
You Could Look It Up:
An Introduction to SASHELP Dictionary Views

Michael Davis, Bassett Consulting Services, North Haven, Connecticut

ABSTRACT

Ever wonder what titles were already set in a batch
SAS session? Need a list of the members in a
library so your macro can automatically hack at
each one? Curious as to how many observations
are in that data set without running a procedure or
DATA step? Want to see what macro variables
already exist? Anytime that one has a question
about what is going on in their SAS session, they
can answer it the same way that SAS itself does the
task... they can look it up in the SASHELP dictionary
views.

This presentation is an introduction to all those
views automatically created by the SAS System and
found in the SASHELP libref and prefixed with a
"V". The dictionary views track items and their
attributes for features such as catalogs, data set
variables (columns), external files, indices, macro
variables, data set members, titles, portable system
options, and of course, views. The focus of the
presentation is to illustrate how the dictionary views
can be used in common situations. Last, for the
SQL-phobic, it will be shown how these views can
be accessed through Display Manager and through
DATA step programming.

WHY LEARN ABOUT THIS SUBJECT?

One might ask, “Why should I learn about the
SASHELP Dictionary Views?” This is a fair question
since even some experienced SAS users have not
heard about the SASHELP dictionary views. The
one sentence answer is that the SASHELP
dictionary views offer an easy way to monitor the
activities and status associated with a SAS session.

For the more adventurous, SASHELP dictionary
views often serve as building blocks for automated
applications. SAS developers can use these views
to communicate the SAS environment to their
applications. This can reduce or eliminate the need
to edit batch jobs before each run. These self-
modifying jobs then can then be launched by a
scheduler, further lessening programming drudgery.

However, less experienced SAS users should not be
intimidated by this feature of SAS. Nearly any SAS
programmer can benefit from using some of these
techniques.

WHAT ARE THE DICTIONARY VIEWS?

The dictionary views are tables that are
automatically available when a SAS session is
started. They show the state of the session at the
time that they are requested. These views can be
used as you would use any read-only table.

Here is a summary of the types of information listed
in the dictionary views:

• libraries, catalogs, and data sets
• external files allocated to the session
• macro, data set variables attributes
• indexes, titles, footnotes, and views
• system option settings

Dictionary tables are a standard feature of nearly all
relational database management systems (DBMS).
Other DBMS products such as Oracle and DB2

also feature dictionary tables, accessed via
Structured Query Language (SQL). The dictionary
tables (not the SASHELP dictionary views) are not
available outside the SQL procedure.

The dictionary tables available through PROC SQL
include:

• CATALOGS
• COLUMNS
• EXTFILES
• INDEXES
• MEMBERS
• OPTIONS
• TABLES
• VIEWS

SASHELP VIEWS vs. DICTIONARY TABLES

The SASHELP dictionary views replicate the
information stored in the dictionary tables. The
most important difference is that they can be used
outside of the SQL procedure. Thus any DATA step
that a SAS programmer may imagine can take
advantage of these views.

Another useful feature of the SASHELP dictionary
views is that they can be opened from the ACCESS
window in a Display Manager session. Thus, during
an interactive session, users can interrogate the

appropriate SASHELP view to get the status and
name information they seek.

Since the SASHELP views and the dictionary tables
yield similar information, the question is often
asked, “Which one should I use?”. If one needs to
obtain session status information outside of the SQL
procedure, especially if one likes to “point and click”
to the answer, then the SASHELP views will
probably be the best choice.

On the other hand, when one uses a WHERE clause
on a SASHELP view, every row must be generated
before the clause can be applied. If the WHERE
clause is applied instead to the analogous dictionary
table, only the rows applicable need be generated.
Hence accessing the dictionary tables might may be
more computer-efficient (faster).

When querying SASHELP.VCOLUMN, be sure to
apply a subsetting WHERE clause to speed filtering.
While this paper features both SASHELP view and
dictionary table examples, the author prefers the
SASHELP views because they are easily accessed
during a SAS session and also because he prefers
DATA steps over the SQL procedure.

TOURING THE SASHELP VIEWS

For Version 6, the SASHELP views are documented
in SAS Technical Report P-222 on pages 290-91. In
the Version 8 OnlineDoc, both the SASHELP views
and the dictionary tables are covered in the SAS
Procedures Guide, Chapter 34 under the SQL
Procedure.

In both Technical Report P-222 and the OnlineDoc,
the PROC SQL syntax used to create each
SASHELP view is shown. Since all of the
SASHELP dictionary views are prefixed with by “V”,
the following program can be used to print a listing
of the available SASHELP views:

LIBREF AND FILEREF VIEWS

The VSLIB view shows allocated library names and
physical path name information. The VEXTFL view
shows the allocated filerefs, the physical path name,
and the engine (if any) associated with each fileref.

Please note that filerefs allocated by the SAS
System will be prefixed by an underscore. Also,
note the following trap. SASHELP views that show
directory path names only show the first 80
characters of the physical path name. The actual
path name may be longer than 80 characters!

TABLE AND SUMMARY TABLE VIEWS

The VMEMBER view lists data sets, views, and
catalogs. If one needs the physical directory path
name, they should consider the VMEMBER view to
obtain this information. If other details are required,
such as observation length, number of observations,
data set labels, creation and modification dates,
then the VTABLE view can be consulted. The
VVIEW view lists only views and the engine
associated with them.

The VSTABVW lists only the library and member
name for data sets and views. The VTABLE view
lists library and member names for data sets only.
Its counterpart is the VSVIEW view, which shows
both automatic and user-created views. The
VSACCESS view shows only user-created views.

VARIABLE VIEWS

The VCOLUMN view shows data set information at
the variable level. This view includes details such
as variable type, length, position, format, label, and
indexes. This is often a large table and should
almost always be subsetted by a WHERE clause
before using.

The VMACRO view shows details about macro
variables such as scope and current values. Please
note that this view will show the value of global and
macro variables. However, the VMACRO view
omits local macro variables, which exist only within
the scope of macros.

CATALOG AND INDEX VIEWS

The VCATALOG view shows detailed information
about catalogs and their members. The
VSCATALG view just lists the catalogs and member
names.

The VINDEX view contains detailed information
about indexes that allow one to trace data set
variables to the indexes in which they are used.
You can also use the VINDEX view to identify the
indexes available for each data set.

proc print data=sashelp.vsview ;
 where libname = ‘SASHELP’ and
 substr(memname, 1, 1) = “V”
run ;

TITLE AND FOOTNOTE VIEW

Both information about titles and footnotes are
contained in the VTITLE view. One can distinguish
between titles and footnotes in this view by
inspecting the title location. It will contain a “T” for
titles, “F” for footnotes.

SYSTEM OPTION VIEW

The VOPTIONS view shows the status of SAS
system options. It will show portable options that do
not apply to a platform, such as NODMS,
FSDEVICE, OPLIST, and TAPECLOSE under
Windows. However, it omits system specific
options, such as WINCHARSET under Windows.
Please keep in mind that the information obtained
from the VOPTIONS view might vary among SAS
releases.

The next section of this paper will offer some
examples of how the SASHELP views can be used
in real-life situations to solve problems

CROSS-TABULATE VARIABLES BY DATA SETS

When one inherits a data library with many
members, it can help to have a cross-table that
shows in which members a variable appears. Likely
applications for this type of information might be
pharmaceutical trials and data warehousing
projects. Another application would be to determine
which SASHELP views might be consulted.

Eric Losby presented a paper on this subject at
SUGI 22. RDB_MAP.SAS program uses the
VCOLUMN view coupled with the TRANSPOSE
procedure to produce listings similar to the following
example.

The MEMTYPE variable can be used to restrict the
members shown in the “Relational Database Map”
to either data sets or views.

PRINTING NOBS, SAMPLE OBSERVATIONS

Sometimes it is useful to have a listing of the
members in a SAS library showing the number of
observations in each member. A listing of a few
sample observations for each data set can be
helpful, too.

If a library has many members, writing a program to
generate the NOBS listing and sample observations
can take some effort. Fortunately, Janet Stuelpner
and Elizabeth Kaptsanov presented a macro to do
this at SUGI 22. The %PRINTIT macro and its two
component macros, %PRT and %PRTDS appear on
the following page along with some sample listings.

RDB_MAP.SAS

options ps=80 nodate ;

%let libref = ACCESS ;

libname &libref 'drive:[directory]' ;

title "Relational Database Map of
&libref." ;

* SECTION 1 ;
data temp1(keep=memname name x) ;
 set SASHELP.VCOLUMN ;
 if libname="&libref." and
memtype='VIEW' then do ;
 x='X' ;
 output ;
 end ;
 else delete ;
run ;

* SECTION 2 ;
proc sort data=temp1 ;
 by name memname ;
run ;

* SECTION 3 ;
proc transpose data=temp1
out=list(drop=_name_) ;
 id memname ;
 var X ;
 by name ;
run ;

* SECTION 4 ;
proc print data=list ;
run ;

Sample RDB_MAP.SAS Listing

Relational Database Map of MYLIB

OBS NAME SAVEIT SPID2DSN PRGM_NO

 1 AUTHFILE X X
 2 CLIENT X
 3 CLNT_CD
 4 CLNT_ID X X
 5 CLNT_NM X X
 6 CLNT_NO X
 7 CRLNFILE X X
 8 CUSHION

The %PRINTIT macro uses the SQL procedure to
read the TABLES dictionary table to generate the
NOBS listing. The submacro %PRT prints the
NOBS table shown above. The submacro %PRTDS
prints the sample listing for each data set, also
shown above. The %PRTDS macro calls are
written to the file denoted by the macro variable
OUTFILE, which is subsequently executed by a
%INCLUDE.

RESTORING MACRO VARIABLES

To replicate program results where macro variables
are involved, it is necessary to save the “state” of
the original SAS session and restore that status to a
subsequent session. John Gerlach presented a
program that does this potentially tedious task at
NESUG 97. His %PARAMS macro is shown on the
following page.

%PARAMS uses the SASHELP VMACRO view to
perform this wizardry. The macro parameters
composing the session state are saved to a data set
so that the state can be restored in a subsequent
session. The restored macro variables are listed in
the SAS Log. Macro aficionados will want to inspect
the consecutive ampersands used in the %PARAMS
macro.

%PRINTIT NOBS Listing

 DATA SETS FOR C:\MYLIB

 OBS NAME MEMNAME NOBS

 1 MYLIB CLIENT 11
 2 MYLIB PRGM_NO 343
 3 MYLIB RPTPARMS 1
 4 MYLIB RSIPSYMB 60
 5 MYLIB SAVEIT 166

PRINTIT.SAS
/* Specify */
/* libref path, temporary file to */
/* store individual macro calls */
/* and number of observations to */
/* be printed (default is MAX). */

%macro printit(path=, outfile=,
prtobs=MAX) ;

/* Part I: to gather member names from
database */

* define database and output file ;
libname mylib "&path" ;
filename outfile "&outfile" ;
options nodate ;

* get member names and number of
observations ;
proc sql ;
 create table test1 as
 select libname, memname, nobs
 from dictionary.tables
 where libname='MYLIB' ;
quit ;

* print member names and number of
observations ;
proc print data=test1 ;
 title1 "DATA SETS FOR &path" ;
run ;

/* Part II: Print data from each data set
*/

%macro prt(memname, nobs) ;

options pageno=1 ps=60 obs=&prtobs ;

proc print data=mylib.&memname ;
 title1 "DATA SET=&memname NOBS=&nobs" ;
 footnote "RUN DATE: &sysdate" ;
run ;

%mend prt ;

%macro prtds ;

options obs=max ;

data _null_ ;
 set test1 ;
 file "&outfile" ;
 put '%prt('MEMNAME $8.','NOBS 8.')' ;
run ;

%include "&outfile" ;

%mend prtds ;

%prtds ;

*to reset OBS parameter ;
options obs=max ;

%mend printit ;

%PRINTIT Sample Listing

 DATA SET=MYDATA NOBS=296

 OBS GROUP CODEVAL

 1 004 03657
 2 005 03657
 3 006 03657
 4 007 03657
 5 008 00080

 RUN DATE: 1JUL00

WRITING OUT FLATFILES

Before the introduction of the Export Wizard, writing
all the variables of a complex data set to a flat file
was a daunting task. Fortunately, Ian Whitlock
presented the %FLATFILE macro at SUGI 19 and
Michelle Buchecker presented it again at SUGI 21.
There often are situations where %FLATFILE is still
useful, especially when the flat file needs to be
customized.

The program can be downloaded from the SAS
Institute web site at the following URL:

http://ftp.sas.com/pub/sugi21/paper.027/flatfile.sas

This version of %FLATFILE appears in the right
column on this page. It uses the SQL procedure
and the COLUMNS dictionary table to identify all of
the variables and their attributes.

WRITING DATA TO MS EXCEL

One valuable variation of the %FLATFILE macro is
a version that will write out a comma-delimited
version to be imported into spreadsheets such as
Microsoft Excel and other desktop programs.
Dave Mabey presented such a variation at
NESUG 97, %FLATFILC, which appears on the
subsequent page.

%FLATFILC is similar to %FLATFILE except that
variable names appear in the first row, variable
labels appear in the second row, and columns are
tab delimited.

DELETING MANY VARIABLES

Sometimes one inherits a data set and discovers
that it has several variables that are always
populated with zeros, missing values, or blanks. To
delete these variables by hand might prove tedious.

Two macros to remove such variables, written by
Charles Patridge and Shiling Zhang, can be found
on the SASCONSIG web site,
http://www.sasconsig.com in the Tips and
Techniques section as TI00122. The first macro
uses the COLUMNS dictionary table and
PROC SQL.

PARAMS.SAS

* this data step gets the macro variables ;
data [project libref].params ;
 set sashelp.vmacro(where=(scope eq 'GLOBAL'
 and name not like 'SQL%' and name
 not like '%EXIST')) ;
 keep name value ;
run ;

* %PARAMS reinstitutes macro variables ;

%macro params ;
 data _null_ ;
 set [project libref].params end=eof ;
 call symput(name, value) ;
 call symput('var' ||
 trim(left(put(_n_,8.))),name) ;
 if eof then call symput
 ('nmvars',trim(left(put(_n_,8.)))) ;
 run ;
 %put Parameters: ;
 %do i = 1 %to &nmvars. ;
 %put &&var&i.. : &&&&&&var&i.. ;
 %end ;
 %put ;
%mend params ;

%FLATFILE
options mprint;
%macro flatfile(lib=,dsn=,file=);
 %let lib=%upcase(&lib); /* uppercase
library and dataset names */
 %let dsn=%upcase(&dsn);

 proc sql;
 create view temp as
 select name, type, format, length
 from dictionary.columns
 where libname = "&lib" and memname =
"&dsn";
 quit;

 data _null_;
 set temp end=last;
 call symput
('var'!!left(put(_n_,3.)),name);
 if format ne ' ' then
 call symput
('fmt'!!left(put(_n_,3.)),format);
 else
 if upcase(type) = 'CHAR' then
 call symput
('fmt'!!left(put(_n_,3.)),'$'!!put(length,3.
)!!'.');
 else
 call symput
('fmt'!!left(put(_n_,3.)),'best10.');

 if last then call
symput('numvar',left(put(_n_,3.)));

 data _null_;
 set &lib..&dsn;
 file "&file";
 put
 %do i = 1 %to &numvar;
 &&var&i &&fmt&i +1
 %end;
 ; /* end put statement */
 run;
 %mend;

 %flatfile(lib=sasuser, dsn=houses,
file=flat.dat)

http://ftp.sas.com/pub/sugi21/paper.027/flatfile.sas
http://www.sasconsig.com

LIBRARY MEMBERS INTO MACRO VARIABLE

For some applications, it may be handy to have a
macro variable that contains the members of a SAS
library. This can be done with the MEMBERS
dictionary table and a simple PROC SQL step. The
following piece of code is also from the
SASCONSIG web site and is TIP00112, written by
Charles Patridge.

DOES A FORMAT EXIST?

Both in ad hoc situations and when developing
automated applications, the need often emerges to
determine if a particular user-created format exists
in any of the available SAS catalogs. Chris Roper
posted the following snippet of code on the SAS-L
distribution list. It uses the CATALOGS dictionary
table as shown below to test for a format named
TEST:

SUBMIT BATCH FROM DISPLAY MANAGER

Ah, the choices we SAS programmers have to
make. Submitting in batch allows one to launch a
second SAS job without waiting for the first job to
complete. However, if you work from within Display
Manager, you gain access to those wonderful “DM”
commands and SAS windows, which are just a click
away. What should you do?

If one is working under UNIX, you might want to
make use of an imaginative application of the
EXTFILES dictionary table, the %DOBATCH macro.
This macro was presented at SUGI 24 by Jingren
Shi and Shiling Zhang.

Shi and Zhang point out that to submit a batch SAS
program in UNIX using the %DOBATCH macro, the
actual submission employs the following syntax.

In order for the above UNIX syntax to work, the
macro variable _EXECPGM needs to contain the
full path and filename of the program to be
executed. This information is available from the
EXTFILES dictionary table after a Display Manager
SAVE or SAVE AS command. This is done by the
%DOBATCH macro shown on the next page.

%FLATFILC

%macro flatfilc
 (lib=, /* libref for input dataset */
 dsn=, /* memname for input dataset */
 file=); /* filename of output file */

 %let lib=%upcase(&lib);
 %let dsn=%upcase(&dsn);
 proc sql noprint;
 select quote(name),
 quote(case when label ne ’ ’ then
label
 else name
 end),
 name
 || case when format ne ’ ’ then format
 when type=’num’ then ’Best10.’
 else "$"||put(length,z3.)||’.’
 end
 into :names separated by ’ "09"x ’,
 :labels separated by ’ "09"x ’,
 :string separated by ’ "09"x ’
 from dictionary.columns
 where libname = "&lib"
 and memname = "&dsn";
quit;

data _null_;
 set &lib..&dsn;
 file "&file";
 if _n_=1 then put &names / &labels;_
 put &string;
run;

%mend;

TIP00112

proc sql noprint;
 select distinct memname into
 :macvar separated by " "
 from dictionary.members
 where upcase(libname) = "WORK" and
 upcase(memtype) = "DATA"
 order by memname
 ;
 quit;

 %put WORK data sets: &macvar.;

TEST FOR EXISTENCE OF FORMAT

proc sql ;
 create table aa as select *
 from dictionary.catalogs
 where objtype contains ’FORMAT’
 and objname = ’TEST’ ;
quit ;

 call system("sas -sysin &_execpgm &");
 x “sas -sysin &_execpgm &”;
 rc=system("sas -sysin &_execpgm &");
 %sysexec sas -sysin &_execpgm &;

If this macro is included in the AUTOCALL library or
the AUTOEXEC.SAS program, one avoids having to
submit the above code in each session where one
wishes to use %DOBATCH.

The last detail in implementing %DOBATCH is to
program the “trigger” to submit the program to SAS.
Perhaps the easiest way is to assign %DOBATCH to
a function key as part of the AUTOEXEC.SAS
program using the following statement:

When this statement is submitted, the F12 function
key, the DM command "submit '%dobatch' " is
issued. Again this approach requires that the
program be saved first in order to work. However,
saving your program regularly is usually a good
practice.

WHERE DID I SAVE THAT ENTRY?

The author fondly recalls one assignment where
more than one person would check out a SAS
catalog over the weekend. On Monday, we had to
get together for a few minutes and identify what
entries we changed. Those meetings would take a
bit longer when more than one person touched a
particular catalog entry.

While a source control system might have
eliminated that forced need for consultation, that
scenario and others often leads to questions such
as, “What changed since my application stopped
working?” and “What was the name of that catalog
entry that I copied that entry to?”.

Peter Crawford posted the following piece of code
on SAS-L earlier this year that creates a catalog
entry listing to solve those types of problems.

This code uses the CATALOGS dictionary table. It
omits changes made in the SASHELP and MAPS
libraries. However, one can alter the WHERE
clause to change the libraries included in the listing
to better accommodate your requirements.

The view SASUSER.VLATEST can be inspected
from the ACCESS window in Display Manager or by
using another technique. The beauty of this
example is that it illustrates that useful information
can be generated with only a few lines of code and
the SASHELP views or dictionary tables.

TIPS TO EXPLOIT DICTIONARY VIEWS

In his presentation at the 1998 Western Users of
SAS Software conference, Jack Hamilton offered
some general tips when using the dictionary tables
when creating one’s own utilities. Some these tips
are employed in the programs that have been
reviewed.

First, use the INTO and SEPARATED BY clauses in
the SQL procedure to create macro variables. Use
CALL EXECUTE in a data step to loop through the
values extracted from a dictionary table.

Second, use a FILENAME pointed to a catalog entry
to save the extracted parameters as SAS code.
Then use %INCLUDE to submit the statements in
the catalog entry. Using a catalog entry is better
than writing to a temporary disk file since the
catalog technique is platform independent.

In that paper, Jack offered a piece of code that puts
the variables in a data set into alphabetic order.
Suppose that we have a data set as created by the
code shown on the next page.

%DOBATCH

%macro dobatch;
%local _execpgm;

/* clear pgm window */
*dm 'clear pgm';

/* getting file name information */
proc sql noprint;
reset inobs=1;
select xpath into: _execpgm
from dictionary.extfiles
quit;

/* executing a batch job */
data _null_;
call system ("sas -sysin &_execpgm &");
run;

%put &_execpgm is submitted as a batch job.;
%mend;

(%keydef f12 submit ‘''%dobatch’'';)

Create View of Catalog Entries in Saved Order

proc sql noprint;
 create view sasuser.vlatest as
 select libname, memname, objname, objtype,
 objdesc format=$23. ,
 input(modified, mmddyy8.)
 format=date7. as mod
 from dictionary.catalogs
 where libname ne 'SASHELP'
 & libname ne 'MAPS'
 order by mod desc
;
quit;

The above code will yield a data set named ONE
with four variables in the order in which they
appeared after the DATA statement. The code
offered to write a new data set with the variables in
alphabetic order is:

The above code creates a new data set, TWO, with
the variables appearing in alphabetical order.

CAUTION!

In the same presentation, Jack Hamilton offered
some wise cautions. In both his paper and this one,
the examples do not show error-checking. It is
always a good idea to program checking to handle
situations where the expected data is missing or
parameters are not received.

For example, make sure that any utilities that are
created work correctly if no rows or observations are
selected by WHERE clauses. Another good caution
is to blank output macros before the actual code
starts.

Finally, the COLUMNS table often gets extremely
large, especially when the SAS/GRAPH map data
sets are allocated. Apply a subsetting WHERE
clause in the code at the earliest point possible.

CONCLUSION

The author hopes that the examples and other
materials in the paper shed some light on the scope
of information available in the SASHELP dictionary
views. He hopes that his audience will be inspired
by these examples and will start to use them and
the SASHELP dictionary views to make their lives
easier.

At the end of this paper is an appendix that lists all
of the current SASHELP dictionary views
alphabetically in an abridged contents listing format.

The SASHELP dictionary views are not difficult to
apply. So please go forth and “look it up”.

BIBLIOGRAPHY

Buchecker, M. Michelle, “%FLATFILE and Make Your Life
Easier,” Proceedings of the Twenty-First Annual SAS
Users Group International Conference, 21, 178-80

Gerlach, John R., “The Six Ampersand Solution,”
Proceedings of the 1997 Northeast SAS User Group
Conference, 1997. 629-30

______________, “A Cross-reference for SAS Data
Libraries,” Proceedings of the 1999 SouthEast SAS
User Group Conference, 1999. 217-20

Hamilton, Jack, “Some Utility Applications Of The
Dictiionary Tables in PROC SQL,” Proceedings of
the 1998 Western Users of SAS Software
Conference, 1998. 85-90

Losby, Eric (1997), “How Are All of These Tables
Related? - Relational Database Map -
RDB_MAP.SAS,” Proceedings of the Twenty-Second
Annual SAS Users Group International Conference,
22, 1145-1149

Mabey, David A., “Eliminating Tedium by Building
Applications That Use SQL Generated SAS Code,”
Proceedings of the 1997 Northeast SAS User Group
Conference, 1997. 755-60

SAS Institute Inc., SAS Technical Report P-222
Changes and Enhancements to Base SAS Software,
Release 6.07, Cary, NC: SAS Institute Inc., 1991.
290-91

SAS Institute Inc., SAS Procedures Guide, Version 8,

Cary, NC: SAS Institute Inc., 2000. 1062-6

Shi, Jiang, and Zhang, Shiling, “Submitting a Batch SAS
Job within the Display Manager Mode under Unix,”
Proceedings of the Twenty-Fourth Annual SAS Users
Group International Conference, 24, 1458-9

Stuelpner, Janet E. and Kaptsanov, Elizabeth (1997), “All
the Data That Fits, We Print,” Proceedings of the
Twenty-Second Annual SAS Users Group
International Conference, 22, 474-6

Whitlock, H. Ian (1996), “How to Write A Macro to Make
External Flat Files,” Proceedings of the Twenty-First
Annual SAS Users Group International Conference,
21, 163-71

 data one ;
 key= ‘9’ ; a=1 ; c=2 ; b= . ;
 output
 run ;

proc sql noprint ;
 select name into :newcmd Separated by ‘,’
 from dictionary.columns
 where libname=‘WORK’ and memname=’ONE’
 order by name ;

 create table two as
 select &newcmd
 from one ;

ACKNOWLEDGEMENTS

SAS and SAS/GRAPH are registered trademarks of
SAS Institute Inc. Acrobat and PostScript are
registered trademarks of Adobe Systems Inc.
Microsoft and Microsoft Excel are registered
trademarks of the Microsoft Corporation. DB2 is a
registered trademark of the IBM Corporation.
Oracle is a registered trademark of Oracle
Corporation.

The author would like to thank the Hartford Area
SAS User Group Steering Committee, which
encouraged him to prepare this paper. Special
thanks are offered to Robert Krajcik, Jack Hamilton,
Charles Patridge, Clinton Rickards, Ian Whitlock,
and Michael Zdeb.

CONTACT INFORMATION

The author may be contacted as follows:

Michael L. Davis
Bassett Consulting Services, Inc.
10 Pleasant Drive
North Haven CT 06473-3712
E-Mail: michael@bassettconsulting.com
Web: http://www.bassettconsulting.com
Telephone: (203) 562-0640
Facsimile: (203) 498-1414

Please note that the code supplied in this paper is
designed only to illustrate the concepts being
discussed and will need to be modified to work in
other applications. Modified code is not supported
by the author of this paper.

APPENDIX – SASHELP VIEWS CONTENTS

SASHELP.VCATALG
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
OBJNAME Char 8 Object Name
OBJTYPE Char 8 Object Type
OBJDESC Char 40 Object Desc.
MODIFIED Char 8 Date Modified
ALIAS Char 8 Object Alias

SASHELP.VCOLUMN
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
NAME Char 8 Column Name
TYPE Char 4 Column Type
LENGTH Num 8 Column Len.
NPOS Num 8 Column Pos.
VARNUM Num 8 Col # in Tbl
LABEL Char 40 Col Label
FORMAT Char 16 Col Format
INFORMAT Char 16 Col Infmt
IDXUSAGE Char 9 Col Idx Type

SASHELP.VEXTFL
Variable Type Len Label

FILEREF Char 8 Fileref
XPATH Char 80 Path Name
XENGINE Char 8 Engine Name

Note: It is possible to have a path longer than
80 characters!

SASHELP.VINDEX
Variable Type Len Label
LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
NAME Char 8 Column Name
IDXUSAGE Char 9 Column Index Type
INDXNAME Char 8 Index Name
INDXPOS Num 8 Pos of Col in
 Concatenated Key
NOMISS Char 3 Nomiss Option
UNIQUE Char 3 Unique Option

mailto:michael@bassettconsulting.com
http://www.bassettconsulting.com

SASHELP.VMACRO
Variable Type Len Label

SCOPE Char 9 Macro Scope
NAME Char 8 Macro Var. Name
OFFSET Var 8 Offset into Var
VALUE Char 200 Macro Var Value

SASHELP.VOPTION
Variable Type Len Label

OPTNAME Char 16 Session Option
 Name
SETTING Char 200 Session Option
 Setting
OPTDESC Char 80 Option
 Description

SASHELP.VSACCESS
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name

SASHELP.VSCATLG
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name

SASHELP.VSLIB
Variable Type Len Label

LIBNAME Char 8 Library Name
PATH Char 80 Path Name

Note: It is possible to have a path longer
than 80 characters!

SASHELP.VMEMBER
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
ENGINE Char 8 Engine Name
INDEX Char 8 Indexes
PATH Char 80 Path Name

includes data sets, views, catalogs

SASHELP.VSTABLE
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name

SASHELP.VSTABVW
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type

SASHELP.VSVIEW
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name

SASHELP.VTABLE
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
MEMLABEL Char 40 Dataset Label
TYPEMEM Char 8 Dataset Type
CRDATE Num 8 Date Created
MODATE Num 8 Date Modified
NOBS Num 8 Number of Obs
OBSLEN Num 8 Obs Length
NVAR Num 8 Number of Vars
PROTECT Char 3 Type Password Protect
COMPRESS Char 8 Compress Routine
REUSE Char 3 Reuse Space
BUFSIZE Num 8 Bufsize
DELOBS Num 8 No of Deleted Obs
INDXTYPE Char 9 Type of Indexes

SASHELP.VTITLE
Variable Type Len Label

TYPE Char 1 Title Location
NUMBER Num 8 Title Number
TEXT Char 200 Title Text

SASHELP.VVIEW
Variable Type Len Label

LIBNAME Char 8 Library Name
MEMNAME Char 8 Member Name
MEMTYPE Char 8 Member Type
ENGINE Char 8 Engine Name

