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Glossary

Ability parameter — Parameter in a response model
that represents the person’s ability, skill, or
proficiency measured by the test items.

Adaptive testing — Mode of testing with real-time
ability estimation in which each item is selected to be
optimal at the last estimate.

Cognitive-component models — Response models
with parameters for the individual cognitive
operations required to solve the test item.
Dichotomous response models — Response
models for items with dichotomously scored
responses, such as correct—incorrect, true—false,
and agree—disagree items.

Hierarchical response models — Response models
with random item and/or person parameters for
which a distribution is specified.

Information function — Fisher's measure for the
information in an item or test score as a function of
the ability parameter.

Item parameter — Parameter in a response model
that represents a property of the item, such as its
difficulty and discriminating power.
Multidimensional response models — Response
models with a multidimensional ability parameter.
Optimal test design — Use of techniques from
mathematical programming to design tests that are
optimal with respect to an objective function and
meet the set of constraints representing its content
specifications.

Polytomous response models — Response models
for items with polytomously scored responses.
Response function — Probability of a specific
response on an item as a function of the ability
parameter.

Item response theory (IRT) has many roots, and it would
be wrong to single out anyone as the most important. But
the contributions by Louis Thurstone (1925) have been
decisive in many respects. These contributions built on
Binet’s intelligence test developed to separate students in
Paris schools that needed special education from regular
underachievers (Binet and Simon, 1905) as well as earlier
work in psychophysics by Fechner.

Although Binet’s test has been hailed as the first to be a
fully standardized test in the history of educational and

psychological measurement, his most significant contri-
bution was his idea to scale the items before using them in
the test. Of course, there is no natural intelligence scale,
and neither were there any points of view to look at the
matter in Binet’s days. Binet’s solution to the problem,
however, was equally simple as ingenious: he chose chro-
nological age as the scale on which he mapped his items
and students. Using an empirical pretest, he defined the
scale value of an item as the age group of which 75% of its
members had solved it correctly. These scale values were
then used to estumate the age group for which the stu-
dent’s achievements on the test were representative. The
age of this group was the mental age of the student.

The chronological age scale used by Binet allows for
direct measurement. Thurstone’s innovation was to put
Binet’s items on an intelligence scale that cannot be
measured directly. He did so because he recognized that
intelligence is an example of what is now known as a
latent variable; that is, an unmeasured hypothetical con-
struct. The scale of this variable was defined by postulat-
ing a normal distribution for each age group and inferring
the scale values of the items from the response data.
Thurstone also showed how to check this distributional
assumption. The assumption of a normal cumulative dis-
tribution function as a response function was not new but
borrowed from the earlier work on psychophysics by
Fechner, who used them to describe how psychological
sensations vary with the strength of experimentally ma-
nipulated physical stimuli. But Thurstone’s idea to sepa-
rate intelligence from age and define it as a latent variable
with a scale defined by such response functions was
entirely new.

The idea of response functions on a latent variable was
picked up again by authors like Ferguson, Lawley, and
Mosier in the 1940s (and led to much confusion between
the use of the normal ogive as a definition of a population
distribution and a response function on a latent variable).
But we had to wait until the seminal work by Lord (1952)
and Rasch (1960) until the developments really began.
From a more statistical point of view, later contributions
by Birnbaum (1968) were important. He replaced the
normal ogive by the logistic function, introduced addi-
tional item parameters to account for guessing on items
(which 1s typical of most educational measurements),
derived maximum-likelihood estimators for the model,
and showed how to assemble tests from a bank of cali-
brated items to meet optimal statistical specifications for
their application.
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The next two decades showed much research on IRT
models for test items with other response formats than
simple dichotomous scores as well as on newer procedures
for parameter estimating and model evaluation. Especially,
the development of Bayesian procedures for parameter
estimation and model validation was prominent. When
computers became more powerful and cheaper in the
1980s, the routines for maintaining common scales and
test assembly used in most large-scale educatonal testing
programs became IRT based. The first programs to exploit
IRT to score test takers in real time and deliver computer-
ized adaptive tests were launched in the 1990s. Nowadays,
IRT models and procedures are no longer the main instru-
ments only in the educational testing industry but are
becoming increasingly popular in psychological testing as
well. In addition, they have hit areas such as medical
diagnosis and marketing research.

Review of Response Models

Unidimensional Logistic Models for
Dichotomous Items

Due to Thurstone’s pioneering work, the assumption of a
normal-ogive function as response function for test items
remained popular for a long time. Lord’s (1952) treatment
of IRT for dichotomously scored items was also based on
this assumption. Let U; denote the response to item
where U; = 1 if the response on item 7 is correct and
U;= 0 1ifitis incorrect. The normal-ogive model describes
the probability of a correct response as a function of the
test taker’s ability 0:

p,(G) = PI‘{UZ' = 1|6}
a(0-b) i
= o \/lz_n exp* 2 da. [1]
where 0 € (—00, 00) and 4; € (—00, 00) and 4, € (0, 00) are
parameters for the difficulty and discriminating power of
item £
Observe that the model has its parameter structure in
the upper limit of the integral. For this reason, it was
rather intractable at the time, and hardly used in routine
applications in testing. The model also seemed to ignore
the possibility of guessing on test items. These two points
were addressed in Birnbaum’s (1968) model, which is now
generally known as the three-parameter logistic (3PL):

2i(0) = Pr{U; = 1|6}

exp(a;(0 — b))

S O @ - 1)

2]
where additional parameter ¢; € [0, 1] represents the height
of a lower asymptote for the probability of a correct
response. The asymptote is approached for 0 — —oo.
This limit is assumed to represent random guessing with-
out any knowledge.

The two models have no fixed unit and origin for the
scale of 0. In practice, we therefore fix the scale following
a practical convention. All later models in this article need
comparable constraints to become identifiable. For an
appropriate choice of scale unit, the models in eqns [1]
and [2] predict success probabilities for identical sets of
parameter values that are virtually indistinguishable from
each other.

A graphical example of the logistic response function
for a set of item parameter values is given in Figure 1.
Difficulty parameter #; = 1 controls the location of
response function along the 0 scale. A more difficult
item has its location to the right of 0 = 1 and requires a
higher ability to give the same probability of success.
Discrimination parameter #; = 1.4 controls the slope of
the response function. A more discriminating item has a
response function with a steeper slope than in Figure 1.
Finally, a value of 0.23 for discrimination parameter ¢;
indicates the height of the lower asymptote for the
response function. Typically, for multiple-choice items,
the estimated values for this guessing parameter are close
to the reciprocal of their number of response alternatives.

The two-parameter logistic (2PL) model is obtained if
we put ¢; = 0 in eqn [2]. The result is the logistic analog of
eqn [1]. If we also assume equal values for the discrimina-
tion parameter (that is, #; = 4 for all 7), the Rasch (1960)
model is obtained. This model belongs to the exponential
family of distributions in statistics and is statistically quite
tractable.

Due to its parameter structure, the 3PL model is
flexible and has been shown to fit large pools of items
written for the same content domain in educational and
psychological testing. In fact, it has become the standard
of the testing industry for tests with dichotomous items
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Figure 1 Example of a response function for the 3-parameter

logistic model in eqn [2].
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that measure a unidimensional ability. For more narrowly
defined domains of educational items, or psychological
tests of well-defined constructs, the Rasch model becomes
an attractive alternative.

Models for Polytomous Items

Test items have a polytomous format when the responses
are scored in more than two categories. Such models have
a reponse function for each different category. Figure 2
shows a typical set of response functions for an item with
five different categories for one of the polytomous response
models below.

Although the response categories of dichotomous
items typically have a fixed order (e.g., correct—incorrect,
true—false), this does not necessarily hold for polytomous
items. Polytomous items have a nominal response format
if their response categories can be classified but an & prior:
order between them does not exist. The nominal response
model below is appropriate for items with this format. If
an a priori ordering of the categories does exist, a graded-
response model or partial-credit model should be chosen.
The two models differ in the problem-solving process
that is assumed to lead to the responses.

Models for a graded-response format are more gener-
ally known as cumulative models in ordinal categorical
data analysis. The partial-credit models below are known
as adjacent-category models. These two options do not
exhaust all possibilities, a more comprehensive review of
different polytomous response formats and IRT models is
given in Mellenbergh (1994).

Nominal-response model
Response variable U; is now assumed to have possible
values » = 1,...,m; > 2. Observe that different items in
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Figure 2 Example of response functions for a polytomous
response model with five categories.

the same test may have different numbers of possible
responses. According to the nominal-response model
(Bock, 1972), the response function for category 4 is

2in(0) = Pr{U; = 5|0} (3]

iexp(al-b(e — b))

b=1

[4]

Parameters #;, and 4, maintain their interpretation as
a discrimination and difficulty parameter. Figure 2 illus-
trates that 4;, represents the location of the response
function for category 5 along the ability scale, where the
location is defined as the value of 0 at which the function
shows its largest change in curvature. The value of the
discrimination parameters a;;, 1s proportional to this

change.
In spite of the nominal response format, the values for
the parameters ;, » =1, ..., m;, do imply an order for

the response categories. However, the actual order is only
known when these parameters are estimated; it is thus
empirical, not # priori. This feature makes the model less
suitable for educational measurement, where perfor-
mances on test items can always be ordered from worse
to better in advance. Another reason why the model in
eqn [4] may be less appropriate for this application is that
it does not allow explicitly for guessing. A version of the
nominal response model that does allow for guessing is
given in Thissen and Steinberg (1997).

Graded-response model

Suppose index 4 reflects an a priori ordering of the response
categories. The graded-response model (Samejima, 1969)
addresses the probabilities of the compound events U; > A,

1 forh =1
Py (0) =< Pr{U; > b0} forh=2,...,m; [5]
0 forh > m;

as a function of ability parameter 0. The more interesting
probabilities are those for » = 2, ..., m;. They increase
monotonically with 0 because the probability of responding
in any of these categories or higher goes to one if 0 — oo.

A typical choice for Py (0) for h=2, ... mineqn [5] is
from the logistic functions in eqn [2] for ¢; = 0. If the
parameters 4; are free, the result is known as the nonho-
mogeneous case of the model. If we set ¢; = 1 for all 4, a
more stringent version of the graded-response model 1s
obtained, which is known as its homogenous case.

The response functions for the individual categories
h=2,...,m;can be derived from eqn [5] as

2in(0) = Pip(0) — Pigy1)(0)- [6]

The shape of these response functions may not differ
much from those for the nominal-response model
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The most distinctive feature of these functions, however,
1s that they reflect an # priori order, which is specified by
the test specialist when assigning the labels A =1, ... m;
to the categories. These labels determine the way in which
the differences in eqn [6] are calculated.

Partial-credit models

These models derive their name from an increasing credit
given to the responses # = 1, ... ,m; All models are based
on a sequential response process in which the test taker is
assumed to compare two adjacent categories at a time and
decide to prefer one category over the other with a certain
probability.

The first version of the partial-credit model (Masters,
1982) was based on the assumption that the probability of
preferring response 4 relative to 4 — 1 can be represented
by the Rasch model. Upon some probability calculus, this
assumption can be shown to lead to the following

response functions for h=1, ..., m;
b
(00 00))
pun(0) =~ L : [7]
Sew(20-40)
=1 =1

A generalized version of the model exists in which the
probabilities of adjacent responses are based on the 2PL
model with free discrimination parameters ; (Muraki,
1992). The model therefore has parameter structures
(9 — b,‘b) extended to ﬂ,‘(() — bl'/y).

Further, if we adopt a common number of categories m
for all items, the generalized partial-credit model can be
specialized to a model for a set of rating scales of the
Likert type. Likert scales are well known in attitude
measurement, where they are used to ask subjects to
evaluate a set of attitude statements using scales with
common categories such as strongly agree, agree, neutral,
disagree, and strongly disagree. The steps necessary to
obtain the rating scale model steps are: (1) decomposing
the parameters 4;, additively as 4, + 4, with 4, a location
parameter for the entire item and 4} a threshold parame-
ter for 4th category on the Likert scale, and (2) constrain-
ing the discrimination parameters to special known
constants. This rating scale model was introduced by
Andersen (1977) and Andrich (1978).

Multidimensional Models

Test items may measure more than one ability, for exam-
ple, a verbal ability in addition to the ability in another
domain of achievement that is tested more explicitly. If
this happens, the previous models have to be extended by
more ability parameter. For the 3PL model in eqn [2], the
extension with a second ability parameter may lead to
response functions

e 0, +a0,—b;

210, 02) = i+ (1 = =g 8]

This model defines the probability of a correct
response as a function of (01, 0,). It has two discrimination
parameters, #; and 4;, which control the slope of the
response surface along 0, and 0,, respectively. But it has
only one (generalized) difficulty parameter 4;; a similar
model with two parameters ;; — 4, would be nonidentifi-
able version of it. If 0,, 0, — —o0, the probability of a
correct response goes to ¢; The role of these parameters
becomes clear if we view the graphical example of the
response surface in Figure 3 as a two-dimensional gener-
alization of the response function in Figure 1.

Cognitive-Component Models

IRT models in this class specify the probability of success
on a test item as a function of the components of the
cognitive task involved in solving the item. Two main
types of models have been used. Both types agree in that
they decompose the difficulty parameter as a set of more
basic parameters for the relevant components. They differ,
however, in how to impose a structure on these basic
parameters.

Let Uy = 0, 1 denote whether or not component
k= 1,..., Kof the task involved in solving item 7 has
been executed successfully. Suppose a correct response to
item 7 requires a successful execution of each of these
components. The probability of a correct response for this
conjunctive structure is then given by the product of the
probabilities for each of the components,

osuodsal 1091102 40 ‘gqoid
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Figure 3 Example of a two-dimensional response surface for
the logistic model in eqgn [8].

International Encyclopedia of Education (2010), vol. 4, pp. 81-88



Item Response Theory 85

U Pr{Uy}. [9]

Models of this type were introduced by Embretson
(1997). Her choice of success probabilities for the compo-
nent tasks was the Rasch model with free ability para-
meters, 0, and difficulty parameters, By, for k=1, ... K
She also introduced a guessing parameter for the case a
test taker misses a component and has to guess to the
answer on the item.

A different approach is offered in the linear logistic
model introduced by Fischer (1983). In this model, the
structure 1s not imposed on the probabilities of successful
completion of the component tasks, such as for the con-
junctive structure in eqn [9], but directly on their diffi-
culty parameters. Assuming the same set of component
tasks # = 1, ... ,K to hold for item 7 the item-difficulty
parameter is taken to be the following linear function of
the component parameters:

K
b = Z 'wfleﬁik +¢
k=1

where w;, 1s the weight set by a content specialist to
represent the impact of component difficulty f; on the
difficulty of item

The idea of modeling underlying processes rather
than the responses themselves has been a fruitful area of
research. Its spirit is well captured by the name explanatory
item response modeling given to the area by De Boeck and
Wilson (2005).

Hierarchical Models

Hierarchical or multilevel modeling of responses is appro-
priate when the test takers can be assumed to be sampled
from a population and the interest is in some of the features
of its ability distribution. This application arises, for exam-
ple, in large-scale educational assessments, where the
development in the educational achievements of certain
populations should be compared or followed over time.
Alternatively, the interest may exist in test items that can
be considered as randomly sampled, for example, from
families of items generated from a set of parent items, as
in the use of techniques of item cloning (Glas and van der
Linden, 2003). In this case, to allow for the random sam-
pling of items from different families, the distributions of
their parameters in these families have to be modeled.
Of course, it 1s possible to have applications in which the
distributions of both the person and item parameters have
to be specified.

As a first-level model, typically one of the earlier
models is chosen, for example, the 3PL model for a
correct response in eqn [2]. A second-level model for
the ability distribution is the normal

0~ N(it,0”) [10]

with mean p and variance o”.

If the items are sampled from families f=1, ..., £ the
second-level models for their distributions can be taken to
be the multivariate normals

(ﬂfﬂbfw[i/)NMVN(:u'vaf) [11]

where prand X are the mean and covariance matrix for
the item parameters of family f.

These models become more powerful if we are able to
explain the second-level distributions of the abilities or
item parameters by background variables or covariates, for
example, group memberships of the test takers or struc-
tural features of the item families. This can be done by
introducing linear regression structure for the means in
eqn [10] or eqn [11]. Following the spirit of hierarchical
linear modeling, the regression parameters can also be
defined to be random at a higher level of modeling (Fox
and Glas, 2001). In large-scale educational assessments,
the introduction of such regression structures helps us to
pinpoint differences in achievement between specific
populations.

Other Models

The previous response models belong to the most impor-
tant categories in the literature as well as the practice of
educational measurement. But they do certainly not
exhaustive the possibilities. To date, some 3040 different
response models have been proposed that are statistically
tractable. The collection includes models for nonmonotone
items. An item is called monotone if the function for its
correct response is monotonically increasing with the abil-
ity measured by the items. This feature is typical of
achievement test items but cannot be expected to hold for
items in attitude scales or preference measurement, where
respondents may endorse the same alternative for opposite
reasons. The current review, moreover, does not include
nonparametric approaches to IRT modeling or models for
response times on test items. Nonparametric approaches
avoid the assumption of a parametric family of response
functions but try to use order assumptions with respect to
probabilities of success, persons, and/or items only, which
may vary in their degree of stringency. In addition, poly-
tomous versions of nonparametric models exist (for a
review, see Sijtsma and Molenaar, 2002). Response-time
models have become important because of the increasing
popularity of computerized delivery of educational tests
with its automatic recording of the response times on the
individual items. In order to use these times as an addi-
tional source of information on the persons or items, a
response model with a typical IRT parameterization is
necessary (van der Linden, 2006, 2009).
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For more extensive introductions to larger collections of
response models, the reader should consult Fischer and
Molenaar (1995) and van der Linden and Hambleton (1997).

Applications in Educational Measurement
Item Calibration and Measurement

The use of IRT models in educational measurement typi-
cally consists of the stages of item calibration and measure-
ment. During item calibration, response data are collected
for a representative sample of test takers whereupon the
item parameters are estimated from the data and the valid-
ity of the model is evaluated. The process of model evalua-
tion may involve the checking of the model against the data
for features such as the match between the dimensionality
of the data and the ability parameters in the model, the
assumption of local independence required to estimated the
parameters, possible systematic differences in item para-
meters between relevant subpopulations (differental item
functioning), and the general shape of the response func-
tions. Additionally, it should be checked if the test takers
tend to behave according to the response model. All checks
take the form of statistical hypothesis testing, where the
alternative hypothesis is the specific model violation against
which the model is tested. For a more comprehensive treat-
ment of these tests, see Glas and Meijer (2003) and Glas and
Suarez Falcon (2003).

If the model fits and the item parameters are estimated
with enough precision, the model can be used as measure-
ment model. The test is then administered as part of
operational testing and the person parameter is estimated
for each test taker equating the item parameters to their
estimates. The estimate is reported as the test taker’s
ability score. (Following a Bayesian approach, it would
be more appropriate not to treat the item parameters as
completely known but to account for their estimation
error when estimating the person parameter. But this
practice is rather unusual in educational measurement.)

Person parameters are typically estimated using the
method of maximum likelihood (ML) or a Bayesian
method. For the dichotomous model in eqn [2], these esti-
mates are obtained as follows. Let (#y, . . ., #,) be the vector
with the responses for a person on the items 7 =1, ..., #in
the test that is used to measure the person’s ability, 0. In ML
estimation, the estimate of 0 is calculated from the proba-
bility of the response vector under the model taken as a
function of 0. More specifically, this function is known as
the likelihood function of 8 associated with the responses,

L0y ) — f[pf(e)“‘u O], 2

and the ML estimate is the value of 6 for which this
likelihood function reaches its maximum.

In a Bayesian approach, 0 is estimated by its posterior
distribution; that is, its probability distribution given the
responses. The distribution is obtained by assuming a
prior distribution of 0 and combining this with its likeli-
hood as:

F(Oluy,...,u,)=cL(0m,..., u,)f(0), [13]

where f(0) is the density of the prior distribution of 0,
f(@O | ..., n,) is the density of its posterior distribution,
and ¢ 1s a normalizing constant. If a point estimate is
needed, the mean of the posterior distribution can be
taken (expected # posteriori or EAP estimation).

The power of IRT for educational measurement lies in
the presence of the item parameters in the expression in
eqns [12] and [13] from which the ability estimate is
calculated. Due to this, the estimation automatically
accounts for the properties of the items that were selected
in the test. For example, if the items would have been
more difficult, the values of the item difficulty parameters
would have been greater, and the ability estimate for the
response vector would automatically have been increased
to account for this. This feature has been called item-free
measurement — an expression that, when taken naively,
seems to capture this feature nicely but is somewhat
misleading because the statistical features of the estimate
(e.g, its accuracy) still depend on the chosen items.

Another way of touting the power of IRT is by pointing
at the fact that it 1s able to produce valid item calibration
or educational measurement from response data collected
using research designs with missing data. The applications
in the next sections capitalize on this feature. Of course,
the validity of parameter estimates from incomplete
designs 1s only guaranteed if the fact whether or not the
responses are missing does not contain any direct infor-
mation on their correctness. It would be wrong to leave
out a portion of the responses, for instance, because they
were incorrect.

Specific Applications with Missing Data

Most of the large-scale educational testing programs now
use item banking. In item banking, new items are written,
pretested, and calibrated continuously. If an item passes all
quality checks, it is added to the item bank. At the same
time, new tests are assembled from the items in the bank.
This practice differs dramatically form traditional test con-
struction, which goes through a complete cycle of item
writing, pretesting, and test construction for one test at a
time. Obvious advantages of item banking are more con-
stant use of the resources, permanent access to a large stock
of pretested, high-quality items for test assembly, and less
vulnerability to premature leaking of a test form. Its main
advantage 1is, however, stable score scales defined by larger
pools of items. Such scales permit testing programs to
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produce scores that are comparable over time even when
earlier stocks of items in the bank have been retired and
replenished.

Item banking is possible because when using IRT; it is
no longer necessary for two persons to answer identical
collections of test items to have comparable scores. Like-
wise, in order to compare the parameter estimates of
different items, it is no longer necessary for them to be
taken by the same sample of test takers. It is therefore
possible to build up banks with much less restricted ver-
sions of data-collection designs than in traditional pre-
testing of test items. Likewise, once the items have been
calibrated, we can deliberately select a subset of items for
a specific measurement goal.

The idea of optimal test assembly capitalizes on
the latter opportunity. One of the first to point at it was
Birnbaum (1968). His idea was to translate the measure-
ment goal into a target function for the accuracy of the test
along the ability scale. The test was then assembled to
match the target as closely as possible. For example, the
test could be required to have a uniform target over a
certain ability range when it is used for diagnostic purposes
with respect to students in it, or a peaked function at a
cutoff score when the goal is accurate admission decisions.

For this approach to be practical, it is necessary to have
a measure of the accuracy of the test as a function of the
ability 0 measured by the items. A useful measure is
Fisher’s information in the item responses in the test,
which for the 3PL model in eqn [2] can be shown to be
equal to

(o= 2L pO][p(0) — o)
i) =S OO =] 14

for item 7 Taken as a function of 0, the measure is
generally referred to as the information function of item .
The use of this measure for optimal test assembly is moti-
vated by two different facts: First, information functions are
additive. That is, if the items 7 = 1, ... , # are selected for a
test, test information function /(0) can be shown to be equal
to the sum of the item information functions,

10)= Y 50) i

It is thus straightforward to evaluate the effects of
adding or removing an item to a test. Second, the sampling
variance of the ML estimator of 0 for a given test is
asymptotically equal to the inverse of the information
function in eqn [15]. This feature gives the use of the
information function its statistical foundation. Figure 4
illustrates the additivity of the information functions for a
test of six items.

Although optimal test assembly can be illustrated gra-
phically rather easily for a short test, the actual assembly
of a test in a real-world application is no simple affair.
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Figure 4 Example of six item information functions and their
test information function.

In many applications no single tests but sets of parallel
tests are to be selected. More importantly, tests always
have to be assembled to sets of constraints that control
their content specifications. In fact, it is not unlikely for
real-world tests to be assembled to several hundreds of
such constraints. Fortunately, such problems can be mod-
eled to be a linear integer programming problem, which
can easily be solved using standard commercial software.
For solutions to a large variation of optimal test assembly
problems with various objective functions and types of
constraint, see van der Linden (2005).

In computerized adaptive testing (CAT), the items in
the test are not selected simultaneously for a group of test
takers but sequentially from the item pool for an individ-
ual test taker. The responses on the items are recorded
and used to update the person’s ability estimate in real
time. Each next item in the test is selected to be optimal at
the last estimate. Due to this adaptation, the ability esti-
mate converges much faster to the person’s true ability
than for a traditional fixed test, even when it has been
assembled to be optimal for a group of test takers.

In order to implement adaptive testing, a criterion for
item selection is required. An obvious criterion is to use
the information function /;(0) in eqn [14] and select the
next item to have a maximum value for it at the last ability
estimate among the items in the pool. This popular criterion
of item selection is known as the maximum-information
criterion. Alternatively, Bayesian item-selection criteria can
be used, for example, a criterion that minimizes the variance
of the posterior distribution of the test taker’s ability in
eqn [13].

Other practical issues that have to be addressed when
implementing adaptive testing are how to impose a fixed
set of content constraints on the test for different test
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takers in real-time item selection, how to prevent differ-
ent time pressure between test takers that get different
selections of items, and how to maintain the integrity of
the item pool against test takers that cheat and try to
memorize and share test items. IRT-based solutions to
these problems are reviewed in van der Linden (2005)
and van der Linden and Glas (2010).
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