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Abstract— We present aDeryaft, a novel technique for automat- mobile networks [4], and avionics systems [5], as well as
ing the writing of specifications in Alloy—a first-order relational  designs of cancer therapy machines [6].
Ioglc_w_lth transitive closure. Alloy is particularly smtabl_e for The Alloy Analyzer provides bounded exhaustive analysis
specifying structural properties of software, and has steadily been dt lates Allov f | . . . b d
gaining popularity due to the rapid feedback that its SAT-base_d an rans.a es Alloy .ormu as using a gIYSIEDpeI.e., aboun .
analyzer provides fully automatically. Alloy users however, still On the universe of discourse, to propositional formulas, which
have to manually write specifications in adeclarativelanguage are solved using state-of-the-art satisfiability (SAT) solvers.
and use a paradigm that is different from the commonly used Given an Alloy specification, which consists of declarations of
'mgeDrZrt;V;tp;i%ﬁ?gm;{ﬂgypi?gg?a writing their specifications sets and relations and constraints on their values, the analyzer
by providing a novel specification-writing approach, which is CompUtes,nStanceSI_'e" as&gnmgnts to the sets an’d rel'a.tlons,
particularly tailored to users, such as engineers or practitioners in Which satisfy the given constraints. The analyzer's ability to
industry, who may not have much prior experience or proficiency rapidly solve constraints makes the Alloy tool-set particularly
in Alloy or similar logics. The user constructs by hand a few small attractive.
concrete instances that represent the constraints of the software  practitioners new to Alloy, however, face a very basic

structure they want to specify. aDeryaft then fully automatically . .
generates an executable Alloy specification, which represents theCha”enge' the need to learn a nelgclarativelanguage—a

constraints that summarize the given structures. The generated language that requires using a programming paradigm different
specification is fully executable. For example, the Alloy Analyzer from the imperative programming paradigm that is predomi-
can use it to systematically enumerate a large number of concrete nantly used in industry. Indeed, one of the motivating factors
ilnztanges that satisfy the lgamef;:onstraints as thg gljiven i,?Staﬂcesbehind the design of Alloy is to keep the language simple and
vChi?ee tﬁg :ﬁg :/nvﬁ%/e:st?]g reeg?)f :ﬁegigirciiaftii;?orﬂab;ph?r; é<.:at|ons small. In particular, Alloy's support of path expressions using

To efficiently generate Alloy specifications, aDeryaft exploits transitive closure enables intuitive and succinct formulation
the relational basis of Alloy and formulates graph properties Of specifications, and minimizes the learning burden on new
that are likely to hold for the given instances. It then checks the users. Nonetheless, automated tool support in assisting with
properties for these instances and translates the valid properties \yriting Alloy specifications is valuable in several aspects. To
into Alloy constraints, which it outputs as an Alloy specification. jy,,srate for beginner users, it can help with learning the
We illustrate aDeryaft's constraint generation on a variety of . ' ’ . .
commonly used data structures. basics of the language; for advanced users, it can help with
checking whether they formulated their constraints correctly
or whether they need additional constraints.

We present aDeryaft, a novel technique for automating the
As software systems steadily grow in complexity and sizeyriting of Alloy specifications. Instead of writing a complete
designing such systems manually becomes more and mepecification by hand, the user constructs a few small concrete
error-prone. The last few years have seen a new generatiostances that represent the constraints of the software struc-

of lightweight design tools that allow formulating designsure they want to specify. aDeryaft then fully automatically
formally, as well as checking their correctness to detect crucgdnerates an executable Alloy specification, which summarizes
flaws that, if not corrected, could lead to massive failures. Thige given structures as Alloy constraints.
Alloy tool-set is one such design tool that is rapidly gaining To efficiently and effectively generate Alloy specifications,
prominence [1], [2]. The user formulates their design in th@Deryaft exploits the relational basis of Alloy and formulates
Alloy language, which is a first-order logic (with transitive cloproperties of graphs that are likely to hold for the given
sure) based on relations, and checks the correctness propeitistances. Our current prototype focuses on generating con-
using the Alloy Analyzer. straints that define heap-allocated data structures, such as lists
The Alloy tool-set has been used successfully to cheakd trees, which pervade modern software and can be viewed
designs of various applications, such as Microsoft's Commas rooted edge-labeled graphs.
Object Modeling interface for interprocess communication [3], aDeryaft incorporates a number of heuristics, which allow
the Intentional Naming System for resource discovery ihto focus on relevant structural properties. For example, it

I. INTRODUCTION



identifies acore set of fields such that for any given structure, 20 sz size: 3

all the objects that are reachable from the root along any field - ?
N header header
are also reachable from the root along the core fields only.
aDeryaft conjectures reachability properties, such as acyclicity, ‘ Eo‘ 0 ‘ ‘ El‘ 1 }Ej Ez‘ ‘I}Eﬁ Es‘ 1 ‘

only for the fields in the core set. aDeryatft treats the fields not
in the core set adlerived and conjectures relations betweer&_ o ) ) .

. . . . . ig. 1. Three acyclic singly-linked lists, one each containing zero, one, and
derived and core fields, e.g., whether a derived field is ttﬂégee entries, as indicated by the value of #ize field. Small hollow
transpose of a core field. For non-linear structures, aDeryadtiares represent the list atoms. The labeled arrows represent the fields
also conjectures properties that relate path lengths from tgder andnext . Eo, Ei, Ex, andE; represent the identities of entry

. . . atgms. The entries also contain the integer elements.
root. Thus, the conjectured properties include both local an

global properties. aDeryaft checks the conjectured properties

for the given instances and translates the valid properties intorhe rest of the paper is structured as follows. Section Il
Alloy. describes an example to illustrate aDeryaft's specification
The undecidability of the problem that aDeryaft addressggneration and to introduce basics of Alloy. Section Il defines
necessitates that its constraint generation, in general, cannog§& and derived fields and describes the aDeryaft algorithm.
sound and complete [7]. The generated constraints are sogtion IV illustrates the algorithm using a case study with
with respect to the set of given instances. Of course, uns&fthps implemented using binary trees. Section V discusses
instances may or may not satisfy them. aDeryaft's generatigiitations of our current prototype and presents some threads
is not complete: it may not generate all possible constrainggfuture work. Section VI compares our approach to previous

that hold for the given set of instances. approaches and Section VII concludes our paper.
Nevertheless, the constraints that aDeryaft generates serve
several useful purposes. The constraints can be viewed as Il. EXAMPLE

drafts that include data declarations and constraints that arhis section presents an example of using aDeryaft to
of interest to the user, who may refine them. The usgenerate an Alloy specification that represents the structural
could indeed choose to put together a specification by usiimyariants of a singly-linked acyclic list. We also use the
different sets of inputs to generate different constraints, whigxample to introduce the basics of Alloy; details can be found
represent different parts of a desired specification. The ustsewhere [1].
can then combine the parts using standard logical operator§or a given set of instances, aDeryaft generates an ex-
to form a complete specification. It is worth pointing outcutable Alloy specification, which includes both the data
that the Alloy Analyzer can directly use the specificationdeclarations and the constraints in Alloy. It generates the data
generated by aDeryaft to systematically enumerate a lameclarations as Allogignaturesand generates the constraints
number of instances that satisfy the same constraints as #éiseAlloy facts and predicates It also generates appropriate
given instances. Indeed the generated specifications cancbmmands to execute the analyzer.
used to check the soundness and completeness of hand-writteBonsider providing aDeryaft as input the three lists il-
specifications. lustrated in Figure 1. Our current prototype takes the input
aDeryaft’s approach has the potential to change how pragtistances as a hash-set of Java objects, and based on the classes
tioners develop software designs and specifications. It not omlfy the objects, it generates appropriate Alloy specifications
makes writing them easier and enables various design-leusing a simple traversal of the given structures and reflection
and specification-level analyses, it also enables automated tesdetermine the types of objects and their fields. We describe
input generation: the constraints generated by aDeryaft canibeSection Il how an instance can be described in Alloy as
used directly by a test generation tool, such as TestEra [8],viell as how it can be described in Java. Here, we assume a
enumerate a high quality test suite. set of instances is given.
We make the following contributions: Figure 2 shows the specification aDeryaft generates for the
« Specification generation We introduce the idea of usingthree list instances shown in Figure 1.
a given set of Alloy instances to generate Alloy formulas The keywordmodule names a specification. Aig dec-
that are fully executable and can also be used to augméiation introduces a set of atoms; the signaturss and
or correct existing Alloy specifications; Entry declare sets of list and entry atoms. Thelds of a
« Graph view. We introduce a rooted edge-labeled grapaignature declare relations. The fieldader introduces a
view of the program heap where the set of edges kgnary relation of typetist x Entry , while size has the
partitioned into core and derived sets to enable efficiebtpe Entry x Int , wherelnt is a built-in Alloy type that

and effective constraint generation; represents the domain of integeetem andnext introduce
« Algorithm. We present an algorithm for generating Alloyrelations of typeEntry x _Int and Entry_x Entry - The
specifications using a small number of instances. keywordset declares a field to be an arbitrary relatidone

« Experiments. We present experiments that show th@ndone declare partial functions and total functions.

feasibility of generating Alloy constraints for a variety A fact states constraints that any instance of a specification
of commonly used data structures. must satisfy. The operator * represents relational composi-



module list

sig List {
header: set Entry,
size: set Int

}

sig Entry {
elem: set Int,
next: set Entry

}
fact ListFieldConstraints {
all I List {
/I at most one header
lone l.header
/I exactly one size
one l.size
}
}

fact EntryFieldConstraints {
all n: Entry {
/I exactly one elem
one n.elem

/I at most one next
lone n.next

}
}

pred RepOKk(l: List) {
/= acyclicCore */

all n: lL.header. *next | n lin n.next

[ * sizeOk */
int l.size = #l.header.

}
run RepOk

Fig. 2. Alloy specification generated by aDeryaft for singly-linked acycli

lists with integer elements.

not possible to start traversal at any entry and get back to that
entry. The operator#’ denotes set cardinality; the keyword
int downcasts annt atom to its integer literal value. The
commandun instructs the analyzer to generate instances that
satisfy RepOk as well as all the facts.

The Alloy Analyzer performs bounded exhaustive analysis
using a given scope to bound the universe of discourse. If
no scope is given, the analyzer uses the default scope of 3.
The specification generated by aDeryaft can thus be directly
analyzed by the analyzer to systematically enumerate instances
using one of its enumerating SAT solvers, such as mChaff [9].

IIl. ALGORITHM

This section presents the details of the aDeryaft algorithm
for generating Alloy constraints. We focus on structural con-
straints of instances that represent heap-allocated data struc-
tures, which can be viewed as rooted edge-labeled graphs.
Section V discusses generation of constraints representing
more general instances. Our current prototype takes as input
a java.util.Set object that contains Java structures that
represent Alloy instances. aDeryaft traverses the structures to
build the set and relation declarations for the resulting Alloy
specification, and to conjecture constraints that are likely to
hold for the given instances. It then checks the constraints for
these instances, and translates the valid constraints into Alloy.

We first describe our abstract view of heap-allocated Java
structures. Next, we define core and derived fields. Then, we
characterize the invariants that aDeryaft can generate. Finally,
we describe how the aDeryaft algorithm works.

A. Heap-allocated data as an edge-labeled graph

We take arelational view[8], [10], [11]: we view heap-
allocated data as rooted edge-labeled directed graphs, where
nodes represent objects and edges represent fields. An edge
labeled f from nodeo to v says that thef field of the object
o points to the object (or isnull ) or has the primitive value
v. Mathematically, we treat this graph as a set of nodes and a
collection of relations, one for each field. We partition the set
of nodes according to the types, and partition the set of edges

tion. If o is a scalar, and a binary relationp.r denotes the - ) _ i
image ofo underr . ListFieldConstraints uses universal gccordmg to the fields; we represewtl  as an empty set, i.e.,

quantification over the domain of lists and implicit conjunctioff @ field f of objecto is null -, there is no tuple in relation
to constrainheader to be a partial function andize to be thatmap to some atom. A particular heap is represented by
total. Similarly, EntryFieldConstraints constrainselem  @n assignment of values to the sets and relations. Our model

to be total anchext to be partial. of heap at the concrete level induces an isomorphism between

. . . : hgaps and assignments of values to the sets and relations.
A predicate is a parameterized formula that can be invoke . . .
. . Recall theList example (Section II). Our view of the heap
elsewhere or executed directly using the command, as we consists of three sets:
show here. The body akpOk uses universal quantification '
to constrain the lists to be acyclic, and also constrains thist
value of size to represent the number of nodes in the li§Y
The operator ¥’ denotes reflexive transitive closure. Thd™
expressionl.header. *next denotes the set of all entriesand four relations:
reachable from ’s header following zero or more traversals .
o . « header: List x Entry
along next . The operator™' denotes transitive closure! size: List x Int
denotes negation, arid denotes set membership. Thus, thgilem: Entry x Int
acyclicity constraint states that for all reachable entries, it igxt: Entry x Entry



The “size: 3
Alloy instance:
List = { L2 }
Entry = { E1, E2, E3 }
Int = {-1, 0, 1, 3}

" list from Figure 1 represents the following

header = { <L2, E1> }

size = { <L2, 3>}

elem { <E1, 1>, <E2, -1>, <E3, 0>}
next { <E1, E2>, <E2, E3> }

aDeryaft assumes that each structure has a unique root.

Thus, our view of a structure israoted edge-labeled directed

Set coreFields(Set ss) {
/I post: result is a set of core fields
/I with respect to the structures in ss

Set cs allClasses(ss);
Set fs = allReferenceFields(cs);
foreach (Field f in fs) {
Set fs' = fs - f;
boolean isCore = false;
foreach (Structure s in ss) {
if (reachable(s, fs’) =
reachable(s, fs)) {
isCore = true;
break;

}

graph, and aDeryaft focuses on properties of such graphs,

including properties that involve reachability, e.g., acyclicity.

B. Representing an Alloy instance using Java

= fs}

if (lisCore) fs

return fs;

To illustrate how our current aDeryaft prototype can be usgd

to construct an Alloy instance using Java, we next present ag s.

Algorithm to compute core fields. The methatlClasses

example Java code snippet that builds a set containing the thig@ns the set of all classes of objects in structuressn The method

lists shown in Figure 1.

new java.util.HashSet();

java.util.Set instances

List 10 = new List();
10.header = null;
10.size = 0;
instances.add(l0);

List 11 =
Entry e0
11.header
I11.size =
e0.elem 0;
e0.next = null;
instances.add(I1);

new List();
= new Entry();
= e0;

1

List 12 = new List();
Entry el = new Entry();
Entry e2 = new Entry();
Entry e3 = new Entry();
12.header = el;

12.size = 3;

el.elem = 1;

e2.elem = -1;

e3.elem = 0;

el.next = e2;

e2.next = e3;

instances.add(12);

where the classeldst andEntry are defined as expected:

class List {
Entry header;
int size;

}

class Entry {
int elem;
Entry next;

}

allReferenceFields returns the set of all reference fields declared
in classes incS. The method reachable returns a set of objects reachable
from the root ofs via traversals only along the fields in the given set.

constructing Alloy instances that can be viewed as Java object
graphs. We plan to provide direct API support for building
arbitrary Alloy instances.

C. Core and derived fields

aDeryaft partitions the set of reference fields declared in the
classes of objects in the given structures into two setse
andderived which are defined as follows.

Definition 1. A reference fieldf that represents a homoge-
neous relation is core with respect to a set of structres
and only if there is some structusec S such that there exists
an objecto reachable from the root objeetof s such that all
paths that connect to » include a traversal along.

In other words, if we remove all the edges labeledrom
the graph that represents there is no directed path from
to o in the resulting graph.

To illustrate, bottheader andnext are core in the example
from Section II.

Definition 2. A reference fieldy is derived with respect to a
set of structures if and only if g is not core with respect to
S.

Since elem in Section Il is a primitive field, theList
example has no derived fields.

Our field partitioning is inspired by the notion of a struc-
ture’s back-bond12], [13].

1) Algorithm: The set of core fields can be computed
by taking each reference field in turn and checking whether
removing all the corresponding edges from the graph changes

Thus, using our current prototype, the user is not requir¢ite set of nodes reachable from root. Figure 3 gives an
to write any Alloy code. However, this limits applicability toalgorithm to compute core fields.



String deryaft(Set structs) {
/I post: result is a string representation of a Alloy constraints
I that represent structural invariants of given structures

Set classes = allClasses(structs);
Set fields = allFields(structs);
Set core = coreFields(fields);
Set derived = derivedFields(fields, core);
Set relevantGlobal =
globalProperties(structs, core, classes);
Set relevantLocal =
localProperties(structs, derived, classes);
Set propertiesThatHold =
checkProperties(relevantGlobal, structs);
propertiesThatHold.addAll(
checkProperties(relevantLocal, structs));
simplify(propertiesThatHold);
return generatelnvariants(propertiesThatHold);

}

Fig. 4. The aDeryaft algorithm. The methodClasses and allFields respectively return a set of all classes and a set of all fields from the
given set of structures. The methodreFields  (derivedFields ) returns the set of core (derived) fields. The methghisbalProperties
(localProperties ) compute sets of global (local) properties relevant to the given structures. The nehBakProperties returns a subset

of given properties, which hold for all given structures. The metaisdplify removes redundant constraints. The methyeheratelnvariants

translates given properties to Alloy constraints.

D. Graph properties of interest m to n. We term such propertiesvo-cycles For a doubly-

We considerglobal as well aslocal properties of rooted linked list, such as those |mpl_emented in the Java Collection
lr(_;;lmework [14],next andprevious form a two-cycle.

edge-labeled directed graphs. The properties are divided i|l1: ;
various categories as follows. Another local property is whether some node never has a

1) Global: reachability: Reachability properties include theparticulr edge emanatipg from t, i.e., the corresponding object
shapeof the structure reachable from root along some Sgkways has a gertgm f_'eld set tal
of reference fields. The shapes candmyclic (i.e., there is  2) Local: primitive fields: Another category of local prop-

a unique path from the root to every nodd)rected-acyclic erties pertains Fo primitive yalues. For example, in a bmary
(i.e., there are no directed cycles in the gragfitcular (i.e., tree, the ’valu_e in a node mlght be greater thgn the values in
all the graph nodes of a certain type are linked in a cycléﬂe n,odes chlldr_e,n. We consider local propertles_ that relate a
or arbitrary; note that any acyclic graph is also directedUOdeS value to it's successors along reference fields.
acyclic. To illustrate, the propertycyclic(header , {next }), i
i.e, the structure reachable fromeader along the fielchext = Algorithm

is acyclic, holds for all the given list structures in Figure 1. Given a set of structures, aDeryaft traverses the structures

2) Global: primitive fields: In reasoning about graphs, theo formulate a set of hypotheses. Next, it checks which of
notion of cardinality of a set of nodes occurs naturally. Wene hypotheses actually hold for the given structures. Finally,
consider properties relating values of integer fields and carditranslates the valid hypotheses into Alloy constraints that
nalities of sets of reachable objects. For example, the prappresent the structural invariants of the given structures, i.e., it
erty equals(size , reachable(header , next ).cardinality()) generates a predicate that takes an input structure and evaluates
checks whether thsize field denotes the number of objectdo true if and only if the input satisfies the invariants.
reachable fromheader following zero or more traversals of To make invariant generation feasible, a key heuristic that
next . aDeryaft incorporates to focus on relevant properties is: hy-

3) Global: path lengths:For non-linear structures, such agothesize properties about reachability, such as acyclicity or
trees, we consider properties that relate lengths of differaesitcularity, only for the fields in the core set; and hypothesize
paths from root. For example, the propdnglancedrepresents local properties that relate derived fields and core fields, e.g.,
that no simple path from the root differs in length from anothevhether a derived field forms two-cycles with some core fields.
simple path by more than one. For binary trees, this propertyFigure 4 presents the aDeryaft algorithm using Java-like
represents &eight-balancedree. pseudo-code.

4) Local: reference fieldsin edge-labeled graphs that are To minimize the number of properties that are checked on
not acyclic (along the set of all fields), local properties thdhe given structures, theheckProperties does not check a
relate different types of edges are likely. To illustrate, considpropertyp if a propertyq that contradict® is already known
a graph where if an edge connects a nadef type NV to a to be true, e.g., if acyclic holds then circular (for the same set
nodem of type M, there is a corresponding edge that conneats fields) is not checked.



size: 0 size: 1

To minimize the number of constraints in the generated
repOk , the simplify =~ method removes redundant properties
from set of properties that actually hold, e.g., if a graph is
acyclic, there is no need to generate a check for directed- ‘ ‘
acyclic. We are considering the use of a decision procedure left /.
for simplification. Indeed we may use the Alloy Analyzer to N
simplify.

In summary, the algorithm performs the following six key
steps:

« Identification of Alloy signatures and fields;

« ldentification of core and derived fields;

o Formulation of relevant global and local properties;

« Computation of properties that actually hold;

« Minimization of properties; and

o Generation of Alloy code that (1) declares signatures and

fields and (2) defines constraints on them based on theConsider the heaps represented in Figure 5. As an example
discovered properties. execution of the algorithm for computing the core fields
(Figure 3), consider computing the set with respect to these
structures. The algorithm initially sefs to {left , right ,
) ) _ ) parent },i.e., the set that contains all the fields that represent

To illustrate the variety of invariants that aDeryaft Ca'Plomogeneous relations. Removilegg  from the set changes
generate, we next present a case study on generating invari?é]é%hability, e.g., in the case of the structure with three nodes
of the heap data structure, which is also called a priority. 4« areforaeft  is core: similarlyright s core; however,
queue [15]. Consider a binary tree representation of heapé’noving parent does n(')t effect the reachabilit’y in any of
where nodes havéeft  andright children andparent o iven structures and therefquarent is not core.

pointers, as well as integéey S_’ with the constraints: The computation of properties that actually hold gives:
« acyclicity alongleft andright

Fig. 5. Four heaps represented using binary trees, containing zero, one,
two and three nodes, as indicated by gize field. Small hollow squares
represent th8inaryTree  objects. The labeled arrows represent the fields
root , left |, right . The dotted arrows with hollow heads represent
parent fields, which have not been labeled for clarly, ..., N5 represent

the identities of node objects. The nodes also contain the integer keys.

IV. CASE-STUDY: BINARY TREE REPRESENTATION OF
HEAPS

« parent is transpose ofeft + right « acyclic(root ,{Ieft , right ) _
« size is number of nodes in the tree o directed-acyclic(root , {left , right })
« heap property: for any node, its key is greater than any® €quals(size , reachable(root , {left , right }).card-
key in a left or right child inality())
To illustrate execution of theeryaft algorithm (Figure 4), » two-cycle(root , parent ’l.eft )
consider computing the constraints for the given structures.” fwo-cycle(root , parent ., right )
The formulation of relevant global properties gites . zi’;ﬂ;r?}?grz (foa;?m {I)eft 9
» acyclic(root , {left ,right }) : Zreater-than(root '{right H
o directed-acyclic(root , {left , right }) . greater-equal(root ', fleft 1)
. czrcular.(root , {left , right }) . . greater-equal(root . {right 1)
o equals(size , reachable(root , {left , right }).card-
inality()) Removal of redundant properties gives:
o equals(size + 1, reachable(root , {left ,right }).ca- o acyclic(root , {left , right })
rdinality()) o equals(size , reachable(root , {left , right }).card-
The formulation of relevant local properties gives: inality())
o two-cycle(root , parent , left ) o two-cycle(root , parent , left )
o two-cycle(root , parent , right ) o two-cycle(root , parent , right )
o is-null(root , parent ) e is-null(root , parent )
o less-than(root , {left }) e greater-than(root , {left })
o less-than(root , {right }) e greater-than(root , {right })
o less-equal(root , {left }) In addition to these properties, aDeryaft computes the follow-
o less-equal(root , {right }) ing constraints on the relations that model the object fields:
o greater-than(root , {left }) artial-function(root )
o greater-than(root , {right }) ® ?t I- function(size )
o greater-equal(root , {left }) c o al unctron
o greater-equal(root , {right }) « total-function(key )

1we have not listed the height-balanced property since our aDeryaft proto-e
type does not yet handle it. Section V discusses the prototype’s limitations.

partial- function(left )
partial- function(right )
partial- function(parent )



Given the four heaps shown in Figure 5 as input, aDerya{ﬁOdme binarytree

outputs the Alloy specification that represents the structuiy BinaryTree {

constraints of the inputs. Figure 6 shows this specification. root: set Node,
size: set Int

V. DISCUSSION AND FUTURE WORK }
This section discusses current limitations of aDeryaft arggg Node {
future work. left: set Node,

Constraint generation using a given set of structures hasight: set Node,
two limitations. One, the set may not be representative of theparent: set Node,
class of desired structures. Two, not all relevant properties carkey: set Int
feasibly be identified, e.g., conjecturing all possible relatioris
among integer fields is infeasible even using simple arithmeti¢; BinaryTreeFieldConstraints {
operators. aDeryaft's current generation algorithm therefore,all b: BinaryTree {
focuses on structural properties which involve reference fields, lone b.root
which can naturally be viewed as edges in a graph. In future, ©ne b.size }
we plan to further explore likely relations among primitivé
fields. fact NodeFieldConstraints {
Our aDeryaft prototype at this stage can handle structuresall n: Node {
similar to the ones illustrated in this paper, but does not yet lone n.left
support properties of path lengths in a graph. lone n.right
e . . lone n.parent
1) User-controlled specification generationt is useful one n.key }
to have a specification generation system that can focus jon
constraints that are deemed interesting by the user. This
enables not only focused generation for a particular domafied RepOk(t: BinaryTree) {
but also generation of a wider class of constraints, since/ * acyclicCore =/ .
. . . . all n: troot. *(left + right) {
a generic constraint generation system may hypothesize too | " n~(eft + right)
many properties and as a result may not feasibly generate no neft & n.right
any that hold. We plan to extend aDeryaft to support user- lone n."(left + right) / ™ is transpose
controlled generation using the Alloy grammar to define the }
class of constraints to consider. We believe aDeryaft can
greatly assist users in developing their Alloy specifications
correctly.
2) Connectivity and symmetry breaking constrairifghen / * parentNull */
the specifications generated by aDeryaft are used for enumerdo t.root.parent
ating instances using the Alloy AnaIyze_r, connectivity and I« parentTwoCycleLeft .l
symmetry breaking constraints play an important role [16]. 5 .t oot «(left + right) {
Consider enumerating acyclic lists as specified in Figure 2. some n.left = n.left.parent = n
Even though all the input structures represent connected com}
ponents (by construction), no constraints in the specification )
require that all nodes in the generated instance belong td * ParentTwoCycleRight - »/
. . .all n: troot. * (left + right) {
gxactly one list. InQeed, the speuﬂcapon does nqt even rest_rlct some n.right => n.right.parent = n
instances to consist of exactly one list. To restrict generationy
to interesting instances, it is useful to add such constraints.
Another issue with enumerating instances arises due to/ * greaterThanLeft xl
structural symmetries, as induced by graph isomorphism [16],@/l - troot. = (left + right) {
[17]. Even though Alloy provides default support for symme- some n.left =>int n.key > int n.leftkey
try breaking [18], the support is not sufficient to allow efficient
enumeration and explicit symmetry breaking constraints need/ = greaterThanRight */
to be written in Alloy [16]. all n: troot. *(left + right) { _
We plan to explore generation of connectivity and symmetry . SOme n.right => int n.key > int n.rightkey
breaking constraints. } }
3) Instance construction APIOur current aDeryaft pro-
totype takes its input structures as Java objects. Thus, the RepOk
constraint generation does not (directly) consider properties  Fig. 6. Alloy specification generated by aDeryaft for heaps.
of arbitrary relations, e.g., a relation that may map a node to
more than one nodes. We plan to develop a simple instance

[ = sizeOk */
int t.size = #t.root. * (left + right)



construction API for Alloy to allow representation of generdlields. We believe this distinction, if adopted, can optimize
Alloy instances. Daikon’s analysis too. Third, aDeryaft generates invariants in
4) General Alloy specificationgDur presentation has so farAlloy, which can directly be plugged into a variety of tools,
focused on generating Alloy specifications that represent isuch as the TestEra testing framework [8].
stances that can be viewed as heap-allocated structures, whidRor generating class invariants as imperative predicates for
we view as rooted edge-labeled graphs. Alloy specificationkva data structures, we have developed the jDeryaft frame-
however, can in general specify various other structures awdrk [26]. jDeryaft generates the invariants as Java predicates,
properties. As a simple example, consider constraining ae., Java methods that traverse a given structure and return true
arbitrary relation to be an equivalence relation. We do not false based on whether the structure satisfies the invariants.
currently handle constraints of relations that do not represeniThe Perracotta project presents novel ways of scaling dy-
total or partial functions. namic techniques to large programs, but focuses on mining
It is also worth noting that Alloy specifications do notemporal APl usage rules [27].
always have instances. For example, consider using the AlloySoftware agitation is a recently proposed unit testing tech-
analyzer to check the equivalence of two formulas, wheréque that builds on Daikon and combines test generation and
the analyzer tries to generate a counterexample within tivariant detection; the Agitator embodies this technique in a
given scope. If the formulas are equivalent there is no suchmmercial tool [25].
count_erexample. E\_/e_zn 'Fhough aDeryaft can assist with dg Static analyses
veloping such specifications, say by generating a part of the ) , i
specification using instances that satisfy one of the formulasReSéarchers have explored invariant generation for over
in the equivalence, aDeryaft may not be able to characteri%(ee decades, but primarily in the context of generating loop

exactly what the user wants. For example, the user may wiRfariants using static analyses, including recurrence equa-
to check the equivalence of the following two definitions ofons, abstract interpretation with widening, matrix theory for
Petri nets, and constraint-based techniques [28]-[31]. While

acyclicity: , X ‘
static analyses guarantee that generated invariants hold for all
pred AcyclicUniversal(l: List) { executions, they are often restricted to finding relations be-
} all e: lheader. *next | e fin e next tween primitive variables, and they have so far not been shown
to feasibly generate representation invariants for structurally
pred AcyclicExistential(l: List) { complex data.
no lLheader || . . .
some e: Lheader. *next | no e.next C. Combined dynamic/static analyses
} Some recent approaches combine static and dynamic analy-

Since the definitions are equivalent, any set of valid liSES for_inferring AP_I Ievhel spelcifi%ations [3?’_[33?]]‘ ¢

instances satisfies both of them, and aDeryaft given any inpugnvanant generation as aiso been used in the context o

set might just generate one of the two definitions. model checkers to explain the absence of counterexamples,
There are various open research issues regarding genera\foHe focusing on integer variables [34].

of general Alloy specifications, and we plan to systematically VII. CONCLUSIONS

explore them. We presented aDeryaft, a novel technique for automating
the writing of Alloy specifications using a small set of given
instances. Alloy has steadily been gaining popularity due to its
automatic analyzer’s ability to provide rapid feedback. Alloy
Our work is inspired by the Daikon invariant detectiomusers however, still have to write their specifications by hand
engine [7], which pioneered the notion of dynamically den a declarative language—a language very different from the
tecting likely program invariants in the late 90s and has sincemmonly used (imperative) programming languages.
been adapted by various other frameworks [19]-[25]. aDeryaftaDeryaft provides a novel approach to writing Alloy spec-
differs from Diakon in three key aspects. One, the mod#ications. The user constructs by hand a few small concrete
of data structures in Daikon uses arrays to represent objetdtances that represent the constraints of the software struc-
fields. While this representation allows detecting invariantare they want to model. aDeryaft then fully automatically
of some data structures, it makes it awkward as to how ¢generates an executable Alloy specification, which represents
detect invariants that involve intricate global properties, suthe constraints that summarize the given structures. The gener-
as relating lengths of paths. aDeryaft’'s view of the heap ased specification can, in fact, be used by the Alloy Analyzer to
an edge-labeled graph and focus on generic graph propersgstematically enumerate a large number of concrete instances
enables it to directly capture a whole range of structuralthat satisfy the same constraints as the given instances. We
complex data. Two, aDeryaft employs specific heuristics thi#listrated aDeryaft's constraint generation on a variety of
optimize generation of invariants for data structures, e.gommonly used data structures.
the distinction between core and derived fields allows it to We believe the approach presented by aDeryaft holds
preemptively disallow hypothesizing relations among certapromise in making construction of designs and specifications

VI. RELATED WORK
A. Dynamic analyses



in Alloy amenable to practitioners, thereby holding potentigl7
to make a profound impact on improving the reliability of

software.

(18]
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