and also constrains the
value of size to represent the number of nodes in the list.
The operator ‘* ’ denotes reflexive transitive closure. The
expressionl.header. * next denotes the set of all entries
reachable froml ’s header following zero or more traversals
along next . The operator ‘̂’ denotes transitive closure, ‘! ’
denotes negation, andin denotes set membership. Thus, the
acyclicity constraint states that for all reachable entries, it is

not possible to start traversal at any entry and get back to that
entry. The operator ‘#’ denotes set cardinality; the keyword
int downcasts anInt atom to its integer literal value. The
commandrun instructs the analyzer to generate instances that
satisfyRepOk as well as all the facts.

The Alloy Analyzer performs bounded exhaustive analysis
using a given scope to bound the universe of discourse. If
no scope is given, the analyzer uses the default scope of 3.
The specification generated by aDeryaft can thus be directly
analyzed by the analyzer to systematically enumerate instances
using one of its enumerating SAT solvers, such as mChaff [9].

III. A LGORITHM

This section presents the details of the aDeryaft algorithm
for generating Alloy constraints. We focus on structural con-
straints of instances that represent heap-allocated data struc-
tures, which can be viewed as rooted edge-labeled graphs.
Section V discusses generation of constraints representing
more general instances. Our current prototype takes as input
a java.util.Set object that contains Java structures that
represent Alloy instances. aDeryaft traverses the structures to
build the set and relation declarations for the resulting Alloy
specification, and to conjecture constraints that are likely to
hold for the given instances. It then checks the constraints for
these instances, and translates the valid constraints into Alloy.

We first describe our abstract view of heap-allocated Java
structures. Next, we define core and derived fields. Then, we
characterize the invariants that aDeryaft can generate. Finally,
we describe how the aDeryaft algorithm works.

A. Heap-allocated data as an edge-labeled graph

We take arelational view [8], [10], [11]: we view heap-
allocated data as rooted edge-labeled directed graphs, where
nodes represent objects and edges represent fields. An edge
labeledf from nodeo to v says that thef field of the object
o points to the objectv (or is null ) or has the primitive value
v. Mathematically, we treat this graph as a set of nodes and a
collection of relations, one for each field. We partition the set
of nodes according to the types, and partition the set of edges
according to the fields; we representnull as an empty set, i.e.,
if a field f of objecto is null , there is no tuple in relationf
that mapso to some atom. A particular heap is represented by
an assignment of values to the sets and relations. Our model
of heap at the concrete level induces an isomorphism between
heaps and assignments of values to the sets and relations.

Recall theList example (Section II). Our view of the heap
consists of three sets:

List
Entry
Int

and four relations:

header: List x Entry
size: List x Int
elem: Entry x Int
next: Entry x Entry



The “size: 3 ” list from Figure 1 represents the following
Alloy instance:

List = { L2 }
Entry = { E1, E2, E3 }
Int = { -1, 0, 1, 3 }

header = { <L2, E1> }
size = { <L2, 3> }
elem = { <E1, 1>, <E2, -1>, <E3, 0> }
next = { <E1, E2>, <E2, E3> }

aDeryaft assumes that each structure has a unique root.
Thus, our view of a structure is arootededge-labeled directed
graph, and aDeryaft focuses on properties of such graphs,
including properties that involve reachability, e.g., acyclicity.

B. Representing an Alloy instance using Java

To illustrate how our current aDeryaft prototype can be used
to construct an Alloy instance using Java, we next present an
example Java code snippet that builds a set containing the three
lists shown in Figure 1.

java.util.Set instances =
new java.util.HashSet();

List l0 = new List();
l0.header = null;
l0.size = 0;
instances.add(l0);

List l1 = new List();
Entry e0 = new Entry();
l1.header = e0;
l1.size = 1;
e0.elem = 0;
e0.next = null;
instances.add(l1);

List l2 = new List();
Entry e1 = new Entry();
Entry e2 = new Entry();
Entry e3 = new Entry();
l2.header = e1;
l2.size = 3;
e1.elem = 1;
e2.elem = -1;
e3.elem = 0;
e1.next = e2;
e2.next = e3;
instances.add(l2);

where the classesList andEntry are defined as expected:

class List {
Entry header;
int size;

}

class Entry {
int elem;
Entry next;

}

Thus, using our current prototype, the user is not required
to write any Alloy code. However, this limits applicability to

Set coreFields(Set ss) {
// post: result is a set of core fields
// with respect to the structures in ss

Set cs = allClasses(ss);
Set fs = allReferenceFields(cs);
foreach (Field f in fs) {

Set fs’ = fs - f;
boolean isCore = false;
foreach (Structure s in ss) {

if (reachable(s, fs’) !=
reachable(s, fs)) {

isCore = true;
break;

}
}
if (!isCore) fs = fs’;

}
return fs;

}

Fig. 3. Algorithm to compute core fields. The methodallClasses
returns the set of all classes of objects in structures inss . The method
allReferenceFields returns the set of all reference fields declared
in classes incs . The method reachable returns a set of objects reachable
from the root ofs via traversals only along the fields in the given set.

constructing Alloy instances that can be viewed as Java object
graphs. We plan to provide direct API support for building
arbitrary Alloy instances.

C. Core and derived fields

aDeryaft partitions the set of reference fields declared in the
classes of objects in the given structures into two sets:core
andderived, which are defined as follows.

Definition 1. A reference fieldf that represents a homoge-
neous relation is core with respect to a set of structuresS if
and only if there is some structures ∈ S such that there exists
an objecto reachable from the root objectr of s such that all
paths that connecto to r include a traversal alongf .

In other words, if we remove all the edges labeledf from
the graph that representss, there is no directed path fromr
to o in the resulting graph.

To illustrate, bothheader andnext are core in the example
from Section II.

Definition 2. A reference fieldg is derived with respect to a
set of structuresS if and only if g is not core with respect to
S.

Since elem in Section II is a primitive field, theList

example has no derived fields.
Our field partitioning is inspired by the notion of a struc-

ture’s back-bone[12], [13].
1) Algorithm: The set of core fields can be computed

by taking each reference field in turn and checking whether
removing all the corresponding edges from the graph changes
the set of nodes reachable from root. Figure 3 gives an
algorithm to compute core fields.



String deryaft(Set structs) {
// post: result is a string representation of a Alloy constraints
// that represent structural invariants of given structures

Set classes = allClasses(structs);
Set fields = allFields(structs);
Set core = coreFields(fields);
Set derived = derivedFields(fields, core);
Set relevantGlobal =

globalProperties(structs, core, classes);
Set relevantLocal =

localProperties(structs, derived, classes);
Set propertiesThatHold =

checkProperties(relevantGlobal, structs);
propertiesThatHold.addAll(

checkProperties(relevantLocal, structs));
simplify(propertiesThatHold);
return generateInvariants(propertiesThatHold);

}

Fig. 4. The aDeryaft algorithm. The methodsallClasses and allFields respectively return a set of all classes and a set of all fields from the
given set of structures. The methodcoreFields (derivedFields ) returns the set of core (derived) fields. The methodsglobalProperties
(localProperties ) compute sets of global (local) properties relevant to the given structures. The methodcheckProperties returns a subset
of given properties, which hold for all given structures. The methodsimplify removes redundant constraints. The methodgenerateInvariants
translates given properties to Alloy constraints.

D. Graph properties of interest

We considerglobal as well aslocal properties of rooted
edge-labeled directed graphs. The properties are divided into
various categories as follows.

1) Global: reachability:Reachability properties include the
shapeof the structure reachable from root along some set
of reference fields. The shapes can beacyclic (i.e., there is
a unique path from the root to every node),directed-acyclic
(i.e., there are no directed cycles in the graph),circular (i.e.,
all the graph nodes of a certain type are linked in a cycle),
or arbitrary; note that any acyclic graph is also directed-
acyclic. To illustrate, the propertyacyclic(header , {next }),
i.e, the structure reachable fromheader along the fieldnext

is acyclic, holds for all the given list structures in Figure 1.
2) Global: primitive fields: In reasoning about graphs, the

notion of cardinality of a set of nodes occurs naturally. We
consider properties relating values of integer fields and cardi-
nalities of sets of reachable objects. For example, the prop-
erty equals(size , reachable(header , next ).cardinality())
checks whether thesize field denotes the number of objects
reachable fromheader following zero or more traversals of
next .

3) Global: path lengths:For non-linear structures, such as
trees, we consider properties that relate lengths of different
paths from root. For example, the propertybalancedrepresents
that no simple path from the root differs in length from another
simple path by more than one. For binary trees, this property
represents aheight-balancedtree.

4) Local: reference fields:In edge-labeled graphs that are
not acyclic (along the set of all fields), local properties that
relate different types of edges are likely. To illustrate, consider
a graph where if an edge connects a noden of type N to a
nodem of typeM , there is a corresponding edge that connects

m to n. We term such propertiestwo-cycles. For a doubly-
linked list, such as those implemented in the Java Collection
Framework [14],next andprevious form a two-cycle.

Another local property is whether some node never has a
particulr edge emanating from it, i.e., the corresponding object
always has a certain field set tonull .

5) Local: primitive fields:Another category of local prop-
erties pertains to primitive values. For example, in a binary
tree, the value in a node might be greater than the values in
the node’s children. We consider local properties that relate a
node’s value to it’s successors along reference fields.

E. Algorithm

Given a set of structures, aDeryaft traverses the structures
to formulate a set of hypotheses. Next, it checks which of
the hypotheses actually hold for the given structures. Finally,
it translates the valid hypotheses into Alloy constraints that
represent the structural invariants of the given structures, i.e., it
generates a predicate that takes an input structure and evaluates
to true if and only if the input satisfies the invariants.

To make invariant generation feasible, a key heuristic that
aDeryaft incorporates to focus on relevant properties is: hy-
pothesize properties about reachability, such as acyclicity or
circularity, only for the fields in the core set; and hypothesize
local properties that relate derived fields and core fields, e.g.,
whether a derived field forms two-cycles with some core fields.

Figure 4 presents the aDeryaft algorithm using Java-like
pseudo-code.

To minimize the number of properties that are checked on
the given structures, thecheckProperties does not check a
propertyp if a propertyq that contradictsp is already known
to be true, e.g., if acyclic holds then circular (for the same set
of fields) is not checked.



To minimize the number of constraints in the generated
repOk , the simplify method removes redundant properties
from set of properties that actually hold, e.g., if a graph is
acyclic, there is no need to generate a check for directed-
acyclic. We are considering the use of a decision procedure
for simplification. Indeed we may use the Alloy Analyzer to
simplify.

In summary, the algorithm performs the following six key
steps:
• Identification of Alloy signatures and fields;
• Identification of core and derived fields;
• Formulation of relevant global and local properties;
• Computation of properties that actually hold;
• Minimization of properties; and
• Generation of Alloy code that (1) declares signatures and

fields and (2) defines constraints on them based on the
discovered properties.

IV. CASE-STUDY: BINARY TREE REPRESENTATION OF

HEAPS

To illustrate the variety of invariants that aDeryaft can
generate, we next present a case study on generating invariants
of the heap data structure, which is also called a priority
queue [15]. Consider a binary tree representation of heaps,
where nodes haveleft and right children andparent

pointers, as well as integerkey s, with the constraints:
• acyclicity alongleft and right

• parent is transpose ofleft + right

• size is number of nodes in the tree
• heap property: for any node, its key is greater than any

key in a left or right child
To illustrate execution of thederyaft algorithm (Figure 4),

consider computing the constraints for the given structures.
The formulation of relevant global properties gives1:
• acyclic(root , {left , right })
• directed-acyclic(root , {left , right })
• circular(root , {left , right })
• equals(size , reachable(root , {left , right }).card-

inality())
• equals(size + 1, reachable(root , {left , right }).ca-

rdinality())
The formulation of relevant local properties gives:
• two-cycle(root , parent , left )
• two-cycle(root , parent , right )
• is-null(root , parent )
• less-than(root , {left })
• less-than(root , {right })
• less-equal(root , {left })
• less-equal(root , {right })
• greater-than(root , {left })
• greater-than(root , {right })
• greater-equal(root , {left })
• greater-equal(root , {right })

1We have not listed the height-balanced property since our aDeryaft proto-
type does not yet handle it. Section V discusses the prototype’s limitations.
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Fig. 5. Four heaps represented using binary trees, containing zero, one,
two and three nodes, as indicated by thesize field. Small hollow squares
represent theBinaryTree objects. The labeled arrows represent the fields
root , left , right . The dotted arrows with hollow heads represent
parent fields, which have not been labeled for clarity.N0, . . . ,N5 represent
the identities of node objects. The nodes also contain the integer keys.

Consider the heaps represented in Figure 5. As an example
execution of the algorithm for computing the core fields
(Figure 3), consider computing the set with respect to these
structures. The algorithm initially setsfs to {left , right ,
parent }, i.e., the set that contains all the fields that represent
homogeneous relations. Removingleft from the set changes
reachability, e.g., in the case of the structure with three nodes
and thereforeleft is core; similarlyright is core; however,
removing parent does not effect the reachability in any of
the given structures and thereforeparent is not core.

The computation of properties that actually hold gives:

• acyclic(root , {left , right })
• directed-acyclic(root , {left , right })
• equals(size , reachable(root , {left , right }).card-

inality())
• two-cycle(root , parent , left )
• two-cycle(root , parent , right )
• is-null(root , parent )
• greater-than(root , {left })
• greater-than(root , {right })
• greater-equal(root , {left })
• greater-equal(root , {right })
Removal of redundant properties gives:

• acyclic(root , {left , right })
• equals(size , reachable(root , {left , right }).card-

inality())
• two-cycle(root , parent , left )
• two-cycle(root , parent , right )
• is-null(root , parent )
• greater-than(root , {left })
• greater-than(root , {right })

In addition to these properties, aDeryaft computes the follow-
ing constraints on the relations that model the object fields:

• partial-function(root )
• total-function(size )
• total-function(key )
• partial-function(left )
• partial-function(right )
• partial-function(parent )



Given the four heaps shown in Figure 5 as input, aDeryaft
outputs the Alloy specification that represents the structural
constraints of the inputs. Figure 6 shows this specification.

V. D ISCUSSION AND FUTURE WORK

This section discusses current limitations of aDeryaft and
future work.

Constraint generation using a given set of structures has
two limitations. One, the set may not be representative of the
class of desired structures. Two, not all relevant properties can
feasibly be identified, e.g., conjecturing all possible relations
among integer fields is infeasible even using simple arithmetic
operators. aDeryaft’s current generation algorithm therefore,
focuses on structural properties which involve reference fields,
which can naturally be viewed as edges in a graph. In future,
we plan to further explore likely relations among primitive
fields.

Our aDeryaft prototype at this stage can handle structures
similar to the ones illustrated in this paper, but does not yet
support properties of path lengths in a graph.

1) User-controlled specification generation:It is useful
to have a specification generation system that can focus on
constraints that are deemed interesting by the user. This
enables not only focused generation for a particular domain,
but also generation of a wider class of constraints, since
a generic constraint generation system may hypothesize too
many properties and as a result may not feasibly generate
any that hold. We plan to extend aDeryaft to support user-
controlled generation using the Alloy grammar to define the
class of constraints to consider. We believe aDeryaft can
greatly assist users in developing their Alloy specifications
correctly.

2) Connectivity and symmetry breaking constraints:When
the specifications generated by aDeryaft are used for enumer-
ating instances using the Alloy Analyzer, connectivity and
symmetry breaking constraints play an important role [16].
Consider enumerating acyclic lists as specified in Figure 2.
Even though all the input structures represent connected com-
ponents (by construction), no constraints in the specification
require that all nodes in the generated instance belong to
exactly one list. Indeed, the specification does not even restrict
instances to consist of exactly one list. To restrict generation
to interesting instances, it is useful to add such constraints.

Another issue with enumerating instances arises due to
structural symmetries, as induced by graph isomorphism [16],
[17]. Even though Alloy provides default support for symme-
try breaking [18], the support is not sufficient to allow efficient
enumeration and explicit symmetry breaking constraints need
to be written in Alloy [16].

We plan to explore generation of connectivity and symmetry
breaking constraints.

3) Instance construction API:Our current aDeryaft pro-
totype takes its input structures as Java objects. Thus, the
constraint generation does not (directly) consider properties
of arbitrary relations, e.g., a relation that may map a node to
more than one nodes. We plan to develop a simple instance

module binarytree

sig BinaryTree {
root: set Node,
size: set Int

}

sig Node {
left: set Node,
right: set Node,
parent: set Node,
key: set Int

}

fact BinaryTreeFieldConstraints {
all b: BinaryTree {

lone b.root
one b.size }

}

fact NodeFieldConstraints {
all n: Node {

lone n.left
lone n.right
lone n.parent
one n.key }

}

pred RepOk(t: BinaryTree) {
/ * acyclicCore * /
all n: t.root. * (left + right) {

n !in n.ˆ(left + right)
no n.left & n.right
lone n.˜(left + right) // ‘˜’ is transpose

}

/ * sizeOk * /
int t.size = #t.root. * (left + right)

/ * parentNull * /
no t.root.parent

/ * parentTwoCycleLeft * /
all n: t.root. * (left + right) {

some n.left => n.left.parent = n
}

/ * parentTwoCycleRight * /
all n: t.root. * (left + right) {

some n.right => n.right.parent = n
}

/ * greaterThanLeft * /
all n: t.root. * (left + right) {

some n.left => int n.key > int n.left.key
}

/ * greaterThanRight * /
all n: t.root. * (left + right) {

some n.right => int n.key > int n.right.key
}

}

run RepOk

Fig. 6. Alloy specification generated by aDeryaft for heaps.



construction API for Alloy to allow representation of general
Alloy instances.

4) General Alloy specifications:Our presentation has so far
focused on generating Alloy specifications that represent in-
stances that can be viewed as heap-allocated structures, which
we view as rooted edge-labeled graphs. Alloy specifications,
however, can in general specify various other structures and
properties. As a simple example, consider constraining an
arbitrary relation to be an equivalence relation. We do not
currently handle constraints of relations that do not represent
total or partial functions.

It is also worth noting that Alloy specifications do not
always have instances. For example, consider using the Alloy
analyzer to check the equivalence of two formulas, where
the analyzer tries to generate a counterexample within the
given scope. If the formulas are equivalent there is no such
counterexample. Even though aDeryaft can assist with de-
veloping such specifications, say by generating a part of the
specification using instances that satisfy one of the formulas
in the equivalence, aDeryaft may not be able to characterize
exactly what the user wants. For example, the user may want
to check the equivalence of the following two definitions of
acyclicity:

pred AcyclicUniversal(l: List) {
all e: l.header. * next | e !in e.ˆnext

}

pred AcyclicExistential(l: List) {
no l.header ||

some e: l.header. * next | no e.next
}

Since the definitions are equivalent, any set of valid list
instances satisfies both of them, and aDeryaft given any input
set might just generate one of the two definitions.

There are various open research issues regarding generation
of general Alloy specifications, and we plan to systematically
explore them.

VI. RELATED WORK

A. Dynamic analyses

Our work is inspired by the Daikon invariant detection
engine [7], which pioneered the notion of dynamically de-
tecting likely program invariants in the late 90s and has since
been adapted by various other frameworks [19]–[25]. aDeryaft
differs from Diakon in three key aspects. One, the model
of data structures in Daikon uses arrays to represent object
fields. While this representation allows detecting invariants
of some data structures, it makes it awkward as to how to
detect invariants that involve intricate global properties, such
as relating lengths of paths. aDeryaft’s view of the heap as
an edge-labeled graph and focus on generic graph properties
enables it to directly capture a whole range of structurally
complex data. Two, aDeryaft employs specific heuristics that
optimize generation of invariants for data structures, e.g.,
the distinction between core and derived fields allows it to
preemptively disallow hypothesizing relations among certain

fields. We believe this distinction, if adopted, can optimize
Daikon’s analysis too. Third, aDeryaft generates invariants in
Alloy, which can directly be plugged into a variety of tools,
such as the TestEra testing framework [8].

For generating class invariants as imperative predicates for
Java data structures, we have developed the jDeryaft frame-
work [26]. jDeryaft generates the invariants as Java predicates,
i.e., Java methods that traverse a given structure and return true
or false based on whether the structure satisfies the invariants.

The Perracotta project presents novel ways of scaling dy-
namic techniques to large programs, but focuses on mining
temporal API usage rules [27].

Software agitation is a recently proposed unit testing tech-
nique that builds on Daikon and combines test generation and
invariant detection; the Agitator embodies this technique in a
commercial tool [25].

B. Static analyses

Researchers have explored invariant generation for over
three decades, but primarily in the context of generating loop
invariants using static analyses, including recurrence equa-
tions, abstract interpretation with widening, matrix theory for
Petri nets, and constraint-based techniques [28]–[31]. While
static analyses guarantee that generated invariants hold for all
executions, they are often restricted to finding relations be-
tween primitive variables, and they have so far not been shown
to feasibly generate representation invariants for structurally
complex data.

C. Combined dynamic/static analyses

Some recent approaches combine static and dynamic analy-
ses for inferring API level specifications [32], [33].

Invariant generation has also been used in the context of
model checkers to explain the absence of counterexamples,
while focusing on integer variables [34].

VII. C ONCLUSIONS

We presented aDeryaft, a novel technique for automating
the writing of Alloy specifications using a small set of given
instances. Alloy has steadily been gaining popularity due to its
automatic analyzer’s ability to provide rapid feedback. Alloy
users however, still have to write their specifications by hand
in a declarative language—a language very different from the
commonly used (imperative) programming languages.

aDeryaft provides a novel approach to writing Alloy spec-
ifications. The user constructs by hand a few small concrete
instances that represent the constraints of the software struc-
ture they want to model. aDeryaft then fully automatically
generates an executable Alloy specification, which represents
the constraints that summarize the given structures. The gener-
ated specification can, in fact, be used by the Alloy Analyzer to
systematically enumerate a large number of concrete instances
that satisfy the same constraints as the given instances. We
illustrated aDeryaft’s constraint generation on a variety of
commonly used data structures.

We believe the approach presented by aDeryaft holds
promise in making construction of designs and specifications



in Alloy amenable to practitioners, thereby holding potential
to make a profound impact on improving the reliability of
software.
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