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LOCKSMITH is a static analysis tool for automatically detecting data races in C programs. In this
paper, we describe each of LOCKSMITH’s component analyses precisely, and present systematic
measurements that isolate interesting tradeoffs between precision and efficiency in each analysis.
Using a benchmark suite comprising standalone applications and Linux device drivers totaling
more than 200,000 lines of code, we found that a simple no-worklist strategy yielded the most
efficient interprocedural dataflow analysis; that our sharing analysis was able to determine that
most locations are thread-local, and therefore need not be protected by locks; that modeling
C structs and void pointers precisely is key to both precision and efficiency; and that context
sensitivity yields a much more precise analysis, though with decreased scalability. Put together,
our results illuminate some of the key engineering challenges in building LOCKSMITH and data race
detection analyses in particular, and constraint-based program analyses in general.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program Analysts; D.2.4 [Software Engineering]: Soft-
ware/Program Verification— Validation

General Terms: Data Race, Race Detection, Static Analysis
Additional Key Words and Phrases: context-sensitive, correlation inference, sharing analysis,
contextual effects, Locksmith

1. INTRODUCTION

Multithreaded programming is becoming increasingly important as parallel ma-
chines become more widespread. Dual-core processors are fairly common, even
among desktop users, and hardware manufacturers have announced prototype chips
with as many as 80 [intel.com 2007] or 96 [news.com 2007] cores. It seems inevitable
that to take advantage of these resources, multithreaded programming will become
the norm even for the average programmer.

However, writing multithreaded software is currently quite difficult, because the
programmer must reason about the myriad of possible thread interactions and may
need to consider unintuitive memory models [Manson et al. 2005]. One partic-
ularly important problem is data races, which occur when one thread accesses a
memory location at the same time another thread writes to it [Lamport 1978].
Races make the program behavior unpredictable, sometimes with disastrous con-
sequences [Leveson and Turner 1993; Poulsen 2004]. Moreover, race-freedom is an
important property in its own right, because race-free programs are easier to un-
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derstand, analyze and transform [Alexandrescu et al. 2005; Reynolds 2004]. For
example, race freedom simplifies reasoning about code that uses locks to achieve
atomicity [Flanagan and Freund 2004; Flanagan and Qadeer 2003].

In prior work, we introduced a static analysis tool called LOCKSMITH for automat-
ically finding all data races in a C program [Pratikakis et al. 2006b]. LOCKSMITH
aims to soundly detect data races, and works by enforcing one of the most common
techniques for race prevention: for every shared memory location p, there must be
some lock ¢ that is held whenever p is accessed. When this property holds, we say
that p and ¢ are consistently correlated. In our prior work, we formalized LOCK-
SMITH by presenting an algorithm for checking consistent correlation in Ay, a small
extension to the lambda calculus that models locks and shared locations. We then
briefly sketched some of the necessary extensions to handle the full C language, and
described empirical measurements of LOCKSMITH on a benchmark suite.

In this paper, we discuss in detail the engineering aspects of scaling the basic
algorithms for race detection to the full C language. We present our algorithms
precisely on a core language similar to Ay, which captures the interesting and
relevant features of C with POSIX threads and mutexes. We subsequently extend
it with additional features of C, and describe how we handle them in LOCKSMITH.
We then perform a systematic exploration of the tradeoffs between precision and
efficiency in the analysis algorithms used in LOCKSMITH, both in terms of the
algorithm itself, and in terms of its effects on LOCKSMITH as a whole. We performed
measurements on a range of benchmarks, including C applications that use POSIX
threads and Linux kernel device drivers. Across more than 200,000 lines of code, we
found many data races, including ones that cause potential crashes. Put together,
our results illuminate some of the key engineering challenges in building LOCKSMITH
in particular, and constraint-based program analyses in general. We discovered
interesting—and sometimes unexpected—conclusions about the configuration of
analyses that lead to the best precision with the best performance. We believe that
our findings will prove valuable for other static analysis designers.

We found that using efficient techniques in our dataflow analysis engine eliminates
the need for complicated worklist algorithms that are traditionally used in similar
settings. We found that our sharing analysis was effective, determining that the
overwhelming majority of locations are thread-local, and therefore accesses to them
need not be protected by locks. We also found that simple techniques based on
scoping and an intraprocedural uniqueness analysis improve noticeably on our basic
thread sharing analysis. We discovered that field sensitivity is essential to model C
structs precisely, and that distinguishing each type that a void * may represent is
key to good precision. Lastly, we found that context sensitivity, which we achieve
with parametric polymorphism, greatly improves LOCKSMITH’s precision.

The next section presents an overview of LOCKSMITH and its constituent algo-
rithms, and serves as a road map for the rest of the paper.

2. OVERVIEW

Fig. 1 shows the architecture of LOCKSMITH, which is structured as a series of sub-
analyses that each generate and solve constraints. In this figure, plain boxes repre-
sent processes and shaded boxes represent data. LOCKSMITH is implemented using
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Fig. 1. LOCKSMITH architecture

CIL, which parses the input C program and simplifies it to a core sub-language [Nec-
ula et al. 2002]. As of now, LOCKSMITH supports the core of the POSIX and Linux
kernel thread API, namely the APT calls for creating a new thread, the calls for allo-
cating, acquiring, releasing and destroying a lock, as well as trylock(). Currently,
we do not differentiate between read and write locks.

In the remainder of this section, we sketch each of LOCKSMITH’s components and
then summarize the results of applying LOCKSMITH to a benchmark suite. In the
subsequent discussion, we will use the code in Fig. 2 as a running example.

The program in Fig. 2 begins by defining four global variables, locks lockl and
lock2 and integers countl and count2. Then lines 4-9 define a function atomic_inc
that takes pointers to a lock and an integer as arguments, and then increments
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pthread_mutex_t lockl, lock2; 25 void xthreadl(void *a) {
int countl = 0, count2 = 0; 2/ int xy = (int %) a; /* intx always x/
25 while(1) {
void atomic_inc(pthread_mutex_t *lock, 26 xy++; /* thread—local x/
int xcount) { 27 }
pthread_mutex_lock(lock ); 28 }
*xcount+; 29
pthread_mutex_unlock(lock); 30 void xthread2(void xc) {
} 31 while(1) {
32 pthread_mutex_lock(&lock1);
int main(void) { 33 countl++;
pthread t1, t2, t3; 34 pthread_mutex_unlock(&lock1);
int local =0; 35 count2++; /* access without lock %/
36 }
pthread_mutex_init (&lockl, NULL); 37}
pthread_mutex_init (&lock2, NULL); 38
39 void xthread3(void xb) {
local ++; 40 while(1) {
pthread_create (&t1, NULL, threadl, &local); 41 /* needs polymorphism for atomic_inc */
pthread_creates(&t2, NULL, thread2, NULL); 42 atomic_inc4(&lockl, &countl);
pthread_create 3(&t3, NULL, thread3, NULL); 43 atomic_incs(&lock2, &count2);
} 44}
45}

Fig. 2. Example multithreaded C program

the integer while holding the lock. The main function on lines 11-22 allocates an
integer variable local, initializes the two locks, and then spawns three threads that
execute functions threadl, thread2 and thread3, passing variable local to threadl and
NULL to thread2 and thread3. We annotate each thread creation and function call
site, except calls to the special mutex initialization function, with a unique index
i, whose use will be explained below. The thread executing threadl (lines 23-28)
first extracts the pointer-to-integer argument into variable y and then continuously
increments the integer. The thread executing thread2 (lines 30-37) consists of an
infinite loop that increases countl while holding lock lockl and count2 without
holding a lock. The thread executing thread3 (lines 39-45) consists of an infinite
loop that calls atomic_inc twice, to increment countl under lockl and count2 under
lock2.

There are several interesting things to notice about the locking behavior in this
program. First, observe that though the variable local is accessed both in the par-
ent thread (lines 13,18) and its child thread threadl (via the alias xy on line 26),
no race is possible despite the lack of synchronization. This is because these ac-
cesses cannot occur simultaneously, because the parent only accesses local before
the thread for threadl is created, and never afterward. Thus both accesses are lo-
cal to a particular thread. Second, tracking of lock acquires and releases must be
flow-sensitive, so we know that the access on line 33 is guarded by a lock, and the
access on line 35 is not. Lastly, the atomic_inc function is called twice (lines 42-43)
with two different locks and integer pointers. We need context sensitivity to avoid
conflating these two calls, which would lead to false alarms.
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Fig. 3. Constraint graphs generated for example in Fig. 2

2.1 Labeling and Constraint Generation

The first phase of LOCKSMITH is labeling and constraint generation, which traverses
the CIL CFG and generates two key abstractions that form the basis of subsequent
analyses: label flow constraints, to model the flow of data within the program, and
abstract control flow constraints, to model the sequencing of key actions and relate
them to the label flow constraints. Because a set of label flow constraints can be
conveniently visualized as a graph, we will often refer to them as a label flow graph,
and do likewise for a set of abstract control flow constraints.

2.1.1 Label flow graph. Fig. 3(a) shows the label flow graph for the example
from Fig. 2. Nodes are static representations of the run-time memory locations
(addresses) that contain locks or other data. Edges represent the “flow” of data
through the program [Mossin 1996; Rehof and Fahndrich 2001; Kodumal and Aiken
2005], e.g., according to assignment statements or function calls. The source of a
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path in the label flow graph is an allocation site, e.g., it is the address of a global or
local variable (e.g., &lockl, &countl, or &local in Fig. 2), or the representation of
a program line at which a malloc() occurs. We distinguish addresses of locks from
those of other data (which may be subject to races); generally speaking we refer to
the former using metavariable £ and the latter using metavariable p.

LocksMITH’s label flow analysis is field-sensitive when modeling C struct types,
in which each field of each instance of a struct is modeled separately. We found that
field sensitivity significantly improves precision. To make our algorithm sufficiently
scalable, we modeled fields lazily [Foster et al. 2006]—only if (and when) a field
was actually accessed by the program does LOCKSMITH model it, as opposed to
eagerly tracking each field of a given instance from the time the instance is created.
We found that over all benchmarks only 35%, on average, of the declared fields
of struct variables in the program are actually accessed, and so the lazy approach
afforded significant savings.

LOCKSMITH also tries to model C’s void* types precisely, yet efficiently. In our
final design, when a void* pointer might point to two different types, we assume
that it is not used to cast between them, but rather that the programmer always
casts the void* pointer to the correct type before using it (in the style of an
untagged union). This is an unsound assumption that might possibly mask a race.
However, we found it to greatly increase the precision of the analysis, and is usually
true for most C programs. We also tried two sound but less precise alternative
strategies. First, and most conservatively, if a type is cast to void*, we conflate all
pointers in that type with each other and the void*. While sound, this technique
is quite imprecise, and the significant amount of false aliasing it produces degrades
LOCKSMITH’s subsequent analyses. A second alternative we considered behaves in
exactly the same way, but only when more than one type is cast to the same void*
pointer. Assuming a given void# is only cast to/from a single type, we can relate
any pointers occurring within the type to the particular type instances cast to the
voidx, as if the type was never cast to void# in the first place. We found that
approximately one third of all void* pointers in our benchmarks alias one type,
so this strategy increased the precision compared to simply conflating all pointers
casted to a void*. Nevertheless, we found that our final design is more precise and
more efficient, in that it prunes several superficial or imprecise constraints.

To achieve context sensitivity, we incorporate additional information about func-
tion calls into the label flow graph. Call and return edges corresponding to a call
indexed by ¢ in the program are labeled with (i and )i, respectively. During con-
straint resolution, we know that two edges correspond to the same call only if they
are labeled by the same index. For example, in Fig. 3(a) the edges from &lockl and
&countl are labeled with (4 since they arise from the call on line 42, and analo-
gously the edges from &lock2 and &count2 are labeled with (5. We use a variation
on context-free language (CFL) reachability to compute the flow of data through
the program [Pratikakis et al. 2006b]. In this particular example, since count is
accessed with lock held, we would discover that counti is accessed with locki held
for ¢ € 1..2. Without the labeled edges, we could not distinguish the two call sites,
and LocksMITH would lose precision. In particular, LOCKSMITH would think that
lock could be either lockl or lock2, and thus we would not know which one was held
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at the access to count, causing us to report a potential data race on line 7.

Section 3 discusses the label flow analysis in detail, not considering context sen-
sitivity, while Section 5 discusses extensions to this analysis to handle struct and
voidx* types. We initially present context-insensitive algorithms for each LOCK-
SMITH phase, and discuss context sensitivity for all parts in Section 6.

2.1.2  Abstract control flow graph. Fig. 3(b) shows the abstract control flow graph
(ACFG) for the example from Fig. 2. Nodes in the ACFG capture operations in the
program that are important for data race detection, and relate them to the labels
from the label flow graph. ACFGs contain 7 kinds of nodes (the notation [n] next
to each node indicates the line number n from which the node is induced). NewL(¢)
represents a statement that creates a new lock at location ¢, and Acq(¢) and Rel(¢)
denote the acquire and release, respectively, of the lock ¢. Reads and writes of
memory location p are represented by Acc(p). Thread creation is indicated by Fork
nodes, which have two successors: the next statement in the parent thread, and
the first statement of the child thread’s called function. The edge to the latter is
annotated with an index just as in the label flow graph, to allow us to relate the
two graphs. For example, the child edge for the Fork corresponding to line 19 is
labeled with (1, which is the same annotation used for the edge from &local to a in
the label flow graph. Lastly, function calls and returns are represented by Call and
Ret nodes in the graph. For call site i, we label the edge to the callee with (i, and
we label the return edge with )i, again to allow us to relate the label flow graph
with the ACFG. The edges from a Call to the corresponding Ret allow us to flow
information “around” callees, often increasing precision; we defer discussion of this
feature to Section 3.3.

In addition to label flow constraints and the abstract control flow graph, the
first phase of LOCKSMITH also generates linearity constraints and contextual effect
constraints, which are discussed below (Section 2.5).

2.2 Sharing Analysis

The next LOCKSMITH phase determines the set of locations that could be potentially
simultaneously accessed by two or more threads during a program’s execution. We
refer to these as the program’s shared locations. We limit subsequent analysis
for possible data races to these shared locations. In particular, if a location is
not shared, then it need not be consistently accessed with a particular lock held.
Moreover, if an access site (that is, a read or a write through a pointer) never
targets a shared variable, it need not be considered by the analysis.

As shown in Fig. 1, this phase takes as input contextual effect constraints, which
are also produced during labeling and constraint generation. In standard effect
systems [Talpin and Jouvelot 1994], the effect of a program statement is the set of
locations that may be accessed (read or written) when the statement is executed.
Our contextual effect system additionally determines, for each program state, the
future effect, which contains the locations that may be accessed by the remainder of
the current thread. To compute the shared locations in a program, at each thread
creation point we intersect the standard effect of the created thread with the future
effect of the parent thread. If a location is in both effects, then the location is
shared. Note that the future effect of a thread includes the effect of any threads it
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creates, so the future effect of the parent includes the effects of any threads that
the parent creates later.

For example, consider line 19 in Fig. 2. The spawned threadl has standard
effect {&local}. The parent thread by itself has no future effect, since it accesses no
interesting variables. However, it spawns two child threads which themselves access
countl and count2. Therefore, the future effect at line 19 is {&countl, &count2}.
Since {&locall} N{&countl, &count2} = (), there are no shared locations created by
this fork. In particular, even though local was accessed in the past by the parent
thread (line 18), our sharing analysis correctly determines all its accesses to be
thread local.

On the other hand, consider line 20. Here the effect of the spawned thread2 is
{&countl, &count2}, and the future effect at line 20 is also {&countl, &count2}.
Thus we determine from this call that countl and count2 are shared. Notice that
here it was critical to include the effect of thread3 when computing the future effect
of the parent, since the parent thread itself does not access anything interesting.

In our implementation, we also distinguish read and write effects, and only mark
a location p as shared if at least one of the accesses to p in the intersected effects is
a write. In other words, we do not consider locations that are only read by multiple
threads to be shared, and LOCKSMITH does not generate race warnings for them.
For that reason, we do not need to differentiate between read and write accesses in
the Acc(p) nodes of the ACFG.

The analysis just described only determines if a location is ever shared. It could
be that a location starts off as thread local and only later becomes shared, meaning
that its initial accesses need not be protected by a consistent lock, while subsequent
ones do. For example, notice that &countl in Fig. 2 becomes shared due to the
thread creations at lines 20 and 21, since both thread2 and thread3 access it. So
while the accesses at lines 33 and 27 (via line 42) must consider &countl as shared,
&countl would not need to be considered shared if it were accessed at, say, line 19.
We use a simple dataflow analysis to distinguish these two cases, and thus avoid
reporting a false alarm in the latter case. Section 4 presents the sharing analysis
and this variant in more detail.

2.3 Lock State Analysis

In the next phase, LOCKSMITH computes the state of each lock at every program
point. To do this, we use the ACFG to compute the set of locks ¢ held before and
after each statement.

In the ACFG in Fig. 3(b), we begin at the entry node by assuming all locks are
released. In the subsequent discussion, we write A; for the set of locks that are
definitely held after statement i. Since statements 15-21 do not affect the set of
locks held, we have A15 = A16 = A18 = A19 = A20 = A21 = AEntry = (D

We continue propagation for the control flow of the three created threads. Note
that even if a lock is held at a fork point, it is not held in the new thread, so we
should not propagate the set of held locks along the child Fork edge. For threadl,
we find simply that Asg = 0. For thread2, we have Ass = Asz = {&lockl}, and
Azqs = Aszs = 0. And lastly for thread3, we have Ay = Ay3 = Ag = 0 and
A¢ = A7 = {lock}. Notice that this last set contains the name of the formal
parameter lock. When we perform correlation inference, discussed next, we will
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need to translate information about lock back into information about the actual
arguments at the two call sites. Note that for the lock state and the subsequent
correlation analyses to be sound, we need to reason about the linearity of locks
(introduced in Section 2.5). We do not need to reason about the linearity of shared
memory locations the same way, because contrary to locks, any imprecision on the
aliasing of memory locations only leads to a more conservative analysis.

2.4 Correlation Inference

The next phase of LOCKSMITH is correlation inference, which is the core race de-
tection algorithm. For each shared variable, we intersect the sets of locks held at
all its accesses. We call this the guarded-by set for that location, and if the set is
empty, we report a possible data race.

We begin by generating initial correlation constraints at each Acc(p) node such
that p may be shared according to the sharing analysis. Correlation constraints
have the form p>{/y,...,£,}, meaning location p is accessed with locks ¢; through
?,, held. We write C,, for the set of correlation constraints inferred for statement n.

The first access in the program, on line 18, yields no correlation constraints
(Cis = 0) because, as we discussed above, the sharing analysis determines the
&local is not a shared variable. Similarly, Cog = () because the only location that
“flows to” y in the label flow graph is &local, which is not shared. On line 33,
on the other hand, we have an access to a shared variable, and so we initialize
C33 = {&countl > {&lock1}}, using the output of the lock state analysis to report
which locks are held. Similarly, Cs5 = {&count2r>0}, since no locks are held at that
access. Finally, C7 = {count i> {lock}}. Here we determine count may be shared
because at least one shared variable flows to it in the label flow graph.

Notice that this last correlation constraint is in terms of the local variables of
atomic_inc. Thus at each call to atomic_inc, we must instantiate this constraint in
terms of the caller’s variables. We use an iterative fixpoint algorithm to propagate
correlations through the control flow graph, instantiating as necessary until we reach
the entry node of main. At this point, all correlation constraints are in terms of the
names visible in the top-level scope, and so we can perform the set intersections
to look for races. Note that, as is standard for label flow analysis, when we label
a syntactic occurrence of malloc() or any other memory allocation or lock creation
site, we treat that label as a top-level name.

We begin by propagating C7 backwards, setting Cs = C7. Continuing the back-
wards propagation, we encounter two Call edges. For each call site 7 in the program,
there exists a substitution S; that maps the formal parameters to the actual pa-
rameters; this substitution is equivalent to a polymorphic type instantiation [Rehof
and Fahndrich 2001; Pratikakis et al. 2006a]. For call site 4 we have S4 = [lock —
&lockl, count — &countl]. Then when we propagate the constraints from C7 back-
wards across the edge annotated (4, we apply Sy to instantiate the constraints for
the caller. In this case we set Cyo = Sy({count > {lock}}) = {&countl > {&lockl}}
and thus we have derived the correct correlation constraint inside of thread3. Sim-
ilarly, when we propagate Cg backwards across the edge annotated (5, we find
Cyz = {&count2 > {&lock2}}.

We continue backwards propagation, and eventually push all the correlations we
have mentioned so far back to the entry of main:
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&countl > {&lockl}  from line 33
&count2 > ) from line 35
&countl > {&lockl}  from the call on line 42
&count2 > {&lock2}  from the call on line 43

(Note that there are substitutions for the calls indexed by 1-3, but they do not
rename &counti or &locki, since those are global names.) We now intersect the
lock sets from each correlation, and find that &countl is consistently correlated
with (or guarded by) lockl, whereas &count2 is not consistently correlated with a
lock. We then report a race on &count2.

One important detail we have omitted is that when we propagate correlation
constraints back to callers, we need to interpret them with respect to the “closure”
of the label flow graph. For example, given a constraint x t> {&lock}, if &y flows
to x in the label flow graph, then we also derive &y > {&lock}. More information
about the closure computation can be found elsewhere [Pratikakis et al. 2006b].

Propagating correlation constraints backwards through the ACFG also helps to
improve the reporting of potential data races. In our implementation, we also
associate a program path, consisting of a sequence of file and line numbers, with
each correlation constraint. When we generate an initial constraint at an access in
the ACFG, the associated path contains just the syntactic location of that access.
Whenever we propagate a constraint backwards across a Call edge, we prepend the
file and line number of the call to the path. In this way, when the correlation
constraints reach the main, they describe a path of function calls from main to
the access site, essentially capturing a stack trace of a thread at the point of a
potentially racing access, and developers can use these paths to help understand
error messages.

Section 3.3.2 presents the algorithm for solving correlation constraints and in-
ferring all correlations in the program. Since correlation analysis is an iterative
fixpoint computation, in which we iteratively convert local names to their global
equivalents, we compute correlations using the same framework we used to infer
the state of locks.

2.5 Linearity and Escape Checking

The constraint generation phase also creates linearity constraints, which we use to
ensure that a static lock name ¢ used in the analysis never represents two or more
run-time locks that are simultaneously live. Without this assurance, we could not
model lock acquire and release precisely. That is, suppose during the lock state
analysis we encounter a node Acq(¢). If ¢ is non-linear, it may represent more than
one lock, and thus we do not know which one will actually be acquired by this
statement. On the other hand, if ¢ is linear, then it represents exactly one location
at run time, and hence after Acq(¢) we may assume that ¢ is acquired.

Lock ¢ could be non-linear for a number of reasons. Consider, for example, a
linked list data structure where each node of the linked list contains a lock, meant
to guard access to the data at that node. Standard label flow analysis will label
each element in such a recursive structure with the same name p whose pointed-to
memory is a record containing some lock ¢. Thus, p statically represents arbitrarily
many run-time locations, and consequently ¢ represents arbitrarily many locks.
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Benchmark Size Time | Warnings Not- | Races Race/Total

(LOC) (sec) guarded locations %
- aget 1,914 0.85 62 31 31 62/352  (17.61)
5 ctrace 2,212 0.59 10 9 2 10/311  (3.22)
Sq engine 2,608 0.88 7 0 0 7/410  (1.71)
» § knot | 1,985 0.78 12 8 8| 12/321  (3.74)
2. pfscan 1,948 0.46 6 0 0 6/240  (2.50)
&3 smtprc 8,624 5.37 46 1 1 46/1079 (4.26)
3c501 17,443 9.18 15 5 4 15/408 (3.68)
eql 16,568 21.38 35 0 0 35/270  (12.96)
£ hp100 20,370 143.23 14 9 8 14/497 (2.82)
E plip 19,141 19.14 42 11 11 44/466 (9.44)
o sis900 20,428 71.03 6 0 0 6/779 (0.77)
al 8 slip 22,693 16.99 3 0 0 3/382 (0.99)
E _ag sundance 19,951 106.79 5 1 1 5/753 (0.66)
synclink | 24,691 | 1521.07 139 2 0 | 139/1298  (10.71)
wavelan 20,099 19.70 10 1 1 10/695 (1.44)
Total | 200,675 | 1937.44 412 78 67 | 414/8261 (5.01)

Fig. 4. Benchmarks

With such a representation, a naive analysis would not complain about a program
that acquires a lock contained in one list element but then accesses data present in
other elements.

To be conservative, LOCKSMITH treats locks ¢ such as these as non-linear, with
the consequence that nodes Acq(¢) and Rel(¢) of such non-linear ¢ are ignored.
This approach solves the problem of missing potential races, but is more likely to
generate false positives, e.g., when there is an access that is actually guarded by £ at
run time. LOCKSMITH addresses this issue by using user-specified existential types
to allow locks in data structures to sometimes be linear, and includes an escape
checking phase to ensure existential types are used correctly. We refer the reader
to related papers for further discussion on linearity constraints [Pratikakis et al.
2006b] and how they can be augmented with existential quantification [Pratikakis
et al. 2006a]. Note that the two locks used in the example of Fig. 2 are linear, since
they can only refer to one run-time lock.

2.6 Soundness Assumptions

C’s lack of strong typing makes reasoning about C programs difficult. For example,
because C programs are permitted to construct pointers from arbitrary integers, it
can be difficult to prove that dereferencing such a pointer will not race with memory
accessed by another thread. Nevertheless, we believe LOCKSMITH to be sound as
long as the C program under analysis has certain characteristics; assuming these
characteristics is typical of C static analyses. In particular, we assume that

—the program does not contain memory errors such as double frees or dereferencing
of dangling pointers.

—different calls to malloc() return different memory locations.
—the program manipulates locks and threads only using the provided API.

—variables that may hold values of more than one type—in particular, void* point-
ers, untagged unions, and va_list lists of optional function arguments—are used
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in a type-safe manner; i.e., each read of such a multi-typed value presumes the
type that was last written.!

—there is no pointer arithmetic except for indexing arrays, and all array indexing
is within bounds.

—asm blocks only access what is reachable from their parameters, respecting their
types.

—integers are not cast to pointers.

—mno non-local control flow such as signal handlers or setjmp/longjmp.

LOCKSMITH prints a warning for code that may introduce unsoundness.

2.7 Results

Fig. 4 summarizes the results of running LOCKSMITH on a set of benchmarks varying
in size, complexity and coding style. The results shown correspond to the default
configuration for all LOCKSMITH analyses, in particular: context-sensitive, field-
sensitive label flow analysis, with lazy field propagation and no conflation under
voidx; flow- and context-sensitive sharing analysis; and context-sensitive lock state
analysis and correlation inference.

The first part of the table presents a set of applications written in C using POSIX
threads, whereas the second part of the table presents the results for a set of net-
work drivers taken from the Linux kernel, written in GNU-extended C using kernel
threads and spinlocks. The first column gives the benchmark name and the second
column presents the number of preprocessed and merged lines of code for every
benchmark. We used the CIL merger to combine all the code for every benchmark
into a single C file, also removing comments and redundant declarations. The next
column lists the running time for LOCKSMITH. Experiments in this paper were
performed on a dual-core, 3GHz Pentium D CPU with 4GB of physical memory.
All times reported are the median of three runs. The fourth column lists the to-
tal number of warnings (shared locations that are not protected by any lock) that
LOCKSMITH reports. The next column lists how many of those warnings correspond
to cases in which shared memory locations are not protected by any lock, as deter-
mined by manual inspection. The sixth column lists how many of those we believe
correspond to races. Note that in some cases there is a difference between the
unguarded and races columns, where an unguarded location is not a race. These
are caused by the use of other synchronization constructs, such as pthread_join,
semaphores, or inline atomic assembly instructions, which LOCKSMITH does not
model. Finally, the last column presents the number of allocated memory locations
that LOCKSMITH reported as unprotected, versus the total number of allocated
locations, where we consider struct fields to be distinct memory locations. Note
that the number of unprotected memory locations is different from the number of
race warnings reported in the fourth column. This is because a LOCKSMITH race
warning might involve several concrete memory locations, when they are aliased.

1LOCKSMITH can be configured to treat void pointers and va_list argument lists conservatively,
without assuming that they are type-safe. However, this introduces a lot of imprecision, so it is
not the default behavior.
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(1)
p)

Warning: Possible data race: &count2:example.c:2 is né protected!
references:

dereference of count:example.c:5 at example.c:7

&count2:example.c:2 => atomic_inc.count:example.c:43 (3)
=> count:example.c:5 at atomic_inc example.c:43
locks acquired:
(2) *atomic_inc.lock:example.c:43
concrete lock2:example.c:16 (4)
lock2:example.c:1

L in: FORK at example.c:21 -> example.c:43 (5)

—

dereference of &count2:example.c:2 at example.c:35
&count2:example.c:2

locks acquired:
<empty>

in: FORK at example.c:20

Fig. 5. Sample LOCKSMITH warning. Highlighting and markers added for expository purposes.

2.7.1  Warnings. Each warning produced by LOCKSMITH contains information
to explain the potential data race to the user. Fig. 5 shows a sample warning from
the analysis of the example program shown in Fig. 2, stored in file example.c. The
actual output of LOCKSMITH is pure text; here we have added some highlighting
and markers (referred to below) for expository purposes.

LOCKSMITH issues one warning per allocation site that is shared but inconsis-
tently (or un-)protected. In this example, the suspect allocation site is the contents
of the global variable count2, declared on line 2 of file example.c (1). After reporting
the allocation site, LOCKSMITH then describes each syntactic access of the shared
location.

The text block indicated by (2) describes the first access site at line 7, accessing
variable count which is declared at line 5. The other text block shown in the error
report (each block is separated by a newline) corresponds to a different access site.
Within a block, LOCKSMITH first describes why the expression that was actually
accessed aliases the shared location (3). In this case, the shared location &count2
“flows to” (indicated by =>) the argument count passed to the function call of
atomic_inc at line 43 (written as atomic_inc.count), in the label flow graph. That,
in turn, flows to the formal argument count of the function, declared at line 5, due
to the invocation at line 43. If there is more than one such path in the label flow
graph, we list the shortest one.

Next, LOCKSMITH prints the set of locks held at the access (4). We specially
designate concrete lock labels, which correspond to variables initialized by function
pthread_mutex_init(), from aliases of those variables. Aliases are included in the error
report to potentially help the programmer locate the relevant pthread_mutex_lock()
and pthread_mutex_unlock() statements. In this case, the second lock listed is a
concrete lock created at line 16 and named lock2, after the variable that stores
the result of pthread_mutex.init(). The global variable lock2 itself, listed third, is
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a different lock that aliases the concrete lock created at line 16. There is also an
additional alias listed first, the argument *lock of the call to function atomic_inc at
line 43 (denoted as *atomic_inc.lock : example.c : 43). We do not list aliasing paths
for the lock sets, because we list all the aliases, and also printing the paths between
them would only add confusion by replicating the lock aliases’ names many times.

Finally, LOCKSMITH gives stack traces leading up to the access site (5). Each
trace starts with the thread creation point (either a call to pthread_create() or the
start of main()), followed by a list of function invocations. For this access site,
the thread that might perform the access is created at line 21 and then makes a
call at example.c : 43 to the function that contains the access. We generate this
information during correlation inference, as we propagate information from the
access point backwards through the ACFG (Section 3.3.2).

The other dereference listed has the same structure. Notice that the intersection
of the held lock sets of the two sites is empty, triggering the warning. In this case,
the warning corresponds to a true race, caused by the unguarded write to count2 at
line 35, listed as the second dereference in the warning message. To check whether
a warning corresponds to an actual race, the programmer has to verify that the
listed accesses might actually happen simultaneously, including the case where a
single access occurs simultaneously in several threads. Also, the programmer would
have to verify that the aliasing listed indeed occurs during the program execution,
and is not simply an artifact of imprecision in the points-to analysis. Moreover, the
programmer must check whether the set of held locks contains additional locks that
LOCKSMITH cannot verify are definitely held. Last, but not least, the programmer
needs to validate that the location listed in the warning is in fact shared among
different threads.

2.7.2 Races. We found races in many of the benchmarks. In knot, all of the
races are on counter variables always accessed without locks held. These variables
are used to generate usage statistics, which races could render inaccurate, but this
would not affect the behavior of knot. In aget, most of the races are due to an
unprotected global array of shared information. The programmer intended for each
element of the array to be thread-local, but a race on an unrelated memory location
in the signal handling code can trigger erroneous computation of array indexes,
causing races that may trigger a program crash. The remaining two races are due
to unprotected writes to global variables, which might cause a progress bar to be
printed incorrectly. In ctrace, two global flag variables can be read and set at the
same time, causing them to have erroneous values. In smtprc, a variable containing
the number of threads is set in two different threads without synchronization. This
can result in not counting some threads, which in turn may cause the main thread
to not wait for all child threads at the end of the program. The result is a memory
leak, but in this case it does not cause erroneous behavior since it occurs at the
end of the program. In most of the Linux drivers, the races correspond to integer
counters or flags, but do not correspond to bugs that could crash the program, as
there is usually a subsequent check that restores the correct value to a variable. The
rest of the warnings for the Linux drivers can potentially cause data corruption,
although we could not verify that any can cause the kernel to crash.
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z|v]|eelif0etheneelsee

(e;e) |ejlrefe|le|e:=e
newlock | acquire e | release e | fork e
n | Az:t.e | (v1,v2)

int |t xt|t—t|ref(t)] lock

Fig. 6. Source language

2.7.3 False positives. The majority of false positives are caused by over-approx-
imation in the sharing analysis. The primary reason for this is conservatism in the
label flow (points-to) analysis, which can cause many thread-local locations to be
spuriously conflated with shared locations. Since thread-local memory need not be,
and usually is not, protected by locks, this causes many false warnings of races on
those locations. Overly conservative aliasing has several main causes: structural
subtyping where the same data is cast between two different types (e.g. different
structs that share a common prefix), asm blocks, casting to or from numerical
types, and arrays, in decreasing order of significance. One approach to better
handling structural subtyping may be adapting physical subtyping [Siff et al. 1999]
to LOCKSMITH. Currently, when a struct type is cast to a different struct type,
LocksMITH does not compute field offsets to match individual fields, but rather
conservatively assumes that all labels of one type could alias all labels of the other.

The second largest source of false positives in the benchmarks is the flow sensitiv-
ity of the sharedness property, in more detail than our current flow-sensitive sharing
propagation can capture. Specifically, any time that a memory location might be
accessed by two threads, we consider it shared immediately when the second thread
is created. However, in many cases thread-local memory is first initialized locally,
and then becomes shared indirectly, e.g., via an assignment to a global or otherwise
shared variable. We eliminate some false positives using a simple intraprocedural
uniqueness analysis—a location via a unique pointer as determined by this analysis
is surely not shared—but it is too weak for many other situations.

Roadmap. In the remainder of this paper, we discuss the components just de-
scribed in more detail, starting from its core analysis engine (Section 3), with
separate consideration of lock state analysis (Section 3.3.1), correlation inference
(Section 3.3.2), the sharing analysis (Section 4), techniques for effectively modeling
C struct and void* types (Section 5), and extensions to enable context-sensitive
analysis (Section 6). A detailed discussion of related work on data race detection
is presented in Section 7. For many of LOCKSMITH’s analysis components, we
implemented several possible algorithms, and measured the algorithms’ effects on
the precision and efficiency of LOCKSMITH. By combining a careful exposition of
LOCKSMITH’s inner workings with such detailed measurements, we have endeavored
to provide useful data to inform further developments in the static analysis of C
programs (multithreaded or otherwise). LOCKSMITH is freely available on the web
(http://www.cs.umd.edu/projects/PL/locksmith).
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3. LABELING AND CONSTRAINT GENERATION

We present LOCKSMITH’s key algorithms on the language in Fig. 6. This language
extends the standard lambda calculus, which consists of variables x, functions Az :t.e
(where the argument x has type t), and function application e e. To model condi-
tional control flow, we add integers n and the conditional form ifQ e then e; else es,
which evaluates to e; if ey evaluates to 0, and to es otherwise. To model structured
data (i.e., C structs) we introduce pairs (e, e) along with projection e.j. The latter
form returns the jth element of the pair (j € 1,2). We model pointers and dynamic
allocation using references. The expression ref e allocates a fresh memory location
m, initializing it with the result of evaluating e and returning m. The expression !e
reads the value stored in memory location e, and the expression e; := ey updates
the value in location e; with the result of evaluating es.

We model locks with three expressions: newlock dynamically allocates and re-
turns a new lock, and acquire e and release e acquire and release, respectively, lock e.
Our language also includes the expression fork e, which creates a new thread that
evaluates e in parallel with the current thread. The expression fork e is asyn-
chronous, i.e., it returns to the parent immediately without waiting for the child
thread to complete.

Source language types t include the integer type int, pair types t x t, function
types t — ¢, reference (or pointer) types ref (¢), and the type lock of locks. Note
that our source language is monomorphically typed and that, in a function Az:t.e,
the type t of the formal argument z is supplied by the programmer. This matches
C, which includes programmer annotations on formal arguments. If we wish to
apply LOCKSMITH to a language without these annotations, we can always apply
standard type inference to determine such types as a preliminary step.

3.1 Labeling and Constraint Generation

As discussed in Section 2, the first stage of LOCKSMITH is labeling and constraint
generation, which produces both label flow constraints, to model memory loca-
tions and locks, and abstract control flow constraints, to model control flow. We
specify the constraint generation phase using type inference rules. We discuss the
label flow constraints only briefly here, and refer the reader to prior work [Mossin
1996; Fahndrich et al. 2000; Rehof and Fahndrich 2001; Kodumal and Aiken 2004;
Johnson and Wagner 2004; Pratikakis et al. 2006a], including the LOCKSMITH con-
ference paper [Pratikakis et al. 2006b], for more details. In our implementation,
we use BANSHEE [Kodumal and Aiken 2005], a set-constraint solving engine, to
represent and solve label flow constraints. For the time being, we present a purely
monomorphic (context-insensitive) analysis; Section 6 discusses context sensitivity.

We extend source language types t to labeled types 7, defined by the grammar
at the top of Fig. 7(a). The type grammar is mostly the same as before, with two
main changes. First, reference and lock types now have the forms ref #(7) and lock®,
where p is an abstract location and ¢ is an abstract lock. As mentioned in the last
section, each p and ¢ stands for one or more concrete, run-time locations. Second,
function types now have the form (7, ¢) —* (7, ¢'), where 7 and 7’ are the domain
and range type, and £ is a lock, discussed further below. In this function type, ¢
and ¢ are statement labels that represent the entry and exit node of the function.
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T ou=int |7 x 7| (1,¢) =L (1,) | ref °(7) | lock®
Cu=CUC|7<7|p<pll<Ll]lop<Plo:n
Kk = Acc(p) | NewL(¥) | Acq(?) | Rel(¢)
| Fork | Call(¢,¢) | Ret(¥, ¢)
p € abstract locations
£ € abstract locks
¢ € abstract statement labels
((int)) = int ((t1 = t1)) = (((t1), d1) =° (((t2)), d2) @1, 2, ¢ fresh
({1 x £2)) = ((t1)) x ((t2)) (ref (1)) = ref P({(2))) p fresh
((lock)) = lock® £ fresh
(1)) = 7" where 7’ is T with fresh p, £, ¢’s, as above
Cho<(¢:k)=CH¢p<¢ and Ct+ ¢ : k and ¢ fresh
(a) Auxiliary definitions
VAR INT
[GR030 AR ol ol A ) Ci;p; T Fnint; ¢
Par
Cipi T er 131 PRrOJ
Cip1;T F e 725 2 Ci¢;Phe:m xm;9"  jE€1,2
C; ;T k (e1,e2) : 11 X 25 ¢2 CipiTkej:my¢f
ASSIGN
DEREF C;¢;T Fex :ref P(11); 91
REF Ci¢; T 1t refP(1); 91 C;d1;T Fea: 12502
C;¢;The:T;¢"  pfresh CF 1 < (¢ : Acc(p)) Chrm<n CF ¢2 < (¢ : Acc(p))
C;;T refe:refP(1); ¢ Cip;Thler 739 CipTer :=en:To;¢
ACQUIRE RELEASE
NEWLOCK C;p; ke lock’; ¢ C; ;T F e lockt; ¢/
C+ ¢ < (¢ : NewL(¥)) £ fresh Cr ¢ <(¢":Acqt)) C+ ¢ < (¢" :Rel(¥))
C; ¢; T + newlock : lock’; ¢’ C; ¢;T F acquire e : int; ¢"’ C; ;T F release e : int; ¢’
Fork Lam
C;¢'sTFe:T;9" 7= {(t)) CioaiTz:rhe: 1)
C+ ¢ < (¢ : Fork) d fresh £ = {locks e may access}
C; ¢;T F fork e : int; ¢ C; ;T F Azstee : (1, 0) =° (77, 04); 6
App COND
Ci¢iTker: (rda) =° (7, 6)); 1 C;;T F e : int; do
¢1;0Fez:m;da Chm<T Cigo;T'Eer ;01 CidosI'Eex: ma52
C - ¢a < (¢3 : Call(¢, ¢")) 7= {(11)) Ckn <7 Ctrn<rT
CF g3 < ¢ CF ¢\ < (¢ : Ret(4, ¢3)) Ck¢1<¢ Ck ¢ < ¢’ fresh
Cip;THeres:7'5¢ C; ¢;T F if0 eg then e; else es : 7; ¢’

(b) Type inference rules

Fig. 7. Labeling and Constraint Generation Rules
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We will usually say statement ¢ instead of statement label ¢ when the distinction
is made clear by the use of a ¢ metavariable.

During type inference, our type rules generate constraints C, including flow con-
straints of the form 7 < 7/, indicating a value of type 7 flows to a position of type
7', Flow constraints among types are ultimately reduced to flow constraints p < p’
and £ < ¢/ among locations and locks, respectively. When we draw a set of label
flow constraints as a graph, as in Fig. 3(a), p’s and ¢’s form the nodes, and each
constraint < y is drawn as a directed edge from x to y.

We also generate two kinds of constraints that, put together, define the ACFG.
Whenever statement ¢ occurs immediately before statement ¢, our type system
generates a constraint ¢ < ¢’. As above, we drawn such a constraint as an edge from
¢ to ¢'. We generate kind constraints of the form ¢ : x to indicate that statement ¢
has kind k, where the kind indicates the statement’s relevant behavior, as described
in Section 2.1. Note that our type rules assign at most one kind to each statement
label, and thus we showed only the kinds of statement labels in Fig. 3(b). Statement
labels with no kind, including join points and function entries and exits, have no
interesting effect.

The bottom half of Fig. 7(a) defines some useful shorthands. The notation ({-))
denotes a function that takes either a standard type or a labeled type and returns
a new labeled type with the same shape but with fresh abstract locations, locks,
and statement labels at each relevant position. By fresh we mean a metavariable
that has not been introduced elsewhere in the typing derivation. We also use the
abbreviation C' F ¢ < (¢’ : k), which stands for C + ¢ < ¢, C F ¢ : K, and
@' fresh. These three operations often go together in our type inference rules.

Fig. 7(b) gives type inference rules that prove judgments of the form C;¢;T
e : 7;¢', meaning under constraints C' and type environment I' (a mapping from
variable names to labeled types), if the preceding statement label is ¢ (the input
statement label), then expression e has type 7 and has the behavior described by
statement ¢’ (the output statement label). In these rules, the notation C + C’
means that C' must contain the constraints C’. Viewing these rules as defining
a constraint generation algorithm, we interpret this judgment as generating the
constraint C’ and adding it to C.

We discuss the rules briefly. VAR and INT are standard and yield no constraints.
The output statement labels of these rules are the same as the input statement
labels, since accessing a variable or referring to an integer has no effect.

In PAIR, we type e; with the input statement ¢ for the whole expression, yielding
output statement ¢;. We then type es starting in ¢, and yielding ¢-, the output
statement label for the whole expression. Notice we assume a left-to-right order of
evaluation. In PROJ, we type check the subexpression e, and the output statement
label of the whole expression is the output of e.

REF types memory allocation, associating a fresh abstract location p with the
newly created updatable reference. Notice that this rule associates p with a syn-
tactic occurrence of ref, but if that ref is in a function, it may be executed multiple
times. Hence the single p chosen by REF may stand for multiple run-time locations.

DEREF is the first rule to actually introduce a new statement label into the
abstract control flow graph. We type e;, yielding a pointer to location p and
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an output statement ¢;. We then add a new statement ¢’ to the control flow
graph, occurring immediately after ¢;, and give ¢’ the kind Acc(p) to indicate the
dereference. Statement ¢’ is the output of the whole expression. ASSIGN is similar,
but also requires the type 7o of es be a subtype of the type 71 of data referenced
by the pointer e;.

NEWLOCK types a lock allocation, assigning it a fresh abstract lock ¢, similarly
to REF. ACQUIRE and RELEASE both require that their argument be a lock, and
both return some int (in C these functions typically return void). All three of these
rules introduce a new statement label of the appropriate kind into the control flow
graph immediately after the output statement label of the last subexpression.

In FORK, the control flow is somewhat different than the other rules, to match
the asynchronous nature of fork. At run time, the expression e is evaluated in a new
thread. Hence we introduce a new statement ¢’ with the special kind Fork, to mark
thread creation, and type e with input statement ¢’. We sequence ¢’ immediately
after ¢, since that is their order in the control flow. The output statement label of
the fork expression as a whole is the same as the input statement ¢, since no state
in the parent changes after the fork.

In CoND, we sequence the subexpressions as expected. We type both e; and es
with input statement ¢, since either may occur immediately after eq is evaluated.
We also create a fresh statement ¢’ representing the join point of the condition,
and add appropriate constraints to C'. Since the join point has no effect on the
program state, we do not associate a kind with it. We also join the types 71 and
7o of the two branches, constraining them to flow to a type 7, which has the same
shape as 7; but has fresh locations and locks. Note that for the constraints in this
rule to be satisfied (as described in the following section), 72 must have the same
shape as 71, and so we could equivalently have written 7 = ((3)).

LAM type checks the function body e in an environment with z bound to 7, which
is the standard type ¢ annotated with fresh locations and locks. We create a new
statement ¢, to represent the function entry, and use that as the input statement
label when typing the function body e. We place ¢ and ¢/, the output statement
label after e has been evaluated, in the type of the function. We also add an abstract
lock ¢ to the function type to represent the function’s lock effect, which is the set
of locks that may be acquired or released when the function executes. For each
lock ¢ that either e acquires or releases directly or that appears on the arrow of a
function called in e, a separate effect analysis (not shown) generates a constraint
¢ < ¢. Then during constraint resolution, we compute the set of locks that flow
to ¢ to compute the lock effect. We discuss the use of lock effects in Section 2.4.
The output statement label for the expression as a whole is the same as the input
statement label, since defining a function has no effect.

Finally, APP requires that es’s type be a subtype of e;’s domain type. We also
add the appropriate statement labels to the control flow graph. Statement ¢ is
the output of es, and ¢, is the entry node for the function. Thus clearly we need
to add control flow from ¢ to ¢,. Moreover, ¢ is the output statement label
of the function body, and that should be the last statement label in the function
application as a whole. However, rather than directly inserting ¢, and ¢} in the

control flow graph, we introduce two intermediate statement labels, ¢3 just before
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C U {int < int} C
C U {refP(1) Sref"/(r’)} CU{p<p,7<7,7 <7}
C U {lock® < lock?'} cufe<ey

CU{r x 12 <7] x7}
CU{(r1,¢1) = (r{, ) < (72,62) =2 (75, ¢4)}

CU{rn <7/,2 <74}
CU{re <m1,7 < 74,010 < {2}
{p2 < ¢1,07 < ¢4}

R R

CU{p<p,p<p'} U= {p<p’}
cu{e<e <oy us {(£<e'y

Fig. 8. Label flow constraint rewriting rules

the call, and ¢’ just after. Statement ¢3 has kind Call(¢, ¢’), and statement ¢’ has
kind Ret(¢, ¢3). Pictorially, the control flow graph looks like the following, where
the ¢’s in the kinds of the Call and Ret nodes are drawn with dashed lines:

-

callg -~~~

s

L7 A
¢2—>¢3—>‘ N N
TS _-"" Ret(9

~— -

Using this structure, we can propagate certain dataflow facts “around” functions—
i.e., directly from Call to Ret, rather than through the function body—thereby
improving precision and gaining some speed up. In particular, we use this for our
lock state computation (Section 2.3).

3.2 Label Flow Constraint Resolution

After generating constraints using the rules in Fig. 7, we can then solve the con-
straints to compute various facts about the analyzed program. We use flow con-
straints to answer questions about which locations and locks are used by various
statements in the program, i.e., to perform a label flow analysis. These constraints
have the form ¢ < ¢’ where ¢ and ¢ are either locations p, locks ¢, or types 7.2
We apply the rewriting rules in Fig. 8 to translate the constraints to a simpler,
solved form. The first group of rewriting rules operate on constraints of the form
7 < 7'. These rules are standard structural subtyping rules, matching the shapes of
the left- and right-hand sides of the constraints and then propagating subtyping to
the components in the usual way (e.g., invariant for references and contravariant for
function domains) [Pierce 2002]. We will assume that the source program is type
correct with respect to the standard types, so that these rewriting rules will never
encounter a constraint they cannot reduce further, i.e., in the constraint 7 < 7/,
the types 7 and 7’ will always be the same modulo abstract locations and locks.
After applying these rewriting rules, we are left with constraints p < p’ and
¢ < {'. The remaining rewrite rules add any transitively implied constraints. Here
the notation C' U = (C’ means we add the constraints C’ to C. We define Sol(C)
to be the set of constraints computed by exhaustively applying the rules in Fig. 8

2We discuss the control flow constraints on ¢ labels in Section 3.3.
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to C. We can then define

Flow(C,p) = {p"| p' < p € Sol(C)}
Flow(C,f) = {¢' | ¢ <€ Sol(C)}

In other words, Flow(C,p) is the set of abstract locations that flow to p in the
constraints C, and similarly for Flow(C,¢). We can use this information to answer
questions about locations and locks in the program. For example, given a deref-
erence site !e, if type inference assigns e the type ref?(int) and ref €’ the type
ref *' (int), then if it is possible for e to evaluate to ref ¢/, then p’ € Flow(C, p). In
other words, the set Flow(C, p) conservatively models the set of locations that may
flow to the reference annotated with p.

Consider the example of Section 2. In function threadl() (lines 23-28) the ar-
gument a corresponds to a variable with type ref #&=(ref P (int)) in this language,
ignoring for now the special void* type. (We follow the convention that the location
name is subscripted by the program variable that names the location.) Similarly, the
local variable y in thread1() corresponds to a variable with type ref P&v (ref Pv (int)).
(Because in C variables can be l-values, we consider all variables to be references
to the corresponding type, adding an extra level of reference that is implicit in
the C program.) In C, variable names are implicitly dereferenced when they oc-
cur in a read context. For example, the assignment to y in threadl() (line 24)
can be written as y = a, where the occurrence of y at the left hand side of the
assignment denotes the location y whereas the occurrence of a at the right hand
side denotes its contents. In our formal language, that assignment corresponds to
y := la. Typing this assignment with ASSIGN and DEREF creates the flow con-
straint ref P« (int) < ref Pv(int). Then, the second and first rewriting rules in Fig. 8
solve the constraint reducing it to p, < p,, and thus p, € Flow(C, p,).

Note that the constraints in this section are monomorphic and do not include the
(¢ and )i edges we introduced in Section 2 for context sensitivity. We will discuss
how to incorporate context sensitivity into this system in Section 6.

3.3 Data Flow Analysis with the Abstract Control Flow Graph
LOCKSMITH uses a generic, mostly standard dataflow analysis engine to com-
pute per-program point information, such as which locks are held, by propagating
dataflow facts through the ACFG. To construct a dataflow analysis, the program-
mer specifies the following characteristics of the target analysis [Aho and Ullman
1977]:
—The direction of the analysis (forwards or backwards)
—The type of the dataflow facts to propagate
—Initial dataflow facts at the program entry, and at each statement label
—A merge function to join dataflow facts
—Transfer functions for each kind of statement label

In the remainder of this section, we discuss two dataflow analyses used by LOCK-

SMITH—lock state analysis and correlation inference—and then compare the per-
formance of various strategies for implementing the fixpoint computation.
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[ ¢ kind | Acq () ] [ ¢ kind | Acqou(9) l
Acc(p)| Acap (9) Rel(0) | Acd y (9) \ Flow(C, D)
Fork |0 Call(€, ') | Acq,, (6) N Flow(C, £)
NewlL (¢) | Acg;,, (6) Split(¢') = Acg;, (¢) \ Flow(C,0)
Acall) | Aca,.(6) U Flow(C0)] | Ret(6,9")| Aca, (6) U Split(9)

Fig. 9. Transfer functions for lock state inference

*® N

let g () =ty in Taca) Kcal’ A Ret Kacor KRell) Fcar’ L Ret 2
ace ki = A~ 6 . 16 >
release k;

g () a7 Acc(y)

Fig. 10. Splitting the lock state at a function call

3.3.1 Lock State: Forwards dataflow. LOCKSMITH’s lock state analysis is a for-
wards dataflow analysis, where the sets of dataflow facts are the sets of locks held.
The set of held locks is initially empty for all statement labels, and the merge func-
tion is set intersection. Fig. 9 lists the transfer functions for each kind of statement
label. Acc(p) and NewL(¢) do not alter the lock state, since neither acquires or re-
leases a lock. The transfer function for Fork always returns the empty set of locks,
as every new thread starts with all locks released. (Recall from Fig. 7 that the first
statement label in a thread has kind Fork.) The transfer functions for Acq(¢) and
Rel(¢) add and remove, respectively, Flow(C,¢) from the lock state. This latter set
includes £ and all its aliases. The separate linearity check (mentioned in Section 2.5)
ensures this set contains only one run-time lock. In our implementation, we also
signal a warning at an attempt to acquire or release a lock that is already acquired
or released, respectively.

The transfer function for Call(¢, ¢’) partitions the held locks into two non-overlap-
ping sets. The transfer function sets the output set of held locks to be the input
set intersected with Flow(C,¢), which contains the lock effect of the function, i.e.,
the aliases of all locks that may be changed by the called function. It is this
intersection that will be propagated into the body of the function. The transfer
function saves the remaining held locks in the set Split(¢’). Then the transfer
function for Ret(¢, ¢’) adds the saved locks back to the held set. Due to the way
the inference rules generate fresh variables, it is always the case that ¢’ is unique,
generated fresh for each call site.

For example, consider the program in Fig. 10. This program calls function g
twice, once with k held, and once without holding k. It also accesses x with k held,
just after the first call to g. The function g itself accesses y. The right side of the
figure shows the ACFG for this example, annotated with the lock state Acq,,;(¢)
at the end of each edge from statement ¢. Statement numbers are given below
the statement kinds. Initially, no locks are held () on the edge to Acq(k) [2]), and
after line 2 the lock state is {k} (shown on the edge from Acq(k) [2]). Then at
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[ ¢ kind [ Corrout (¢) ] l ¢ kind [ Corrout (9) l
Acc(p) | Corrin (@) U{p > Acqyy:(0)} Acq(?) | Corrin (o)
(p shared) Rel(¢) | Corrin(¢)
Fork | Corrin(9) Call(¢, ¢") | (Corrin(¢) + Split(¢")) U Corripn (¢')
NewL (¢€) | Corrin () Ret(¢,¢') |0

Fig. 11. Transfer functions for correlation inference

the call to g, we split the lock state into two parts. Since g does not acquire or
release any locks, we propagate {k} N () = (} from the Call [3] to Acc(y) [1]. During
correlation inference, we will recover the fact that y was accessed with k held. We
propagate the other part of the lock state, {k} \ 0}, from Call [3] to Ret [3]. Next,
after Ret [3], the lock state is {k} U@, i.e., the locks that flowed “around” g plus the
locks that flowed “through” g. Thus at Acc(x) [4], we see that k is held. Continuing
through the program, at the next call to g, the empty set of locks is held, and that
is propagated into g as before. This time after the Ret no locks are held, and the
program continues.

Critically, with this analysis we can discover that x is guarded by k. Imagine if
we had not split the lock state. Then we would have no dashed lines in the graph
in Fig. 10, and we would directly connect the Call and Ret nodes to Acc(y). But
then we would have two edges flowing to Acc(y), one with state {k}, and one with
state ). We would then intersect these sets and decide that no locks were held
at the entry to g. That summarization is fine for g, but when we propagate this
information, we would decide no locks were held after the Ret statement labels in
the ACFG, and thus we would think x was accessed with no lock held.

In essence, by splitting the lock state, we make functions parametric in locks they
do not change; similar approaches have been used in other type systems [Smith
et al. 2000; Foster et al. 2002]. (We do propagate information about changed locks
into the function, since otherwise we would not be able to track the state of those
locks correctly.) We have found this kind of lightweight polymorphism critical to
LOCKSMITH’s precision. It is particularly important for commonly called functions
such as printf, which would otherwise almost always cause the lock state to be
empty upon their return.

3.3.2  Correlation Inference: Backwards dataflow. LOCKSMITH also uses the
dataflow analysis engine to implement correlation inference. Recall from Section 2.4
that a correlation constraint has the form pt>{¢1, ..., ¢,}, where the ¢; are the locks
that are held during an access to p. To generate such constraints the analysis uses a
backwards propagation, where the per-¢ state is a set Corr of correlations. Initially
the set of correlations is empty for all statement labels, and the merge function is
set union.

Fig. 11 shows the transfer rules for correlation inference. Note that since this is
a backwards analysis, Corr;,(¢) corresponds to the state after statement ¢, and
Corrout(¢) corresponds to the state before ¢.

The transfer function for Acc(p) adds p > Acq,,.(¢) to the set of correlations,
where p is determined to be shared according to the sharing analysis (Section 4),
and Acq,,;(¢) was computed by the lock state inference. The transfer functions
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for Fork, NewL(¢), Acq(¢), and Rel(¢) simply propagate the set of correlations. The
last two transfer functions are the most interesting. Recall that during the lock
state computation, any held locks that are not changed by a function are not
propagated through the function body. However, any lock that is held for the
duration of a function call clearly is correlated with all accesses that occur in the
body of the function. Because of this, the transfer function for Call(¢, ¢’) adds the
set Split(¢’) of held locks that are “hidden” from the function body, to the lock set
of every correlation for the function. We define Corr;, (¢) + Split(¢') to be the set
of correlations {p > ({¢1,...,0,} U Split(¢'))} where pr> {{1,...,0,} € Corrin(d).

We can apply this transfer function to all correlations caused by accesses during
the execution of the invoked function. However, if the called function creates a new
thread, the correlations originating from that thread are clearly not protected by
the held locks in Split(¢'), even though they are propagated backwards through the
function body during the analysis. We handle that case by marking all correlations
that have been propagated through a Fork point as closed, so that their lock set is
not augmented through Split nodes.

We also include in the output of Call(¢,¢’) all correlations that occur after the
function returns, Corr;,(¢’). Then, the transfer function for Ret(¢, ¢') always re-
turns the empty set, as all correlations occurring after the function call are already
propagated to the point before it. This speeds up correlation inference, because we
need not propagate correlation information into called functions. Also, recall that
due to the use of the special call and return kinds in the lock state analysis, we
“hide” a set of held locks for every function call. Clearly, as the locks in the split
set are held during the function call, they protect all dereferences that occur in
this given evaluation of the function body. We therefore need to add that “hidden”
set of held locks to the set of correlations that occur in the function. Propagat-
ing correlations this way facilitates that, as only the correlations that occur in the
function body are propagated through the Call(¢, ¢') node.

To see these transfer functions in action, consider again the program in Fig. 10.
Initially the correlation sets are empty, but the transfer functions for accesses
Acc(x) [4] and Acc(y) [1] introduce two initial correlations in this program: x> {k}
(generated at Acc(x) [4]) and y > 0 (generated at Acc(y) [1]). The correlation
constraint x > {k} is first propagated backward to Ret [3], then to Call [3], then
Acq(k) [2], and then to the beginning of the program. Notice that following the
rule for Ret in Fig. 11, we do not propagate this constraint backwards into node [11]
in the called function.

There are two backward paths for the second correlation, on y. When we propa-
gate it to Call [3], we add the “hidden” lock k to the correlation, yielding y > {k} at
Call [3]. When we propagate it to Call [6], there are no hidden locks, and so we get
correlation y > (). We propagate both of these constraints unchanged to the start of
the program. Thus we have that y is correlated with both {k} and @), and therefore
y is not consistently guarded by a lock.

In our implementation, we also associate a call stack with each correlation con-
straint. When we propagate information through a Call node, we add the name
of the called function to the call stack. In this way, once correlations reach the
entry of the whole program, we can report not only what locations are correlated
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Benchmark [ Queue [ Stack [ Double Stack [ Postorder Set [ No worklist ]
aget 0.84 0.82 0.83 0.80 0.85 (5)
ctrace 0.61 0.58 0.60 0.57 0.59 (4)
engine 0.88 0.88 0.87 0.89 0.88 (5)
knot 0.77 0.74 0.76 0.74 0.78 (8)
pfscan 0.43 0.43 0.41 0.43 0.46 (5)
smtpre 5.92 6.77 5.63 4.31 5.37 (7)
3c501 9.03 9.46 9.21 9.39 9.18 (6)
eql | timeout | timeout timeout timeout 21.38 (4)
hpl00 | timeout | timeout timeout 2524.49 143.23 (15)
plip 30.73 30.21 28.53 25.11 19.14 (5)
sis900 85.07 82.89 84.97 79.37 71.03 (6)
slip | timeout | timeout timeout timeout 16.99 (5)
sundance 104.22 108.92 108.59 103.73 106.79 (11)
synclink | timeout | timeout timeout timeout | 1521.07 (11)
wavelan 19.69 20.08 19.66 19.76 19.70 (6)

Fig. 12. Time (in seconds) to perform correlation inference using several fixpoint strategies. The
rightmost column also includes the number of visits.

with which locks, but also on what paths the dereferences occurred. For example,
for the code in Fig. 10, if y were shared, we would report a data race, indicating
that the accesses were due to the call on line 3 and the call on line 6. We have
found that this “path” information makes LOCKSMITH error reports much easier to
understand.

3.3.3  Fizpoint Computation Strategies. We implemented several strategies for
finding a fixpoint of the sets computed by our dataflow analyses. First, we experi-
mented with worklist-based schemes. In these approaches, each time the input set
(i.e. the output of predecessors or successors, for a forwards or backwards analysis,
respectively) computed for some node ¢ changed, we would add ¢ to the worklist
for reconsideration. We tried four particular worklist implementations, discussed
in detail by Cooper et al. [2004]: Queue, Stack, Double Stack, and Postorder Set.
Initially, our implementations avoided adding duplicate nodes to the worklist, but
we found that the cost to detect and eliminate duplicates is comparable to the
gain from not processing the additional nodes. Thus, none of the implementations
reported here attempt to eliminate duplicate nodes.

Second, we implemented the following simple strategy for backwards (forwards)
analysis without a worklist:

(1) Starting from the exit (entry) nodes, perform a postorder (reverse postorder)
visit of the whole graph, applying the transfer function at each node to propa-
gate the state to its predecessors (successors).

(2) If anything changed during the last visit, then revisit the whole graph.

Using postorder for backwards analysis and reverse postorder for forwards analysis
is extremely important [Aho and Ullman 1977]. For example, postorder traversal
visits successors of ¢ before a node ¢. Thus in a backwards analysis, a postorder
traversal will (in the absence of cycles) require only a single pass through the ACFG
to reach a fixpoint.

Fig. 12 shows the times to perform correlation inference using the various strate-
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gies. A timeout indicates a run that did not terminate within one hour. We
found that for our benchmarks, the Queue, Stack, and Double Stack strategies
take roughly the same time, and the Postorder Set strategy is slightly faster. Sur-
prisingly, we discovered that getting rid of the worklist altogether is the optimal
strategy, performing significantly better on the larger benchmarks (the Linux kernel
drivers). For example, on slip, all four worklist algorithms time out after one hour,
whereas the no worklist strategy terminates in 17 seconds.

One would expect that the worklist strategies would visit far fewer nodes than
the no-worklist strategy, and indeed this is the case for our benchmarks. However,
LoCKSMITH uses hashconsing of state data structures to memoize transfer functions
on control flow nodes, and thus avoids re-computing the output state for every
control flow node visited, if the input has not changed. As a result, the cost of
maintaining the worklist far exceeds the cost of redundant visits to nodes. The last
column also shows the number of visits of the whole graph, in parentheses.

We do not present the respective measurements for the lock state analysis. We
found that because each benchmark includes a relatively small set of locks, the
sets of held locks at each program point are small. This makes the lock state
analysis quite fast, as little information needs to be propagated. Indeed, for all the
benchmark programs the running time for lock state analysis is negligible compared
to the total running time, and all five strategies work equally well.

4. SHARING ANALYSIS

As we discussed in Section 3.3.2; during correlation inference we can safely ignore
accesses to thread-local data, since such data need not be protected by locks. In this
section we show how we compute the set of thread-shared locations. We found that
our analysis allows LOCKSMITH to ignore a significant—usually dominant—fraction
of the accesses in the program as thread-local.

A simple, but coarse sharing analysis might work by determining the memory
locations read or written by each thread in the program; any location that is ever
accessed by more than one thread is potentially shared. Our core analysis (Sec-
tion 4.1) improves on this simple approach by ordering memory accesses according
to whether they happen before or after forking a child thread. In particular, even
if two threads access the same location, the location cannot be accessed simultane-
ously, and will not be considered shared by the core analysis, if all accesses in one
thread occur before all accesses in the other.

We refine this basic approach in two main ways. First, we use a simple scoping
refinement to avoid confusing non-conflicting accesses to local variables with the
same names but allocated on the stacks of distinct threads. Without this refine-
ment, if a parent forks two threads that execute the same function, accesses by
each thread to its own local variables would be considered conflicting, since two
unordered threads would be accessing the “same” location. Second, the core anal-
ysis only determines whether there are any unordered accesses of some location,
but fails to distinguish those accesses that are unordered from those that are not.
To gain back some of this lost precision, we use a simple uniqueness analysis to
track a location from the time it is allocated to the point it becomes assigned to
a global variable or passed to a function, both which are events that could lead to
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ErrF-DEREF XFLow-CTXT
P Fe:refP(r) D1 = [e1; (62 Uw2)] Dy = [e2; w2]
@5 = Flow(C, p) P> Py — P D = [(e1 Uea);wa]
o I'Hle: T D> Py — P
EFr-FORK
Pe;'He: T P C P° ®Z N ®“ C SharLocs
P; '+ forke: T

Fig. 13. Contextual effect rules for finding shared locations (selected)

the location being thread-shared—all accesses that occur before those points must
be thread-local. Both of these refinements add useful precision at low cost (Sec-
tion 4.2). We also tried tracking whether an access to an eventually shared location
occurs before or after the fork that precipates its being shared, but we found that
doing so did not add much benefit beyond the first two refinements (Section 4.3).

4.1 Contextual effects for finding shared locations

LOCKSMITH uses an effect system to infer which locations are thread-shared. Given
some expression e, the effect € of e is the set of all locations p that e could dereference
during its evaluation [Talpin and Jouvelot 1994]. In recent work, we proposed a
generalization of effects that we call contextual effects [Neamtiu et al. 2008]. The
contextual effect of e consists not only of the effect of e’s computation, but also the
effect a of the computation that has already occurred—called the prior effect—
and the effect w of the computation yet to take place—called the future effect. At
every occurrence of fork e in the program, we compute the effect € of e, the child
thread, and the future effect w of the parent thread. We consider as thread-shared
those locations in the intersection of these two sets. The implementation by default
differentiates between read and write effects, and does not consider memory that is
only read in parallel to be shared.

Fig. 13 contains selected typing rules from our contextual effect system as applied
to this sharing analysis. Full details can be found in our prior paper [Neamtiu et al.
2008]. In these rules, a contextual effect ® consists of a pair [¢;w], where the first
element is the standard effect, and the second element is the future effect.? In our
implementation, we generate effect-related constraints along with label flow con-
straints. For simplicity, we present effect typing rules here as a separate judgment,
but it would be straightforward to merge these rules with those in Fig. 8.

Err-DEREF types a dereference !e. In this case, the contextual effect ® of the
entire expression is computed by combining the effect ®; of the subexpression e,
defined in the first premise, with the effect ®5 of the dereference itself, defined in
the second premise. The second premise of EFF-DEREF requires that the standard
effect of ®5 includes p and locations that flow to it according to the label flow
analysis (written Flow(C, p), where the constraint set C' is due to the label flow
analysis discussed in the previous section). Here the syntax ®¢ refers to the ¢ (i.e.,

3We elide prior effects in these rules, because they are not needed in our sharing computation.
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P10 Hla;ly :int ®7, C P§ Poo; ' Hlx:int D5, C 5
7, N®Y C SharLocs 50 N ®% C SharLocs

let x = ref 1 n Py T - fork (Tz;ly) : int Do; T+ fork (1) : int
let y = ref 2 in
Ix: D1 > Py P
ly; ®; T+ fork (1z;!y); fork (! z) : int
fork (Ix; ly); where
fork (!x)

@ =[{pz,py}; 0]

@1 =[{pz,py}ti{p=}] P2 =[{pa};0]

P11 = [{pz, py}: 0] P22 = [{pz}; 0]

Fig. 14. Example program to illustrate sharing analysis

the first) component of ®. Given ®; and Py, the combined effect is computed in
the last premise by the judgment ®; > ®5 — P, defined by rule XFLOW-CTXT.

Looking at XFLOW-CTXT, the first premise requires that because effect ®; oc-
curs before @5, the future effect of ®; should include ®5’s standard effect €5 and
its future effect wy. Intuitively, rule XFLOW-CTXT computes the effect ® of the
sequential composition of ®; and ®5. Thus, returning to EFF-DEREF, the future
effect of ®; naturally must contain Flow(C, p), according to XFLOW-CTXT, since
the evaluation of e occurs before the dereference. The third premise of XFLOW-
CTXT states that the combined effect ® should contain the standard effects of both
®; and 5. Again, returning to EFF-DEREF, we can see that the e component of
® will thus contain the effect of e (i.e., ®7) and the effect of the dereference itself
(05).

Finally, EFF-FORK type checks thread creation. The second premise of FORK
indicates that the standard effect ®¢ of the thread itself should be contained in
the effect of the parent. Notice the future effect ®% of the thread is unconstrained
(effectively making it @)). In particular, as expected, it contains no information
about the effect of the parent, since the two will execute in parallel. Finally, the
third premise adds to the set SharLocs the locations that the parent and child
thread (and threads they fork) could access in parallel: the intersection of the
standard effect of the child thread ®¢ and the future effect ®* of the parent.

We can see this analysis in action in Fig. 14. The left side of the figure shows
a simple code example, and the right side shows the typing derivation for the last
part of the example, involving the two thread forks.* Within this derivation, the
boxed portion shows the subderivation for the expression fork (!z;!y). Here we
can see that the standard effect of this expression is ®; = {p,, py}, i.e., locations
corresponding to x and y. The future effect 4 consists of the location p,—this
is because the effect of the subsequent thread spawn is {p.}, and by EFFDEREF,
this effect is also attributed to the parent thread. Consequently, the intersection of
these two effects is {p, }, indicating that x is potentially accessed simultaneously by
two threads. The second thread spawn yields no additional shared locations (since

5 = 0).

There are two interesting things to notice about this example. First, y is accessed

4Note that the syntax ej;es can be treated as shorthand for (Az:t.e2) ey for some z that does

not occur free in ez, and t being the source type of ej.
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Pointers Allocation Sites
Benchmark Total [ Shared [ In scope | Total [ Shared [ In scope
aget 1,411 258 235 352 64 62
ctrace 1,089 129 116 311 12 12
engine 1,441 60 17 410 11 7
knot 1,238 338 238 321 30 15
pfscan 987 53 48 240 8 7
smtprc 4,275 196 67 | 1,079 74 46
3c501 10,020 954 913 408 20 20
eql 4,572 2,377 2,168 273 43 35
hpl00 | 19,401 | 5,268 5210 | 497 15 15
plip 13,249 2,867 2,823 466 49 49
s$is900 | 38,624 | 2,648 2,594 | 779 11 9
slip 13,748 1,338 1,281 382 20 19
sundance 34,142 3,313 3,267 753 9 9
synclink | 51,147 | 11,621 11,472 | 1,298 155 139
wavelan 18,799 2,535 2,125 695 128 10
Total | 214,143 | 33,955 32,574 | 8,264 649 454

Fig. 15. Precision of sharing analysis and scoping

in the parent thread, at line 4, and then subsequently in the first child thread.
Nevertheless, our analysis does not consider y as shared, and indeed, y can never
be simultaneously accessed by both threads. Second, the example illustrates that it
is crucial to include the effect of a child thread in the effect of its parent. Otherwise,
we would not have discovered that the two child threads both might simultaneously
access T.

Fig. 15 measures the precision of the sharing analysis. For each benchmark, the
second column shows the total number of pointers and the third column shows the
number of shared pointers, computed by intersecting the effects at thread creation
points. We ignore the fourth column for now and return to it in Section 4.2. We
also report the results of the sharing analysis in terms of allocation sites, where an
allocation site is either a call to malloc() or the location of a variable definition (fifth
and sixth columns, ignore the last column). The results underline the effectiveness
of using contextual effects to compute shared memory locations; only 16% of all
pointers and only 8% of all allocation sites are in the SharLocs set computed by
Fork. This precision is critical to reducing false positives in LOCKSMITH: thread-
local data is almost always accessed without a lock held, and thus if LOCKSMITH
incorrectly determines a location is thread-shared, it will likely report a data race
for that location.

4.2 Scoping and Uniqueness

We used two additional optimizations to improve the results of the sharing analysis
even further. Consider the program in Fig. 16. Here the reference g (line 1) is
visible within the function f, which allocates two references x and y (lines 3-4),
then writes to them (lines 5-6), and then assigns x to g (line 7). The program calls
function f twice (lines 9-10) in two parallel threads. In this example, the sharing
analysis from Sections 4.1 and 4.3 will determine that x and y are thread-shared at
the writes on lines 5-6, because they are in the effects of both threads. However,
in both cases this is overly conservative.
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let g = ref (ref 0) in
let f () =
let x = (ref 42) in
let y = (ref 0) in
y =1,
x = 43;
g =X
in
fork f();
7()

SO 0 N L~

~

Fig. 16. Limitations of core sharing analysis

Scoping Optimization. Notice that the location y refers to is allocated in the
scope of f and never escapes. Hence, the uses of y by the two different threads must
refer to distinct memory locations. More generally, when computing thread-shared
locations, we can hide effects on locations that must be thread-local due to scoping.
Formally, we change the type rule for fork as follows:

Err-FORK-DOWN
b, I'Fe: T

oS C P° p= U Flow(C, p) O NP N 5 C SharLocs
pEA(T)

®;I'+forke: T

Here we compute the set g of labels that are reachable in the label flow graph from
locations in I', meaning they are visible to both the parent and child thread. Then
we only add locations to SharLocs if they are also in g.

Fig. 15 shows the benefit of this optimization. The fourth column shows the
number of shared pointers and the last column shows the number of shared alloca-
tion sites when using the revised rule EFF-FORK-DOWN. The average percentage
of shared pointers and allocation sites improves to 15% and 6%, respectively.

Uniqueness Analysis. Returning to the example program in Fig.16, note that the
scoping optimization does not apply to x, since it escapes via a write to the global
variable g. However, while x does escape the scope of f eventually, there is no way
that it can be accessed by any other thread during the write at line 6, since the
aliasing on line 7 has not yet occurred. So, we can safely ignore the access to x at
line 6, not requiring it to be protected by a lock.

This situation can occur in C programs when a struct is malloc’d and initialized
thread-locally before becoming shared. To model this situation precisely, we devel-
oped a uniqueness analysis to determine when a memory access is guaranteed to
be thread-local because the accessed location has not yet become aliased. We then
ignore these accesses during the correlation analysis.

Our uniqueness analysis is implemented as a simple, intraprocedural dataflow
analysis. Whenever a location is created (through a local variable definition or
a call to malloc), we mark it as unique. When a unique location p is assigned
to any non-unique location, or a variable with location p has its address taken, p
becomes non-unique. Using this analysis, we discover that x is unique on line 6 in
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With scoping Without scoping

and uniqueness and uniqueness
Benchmark | Time (s) | Warnings | Time (s) | Warnings
aget 0.85 62 0.88 64
ctrace 0.59 10 0.58 10
engine 0.88 7 0.69 11
knot 0.78 12 0.83 28
pfscan 0.46 6 0.43 7
smtprc 5.37 46 5.46 74
3c501 9.18 15 8.93 15
eql 21.38 35 20.01 35
hp100 143.23 14 140.97 14
plip 19.14 42 18.75 44
sis900 71.03 6 70.77 6
slip 16.99 3 16.65 3
sundance 106.79 5 103.21 5
synclink 1521.07 139 1454.91 155
wavelan 19.70 10 20.60 128

Fig. 17.  Scoping and uniqueness

our example, and hence is thread-local.

Fig. 17 shows the aggregate effect of these two optimizations for LocksMITH. We
compare the running time and number of warnings when using both techniques,
shown in the second and third columns, against the running time and number of
warnings without them, in the fourth and fifth columns. Our results show that
the effect on running times is negligible, but in several of the benchmarks the two
optimizations determine that many accesses are thread-local, significantly reducing
the number of warnings. In all benchmarks but ctrace, the gain in precision is due
purely to the scoping optimization rather than the uniqueness analysis.

4.3 Flow-sensitive sharedness

Consider the example in Fig. 14 again. Suppose we add acquire [ and release [ before
and after, respectively, each access !z in the two child threads (lines 5 and 6), for
some lock . Also suppose that x is aliased by a global variable immediately after
its allocation. This changed program will be correct, but our analysis will falsely
complain that the dereference of = at line 3 is a potential race because it is not
protected by a lock. Moreover, the scoping optimization and uniqueness analysis
described in Section 4.2 do not apply, as x is aliased by a global variable. However,
at this dereference site, x is not actually shared, and thus requires no guarding
lock. This is because it will not become shared until both of the child threads are
spawned, at lines 5 and 6.

In this case, as in the uniqueness analysis in Section 4.2, we can safely ignore a
memory access when the accessed location is thread-local during the access, even
if it later becomes shared.

To address this problem, we can use a simple dataflow analysis along the ACFG
to determine at which sites in the program a location can be dereferenced after it
becomes shared. Any sites that occur before it becomes shared can be dropped from
correlation inference. The transfer functions for the analysis are straightforward,
as shown in Fig. 18. In essence, we seed the analysis at the fork points with those
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| ¢ kind | Shout (@)
Fork |the portion of SharLocs computed at this fork site
all others Shin (@)

Fig. 18. Sharedness inference

Benchmark No dataflow Context-insensitive Context-sensitive
Time(s) | Warnings | Time(s) | Warnings | Time(s) | Warnings
aget 0.80 62 0.85 62 1.73 62
ctrace 0.58 10 0.59 10 0.81 10
engine 0.89 7 0.88 7 1.27 7
knot 0.64 12 0.78 12 1.70 12
pfscan 0.45 6 0.46 6 0.57 2
smtprc 5.11 46 5.37 46 16.71 46
3¢501 9.29 15 9.18 15 11.46 15
eql 21.39 35 21.38 35 24.35 35
hp100 143.45 14 143.23 14 172.97 14
plip 19.18 42 19.14 42 37.80 42
sis900 71.96 6 71.03 6 82.35 6
slip 17.05 3 16.99 3 18.92 3
sundance 106.89 5 106.79 5 117.01 5
synclink || 1,513.94 139 | 1,521.07 139 | 1,823.91 139
wavelan 19.69 10 19.70 10 26.84 10
Total 1,931.31 412 1,937.44 412 | 2,338.40 408

Fig. 19. The effect on LOCKSMITH’s results of different dataflow strategies for finding shared
location dereference sites

locations made possibly shared due to that fork. Specifically, we combine the type
rules in Fig. 13 with Fig. 7 to get a judgement of the form C';¢; ®;T' - fork e : 7;¢
for typing fork e expressions. Then, at every such point in the program, we set
PN PY C Shyn(¢) to seed the analysis.

Unfortunately, while this optimization adds precision in general, it is not very
helpful for our benchmarks, as shown in Fig. 19. Columns 2 and 3 in the figure
show the results of LOCKSMITH when using the contextual effects analysis (in-
cluding scoping and uniqueness) to compute shared locations, without using the
dataflow analysis, while columns 4 and 5 include the dataflow analysis. We see
that the running times are nearly the same, but unfortunately, so are the warning
counts. One reason for this is that a location that is eventually shared may be
written to by the parent after the child is forked, and then shared with the child by
writing to a global variable. The dataflow analysis conservatively considers all ac-
cesses after the fork to be potentially shared. When we make the dataflow analysis
context-sensitive (Section 6.4), we see an improvement in one case—pfscan has 4
fewer warnings. However the context-sensitive results are clearly more expensive to
compute. Thus, because employing dataflow is essentially free and could increase
precision, we enable it by default, while context-sensitive dataflow for discovering
sharing can be enabled via a command-line flag. (Thus the results from columns 4
and 5 in Fig. 19 match the results in Fig. 4.)
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Field-sensitive Field-insensitive
CGen Total CGen Total

Program Tm (s) Tm (s) Labels | Shr | Wrn | Tm (s) Tm (s) Labels | Shr Wrn
aget 0.55 0.85 5,634 62 62 0.50 0.67 5,490 62 | 62(11)
ctrace 0.40 0.59 4,351 12 10 0.38 0.53 4,285 15 13(5)
engine 0.76 0.88 5,051 7 7 0.79 0.91 4,989 59 59(7)
knot 0.55 0.78 4,752 15 12 0.52 0.83 4,566 24 21(12)
pfscan 0.36 0.46 4,143 7 6 0.36 0.46 4,139 15 14(5)
smtprc 3.09 5.37 | 14,815 46 46 3.08 5.14 | 14,917 97 | 97(43)
3c501 7.92 9.18 | 25,905 20 15 7.60 18.56 | 22,976 42 42(6)
eql 2.72 21.38 8,954 35 35 2.39 17.99 7,484 42 | 42(18)
hp100 35.92 143.23 | 31,609 15 14 34.18 976.12 | 22,214 41 | 41(10)
plip 16.41 19.14 | 24,124 49 42 17.82 103.21 | 18,969 60 60(6)
sis900 65.66 71.03 | 84,797 9 6 60.45 132.18 | 71,630 42 42(6)
slip 15.11 16.99 | 25,371 19 3 15.44 33.24 | 18,333 56 31(5)
sundance 96.72 106.79 | 73,552 9 5 81.44 | 6835.26 | 61,540 44 44(8)
synclink | 1433.56 1521.07 | 68,643 139 139 | 1232.05 | timeout n/a | 171 n/a
wavelan 17.89 19.70 | 30,052 10 10 16.90 40.19 | 21,071 43 44(6)

Fig. 20. Field sensitivity

5. EFFICIENTLY AND PRECISELY MODELING STRUCT AND vOID* TYPES

In this section we discuss some additional techniques that we used to increase the
speed and precision of LOCKSMITH as applied to C programs. In particular, we ex-
plain how we analyze struct and void* types effectively. We initially explored some
of these ideas when developing CQual [Foster et al. 2006]. This paper’s contribution
is to express the ideas more precisely, in particular using a new formalism for our
analysis of structures, and to measure their costs and benefits directly, measuring
LoCksMITH’s performance and precision when using one or the other of several
different strategies.

5.1 Field sensitivity

In designing a static analysis for C, one important decision is whether to model
C struct types field-insensitively or field-sensitively [Heintze and Tardieu 2001]. In
a field-insensitive analysis, all fields of a struct type are conflated, i.e., x.f and x.g
are treated as the same location by the analysis for any fields f and g. In a field-
sensitive analysis, different struct fields are distinguished, i.e., x.f and x.g are treated
as different locations.® These two design points potentially trade off efficiency and
precision—field-insensitive analysis may be less precise but more scalable, because
it distinguishes fewer locations. In particular, if there are m occurrences of struct
types, each of which has n fields, then field-sensitive analysis would annotate O(mn)
types with fresh locations, whereas field-insensitive analysis would only annotate
O(m) types.

We implemented support for both field-insensitive and field-sensitive analysis in
LocksMITH. Field insensitivity is actually somewhat tricky to use in an analysis
like LocksMITH, which is layered on top of C types: True field insensitivity would
throw away those types, thereby requiring some significant approximations in the
analysis (e.g., conflating all labels of all fields of a struct). Thus, since we had a

5There is a third design point, a field-based analysis, in which x.f and x.g are different, but x.f and
y.f are the same if x and y are instances of the same struct type. We did not explore this option
for LOCKSMITH, however, because it would greatly reduce the effectiveness of context sensitivity,
which we found was important to improving precision.
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full field-sensitive analysis, we opted to implement a simple variation to simulate
the following key aspect of field insensitivity: each instance of a struct uses a single
location p to represent the top-level location of all fields. Otherwise we use the
standard flow-sensitive implementation. For example, suppose we have a struct
with three fields int x, int %y, and int * z. Then for an instance of this struct, fields
X, ¥, and z would have types ref ?(int) (since x can be written to, it has a ref type),
ref P (ref Pu (int)), and ref ? (ref P~ (int)), respectively.

Fig. 20 compares the two approaches. For each style of analysis, we list the
time for constraint generation (including annotating types with fresh labels, i.e.,
abstract locations and locks), the total analysis time, the number of generated labels
(locations and locks), the number of shared locations, and the number of reported
warnings. Note that since LOCKSMITH issues one warning per unprotected shared
location, this means warning counts from field-insensitive and field-sensitive analysis
are incomparable: A single warning from field-insensitive analysis might actually
correspond to multiple races from the field-sensitive analysis. To normalize the
warning counts, if there is a warning on a location corresponding to a struct field,
we count that as n warnings for comparison purposes, where n is the number of
fields in that struct instance, as computed by our lazy fields algorithm (Section 5.2).
The normalized warnings for the field-insensitive analysis are listed in the rightmost
column, with the raw number of warnings in parentheses.

These results show that the field-insensitive analysis takes less time to gener-
ate constraints and generally creates fewer labels than the field-sensitive analy-
sis.% However, even for the very slightly reduced precision with field insensitivity—
conflating the locations of all struct fields—many more locations are considered
shared, which in turn makes LOCKSMITH as a whole both less precise, as evidenced
by the warning counts, and considerably slower, since it must infer correlations for
more aliases.

5.2 Lazy struct fields

Since field-sensitive analysis can potentially be expensive, in order to achieve the
performance reported in Fig. 20 we had to implement field sensitivity carefully. At
first, we used a naive approach, in which we fully annotated all field types of all
struct instances. We quickly ran into scalability problems, however, and were not
able to analyze any but the smallest benchmarks.

Examining our benchmarks, we found that many C struct types have a large
number of fields (up to 300!). However, many large struct types are declared by a
library and only used in a small subset of the code, and this subset often accesses
only a fraction of the struct’s total fields. Our naive implementation was assigning
abstract locations and locks to all of the rarely- or never-used fields, wasting memory
and time generating constraints among them.

To regain scalability, our field-sensitive implementation lazily annotates the fields

6For one program, smtprc, there are fewer field-sensitive labels than field-insensitive labels. This
is because the field-insensitive analysis always creates at least one label (for the location of all
fields) for every occurrence of a struct, whereas the field-sensitive analysis might avoid creating
any labels for a struct instance if it is created and then immediately equated with another struct
instance.
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cu{¢=¢}r = C[¢/¢]
CU{Clil = m,¢li] =2} U= {n =7}

(c¢) Constraint resolution rule

Fig. 21. Type inference rules for modeling pairs lazily

of struct types [Foster et al. 2006]. Initially we leave all occurrence of struct types
unannotated. Then whenever we encounter a field access in the program, we add the
accessed field to the corresponding struct type. If we create a label flow constraint
between two struct types, we equate the labels on their fields.

Fig. 21 extends the inference rules from Fig. 7 to implement this lazy field gen-
eration algorithm. Our formalism uses pairs instead of general structs, and so we
illustrate our approach by modeling pairs lazily. Fig. 21(a) gives the new type and
constraint definitions. Types are the same as before, except pair types now have
the form ¢ x¢ ¢, where C is a pair label. Notice that this pair type contains unan-
notated types t. The pair label ¢ is used to track the labeled components of the
type: the constraint ([j] = 7 indicates that component j of any pair type annotated
with ¢ has annotated type 7. The constraint (; = (» indicates the corresponding
components of pairs labeled with ¢; and (> have the same types.

We also extend ({-)) to introduce fresh pair labels. As shown, when we translate
a standard pair type into a labeled pair type, we tag it with a fresh pair label but
do not introduce labels for the component types. This annotation function is used
in LAM from Fig. 7 to give fresh labels to programmer-supplied types. Thus we see
the laziness of this approach: we do not automatically create labels for a pair type
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when it is mentioned in the program text.

Fig. 21(b) gives our modified type rules. PAIR types pair creation, which now
associates a fresh pair label ¢ with the output type and constrains the components
of ¢ to their corresponding labeled types. Notice that there is no laziness in this
rule, because we have labeled types for e; and e;. Here we compute the standard
types t1 and to (of e; and es, respectively) by stripping off all labels from 71 and 75.
Using standard types keeps the analysis “lazy.” Standard types have no (wasted)
location or lock annotations; instead, we track the omitted locations off to the side
using (.

More interestingly, PROJ types projection, which lazily annotates only the ac-
cessed component of the pair. We create a type 7; with fresh labels and constrain
it to be equal to ([j]. In our implementation, rather that creating constraints
¢[4] = 7 and then solving them later, we solve these constraints on-line, as we ap-
ply the type inference rules. We maintain a partial mapping ST from each ([j] to
its type. Initially ST is empty. In ProJ, if ST'(¢[j]) exists, we use it in place of 7;
rather than making up a fresh type. Otherwise, we do make a fresh type 7; and set
ST(¢[j]) = 7. Our implementation for PAIR is similar.

Fig. 21(c) gives the resolution rules for our new constraint forms. The first
rewriting rule is for subtyping among pair types. Here we assume the standard
types of the pairs match (i.e., the program passes the standard type checker) and
equate the pair labels, which are merged by the next rewriting rule. The last rule
equates types for different occurrences of ¢[j].

Notice that we lose some precision here compared to the previous type system.
In our lazy approach, subtyping among pair types requires their component types
to be equal. The constraint resolution rule from Fig. 8, on the other hand, permits
subtyping the component types, which is more precise. However, in practice, C
programs mostly manipulate pointers to structs, and subtyping pointer types re-
quires that the pointed-to types are equal (Fig. 8), which negates any benefits of
the more precise subtyping rule. Thus we lose little practical precision with this
approach.

Moreover, in our implementation, we maintain pair labels ¢ in a union-find data
structure. Given the constraint { = (', we unify the two sides of the equation
and equate the associated types in S7T. This unification process reduces the need
to create types for fields. For example, if [0] = 7 and ('[1] = 7 are the only
mappings in ST, then after we unify the pair labels we will have ([0] = {'[0] = T
and ¢[1] = ¢'[1] = 7/, without creating any additional field types. Thus, we also
gain efficiency from this approach.

We already saw in Fig. 20 that field sensitivity, while it typically produces more
labels that field-insensitive analysis, does not yield an inordinate number of labels.
Fig. 22 gives some measurements that illustrate why this is the case. For each
benchmark, we list the total number of struct types in the program, the number of
instances of all struct types, the total possible number of instance fields, and the
instance fields that are actually used, both in absolute numbers and as a percentage
of the total number of fields. We define the total number of instance fields as all
the used fields of all instances of struct types. For example, if a program defines
two instances of a single struct type with three fields and the program accesses

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



37

struct Instances
Benchmark | Types Total | Total fields Used fields
aget 11 61 563 179 (32%)
ctrace 12 43 427 79 (19%)
engine 14 48 618 85 (14%)
knot 16 68 565 156 (28%)
pfscan 13 65 639 78 (12%)
smtprc 19 80 1,019 106 (10%)
3c¢501 37 1,025 14,691 3,768 (26%)
eql 33 888 9,617 2,301 (24%)
hp100 36 1,786 41,537 12,072 (29%)
plip 46 | 1,986 24,161 7,320 (30%)
sundance 58 4,141 51,400 16,504 (32%)
sis900 60 4,511 58,952 18,106 (31%)
slip 39 1,426 31,529 8,319 (26%)
synclink 49 5,431 68,423 38,497 (56%)
wavelan 58 2,879 31,823 11,608 (36%)
Total 501 | 24,438 335,964 | 119,178 (35%)

Fig. 22. Lazy field statistics

all fields of one instance and two of the other so that the lazy field analysis only
populates those with location labels, we “use” five instance fields out of a total
of six. This data shows that on average across all the benchmarks, only 35% of
the possible instance fields are actually used. Thus, lazy field analysis is effective
because modeling those fields would otherwise consume memory and time with no
gain in precision.

5.3 Modelling voidx*

In addition to deciding how to model structs, another important decision in ana-
lyzing C code is determining how to model void*, which is typically used by C
programmers to express polymorphism. For LOCKSMITH, the key choice is how
to track the abstract locations and locks of types that “flow” to or from voidx*
positions. We experimented with three different strategies:

—Conflate void*. Since any type might be cast to or from void*, an imprecise
but sound approach is to conflate all abstract locations and locks that reach a
void* type. More precisely, let 7 = ref ?(void) be an occurrence of voidx in
the program, labeled with location p. If we ever derive a constraint 7 < 7 or
7/ < 7, we equate all the locations in 7/ with p. This is quite conservative, since
it effectively aliases all locations reachable from a type that flows to or from a
void*. If any locks occur inside 7/, LOCKSMITH warns about the loss of precision,
and considers these locks non-linear and thus unable to protect memory locations.

—Singleton void*. In the previous approach, we conflated labels because void*
types may be cast arbitrarily. However, it could be that a particular void* in
the program is used with only one concrete type. We thus tried refining the
previous approach as follows. Let 7 = ref ?(void) be an occurrence of voidx.
We wish to define the partial function base_type as a map from void* occurrences
to the single concrete type it could be replaced with. Given a constraint 7 < 7/
or 7' < 7, there are three cases. If base_type(T) is as yet undefined, we set
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Conflate void* Single void* Type-based void*

Benchmark Tm (s) | Wrn Tm (s) | Wrn Tm (s) Wrn
aget 1.89 72 1.98 72 0.85 62
ctrace 0.60 10 0.61 10 0.59 10
engine 0.90 7 0.89 7 0.88 7
knot 1.46 12 0.77 12 0.78 12
pfscan 0.45 6 0.46 6 0.46 6
smtprc 5.22 46 5.26 46 5.37 46
3¢501 246.24 121 358.98 121 9.18 15
eql 12.40 41 12.58 42 21.38 35
hp100 105.80 50 782.52 50 143.23 14
plip 413.96 60 | 4,011.22 148 19.14 42
sis900 778.20 149 | 6,037.00 152 71.03 6
slip 88.79 68 | timeout n/a 16.99 3
sundance | 3,188.32 148 | 7,661.57 148 106.79 5
synclink | timeout | n/a | timeout | n/a | 1,521.07 139
wavelan 168.28 112 169.03 111 19.70 10

Fig. 23. Performance of void* strategies

it to 7. Otherwise, if 7/ has the same shape (i.e., underlying standard type) as
base_type(T), we generate the constraint base_type(7) < 7’ or 7/ < base_type(T), as
appropriate. Otherwise, we revert to the above conflation strategy, and collapse
base_type(T) and any other types that flow to 7. As before, if we collapse types
then we treat any locks occurring inside 7 as non-linear, and assume they do not
protect any locations. This approach is sound but is more precise than conflation
in the case of voidx*s that are used with only one type. Indeed, we found that
approximately one third of void* pointers in our benchmarks are only cast to or
from one non-void* type.

Type-based void*. Finally, we can improve further on the previous approach if we
are willing to sacrifice completely sound modeling of void*. For each standard
type t that flows to 7 = ref ?(void), we create a type base_type(,t). Then given
a constraint 7 < 7/ or 7/ < 7, we generate the constraint base_type(r,t) < 7’ or
7! < base_type(r,t), where t is the underlying standard type from 7’. Thus, our
base_type function is now indexed by the shape of the underlying type, similar to
a C untagged union. We will never collapse types (or mark locks as non-linear)
using this strategy. Modeling void#s this way is unsound, since we may miss
relationships among different types that are cast to or from void*—this would
be like storing a pointer into an untagged union but then extracting an integer.
Our assumption is that this behavior is unlikely or harmless to our analysis, since
if it were not the program would likely fail. By default, LOCKSMITH uses this
strategy, possibly sacrificing soundness, to reduce the number of false positives.
The user can switch to one of the above alternative, conservative strategies using
a run-time flag.

For all of these approaches, we need to integrate our modeling of void* with our
lazy modeling of structs. That is, we might discover during constraint resolution
that a void* type points to a struct type, or that a struct type contains a void*
type.
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1 struct cache_entry {

2 int refs;

8 pthread_mutex_t refs_mutex;

4

5 h

6

7 void cache_entry_addref (cache_entry xentry) {
8

9 pthread_mutex_lock(&entry—refs_mutex);
10 entry —refs++;

11 pthread_mutex_unlock(&entry—refs_mutex);
12

13}

Fig. 24. Example code with a per-element lock

Fig. 23 compares the running times and number of warnings produced for each
void* strategy. We can see that on most of the benchmarks, the type-based void*
approach yields both many fewer warnings and is much faster than the other ap-
proaches. This phenomenon is similar to that of Fig. 20: the more precise analysis
causes fewer locations to be conflated, which both speeds up the computation of
the Flow() sets and reduces the number of shared locations. Moreover, the type-
based warnings are much easier to follow for the user, as there is much less false
aliasing due to conflation. Though the type-based approach could be unsound, a
manual analysis of a sample of the additional warnings produced by the alternative
analyses found no additional races.

6. CONTEXT SENSITIVITY

So far, the analyses we have presented have been context-insensitive. While the
resulting analysis is easy to understand and implement, its precision suffers. This
section considers how we add context sensitivity to solve these problems.

We consider two kinds of context sensitivity. The first is standard: we would like
to analyze different calls to the same function distinctly, rather than conflate them.
We use an approach pioneered by Reps et al. [1995], who showed how to reduce the
problem of tracking flow context-sensitively through function calls to the problem
of context-free language (CFL) reachability. The insight is to view a call to and
return from some function f as a string containing a left and right parenthesis,
respectively, subscripted by an index identifying the call site. Thus the problem of
tracking flow through function calls is one of matching like-subscripted parenthe-
ses. We draw ideas more directly from Rehof and Fahndrich [2001] and Fahndrich
et al. [2000], which apply Reps et al.’s idea to label flow analysis and points-to
analysis, respectively. To solve context-free language reachability constraints, we
use BANSHEE, which encodes and solves the problem using set constraints.

In addition to function calls, the analyses presented so far conflate all locks in
a recursive data structure, causing further imprecision. Fig. 24 illustrates this
problem with code extracted from the knot web server. Here cache_entry is a linked
list with a per-node lock refs_mutex that guards accesses to the refs field. Without
some added context sensitivity, LOCKSMITH conflates all the locks and locations in
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1 let id = Xaref P%(int).a in fTTTTT : fTTTTT :
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Fig. 25. Precision gain for label flow from context-sensitive analysis with universal polymorphism

the data structure. As a result, it does not know exactly which lock is held at the
write to entry—refs, and reports that entry—refs may not always be accessed with
the same lock held, falsely indicating a potential data race.

We augment our analysis to solve this problem using a kind of “data structure
sensitivity.” To do this, we provide support for existential quantification to relate
elements within data structures. This support is encoded as a CFL reachability
problem in a manner similar to our encoding of context sensitivity for function calls.
We add annotations to specify that in type cache_entry, the fields refs and refs_mutex
should be given existentially quantified labels. Then we add pack annotations when
cache_entry is created and unpack annotations wherever it is used, e.g., within
cache_entry_addref. LOCKSMITH then can determine that the refs_mutex lock in a
node always guards the refs field in that node.

6.1 Examples

We provide two examples to illustrate our approach to supporting context sensitiv-
ity via CFL reachability, considering both universal and existential quantification.

Universal context sensitivity. Fig. 25 gives the canonical example illustrating the
benefits of context sensitivity for label flow analysis. (We discuss context-sensitive
dataflow analysis below.) This program defines an identity function id and applies
it twice on distinct locations, on lines 2 and 3. As in Section 2, we have indexed
each syntactic use of id with an integer. Fig. 25(b) shows a simplification of the
constraint graph produced by applying the context-insensitive type rules in Fig. 7.
Here pi is the location containing integer i, locations pa and pr are from the domain
and range types of id, respectively, and px and py are from the types of x and y.
Notice that when we compute the transitive closure of these constraints, we will
discover that both pl and p2 flow to pz, even though only pl may actually reach
the dereference of x at run time.

Fig. 25(c) shows how using context-free language reachability, which we discussed
briefly in Section 2, eliminates this imprecision. When we use the type of id, we
label the generated constraints with indexed parentheses. In our example, the call
on line 2 yields edges pl —(! pa and pa —)! pz, and analogously for the call on
line 3. When we resolve the constraints in Fig. 25(c), we only transitively close
paths that contain no mismatched edges. In this case, that means there is a path
from pl to px, since (I matches )1, but there is no path from p2 to pz, since (1
does not match )2.
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1

let f = X arefP%(int).0 in °
let g = X\ b:ref PP (int).print b in 02
let p=if --- then

packy (f, ref 1)
else

packs (g, ref 2)
in
unpack (pl, p2) = pin
pl p2

(a) Source program (b) Monomorphic analysis  (c) CFL polymorphic analysis

Fig. 26. Precision gain for label flow from context-sensitive analysis with existential polymorphism

Ezistential context sensitivity. Consider the example shown in Figure 26(a). In
this program, function g prints its argument, whereas function f does not.” In
lines 3—7 of this program we create existentially quantified pairs using pack opera-
tions in which f is paired two distinct locations, initialized with values 1 and 2. As
in the example for universal polymorphism above, we have indexed each syntactic
occurrence of pack with an integer. Using an if, we conflate these two pairs, binding
one of them to p. In the last line we use p by applying its first component to its
second component.

Fig. 26(b) shows a simplification of the constraint graph produced by applying the
context-insensitive type rules in Fig. 7. Again, pi is the location containing integer
i, locations pa and pb are from the domain types of f and g respectively, and ppl,
pp2 are from the types of the existential package p, and pprint is the domain of the
print instruction. In this example, f can only be applied to the reference to 1, and
g to the reference to 2. However, in the transitive closure of these constraints pl
flows to pprint, suggesting a flow that cannot happen at run-time.

Fig. 26(c) shows how using context-free language reachability eliminates this
imprecision. When we create the type of p, we label the generated constraints with
indexed parentheses. (This is as opposed to the case of universal polymorphism
above, where the parenthesis edges are introduced at the point of use rather than
the point of creation.) In our example, the pack on line 4 yields edges p1 —( ppl
and pp2 =) pa, and similarly for the call on line 6. We resolve the constraints in
the same way as in the previous example, which means that there is a path from
p2 to pprint, since (2 matches )2, but there is no path from pl to pprint, since (1
does not match )2.

In the remainder of this section, we show how to incorporate CFL context sensi-
tivity into our system and also apply it to dataflow analysis (analogously to Reps
et al [Reps et al. 1995]). In LOCKSMITH we apply the ideas of universal and exis-
tential polymorphism from label flow analysis to correlation inference, in the same
way. We focus on universal polymorphism here, and refer the reader to our previ-

"For the purpose of this example, we augment the language with a print expression that prints
the contents of its argument.
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(b) Additional type inference rules

Fig. 27. Extensions to Fig. 7 for context sensitivity

ous work on existential context sensitivity [Pratikakis et al. 2006a]. We end with
experimental results illustrating the precision benefits of context sensitivity.

6.2 Labeling and Constraint Generation

Fig. 27 extends our core constraint generation rules from Fig. 7, as in Pratikakis
et al. [2006a; 2006b]. We begin by introducing three new kinds of expressions, as
shown in Fig. 27(a). Expression let f = v in e binds f to value v during eval-
uation of e, assigning f a polymorphic type. Here we assume that the names of
polymorphically-typed variables are syntactically distinct from other (monomor-
phically) typed variables. In practice for C, we only introduce polymorphism for
functions, whose names are easily identified. Next, the expression f; corresponds to
a use of variable f annotated with index i. In practice, we simply assign a distinct
index to each syntactic use of a function name. Finally, fix f:¢t.v binds f to v recur-
sively inside of v (which will always be a function in practice). In C, all functions
are potentially mutually recursive, and so we treat a C program as if it were a set
of nested fix bindings. Notice that we do not need to visit a function’s definition
before its calls, because we can generate the right polymorphic function type from
simply the function declaration. We then generate the constraints for the function
body later upon encountering the function definition. So, it is not necessary to visit
function definitions in a topological order of the call graph.

Let- and fix-bound variables f are assigned polymorphic type schemes o of the
form (V.7,7). Here 7 is the generalized type, and 7 is the set of labels (i.e., p’s,
0’s and ¢’s) that are not quantified in the type scheme [Henglein 1993]. During
typing of the new language forms, we generate instantiation constraints of the form
n j; n’, where p is a polarity, either + or —, and ¢ is an index. Informally, such a
constraint means that there is some substitution S; that instantiates n to n’. The
polarity indicates the direction of “flow”. More particularly, a constraint n ji 7
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Cu{int <% int} = C
CU{refr(r) b refP'(r')} = CU{p=ip/,m =i 7'}
CU{lock® =i lock”} = CuU{L=<i e}
CU{ty xStz <ity x< 12} = CU{C =4 ¢}
CU{(r1,01) = (71, ¢1) =} (T2, 02) — (15, 95)} = _
CU{m 25 72,61 2 ¢2, 71 3 o, ) 5 dh)

CU{C=L YUl =7} U= {r =i ¢l
CU{C' =L U{Chl =7} U= (O] =L 7}

CU{p1 =L po,p1 < p2,p2 X4 p3} U= {po < p3}
CU{lr 2 Lo, b1 <o, by XY L3} U= {lo < L3}

Fig. 28. Extensions to Figs. 8 and 21 for context sensitivity

corresponds to an output from a function, and we draw it with an edge n —)% 7’.
Similarly, a constraint 7 < 7’ corresponds to an input to a function, and we draw it
with an edge ’ —( /. Notice that for a negative polarity constraint, the direction
of the graph edge is opposite the direction of the <.

Fig. 27(b) shows the new type inference rules.® LET first types vy, and then
types es with f bound to the type scheme (V.71,7), where 71 is the type of v1, and
7] is the set of free labels of T (as usual for Hindley-Milner-style polymorphism,
these are the labels we cannot quantify [Pierce 2002]). In INST, we instantiate a
type scheme (V.7,7) at index i. We generate a type 7/ by reannotating 7 with
fresh labels. We then generate an instantiation constraint 7 ji 7’ to indicate that
T is used at index i at type 7/, and we generate constraints 77 < 7 to indicate
that the substitution S; represented by the constraint 7 ji 7/ must not rename
any variables in 7, i.e., they must be instantiated to themselves. (Here the =+ is
shorthand for generating two constraints, one with polarity + and one with polarity
—.) Lastly, F1x combines LET and INST, binding f to a type scheme during the
typing of v, and then instantiating f to a fresh type as the result.

6.3 Context-Sensitive Label Flow Constraint Resolution

To compute the flow of labels in our new constraint system, we extend our constraint
rewriting rules as shown in Fig. 28. The first set of rewrite rules corresponds to
the standard subtyping rules. We reduce j; constraints to components of a type
in a manner that is invariant for references and pairs (due to lazy fields, and thus
analogously to equating pair labels in Fig. 21), and co- and contra-variant for
function return and argument types, respectively. Here we write p for the opposite
of polarity p.

The next two rules propagate instantiation constraints to components of a lazy
pair. The first rule requires that if ¢ is instantiated to ¢’, then the j component of
is instantiated to the j component of {’. The next rule handles the other direction
of instantiation. Note that in both rules, the generated constraint on the right-hand

8We have implicitly relaxed the definition of I' to also include type schemes o.
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side refers to (’[j] although that might be empty. In that case we assume that it is
set to {(7)) (not shown), i.e., a type of the appropriate shape, annotated with fresh
labels.

The last two rewrite rules propagate constraints along paths with matched paren-
theses. Pictorially, given a sequence of constraints py —( p; — py —)* p3, the first
rewrite rule generates a new constraint pg — ps3, derived from matching the paren-
theses on the path; this is called matched flow by Rehof and Fahndrich [2001]. The
last rewriting rule follows the same pattern for abstract locks.

Given these rewriting rules, our definition of Flow() remains the same:

Flow(C,p) = {p' | p/ < p € Sol(C)}
Flow(C,0) = {¢' | ¢ <l e Sol(C)}

For example, letting C' be the constraints in Fig. 25, we have Flow(C, pz) = {p1}
and Flow(C, py) = {p2}.

6.4 Context-sensitive Data Flow Analysis

We show now how we extend the dataflow analysis and ACFG with context sensi-
tivity, encoding it also with parametric polymorphism.

As discussed above, each instantiation of a type scheme o = (V.7,7) at index ¢
generates the constraint 7 < 7/, where 7/ = ((7)). We say that 7 is the abstract
type and 7’ is the instance type at the instantiation . Moreover, the instantiation ¢
defines a substitution S; of labels, such that S;(7) = 7/ and also for all labels n € 7,
we have S;(n) = n. We represent the reverse substitution with S, ! mapping the
labels of 7/ to 7. For example, the instantiation ref ?(int) <’ ref? (int) defines
the substitutions S;(p) = p’ and S; '(p’) = p. Note that the substitutions S; and
S, ! only translate between the abstract and the instance type, regardless of the
instantiation polarity. So, even if the above instantiation had negative polarity,
ref P(int) =<' ref #' (int), the substitutions remain S;(p) = p’ and S;*(p') = p.

Consider an instantiation of a function type according to Fig. 28, (71,¢1) —
(t{,9}) =% (72,¢2) — (74, ¢%). This generates the constraints ¢; <’ ¢o and
o ji ¢, among the statement labels representing the function start and end of
the abstract and instance types. We extend the definition of dataflow analysis on
the ACFG to account for the two kinds of instantiation edges, so that when we
propagate facts across instantiation edges, they are brought to the correct context.
Namely, we apply the substitution S; to all facts propagated from ¢} to ¢4, to
translate all labels defined in the context of ¢} to the corresponding labels in the
context of ¢5. Conversely, we apply the substitution S ! to all facts propagated
from ¢2 to ¢1 (recall that the negative instantiation polarity reverses the direction
of the graph edge), to translate all facts in terms of the abstract type of the instan-
tiation. Note that S; is a partial map, so it is possible that not all facts defined at
the left side of the instantiation can be expressed in terms of its right side, or vice
versa. In general, we only propagate the facts that can be expressed at the target
statement label of an instantiation edge.

Although these rules might resemble the Call and Ret kinds and edges in the
control flow graph, in fact they are orthogonal. Specifically, an instantiation edge
between statement labels corresponds to an occurrence of a function name in the
program, whereas statement labels with kind Call and Ret correspond to a function
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NewL(¢1) NewL(é2) Acc(x)
let mylock = Al:lock®®.acquire @ in O — Oy —p 3 by o5 5 g
let 11:lock!’ = newlock in
let 12:lock®® = newlock in
let - = mylock; 11 in
let _ = mylocks 12 in > o > 0
Ix m acq out
Acq(a)
(a) Source program (b) ACFG

Fig. 29. Context-sensitive analysis for lock state

invocation. In many cases these happen to coincide, but one does not imply the
other in general. For instance, when a program uses a function pointer to alias
many functions and invokes it once, then many instantiations correspond to one
invocation, whereas when the program assigns one function to a function pointer,
but invokes it many times, then one instantiation has many invocations.

Lock State. In the Lock State Analysis we propagate the set of held locks across
instantiation edges as discussed above, by applying the appropriate renaming, ac-
cording to the polarity of the constraint. Namely, for an instantiation ¢ < <i ¢’ that
corresponds to ¢ —)? ¢, we translate the set of held locks at ¢ by applymg the
substitution S;, we close the translated set under aliasing, and we propagate the
resulting set of held locks (and all their aliases) to statement ¢:

FlO’LU(C, Si(Aqu1Lt(¢))) - Acqi7l(¢/)

Similarly, for an instantiation ¢ <* ¢ that corresponds to ¢’ —(% ¢, we translate
the set of held locks at ¢’ by applying the substitution S; ! before propagating it

to ¢:
Flow(c7 SZI(Aquut(qS/))) g Acqzn((b)

For example, the program in Fig. 29(a) defines a wrapper function for acquiring
a lock that takes an argument a of type lock® and acquires it. The program creates
two locks and acquires them before dereferencing a variable x (not defined here, for
brevity). Clearly, since the function mylock acquires its argument, the mechanism
for “hiding” irrelevant locks using Call and Ret nodes has no effect here. Indeed,
we need to differentiate between the two contexts of the calls to mylock (marked
with indices 1 and 2) to infer that both locks |1 and I2 are held at the dereference
point. We do this using the context-sensitive ACFG shown in Fig. 29(b), simplified
by omitting nodes of no interest for this example. During the dataflow analysis,
we infer (as in the monomorphic case) that at the end of the function (¢u:) the
abstract lock ¢ is held (¢ € Acq, i (dout)). We also have ¢y ji_ ¢4 and Pyt jf_
¢5. Moreover, from the instantiations 1 and 2 of mylock’s type (lock®, ¢in) —
(int, dout), we have S1(fa) = ¢1 and Ss(¢a) = ¢2. To propagate the set of held locks
along the instantiation edges ¢+ ji ¢4, we apply the corresponding substitution
to the set of held locks, propagating Si(Acqy,:(Pout) = S1({la}) = {€1} to ¢a4.
Similarly, we propagate Sa(Acqyy:(Pout) = S2({fa}) = {€2} to ¢s.
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Fig. 30. Context-Sensitive Contextual Effects

Correlation Inference. We extend the correlation inference with context sensitiv-
ity in a similar way, adapted for a backwards analysis. Specifically, at instantiation
¢ =% ¢, due to the backwards direction of the propagation, we propagate from ¢’
to ¢. Since ¢’ lies in the “instance” context, we use S; ! to translate the state at
¢’ to the state at ¢. Namely, for every correlation p> £ at ¢', we add a correlation
S (p) > Flow(C, S;(£)) to ¢. '

Likewise, for negative instantiation edges ¢ <* ¢', we propagate from ¢ to ¢'.
As in this case ¢ lies in the left side of the instantiation, we use S; to translate
the state at ¢ to the state at ¢’. Now, for every correlation p > £ at ¢, we add a

—

correlation S;(p) > Flow(C, S;(¢)) to ¢.

6.5 Context-sensitive Sharing Analysis

We extended the sharing analysis with context sensitivity, both for computing the
shared locations at fork points using context-sensitive contextual effects, and also
for the flow-sensitive propagation of sharing information that marks the interesting
dereferences in the program.

Contextual Effects. The contextual effect system presented in Section 4.1 can be
extended with context sensitivity in the same way as the label flow analysis. As
presented in detail in previous work [Neamtiu et al. 2008], function types are an-
notated with the effect ®y of the function. We repeat the type rule for function
definition in Fig. 30(a). Note that a function type is annotated with the effect @
of the function body. Moreover, since function definition itself has no effect, it can
be typed under any effect ®. As in Section 4.1, we present contextual effects as
a standalone system, although it is straightforward to combine with the rules in
Fig. 27. Fig. 30(b) defines the instantiation for annotated function types and con-
textual effects. The contextual effect of a function is instantiated covariantly, which
translates to a covariant instantiation for the standard effect, and a contravariant
instantiation for the future effect, because the standard effects of the function are
defined inside the function and “returned” to the environment, whereas the fu-
ture effect is defined outside the function, in the calling contexts, and “enters” the
function.

Note that the future effect w at a given program point in a function includes
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the effects of the program after the function returns. In combination with context
sensitivity this might cause some locations that are in the effect (i.e. accessed after
the current function returns) to not have a corresponding location, or not yet exist,
in the current context. In other words, there might not be a matched parenthesis
path from a location p, dereferenced in the continuation, to the future effect w in
the current location. For example, consider the toy program:

1 let f=Ax.x+1in
2 fi1;

3 let p = (ref 41) in
4 'p

Clearly, the variable p is not in scope in the body of function f, and moreover,
there is no alias of p that is in scope either. This means that there can be no
matched parentheses path from p to the future effect of expression x+ 1 in the
body of f. Indeed, the only path from p to the future effect of the expression
involves a (1 edge due to the instantiation of f. However, p is clearly in the future
effect of the expression x + 1, as it is dereferenced later in the program, after the
call to f. To address this problem, when solving for future effects at fork points
to compute shared locations, we consider paths that do not contain mismatched
parentheses (a.k.a. PN-flow [Fahndrich et al. 2000]), instead of paths with only
matched parentheses. For the same reason, we also use PN-flow to compute the
set of labels in scope and their aliases for the scoping optimization discussed in
Section 4.2.

Shared Locations Propagation. The propagation of shared locations according to
dataflow discussed in Section 4.3 is straightforward to extend with context sensitiv-
ity, in the same way as the above dataflow analyses for lock state and correlation
inference. For positive instantiation edges, ¢ jj_ @', we propagate from ¢ to ¢’
(forwards analysis), using S; to translate the set of shared locations at ¢ to the
context of ¢’ and adding the closed set (to account for aliasing) to the state at ¢':

Flow(C, S;(Shout(¢))) € Shout(¢)

Similarly, for negative instantiation edges ¢ <* ¢, we propagate from ¢’ to ¢ using
S; to translate the shared locations to the context of ¢:

FlO’LU(C, Sz_l(Shout(Qs/))) g Shout(¢)
6.6 Results

Fig. 31 compares the running times and number of warnings for context-sensitive
and context-insensitive versions of LOCKSMITH. Note that since the context-sensitive
analysis is no less sound than the context-insensitive analysis, any warning it elim-
inates is a false positive. The context-sensitive results are the same as Fig. 4,
reproduced here for convenience. These results show that context sensitivity signif-
icantly increases the running time of the analysis, often very significantly, e.g., for
most of the Linux drivers. The exceptions are the sis900 and slip benchmarks, for
which the imprecision of context-insensitive analysis creates so much aliasing that
LOCKSMITH runs out of memory trying to compute the closure of the label flow
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Context-sensitive Context-insensitive
Benchmark | Time (s) | Warnings Time (s) | Warnings
aget 0.85 62 0.64 7
ctrace 0.59 10 0.42 21
engine 0.88 7 0.60 15
knot 0.78 12 0.60 31
pfscan 0.46 6 0.50 26
smtprc 5.37 46 4.16 128
3c501 9.18 15 0.75 20
eql 21.38 35 0.86 41
hp100 143.23 14 2.76 25
plip 19.14 42 1.39 46
sis900 71.03 6 | Out of Mem. n/a
slip 16.99 3 | Out of Mem. n/a
sundance 106.79 5 1.32 20
synclink 1521.07 139 23.42 227
wavelan 19.70 10 9.59 143

Fig. 31. Comparison of context sensitivity and insensitivity

graph. Furthermore, we see that context sensitivity notably reduces the number of
warnings reported by LOCKSMITH, eliminating many false positives.

7. RELATED WORK

Several systems have been developed for detecting data races and other concurrency
errors in multi-threaded programs, including dynamic analysis, static analysis, and
hybrid systems.

Dynamic systems such as Eraser [Savage et al. 1997] instrument a program to find
data races at run time and require no annotations. The efficiency and precision of
dynamic systems can be improved with static analysis [Choi et al. 2002; O’Callahan
and Choi 2003; Agarwal et al. 2005]. Dynamic systems are fast and easy to use,
but cannot prove the absence of races, and require comprehensive test suites.

Researchers have developed type checking systems against races [Flanagan and
Abadi 1999] for several languages, including Java [Flanagan and Freund 2000],
Java variants [Boyapati and Rinard 2001], and Cyclone [Grossman 2003]. Such
systems based on type checking perform very well but require a significant number
of programmer annotations, which can be time consuming when checking large code
bases [Engler and Ashcraft 2003; Flanagan and Freund 2001]. Static race detection
in ESC/Java [Flanagan et al. 2002], which employs a theorem prover, similarly
requires many annotations.

Some researchers have developed tools to automatically infer the annotations
needed by the Java-based type checking systems just mentioned. Most target Java
1.4, which simplifies the problem by permitting only lexically-acquired locks via
synchronized statements, whereas C (and Java 1.5) programs may acquire and re-
lease locks at any program point. Houdini [Flanagan and Freund 2001] can infer
types for the original race-free Java system [Flanagan and Freund 2000], but lacks
context sensitivity. More recently Agarwal and Stoller [Agarwal and Stoller 2004]
and Rose et al [Rose et al. 2005] have developed algorithms that infer types based
on dynamic traces, but these require sizeable test suites to avoid excessive false
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alarms. Flanagan and Freund [Flanagan and Freund 2007] have proposed a system
for inference which is formulated to support parameterized classes and dependent
types. Though the problem is NP-complete, their SAT-based approach can ana-
lyze 30K lines of Java code in 46 minutes. Von Praun and Gross’s dataflow-based
system [von Praun and Gross 2003] also requires no annotations and performs well,
checking 2000-line programs in a few seconds.

Naik, Aiken, and Whaley present a race detection system for Java [Naik et al.
2006]. Their system scales well to large Java programs and has found several races.
Analyzing Java 1.4 avoids some problems we encountered analyzing C code, such as
flow-sensitive locking, low-level pointer operations, and unsafe type casts. They also
omit linearity checking, which we include in LOCKSMITH. In later work [Naik and
Aiken 2007], Naik and Aiken address the lack of linearity in locks by introducing a
conditional must not alias analysis, which can handle fine-grain locking.

Several completely automatic static analyses have been developed for finding
races in C code. Polyspace [Hote 2004] is a proprietary tool that uses abstract in-
terpretation to find data races (and other problems). The BLAST model checker has
been used to find data races in programs written in NesC, a variant of C [Henzinger
et al. 2004]. Race checking is not limited to checking for consistent correlation and
can be state dependent, but is limited to checking global variables and can be
quite expensive. Seidl et al [Seidl et al. 2003] propose a framework for analyzing
multithreaded programs that interact through global variables. Using their frame-
work they develop a race detection system for C and apply it to a small set of
benchmarks, finding several data races. It is unclear whether their analysis sup-
ports context sensitivity and how it models data structures. RacerX [Engler and
Ashcraft 2003] does not soundly model some features of C for better scalability and
to reduce false alarms, but may miss races as a result. KISS [Qadeer and Wu 2004]
builds on model checking techniques, and has been shown to find many races, but
ignores certain kinds of thread interleavings.

Voung, Jhala and Lerner present RELAY, a race detection system for C [Voung
et al. 2007] that uses flow-sensitive propagation of lock set and guarded-by informa-
tion similar to LOCKSMITH. RELAY scales to millions of lines of C code by analyzing
and summarizing the behavior of parts of the program in parallel, using symbolic
evaluation. Unlike RELAY, LOCKSMITH generates and solves the constraints for the
whole program together, and is implemented to run on a single processor, limiting
its scalability. One benefit of the whole program, type-based analysis in LOCKSMITH
is that it can track the flow of function pointers precisely. In contrast, the modular
per-file analysis in RELAY may not track aliasing of function pointers across files
correctly, which can result in unmodeled control flow.

Terauchi proposes LP-Race [Terauchi 2008], a static analysis tool that reduces
the problem of race detection to linear programming. The reduction is such that
one need not directly compute acquired locks, and LP-race can handle synchro-
nization via semaphores and signals. LP-Race scales to medium-sized programs,
some of which cause LOCKSMITH to run out of memory. However, LOCKSMITH
runs slightly faster though it uses a more precise aliasing and sharing analysis.
We conjecture that, as a result of this more precise analysis, LOCKSMITH’s reports
are more precise—two abstract locations differentiated by a precise analysis could
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be considered to be one location in a less precise analysis. LOCKSMITH’s anal-
ysis is inclusion-based, and is both field- and context-sensitive. LP-Race uses a
unification-based analysis, that is also field-sensitive. In one common benchmark
(smtprc) LP-Race was able to eliminate false positives due to handling semaphores
and thread joins. However, LP-Race produced additional false positives due to a
limitation in handling loops that fork an unbounded number of threads. Due to
the way we use future effects in our sharing analysis, LOCKSMITH is able to handle
such loops and infer shared locations more precisely.

Work that detects violations of atomicity, either dynamically [Flanagan and Fre-
und 2004] or statically [Flanagan and Qadeer 2003; Flanagan et al. 2005] typically
requires a program to be free of races.

Our analysis is based on ideas initially explored by Reps et al [Reps et al. 1995]
and Rehof and Fahndrich [Rehof and Fahndrich 2001], who showed how to encode
context-sensitive analysis as a context-free language reachability problem. Our
support for existential types is related to restrict or focus for alias analysis [Aiken
et al. 2003; Fahndrich and DeLine 2002]. Our flow-sensitive analysis is a significant
extension of our previous work on flow-sensitive type qualifiers [Foster et al. 2002],
which used a similar flow-sensitive constraint graph. Both systems can be seen as
inference for a variant of the calculus of capabilities [Crary et al. 1999].

Correlation between locks and locations is similar to correlation between regions
and pointers, and several researchers have looked at the problem of region inference,
including the Tofte and Birkedal system for the ML Kit [Tofte and Birkedal 1998].
Henglein et al [Henglein et al. 2001] use a control-flow-sensitive and context-sensitive
type system to check that regions with non-lexical allocation and deallocation are
used correctly. Our treatment of lock allocation is similar to Henglein et al’s treat-
ment of region allocation, but our formal system supports higher-order functions,
and we present a constraint-based inference algorithm.

8. CONCLUSION

In this paper we described LOCKSMITH, a static analysis tool for finding data races
in C programs. We presented the core algorithms of LOCKSMITH on a simple im-
perative language and explored the engineering challenges in handling all of C. For
each algorithm we performed extensive measurements, comparing with alternative
algorithms in terms of precision and performance. We found that context sensi-
tivity greatly reduces the number of false warnings, but also limits LOCKSMITH’s
overall scalability. Perhaps surprisingly, we found that field sensitivity improves
both precision and performance, the latter because more precise modeling of alias-
ing speeds up subsequent phases of LOCKSMITH. We described our approaches to
modeling fields lazily and for handling void * pointers, both of which were impor-
tant to precision and performance. We also found that our sharing analysis was
effective, determining that most locations are thread-local, and that some simple
scoping optimizations and a uniqueness analysis improved on our sharing analysis
further. Lastly, we found that not using a worklist was the best strategy for our
dataflow analyses. We believe these results will prove valuable to designers of other
static analyses for C.
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