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Abstract

Information theoretic measures form a fundamental claseedsures for comparing clusterings,
and have recently received increasing interest. Nevediela number of questions concerning
their properties and inter-relationships remain unresshlun this paper, we perform an organized
study of information theoretic measures for clustering parison, including several existing pop-
ular measures in the literature, as well as some newly pespoees. We discuss and prove their
important properties, such as the metric property and thmalization property. We then high-
light to the clustering community the importance of coriegtinformation theoretic measures for
chance, especially when the data size is small comparee towmber of clusters present therein.
Of the available information theoretic based measures, dvecate the normalized information
distance (NID) as a general measure of choice, for it possessncurrently several important
properties, such as being both a metric and a normalizedureaadmitting an exact analytical
adjusted-for-chance form, and using the nomifal] range better than other normalized variants.
Keywords: clustering comparison, information theory, adjustmentctzance, normalized infor-
mation distance

1. Introduction

Clustering comparison measures play an important role in cluster analysst.offien, such mea-
sures are used for external validation, that is, assessing the geafredgstering solutions accord-
ing to a “ground truth” clustering. Recent advances in cluster analysesdrazen new algorithms,
in which the clustering comparison measures are used actively in seafohimpd clustering so-
lutions. One such example occurs in the context of ensemble (consehsisjing, whose aim is
to unify a set of clusterings, already obtained by some algorithms, into a difgilequality one
(Singh et al., 2009; Strehl and Ghosh, 2002; Charikar et al., 2008ps8ible approach is to choose
the clustering which shares the most information with all the other clusteringh, & in Strehl
and Ghosh (2002). A measure is therefore needed to quantify the awfufdrmation shared
between clusterings, more specifically in this case, between the “centlagtéing and all the
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other clusterings. Another example is in model selection by stability asses@®eenDavid et al.,
2006; Shamir and Tishby, 2008). A possible realization of this scheme is teumeethe average
pairwise distances between all the clusterings obtained under some pertwbations (Vinh and
Epps, 2009), hence requiring a clustering comparison measure.

Numerous measures for comparing clusterings have been propossde®the class giair-
counting basedind set-matching basetheasuresinformation theoreticmeasures form another
fundamental class. In the clustering literature, such measures havere®yed because of their
strong mathematical foundation, and ability to detect non-linear similarities. Equathicular pur-
pose of clustering comparison, this class of measures has been pathwriaugh the works of
Strehl and Ghosh (2002) and M&i(2005), and since then has been employed in various subse-
guent research (Fern and Brodley, 2003; He et al., 2008; Asur,&087; Tumer and Agogino,
2008). In this context, the pioneering works of Me{R003, 2005, 2007) have shown a number of
desirable theoretical properties of one of these measuresvatfaion of information(VI)—such
as its metric property and its alignment with the lattice of partitions. Although haeicejwed con-
siderable interest, in our opinion, the application of information theoretic mes$or comparing
clustering has been somewhat scattered. Apart from the VI which ggessa fairly comprehen-
sive characterization, less is known aboutritngtual informatiorand various forms of the so-called
normalized mutual informatio(Strehl and Ghosh, 2002). The main technical contributions of this
paper can be summarized as being three-fold:

1. We first review and make a coherent categorization of information élie@imilarity and
distance measures for clustering comparison. We then discuss andpeowevo important prop-
erties, namely the normalization and the metric properties. We show that amopgpHpective
measures, theormalized information distang@ID) and thenormalized variation of information
(NVI) satisfy both these desirable properties.

2. We draw the attention of the clustering community towards the necessityrettiog infor-
mation theoretic measures for chance in certain situations, derive analgtival for the proposed
adjusted-for-chance measures, and investigate their properties. Paglimésults regarding cor-
recting information theoretic measures for chance have previously iEgghiea/inh, Epps, and Bai-
ley (2009). In this paper, we further analyze the large sample propefttee adjusted measures,
and give a recommendation as to when adjustment is mostly needed.

3. Of the available information theoretic measures, we advocate the normafaetiation
distance (NID) as a general purpose measure for comparing clusgtewhich has the advantage
of being both a metric and a normalized measure, admitting an exact analyjicsteadfor-chance
form, and using better the nominfl, 1] range. For ease of reading, we present the proofs of all
results herein in the Appendix.

2. A Brief Review of Measuresfor Comparing Clusterings

Let Sbe a set oN data items, then a (partitional) clusteribigon Sis a way of partitioningSinto
non-overlap subsetdJ;,U,,...,Ur}, Whereu{"’:lui =SandUinU; =0fori # j. The informa-
tion on the overlap between two clusterinds= {U1,U,,...,Ug} andV = {V1,V5,...,\c} can be
summarized in form of & x C contingency table M- [nij]‘jj;_-_% as illustrated in Table 1, wherg
denotes the number of objects that are common to clustersdV;.

Pair counting based measurasge built upon counting pairs of items on which two clusterings
agree or disagree. Specifically, t@ item pairs inScan be classified into one of the 4 typekit:
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U\V Vi \Y/) . Ve Sums
Up [N N ... nNc a
Uz | N2 2 ... N a
Ur NR1 Nr2 ... DNRc ar
Sums| by b, ... be Zij nj = N

Table 1: The Contingency Table; = |U;iNV;|

the number of pairs that are in the same cluster in bhbndV; Ngo: the number of pairs that are
in different clusters in bothJ andV; Npi: the number of pairs that are in the same clustey iout

in different clusters in/; andNzo: the number of pairs that are in different clusterditut in the
same cluster iVv—that can be calculated using thg's (Hubert and Arabie, 1985). Intuitiveliy;;
andNgg can be used as indicators of agreement betvikeandV, while Np1 andN;g can be used
as disagreement indicators. A well known index of this class is the Rand (RleRand 1971),
defined straightforwardly as RJ,V) = (Noo+ Nll)/(';'), which lies in the nominal range of [0,1].
In practice however, the RI often lies within the narrower range of [0.3Ao, its baseline value
can be high and does not take on a constant value. For these reghgoR$ has been mostly used
in it adjusted form, known as the adjusted Rand index (ARI, Hubert aaBiAr1985):

2(NooN11 — No1N1o)

ARI(U,V) = .
(U.V) (Noo+ No1)(Noz+ N11) + (Noo+ N1o) (N1o+ N11)

The ARl is bounded above by 1, and equals 0 when the RI equals itstedpedue (under the gen-
eralized hypergeometric distribution assumption for randomness). Bes@lé®l, there are many
other, possibly less popular, measures in this class. Albatineh et al.)(@@@& a comprehensive
list of 22 different indices of this type, a number which is large enough tcerttektask of choosing
an appropriate measure difficult and confusing. Their work, andesjutest extension of Warrens
(2008), showed that after correction for chance, some of these nesdsecome equivalent. De-
spite the existence of numerous measures, the ARI remains the most welt-lanowvidely used
(Steinley, 2004). Therefore, in this work, we take it as the represeataitihis class for comparison
with other measures. Although the ARI has been mainly used in its similarity for@mnibe easily
shown that its distance version, that is; AR, is not a proper metric.

Set matching based measures their name suggests, are based on finding matches between
clusters in the two clusterings. A popular measure is the classification ateomhich is often
employed in supervised learning. Several other indices are discuskt=ilin(2007), all suffering
from two major problems which have long been known in the clustering congplitenature (Dom,
2001; Steinley, 2004; Mdil, 2007) namely: (i) the number of clusters in the two clusterings may
be different, making this approach problematic, since there are some slhwstieh are put outside
consideration; and (ii) even when the numbers of clusters are the sanuentlaéched part of each
matched cluster pair is still put outside consideration. Due to the problems withidbssof indices,
we shall not consider them further in this paper.

Information theoretic based measurage built upon fundamental concepts from information
theory (Cover and Thomas, 1991). Given two clusteridgandV, their entropies, joint entropy,
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conditional entropies and mutual information (M) are defined naturally \eanhrginal and joint
distributions of data items i andV respectively as:

py)

a; a;
H(U) = - 7logia
LN N
HU,V) = —Rinijlog”
, |Zij:1N N’
R C
Njj nij/N
HUV) = -5 3 Slog 2,
i= le N bj/N

R C
nij nij/N
(U,V) = —-log .
i;,;N aibj /N2

The MI measures the information thdtandV share: it tells us how much knowing one of these
clusterings reduces our uncertainty about the other. From a communittegany point of view, the
above-defined quantities can be interpreted as follows. Suppose deaeansmit all the cluster
labels inU on a communication channel, theh{U) can be interpreted as the average amount of
information, for example, in bits, needed to encode the cluster label ofdedalpoint according to
U. Now suppose thaf is made available to the receiver, thd(U|V) denotes the average number
of bits needed to transmit each labelunf V is already known. We are interested in how seeing
how muchH (U|V) is smaller tharH (U), that is, how much the knowledge ¥fhelps us to reduce
the number of bits needed to encdde This can be quantified in terms of the mutual information
H(U)—-H(U|V)=1(U,V). The knowledge o¥ thus helps us to reduce the number of bits needed
to encode each cluster labellihby an amount of (U, V) bits. In the reverse direction we also have
[(U,V)=H(V)—H(V|U). Clearly, the higher the MI, the more useful the informatiovihelps
us to predict the cluster labels thand vice-versa.

Before closing this section, we list several generally desirable propertia clustering com-
parison measure. This list is not meant to be exhaustive, and particplézagions might require
other specific properties.

e Metric property the metric property requires that a distance measure satisfy the properties
of a true metric, namely positive definiteness, symmetry and triangle inequadityedmost
basic benefit, the metric property conforms to our intuition of distance &2007). Further-
more, it is important if one would like to study, either the structure of, or dezligorithms
for the complex space of clusterings, as many nice theoretical resultdyabrigt for metric
spaces.

¢ Normalization the normalization property requires that the range of a similarity or distance
measure lies within a fixed range, for example, [-1,1] or [0,1]. Normalizafémilitates
interpretation and comparison across different conditions (Strehl AndiG2002; Luo et al.,
2009), where unbounded measures might have different ranges.ndisnalization has been
shown to improve the sensitiveness of certain measures, such as thativilespect to the
difference in cluster distribution in the two clusterings (Wu et al., 2009).fatighat all of the
22 different pair counting based measures discussed in Albatineh20@6)(are normalized,
further stresses the particular interest of the clustering community in thiggyop
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e Constant baseline propertyfor a similarity measure, its expected value between pairs of
independent clusterings, for example, clusterings sampled independendilydom, should
be a constant. Ideally this baseline value should be zero, indicating no similBnigyRand
index is an example of a similarity index which does not satisfy this rather intyitmeerty,
the reason why it has been mainly used in its adjusted form.

3. Information Theoretic Based Measures - Variants and Properties

Name Expression Range Related sources
Mutual Information (MI) 1(U,V) [0,min{H(U),H(V)}] Banerjee et al. (2005)
Normalized MI (NMI)
NMI joint RO [0,1] Yao (2003)
1(UV)
NMI max max{HéU),H(V)} [0,1] Kvalseth (1987)
NMI sum H(ﬂ)%,ﬁgv) [0,1] Kvalseth (1987)
UV
NMI sqrt W [0,1] Strehl alnd C:zosh ()2002)
) 1(U,V) Kvalseth (1987
NMI min Mn{AU)AV] [0.1] Liu et al. (2008)
Adjusted-for-Chance Ml (see Section 4)
TUV)—E[[{UV *
AMI mas! max{H((u>,E4(vg}EE{EEU.V)} [0,1]
AMI ) 1(UV)-E{l(UV)} [0 1]*
sum 3HU)+HV)-E{I(UV)} ’
+ 1(UV)—E{l(UV)} *
AMlsan VAUHV)-E(I(UV)} 0.1]
. 1(UV)—E{l(UV y
AMI min min{H(U)<I>—|(Vﬁ{}(—E{R(}U.V)} [0.1]

*These measures are normalized in a stochastic sense, being equah® (Lifadjusted) measures equal
their value as expected by chance agreemi@ur proposed measures.

Table 2: Information theoretic-based similarity measures

Similarity measuresthe mutual information (MI), a non-negative quantity, can be employed as
the most basic similarity measure. Based on the observation that the Ml isluppsied by the
following quantities:

HUH(V) < }(H(U)—i—H(V)) <max{H(U),H(V)} <H(U,V), (1)

1(U,V) <min{H(U),H(V)} < <3

we can derive several normalized versions of the mutual information JMsllisted in Table 2.
All the normalized variants are bounded in [0,1], equaling 1 when the tweetlogs are identical,
and 0 when they are independent, that is, sharing no information aksjuoteer. In the latter case,
the contingency table takes the form of the so-called “independence tabéen;; = [U;||Vj|/N
for all i, j. The MI and some of its normalized versions have been used in the cluslitziag
ture as similarity measures between objects in general (see, for examp|008 and references
therein). For the particular purpose of clustering comparison, Banetijale (2005) employed the
unnormalized MI. Strehl and Ghosh (2002) on the other hand made tise NMIsq+ normalized
version, which has also been used in several follow-up works in thiexioof ensemble clustering
(Fern and Brodley, 2003; He et al., 2008; Asur et al., 2007; TumeAguodino, 2008).
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Name Expression Range Metric Related sources
Unnormalized distance measures
Djoint B Yao (2003)
(Variation of Information ) H(U,V)-1(U,V) [0,logN] v Meila (2005)
Dmax max{H(U),H(V)}—1(U,V) [0,logN] v
Dsum(= /2D joint) LHU) +H(V)] - 1(U,V) [0,logN] v
Dsqrt HUH(V)—1(U,V) [0,logN] O
Dmin min{H(U),H(V)} —1(U,V) [0,logN] |
Normalized distance measures
djoint (Normalized V1) L% [0,1] v Kraskov et al. (2005)
dmax (Normalized 1(UV)
Information Distance) — ma{H(U),H(V)} [0.1] v Kraskov et al. (2005)
dsum 1- % [0,1] O
___1uyv)
dsqrt 1 {HI (UJC)(V)} [0,1] |
Cin 1™ WiR[A(O) AV a0
Adjusted-for-Chance distance measures (see Section 4)
Admax’ 1— AMI max [0,1]* 0
Adsym' 1— AMl sym [0,1]* 0
Adsgrt 1— AMl sqrt [0,1]* |
Amin' 1— AMI min [0,1]* O

*These measures are normalized in a stochastic sense, being equah® @ifadjusted) measures equal
their value as expected by chance agreemigir proposed measures.denotes an unnormalized
distance measurd,denotes a normalized distance measure

Table 3: Information theoretic-based distance measures

Distance measuresbased on the five upper bounds 1glJ,V) given in (1), we can define five
distance measures, naméyint, Dmax, Dsum Dsqrt andDnin, as detailed in Table 3. However, it can

be seen thaDjoint = 2Dsum! and these two measures have been known in the clustering literature
as the variation of information—VI (Meil, 2005). The fact thdDjoint (and hencdsyn) is a true
metric is a well known result (M&il, 2005). In addition, we also present the following new results
(see Appendix for proof):

Theorem 1 DpaxiS a metric.
Theorem 2 Dmin and Dsgrt are not metrics.

The negative result given in Theorem 2 is indeed helpful in narrowingsearch scope for a rea-
sonable distance measure. So @ax andDjeint (Dsum) are potential candidates. These distance
measures do not have a fixed upper bound however, and we artbeseeking some normalized
variants. By dividing each distance measure by its corresponding bppad we can define five
normalized variants as detailed in Table 3, which are actually the unit-complenfehis corre-
sponding NMI variants, for exampléjoint = 1 — NMl join. We now state the following properties
of the normalized distance measures:

Theorem 3 The normalized variation of information;d#, is a metric

Theorem 4 The normalized information distancey4, is a metric

1. Dsun(U,V) =H(U)+H(V)=21(U,V) = [H(U)+H (V) =1 (U,V)] =1 (U,V) = H(U,V) =1 (U,V) = Djoint (U, V).
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Theorem 5 The normalized distance measurgggddsumand dqt, are not metrics.

The proofs for Theorem 3 and 4 was presented in an unofficially extbwelsion of Kraskov et al.
(2005)? Unfortunately, their proof for Theorem 4 was erronedusince these are two interesting
results, we give our shortened proof for Theorem 3 and a corrgeteaf for Theorem 4 in the
Appendix. The negative results in Theorem 5 are again useful inmgagaur scope looking for a
good candidate. From our discussion so far, we can now identify twmipnag candidatesd;oint
anddmax Since the variation of informationB;eint—is the unnormalized version dfsint, We shall
namedjoint: the normalized variation of information (NVWInaxhas not been named in the literature,
therefore we name it after its well known analogue in Kolmogorov complexitgrihé.i et al.,
2004), the normalized information distance (NID). Both the NVI and NIDehthe remarkable
property of being both a metric and a normalized measure. We note tha [26i07) proposed

normalized variants for the VI, such a¢(U,V) = 2 VI (U,V) or: Vi- (U, V) = 5= VI (U, V)

when the number of clusters in bdithandV is bounded by the same const&rit< v/N. The bounds

of logN and 2logK* are not as strict ad (U, V) however? thus the useful range of these normalized
VI variants is narrower than that afisine. The joint entropyH (U,V) provides a stricter upper
bound, enablingljoin: to better exploit the [0,1] range, while still retaining the metric property. Itis
noted that since mgi (U),H(V)} is yet a tighter upper bound for N, V) thanH (U, V), dmaxis
generally more preferable th)oint Since it can even better use the nominal rang@dfj. A subtle
point regarding normalization by quantities such as th&J),H(V)} andH(U,V), as has been
brought to our attention by the Editor, is their potential side effects on thmaiation process.
For validation purpose for example, Uf is the ground-truth, an¥ is the clustering obtained by
some algorithm, then the normalization also depend¥ .omhus, while random quantities such as
max{H(U),H(V)} andH (U, V) provide tighter bounds, their effect on the normalization process is
not as clear as looser, fixed bounds such asllagd 2logk*.

4. Adjustment for Chance

In this section we inspect the proposed information theoretic measures wsjtbcteto the third
desirable property, that is, tlwnstant baseline propertyVe shall first point out that, just like the
well-known Rand index, the baseline value of information theoretic measioes not take on a
constant value, and thus adjustment for chance will be needed in cett@tions. Let us consider
the following two motivating examples:

1) Example 1 - Distance to a “true” clusteringgiven a ground-truth clustering with Kirye
clusters, we need to assess the goodness of two cluststingh C clusters, and’ with C’ clusters.
If C =C/ then the situation would be quite simple. Since the setting is the same foi/batlul
V', we expect the comparison to be “fair” under any particular measurevettr if C # C’, the
situation becomes more complicated. We set up an experiment as followdderoasset ofN
data points, let the number of clusté¢svary from 2 toKhax and suppose that the true clustering
hasKirue = [Kmax/2] clusters. Now for each value &f, generate 10,000 random clusterings and
calculate the average MI, NMbx VI, Rl and ARI between those clusterings to a fixed, random

2. Available online ahttp://arxiv.org/abs/g-bio/0311039v2

3. In their case 1D/(Z,Y) is in fact not equal tdd (Z|Y) /H(Y).

4. 1f N < RCthenH(U,V) < logN, with the equality attained only when cells of the contingency table contain only
either 1 or 0. IfN > RCthenH (U, V) < log(RC) < log(K*K*) = 2logK*.
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clustering chosen as the “true” clustering. The results for two combinatib(i, K;,e) are given

in Fig. 1(a,b). It can be observed that the unadjusted measures sttt RE Ml and NMI (V1)
monotonically increase (decreases)amcreases. Thus even by selecting totally at random, a 7-
cluster solution would have a greater chance to outperform a 3-clusidéiosg although there isn’t
any difference in the clustering generation methodology. A correctedhiiance measure, such as
the ARI, on the other hand, has a baseline value always close to zdrappaars not to be biased
in favor of any particular value df. The same issue is observed with all other variants of the NMI
(data not shown). Thus for this example, an adjusted-for-chans®weanf the Ml is desirable.

(a) N=100 data points (b) N=1000 data points (c) N=100 data points (d) N=1000 data points
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Figure 1: (a,b) Average distance between sets of random clustering&neea clustering (c,d)
Average pairwise distance in a set of random clusterings. Error learste standard
deviation.

2) Example 2 - Determining the number of clusters via consensus (blegarustering: in an
era where a huge number of clustering algorithms exist, the consensigsiolygdea (Monti et al.,
2003; Strehl and Ghosh, 2002; Yu et al., 2007) has recently reteigesasing interest. Consensus
clustering is not just another clustering algorithm: it rather provides a framkefor unifying the
knowledge obtained from other algorithms. Given a data set, conseustering employs one or
several clustering algorithms to generate a set of clustering solutions entéigoriginal data set or
its perturbed versions. From these clustering solutions, consenstesiclggims to choose a robust
and high quality representative clustering. Although the main objectivertdezsus clustering is
to discover a high quality cluster structure, closer inspection of the sétistecings obtained can
often give valuable information about the appropriate number of clustesept. More specifically,
we have empirically observed the following: in regard to the set of clusteidbtained, when the
specified number of clusters coincides with the true number of clustersettiasa tendency to be
less diverse. This is an indication of the robustness of the obtained dtrsteture. To quantify this
diversity we have recently developed a novel index (Vinh and Ep@9)2@amely theconsensus
index(Cl), which is built upon a suitable clustering similarity measure. Given a \@le suppose
we have generated a set®tlustering solutionglk = {U1,U,,...,Ug}, each withK clusters. We
define the consensus index@k as:

Zi<j AM (Ui7 UJ)
Cl(Ux) =
(Te) B(B—1)/2
where the agreement measure AM is a suitable clustering similarity index. fheug) quantifies
the average pairwise agreementdix. The optimal number of clustels* is chosen as which
that maximizes Cl, that is{* = argmax_, «__ CI(Ux). In this setting, a normalized measure is
preferable for its equalized range at different valuek ofWe performed an experiment as follows:
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givenN data points, randomly assign each data point into one d&f ttlasters with equal probability
and check to ensure that the final clustering contains exlatlysters. For eacl, repeat this 200
times to create 200 random clusterings, then calculate the average vatheshtf, VI, NMI nax

RI and ARI between all 19,900 clustering pairs. Typical experimentaltseare presented in Fig.
1(c,d). It can be observed that for a given data set, the averageMland RI (VI) values between
random clusterings tend to increase (decrease) as the number ofinsteases, while the average
value of the ARI is always close to zero. When the ratidlgK is large, the average value for NMI
is reasonably close to zero, but grows\Ny&K becomes smaller. This is clearly an unwanted effect,
since a consensus index built upon the MI, NMI and VI would be biasealiour of a larger number
of clusters. Thus in this situation, an adjusted-for-chance version dfitieeagain important.

4.1 The Proposed Adjusted M easures

To correct the measures for randomness it is necessary to specifyeh @aoodrding to which ran-
dom partitions are generated. Such a common model is the “permutation mode€adter, 1969,
p. 214), in which clusterings are generated randomly subject to havingdrumber of clusters
and points in each clusters. Using this model, which was also adopted bytldudeArabie (1985)
for the ARI, we have previously shown (Vinh et al., 2009) that the etqzemutual information
between two clusteringd andV is:

R C min(a;,bj) nj

E{I(U,V)} :iZ > > oo

=1]=1nj=maxa+b;—N,0)

N.nj; a@!bj!(Nfai)!(Nfbj)!
aibj “NInjj!(a —nij)!(bj —njj)!(N—g fbj+nij)!.

)

As suggested by Hubert and Arabie (1985), the general form of a sityiladex corrected for
chance is given by:
Index— Expectedindex

AdjustedIndex=
M X~ Max Index— Expectedindex’

@)

which is upper-bounded by 1 and equals 0 when the index equals itstedpatue. Having calcu-
lated the expectation of the MI, we propose the adjusted form, which we eadldjusted mutual
information (AMI), for the normalized mutual information according to (3). For examfa&ing
the NMlnaxWe have:

NMlmaX(UaV)_E{NMlmaX(UaV)} I(va)_E{I(UaV)}

AMImax(U,V) - = 1— E{NMima(U,V)} ~ max{H(U),H(V)} —E{I(U,V)}’

Similarly, other adjustedimilarity measures are listed in Table 2. It can be seen that the adjusted-
for-chance forms of the Ml are all normalized in a stochastic sense.ifleplg, the AMI equals

1 when the two clusterings are identical, and 0 when the MI between the twerihgs equals its
expected value. The adjusted forms for thistancemeasures, listed in Table 2, are again the unit-
complements of the corresponding adjustidilarity measures, for exampl@gnax= 1 — AMI max

and are also normalized in a stochastic sense. Following the naming schenve tieate adopted
throughout in this paper, we namal, .« the adjusted information distance. It is noted that at this
stage, we have not been able to derive an analytical solution for theexdlfosm for the normalized
variation of information djoint) measure. The derivation of the expected value for this measure
appears to be more involved observing th&t, V) is present in both the numerator and denominator
(H(U,V) =H(U)+H(V)—-1(U,V)). We repeat the experiments described in examples 1 and 2,
this time with the adjusted version of the Njyik. Now it can be seen from Fig. 2 that just like the
ARI, the AMIax baseline values are close to zero. It is noted that in these experimentis| ma d
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(a) N=100 data points (b) N=1000 data points (c) N=100 data points (d) N=1000 data points
0.03 0.01 0.03 0.01

0.02

3 I

-0.02

0.02
0

B

-0.02

0.005

o
o

0 P‘%‘%“P"{‘{’%'{‘4< ARl %‘f‘%‘%‘%‘%‘%‘{‘%‘{«VAR

o

-0.005

Similarity/Distance value
Similarity/Distance value

Similarity/Distance value
Similarity/Distance value

-0.03 ~0.01 -0.03 -0.01
0 5 10 15 2 25 0 20 40 60 0 10 20 30 0 20 40 60

Number of clusters K Number of clusters K Number of clusters K Number of clusters K

Figure 2: (a,b) Average distance between sets of random clustering&naed clustering (c,d)
Average pairwise distance in a set of random clusterings. Error learstel standard
deviation.

require the marginals of the contingency table to be fixed as per the assumiptiengeneralized
hypergeometric model of randomness. Nevertheless, the adjusted esestdlexhibit the desired
behavior.

4.2 Propertiesof the Adjusted Measures

While admitting a constant baseline, the proposed adjusted-for-chansem®are, unfortunately,
not proper metrics:

Theorem 6 The adjusted measures A, Adsym Adsqrt and Achin are not metrics.

There is thus a trade-off between the metric property and correctiohdoce, and the user should
decide which property is of higher priority. Fortunately, during our expents with the AMI, we
have observed that when the data contain a fairly large number of itemsngsueed to the number

of clusters, for examplé\ /K > 100, then the expected mutual information is fairly close to zero, as
can be seen in Fig. 1, suggesting scenarios where adjustment foedbarut of utmost necessity.
The following results formalize this observation:

Theorem 7 Some upper bounds for the expected mutual information between twomazids-
teringsU and V (on a data set of N data items, with R and C clusters respectively), under the
hypergeometric distribution model of randomness are given by the foligwin

R C ab; N(a—1)(bj—1) N N+RC—R-C
005 3 e (Mh e ) <o) @

These bounds shed light on the large sample property of the adjustedraseddie following result
trivially follows:

Corollary 1 Given R and C fixedimn_» E{I(U,V)} = 0, and thus the adjusted measures tend
toward the normalized measures.

Also, these bounds give useful information on whether adjustment fomaghis needed. For
example, on a data set of 100 data items and two clustedrayglV, each having 10 clusters with
sizes 0f{10,10,10,10,10,10,10,10,10,10] and[2,4,6,8,10,10,12, 14,16, 18] respectively, the ex-
pected MI and its upper bounds according to (2) and (4)Edi€U,V)} = 0.4618< 0.5584 <
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0.5978. As the maximum Ml value is only 16§0) = 2.3, correction for chance is needed since the
baseline is high. However, if the data size increases ten-fold to 1000 itemysink) the same num-
ber of clusters and cluster distribution, the two upper bounds are 0.04wb8.6780 respectively,
which can be considered small enough for many applications, thereflustiment for chance might
be omitted.

4.3 An Example Application

As per our analysis, adjustment for chance for information theoretic mesasu mostly needed
when the number of data items is relatively small compared to the number of slu€ee such
prominent example is in microarray data analysis, where biological samplekiatered using gene
expression data. Due to the high cost of preparing and collecting miayodata, each class, for
example, of tumor, might contain only as few as several samples. In thisrseaidemonstrate the
use of the consensus index to estimate the number of clusters in microataay=izht synthetic
and real microarray data sets are drawn from Monti et al. (2003)etmsled in Table 4 (see the
original publication for preprocessing issues). A quick check upoifhigher) upper bound of the
expected MI on these data sets suggests that correction for chance wdklded, for example, on
the Leukemia data set, &= R = C) grows from 2 to 10, this upper bound grows from 0.03 to
1.16.

Simulated Data #Classes #Samples #GeM'nd%eal data #Classes #Samples #Genes
Gaussian3 3 60 60Q Leukemia 3 38 999
Gaussianb 5 500 Novartis 4 103 1000
Simulated4 4 40 600| Lung cancer 4+ 197 1000
Simulated6 6-7 60 600 Normal tissues 13 90 1277

Table 4: Microarray data sets summary, source: Monti et al. (2003)

In Vinh and Epps (2009) we have shown that the CI, coupled with soipliag as the pertur-
bation method, gives useful information on the appropriate number of dustenicroarray data.
Herein, we experimented with random projection as the perturbation schéone specifically, the
original data set was projected on a random set of 80% of the gergesh@r-means clustering
algorithm was run with random initialization on the projected data set. For eduk ofK, 100
of such clustering solutions were created and the ClI's for 6 measuaa®iy RI, ARI, MI, VI,
NMI nhaxand AMImaxWere calculated. Ideally we expect to see a strong global peak at thautmue
ber of clusteK; ,e. From Fig. 3(a) it can be observed that the unadjusted Ml has a strasgvith
respect to the number of clusters, increasing monotonically excreases. Similar behavior was
observed with all other data sets and therefore Ml is not an appropriasuneefor this purpose.
For ease of presentation, we have excluded the Ml from Fig. 3(b4m. effect of adjustment for
chance can be clearly observed in Fig. 3(c,d,e,h). Agreement byei#tates the Cl score of the
unadjusted measures (RI, NMI, VI) in such cases, and can lead ta@ct@stimation. The CI of
the adjusted measures (ARI, AMI) correctly estimates the number of clustalissynthetic data
sets with high confidence, whereas on real data sets it gives costiecaions on the Leukemia and
Normal tissues data set. The Cl suggests only 3 clusters on the Novartighehdesumed number
of clusters is 4. The Lung cancer data set is an example where humaisexgenot yet confident
on the true number of clusters present (4+ clusters), while the Cl gilesahpeak at 6 clusters.
These results are concordant with our previous finding (Vinh and,2889). The fact that the CI
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(a) Gaussian3, N=60 data points (b) Gaussian5, N=500 data points (c) Simulated4, N=40 data points
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Figure 3: Consensus Index on microarray data sets.

showing global or local peaks at or near the presumably true numbkrstérs as attributed by the
respective authors calls for further investigation on both the biological(sédverifying the number
of clusters), and the CI side (the behaviour of the index with respect tstitheture of the data set,
for example, the data set might contain a hierarchy of clusters and thud thayCexhibit local
peaks corresponding to such structures).

5. Related Work

Meila (2005) considered clustering comparison measures with respect taltpement with the
lattice of partitions. In addition to the metric property, she considered three pnoperties namely
additivity with respect to refinemerdadditivity with respect to the joiandconvex additivityand
showed that the VI satisfies all these properties. Unfortunately, notie aformalized or adjusted
variants of the Ml is fully aligned with the lattice of partitions in the above senssid& enhancing
intuitiveness, these properties could possibly improve the efficiency ofitgdgs, for example,
search algorithms, in the space of clusterings, though there seems noyéo & experimental
study to support such claim, calling for interesting further investigationeNkgless, we note that
for a particular application, not always every desired property isuweantly needed at once. For
example, when performing search in the space of clusterings, normalizatibhmigoe necessary,
and the VI, which aligns better with the lattice of partitions, might be a more appteghoice.
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Wu et al. (2009) considered clustering comparison measures with tégpleeir sensitivity with
class distribution. They showed that real life data can possess highedkeass distributions,
whereas some algorithms, such as K-means, tend to create balancedsclédsigood measure
should therefore be sensitive to the difference in class distribution. fwistrate this property,
they used the example in Table 5, with a ground-truth clustdditgving class sizes of [30, 2, 6,
10, 2], and two clustering solution¥: having cluster sizes of [10, 10, 10, 10, 10]; avidhaving
cluster sizes of [29, 2, 6, 11, 2]. It is easily seen tatlosely reflects the class structurelin
and thus should be judged closerdahanV. The authors showed that the unnormalized Ml is a
“defective measure”, in that it judges MJ, V) > MI(U,V’), and suggested using the “normalized
VI" (dsym). It can be shown that among the normalized and adjusted variants of tbherdidered
in this paper, only the NMjin, Dmin, dmin andAdmin are defective measures in the above sense.

| JUi Uy Us Ug Us| Il [U Uy Us Ug Us
Vi[10 0 0 ©0 O] V[27 0 0 2 o0
V.2 [10 0 0 0 oOofv|0 2 0 0 O
V. [10 0 0 0 oOfvw|o0 0o 6 0 O
V4| 0 0 0 10 Ofv|3 0 0 8 0
Vs |0 2 6 0 2|wW|o0 0 0 0 2

Table 5: Two clustering results

6. Conclusion

This paper has presented an organized study of information theoreticregdsr clustering com-
parison. We have shown that the normalized information distance (NIDhardalized variation
of information (NVI) satisfy both the normalization and the metric propertieswBen the two,
the NID is preferable since the tighter upper bound of the MI used fanalization allows it to
better use the [0,1] range. We highlighted the importance of correcting tneasures for chance
agreement, especially when the number of data points is relatively small cetnp#i the number
of clusters, for example, in the case of microarray data analysis. One tidbretical advantages
of the NID over the popular adjusted Rand index is that it can be used inotin@ddjusted form
(whenN/K is large), thus enjoying the property of being a true metric in the space déchss.
We therefore advocate the NID as a “general purpose” measuréuiiedng validation, compar-
ison and algorithm design, for it possesses concurrently severail as®l important properties.
Nevertheless, we note that for a particular application scenario, naysalevery desired property
is needed concurrently, and therefore the user should prioritize theimmpsttant property. Our
research systematically organizes and complements the current literatetpe tedders make more
informed decisions.
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Appendix A. Proofs

Proof (Theorem 1) We only prove the triangle inequality as other parts are trivial first show
that

H(X]Y) <H(X|Z)+H(Z]Y) (5)

holds true, sincél (X|Y) <H(X,Z|Y) =H(X|Z,Y)+H(Z|Y) <H(X|Z)+H(Z]Y) (the last inequal-
ity holds since conditioning always decreases entropy). We now prevadin theorem. Without
loss of generality, assume thatY) < H(X), and thereforéd (X|Y) > H(Y|X). The proof uses (5):

e Case 1H(Z) < H(Y)
Dmax(X,Y) = H(X|Y) < H(X|Z) + H(Z|Y) < H(X|Z) +H(Y|Z) = Dmax(X, Z) + Dma Y. 2)
e Case 2H(Y) <H(Z) <H(X)
Dmax(X,Y) = H(X|Y) < H(X|Z) + H(Z|Y) = Dmax(X,Z) + Dmax(Y, Z)
e Case 3H(X) <H(Z)
Dimax(X,Y) = H(X|Y) < H(X|Z) + H(Z|Y) < H(Z|X) + H(Z|Y) = Dmax(X,Z) + Dmax, Z)

Proof (Theorem 3) We prove the triangle inequality. Without loss of generalisyras that (X) >
H(Y), thereforeH (X|Y) > H(Y|X) andNID(X,Y) = H(X]Y)/H(X). The proof uses inequality (5)
and simple algebra manipulations:

e Case 1H(Z) <H(Y)<H(X)
H(X|Y) _H(X|Z)+H(Z|Y) < H(X|Z)+H(Y|Z) < H(X|Z) H(Y|Z)
H(X) H(X) B H(X) — HX)  H(Y)

)

(X
HXY) _H(X[Z)  HZIY) _H(X[Z)  HEZ)Y)
HX) ~ HX) THX) © HX) T HE)

NID(X,Y) =

IN

e Case2H(Y)<H(Z) <

II

NID(X,Y) =

IN

—NID(X,Z)+NID(Z,Y)

e Case 3H(Z) > H(X)

H(X|Y) < H(X|Z) +H(Z]Y)

NID(X,Y) = H O %)

If the r.h.s < 1 then addingH (Z) — H(X) > 0 to both its nominator and denominator will
increase it:

H(X|Z)+H(Z|Y)+H(Z)-H(X) H(Z|X) H(Z]Y)

IS TTHX LR HX)  C HE) T HE)

= NID(X,Z) +NID(Z,Y),
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therefore the triangle inequality holds. Otherwise if thes > 1 then addingd (Z) — H(X) >
0 to both its nominator and denominator as above will decrease it, but it will stiiriger
than 1. Therefore we also have:
H(X|Z)+H(Z|Y)+H(Z)—H(X)
H(X)+H(Z)—H(X)

NID(X,Y) <1< =NID(X,Z) +NID(Z,Y).

Proof (Theorem 4) Again only the triangle inequality proof is of interest. It is sigfit to prove
the following inequality:
HX]Y) _ H(X|Z) | H(Z]Y)
< + ,
H(X,Y) = H(X,Z)  H(Z)Y)
then swapX andY to obtain another analogous inequality and add them together we have the
triangle inequality. The proof uses inequality (5) and simple algebra manipdatio

HX)Y)  HXY)  _ HX[2)+H@Y)  HX[2)+HZY) _
HX,Y) ~ HY)+H(X]Y) = HY)+H(X]Z)+H(Z]Y)  HX]Z)+H(Y,Z)
_ HX|2) HZly)  _  HX2) H(ZY) _ H(X|2)  H(Z]Y)
THX|Z)+H(Y,2)  HX|Z)+H(Y,Z) “H(X|Z)+H(Z)  H(Y,Z) H(X,Z)  H(ZY)

Proof (Theorems 2 and 5) It is sufficient to point out a single counter exampézenthe triangle
inequality is violated. LeX andY be twoindependentandom binary variables with probability
PX=1)=P(X=0)=P(Y =1)=P(Y =0) =1/2, thenZ = [X;Y] is also a random variable
with four discrete values. It is straightforward to verify that the trianglejiradity is violated for
all the mentioned distance measures, for exaniplg(X,Y) = 1 < Dmin(X,Z) +Dmin(Y,Z) =0.1

Proof (Theorem 6) FON = 5, a counter example for the triangle inequality is the following three
cIusterings:U = {U3U1U1U1U2},V = {V2V2V3V1V2},X = {X2X1X1X1X2}.

Similarly, for N =5+d (d € INT), a counter example for the triangle inequality is the fol-
lowing three clusteringst) = {UsU;U1U1UoUgU7 ... Us g}, V = {VaVoVaViVoVeVs .. Vs g}, X =
{XoXe X1 X1 XoXeX7 . . Xs1q ) n

Proof (Theorem 7) The following facts from the generalized hypergeometridlaliion will be
useful:

i, b
Eij) = Znisz(M|ni,-,a,b)=aN’, (6)
Nij
E(nizj) = ZnﬁT(M|nij,a7b): ( N([\)|_J(1)J )+ NJ,

Nij

BEER)
oM

having fixed marginala, b and the(i, j) — th entry beingn;; under the generalized hypergeometric

whereP{M|n;j,a,b} = is the probability of encountering a contingency talle
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model of randomness. Note that for the sake of notational simplicity we hayped the lower
and upper values af;; which runs from mag(a; + bj — N),0) to min(a;, bj) in the sums. From (6)
we have:
aibj < m;N
E(nij) = mjP(M|nj,a.b) = N %alijbj P(M|nij,a,b) =

Nij

ab;
N 9y

therefore:y, 2 WNp(M|nij,a,b) = 1. LetQ(njj) = ”" ?(M|njj,a,b), then we can think of) (njj)
as a discrete probablllty distribution ox). Applylng Jensens inequalitye( f(x)) < f(E(x)) for
f concave) to the concave logarithm function yields:

njj N.;j ab; N.njj aib; N.njj
S SrloalGpl 1My .ab) = ¥ S ioaGptyainy) < §iog (Ea5ph). )

Nij J Nij

Now, let us calculatEQ(Zj—L"jj):

N.njj N.njj N.njj nijN N
E = n;) = P(M|nij,a,b) = n2 P(M|nj;,a,b
N? ai(a —1bj(bj—1) ab; :Nwrﬁﬂm—b N
afb? N(N-1) N

+—.
(N—1)ab; ab;

Substituting this expression into (7) yields:

Njj N.nij a;bj <N(a—1)(bj—l) N )
—lo P(M|njj,a,b) < lo + )
%N o, M 20) = 3@ 109\ "1jap, Tan,
Finally:
C C ab N(a—1)(bj—1) N
71 ) < abj |
E{I(U,V)} = ZZ N ) (Mnij,a,b) Zl; N2 Iog< (N_1)ab; +a;bj>'
8
Note thaty j; a;bj/N2 =1, continue applying Jensen’s inequality on (8) yields:
aib; N(a 1)(bj—-1) N <N+RC—R—C>
E{I(U,V)} <lo + =log| ———
{1U,V)} g(zlz “Dab tap)) =9 N1
|
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