
1

Software Engineering

Session 8 – Main Theme
From Analysis and Design to

Software Architectures
(Part I)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences
Presentation material partially based on textbook slides
Software Engineering: A Practitioner’s Approach (7/e)

by Roger S. Pressman
Slides copyright © 1996, 2001, 2005, 2009

2

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

3

What is the class about?

Course description and syllabus:
» http://www.nyu.edu/classes/jcf/g22.2440-001/

» http://www.cs.nyu.edu/courses/spring10/G22.2440-001/

Textbooks:
» Software Engineering: A Practitioner’s Approach

Roger S. Pressman
McGraw-Hill Higher International
ISBN-10: 0-0712-6782-4, ISBN-13: 978-00711267823, 7th Edition (04/09)

» http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0/
» http://highered.mcgraw-

hill.com/sites/0073375977/information_center_view0/table_of_contents.html

4

Icons / Metaphors

4

Common Realization

Information

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

5

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

6

Why Architecture?

The architecture is not the operational software. Rather,
it is a representation that enables a software engineer
to:

(1) analyze the effectiveness of the design in meeting its
stated requirements,

(2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and

(3) reduce the risks associated with the construction of
the software.

7

Why is Architecture Important?

Representations of software architecture are an
enabler for communication between all parties
(stakeholders) interested in the development of
a computer-based system.
The architecture highlights early design
decisions that will have a profound impact on all
software engineering work that follows and, as
important, on the ultimate success of the system
as an operational entity.
Architecture “constitutes a relatively small,
intellectually graspable mode of how the system
is structured and how its components work
together” [BAS03].

8

Architectural Descriptions

The IEEE Computer Society has proposed IEEE-Std-
1471-2000, Recommended Practice for Architectural
Description of Software-Intensive System, [IEE00]
» to establish a conceptual framework and vocabulary for use

during the design of software architecture,
» to provide detailed guidelines for representing an

architectural description, and
» to encourage sound architectural design practices.

The IEEE Standard defines an architectural
description (AD) as a “a collection of products to
document an architecture.”
» The description itself is represented using multiple views,

where each view is “a representation of a whole system
from the perspective of a related set of [stakeholder]
concerns.”

9

Architectural Genres

Genre implies a specific category within the
overall software domain.
Within each category, you encounter a number
of subcategories.
» For example, within the genre of buildings, you

would encounter the following general styles:
houses, condos, apartment buildings, office
buildings, industrial building, warehouses, and so
on.

» Within each general style, more specific styles
might apply. Each style would have a structure that
can be described using a set of predictable
patterns.

10

Architectural Styles

Data-centered architectures
Data flow architectures
Call and return architectures
Object-oriented
architectures
Layered architectures

Each style describes a system category that encompasses: (1)
a set of components (e.g., a database, computational
modules) that perform a function required by a system, (2) a
set of connectors that enable “communication, coordination
and cooperation” among components, (3) constraints that
define how components can be integrated to form the system,
and (4) semantic models that enable a designer to understand
the overall properties of a system by analyzing the known
properties of its constituent parts.

11

Data-Centered Architecture

12

Data Flow Architecture

13

Call and Return Architecture

14

Layered Architecture

15

Architectural Patterns

Concurrency—applications must handle multiple tasks in a
manner that simulates parallelism
» operating system process management pattern
» task scheduler pattern

Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common:
» a database management system pattern that applies the storage

and retrieval capability of a DBMS to the application architecture
» an application level persistence pattern that builds persistence

features into the application architecture
Distribution— the manner in which systems or components
within systems communicate with one another in a distributed
environment
» A broker acts as a ‘middle-man’ between the client component

and a server component.

16

Architectural Design

The software must be placed into context
» the design should define the external entities (other

systems, devices, people) that the software interacts
with and the nature of the interaction

A set of architectural archetypes should be
identified
» An archetype is an abstraction (similar to a class) that

represents one element of system behavior
The designer specifies the structure of the
system by defining and refining software
components that implement each archetype

17

Architectural Context

target system:
Security Function

uses
uses peershomeowner

Safehome
Product

Internet-based
system

surveillance
function

sensors

control
panel

sensors

uses

18

Archetypes

Figure 10.7 UML relationships for SafeHome security function archetypes
(adapted from [BOS00])

Controller

Node

communicates with

Detector Indicator

19

Component Structure

SafeHome
Execut ive

Ext ernal
Communicat ion

Management

GUI Internet
Interface

Funct ion
select ion

Security Surveillance Home
management

Control
panel

processing

detector
management

alarm
processing

20

Refined Component Structure

sensorsensorsensor
sensor

sensorsensorsensor
sensor

External
Communicat ion
Management

GUI Internet
Interface

Security

Cont rol
panel

processing

det ect or
management

alarm
processing

Keypad
processing

CP display
funct ions

scheduler

sensorsensorsensorsensor

phone
communicat ion

alarm

SafeHome
Executive

21

Analyzing Architectural Design

1. Collect scenarios.
2. Elicit requirements, constraints, and environment description.
3. Describe the architectural styles/patterns that have been
chosen to address the scenarios and requirements:

• module view
• process view
• data flow view

4. Evaluate quality attributes by considered each attribute in
isolation.
5. Identify the sensitivity of quality attributes to various
architectural attributes for a specific architectural style.
6. Critique candidate architectures (developed in step 3) using
the sensitivity analysis conducted in step 5.

22

Architectural Complexity

the overall complexity of a proposed architecture is
assessed by considering the dependencies between
components within the architecture [Zha98]
» Sharing dependencies represent dependence relationships

among consumers who use the same resource or producers
who produce for the same consumers.

» Flow dependencies represent dependence relationships
between producers and consumers of resources.

» Constrained dependencies represent constraints on the
relative flow of control among a set of activities.

23

ADL

Architectural description language (ADL)
provides a semantics and syntax for describing
a software architecture
Provide the designer with the ability to:
» decompose architectural components
» compose individual components into larger

architectural blocks and
» represent interfaces (connection mechanisms)

between components.

24

An Architectural Design Method

"four bedrooms, three baths,
lots of glass ..."

customer requirements

architectural design

25

Deriving Program Architecture

ProgramProgram
ArchitectureArchitecture

26

Partitioning the Architecture

“horizontal” and “vertical”
partitioning are required

27

Horizontal Partitioning

define separate branches of the
module hierarchy for each major
function
use control modules to coordinate
communication between functions

function 1function 1 function 3function 3

function 2function 2

28

Vertical Partitioning: Factoring

design so that decision making and
work are stratified
decision making modules should
reside at the top of the architecture

workers

decision-makers

29

Why Partitioned Architecture?

results in software that is easier to test
leads to software that is easier to
maintain
results in propagation of fewer side
effects
results in software that is easier to
extend

30

Structured Design

objective: to derive a program
architecture that is partitioned
approach:
» a DFD is mapped into a program

architecture
» the PSPEC and STD are used

to indicate the content of each
module

notation: structure chart

31

Flow Characteristics

Transform flow

Transaction
flow

The textbook does
not cover transaction
mapping. For a
detailed discussion
see the textbook
companion Web site

32

General Mapping Approach

isolate incoming and outgoing flow
boundaries; for transaction flows, isolate
the transaction center

working from the boundary outward, map
DFD transforms into corresponding modules

add control modules as required

refine the resultant program structure
using effective modularity concepts

33

General Mapping Approach

Isolate the transform center by specifying
incoming and outgoing flow boundaries
Perform "first-level factoring.”
» The program architecture derived using this mapping

results in a top-down distribution of control.
» Factoring leads to a program structure in which top-level

components perform decision-making and low-level
components perform most input, computation, and output
work.

» Middle-level components perform some control and do
moderate amounts of work.

Perform "second-level factoring."

34

Transform Mapping

data flow model

"Transform" mapping

a
b

c

d e f g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

35

Factoring

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

36

First Level Factoring

main
program
controller

input
controller

processing
controller

output
controller

37

Second Level Mapping

D
C

B A

A

C
B

Dmapping from the
flow boundary outward

main

control

38

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

39

What is a Component?

OMG Unified Modeling Language Specification
[OMG01] defines a component as
» “… a modular, deployable, and replaceable part of a

system that encapsulates implementation and
exposes a set of interfaces.””

OO view: a component contains a set of
collaborating classes
Conventional view: a component contains
processing logic, the internal data structures that
are required to implement the processing logic,
and an interface that enables the component to
be invoked and data to be passed to it.

40

OO Component

Print Job

comput eJob

init iat eJob

numberOf Pages
numberOf Sides
paperType
 paperWeight
 paperSize
 paperColor
magnif icat ion
colorRequirement s
product ionFeat ures
 collat ionOpt ions
 bindingOpt ions
 coverSt ock
 bleed
 pr ior it y
t ot alJobCost
WOnumber

PrintJob

comput ePageCost ()
comput ePaperCost ()
comput eProdCost ()
comput eTot alJobCost ()
buildWorkOrder()
checkPr ior it y ()
passJobt o Product ion()

elaborated design class<<int er f ace>>
comput eJob

comput ePageCost ()
comput ePaperCost ()
comput eProdCost ()
comput eTot alJobCost ()

<<in t er f ace>>
in it iat eJob

buildWorkOrder()
checkPr ior it y ()
passJobt o Product ion()

design component

numberOf Pages
numberOf Sides
paperType
magnif icat ion
product ionFeat ures

Print Job

comput eJobCost()
passJobt oPrint er()

analysis class

41

Conventional Component

ComputePageCost

design component

accessCostsDB

getJobData

elaborated module

PageCost

in: job size
in: color=1, 2, 3, 4
in: pageSize = A, B, C, B
out : BPC
out : SF

in: numberPages
in: numberDocs
in: sides= 1, 2
in: color=1, 2, 3, 4
in: page size = A, B, C, B
out : page cost

 job size (JS) =
 numberPages * numberDocs;
lookup base page cost (BPC) -->
 accessCost sDB (JS, color) ;
lookup size fact or (SF) -->
 accessCost DB (JS, color, size)
job complexit y fact or (JCF) =
 1 + [(sides-1)* sideCost + SF]
pagecost = BPC * JCF

get JobDat a (numberPages, numberDocs,
sides, color, pageSize, pageCost)
accessCost sDB (jobSize, color, pageSize,
BPC, SF)
comput ePageCost()

42

Basic Design Principles

The Open-Closed Principle (OCP). “A module [component]
should be open for extension but closed for modification.
The Liskov Substitution Principle (LSP). “Subclasses should be
substitutable for their base classes.
Dependency Inversion Principle (DIP). “Depend on
abstractions. Do not depend on concretions.”
The Interface Segregation Principle (ISP). “Many client-specific
interfaces are better than one general purpose interface.
The Release Reuse Equivalency Principle (REP). “The granule
of reuse is the granule of release.”
The Common Closure Principle (CCP). “Classes that change
together belong together.”
The Common Reuse Principle (CRP). “Classes that aren’t
reused together should not be grouped together.”

Source: Martin, R., Source: Martin, R., ““Design Principles and Design Patterns,Design Principles and Design Patterns,”” downloaded from downloaded from http:www.objectmentor.comhttp:www.objectmentor.com, 2000., 2000.

43

Design Guidelines

Components
» Naming conventions should be established for

components that are specified as part of the
architectural model and then refined and
elaborated as part of the component-level
model

Interfaces
» Interfaces provide important information about

communication and collaboration (as well as
helping us to achieve the OPC)

Dependencies and Inheritance
» it is a good idea to model dependencies from

left to right and inheritance from bottom
(derived classes) to top (base classes).

44

Cohesion

Conventional view:
» the “single-mindedness” of a module

OO view:
» cohesion implies that a component or class encapsulates

only attributes and operations that are closely related to
one another and to the class or component itself

Levels of cohesion
» Functional
» Layer
» Communicational
» Sequential
» Procedural
» Temporal
» utility

45

Coupling

Conventional view:
» The degree to which a component is

connected to other components and to the
external world

OO view:
» a qualitative measure of the degree to which

classes are connected to one another
Level of coupling
» Content
» Common
» Control
» Stamp
» Data
» Routine call
» Type use
» Inclusion or import
» External

46

Component Level Design-I

Step 1. Identify all design classes that
correspond to the problem domain.
Step 2. Identify all design classes that
correspond to the infrastructure domain.
Step 3. Elaborate all design classes that are
not acquired as reusable components.
Step 3a. Specify message details when
classes or component collaborate.
Step 3b. Identify appropriate interfaces for
each component.

47

Component-Level Design-II

Step 3c. Elaborate attributes and define data
types and data structures required to
implement them.
Step 3d. Describe processing flow within
each operation in detail.
Step 4. Describe persistent data sources
(databases and files) and identify the classes
required to manage them.
Step 5. Develop and elaborate behavioral
representations for a class or component.
Step 6. Elaborate deployment diagrams to
provide additional implementation detail.
Step 7. Factor every component-level design
representation and always consider
alternatives.

48

Collaboration Diagram

:ProductionJob

:WorkOrder

:JobQueue

1: buildJob (WOnumber)
2: submitJob (WOnumber)

49

Refactoring

PrintJob

computeJob

initiateJob

ProductionJob

buildJob

submitJob

WorkOrder

appropriat e at t ribut es

buildWorkOrder ()getJobDescriiption

JobQueue

appropriat e at t ribut es

checkPriority ()

<<interface>>
initiateJob

passJobToProduct ion()

50

Activity Diagram

validate attributes
input

accessPaperDB(weight)

returns baseCostperPage

size = B paperCostperPage =
paperCostperPage * 1 .2

size = C paperCostperPage =
paperCostperPage * 1 .4

size = D paperCostperPage =
paperCostperPage * 1 .6

color is custom
paperCostperPage =
 paperCostperPage *1 .1 4

color is standard

paperCostperPage =
 baseCostperPage

returns
(paperCostperPage)

51

Statechart

buildingJobData

entry/ readJobData()
exit /displayJobData()
do/ checkConsistency()
include/ dataInput

entry/ computeJob
exit / save totalJobCost

formingJob

entry/ buildJob
exit / save WOnumber
do/

comput ingJobCost

submit t ingJob

entry/ submitJob
exit / init iateJob
do/ place on JobQueue

behavior wit hin t he
st at e buildingJobDat a

dat aInput Complet ed [all dat a
it ems consist ent] / displayUserOpt ions

dat aInput Incomplet e

jobCost Accept ed [cust omer is aut horized] /
get Elect ronicSignat ure

jobSubmit t ed [all aut horizat ions acquired] /
print WorkOrder

52

Component Design for WebApps

WebApp component is
» (1) a well-defined cohesive function that

manipulates content or provides computational or
data processing for an end-user, or

» (2) a cohesive package of content and functionality
that provides end-user with some required
capability.

Therefore, component-level design for
WebApps often incorporates elements of
content design and functional design.

53

Content Design for WebApps

focuses on content objects and the manner in which
they may be packaged for presentation to a WebApp
end-user
consider a Web-based video surveillance capability
within SafeHomeAssured.com
» potential content components can be defined for the video

surveillance capability:
• (1) the content objects that represent the space layout (the floor

plan) with additional icons representing the location of sensors and
video cameras;

• (2) the collection of thumbnail video captures (each an separate
data object), and

• (3) the streaming video window for a specific camera.
» Each of these components can be separately named and

manipulated as a package.

54

Functional Design for WebApps

Modern Web applications deliver increasingly
sophisticated processing functions that:
» (1) perform localized processing to generate content and

navigation capability in a dynamic fashion;
» (2) provide computation or data processing capability that

is appropriate for the WebApp’s business domain;
» (3) provide sophisticated database query and access, or
» (4) establish data interfaces with external corporate

systems.
To achieve these (and many other) capabilities, you
will design and construct WebApp functional
components that are identical in form to software
components for conventional software.

55

Designing Conventional Components

The design of processing logic is governed
by the basic principles of algorithm design
and structured programming
The design of data structures is defined by
the data model developed for the system
The design of interfaces is governed by
the collaborations that a component must
effect

56

Algorithm Design

the closest design activity to coding
the approach:
» review the design description for the

component
» use stepwise refinement to develop

algorithm
» use structured programming to

implement procedural logic
» use ‘formal methods’ to prove logic

57

Stepwise Refinement

openopen

walk to door;walk to door;
reach for knob;reach for knob;

open door;open door;

walk through;walk through;
close door.close door.

repeat until door opensrepeat until door opens
turn knob clockwise;turn knob clockwise;
if knob doesn't turn, thenif knob doesn't turn, then

take key out;take key out;
find correct key;find correct key;
insert in lock;insert in lock;

endifendif
pull/push doorpull/push door
move out of way;move out of way;
end repeatend repeat

58

Algorithm Design Model

represents the algorithm at a level of
detail that can be reviewed for quality
options:
» graphical (e.g. flowchart, box diagram)
» pseudocode (e.g., PDL) ... choice of many

» programming language
» decision table

59

Structured Programming

uses a limited set of logical constructs:uses a limited set of logical constructs:
sequencesequence
conditionalconditional —— ifif--thenthen--else, selectelse, select--casecase
loopsloops—— dodo--while, repeat untilwhile, repeat until

leads to more readable, testable codeleads to more readable, testable code

important for achieving high quality, important for achieving high quality,
but not enoughbut not enough

can be used in conjunction with can be used in conjunction with ‘‘proof of proof of
correctnesscorrectness’’

60

A Structured Procedural Design

a

x1

x2b

3x

4

5

c

d

ef

g

x

x

add a condition Z,
if true, exit the program

61

Decision Table

Condit ions

regular customer

silver customer

gold customer

special discount

Rules

no discount

apply 8 percent discount

apply 15 percent discount

apply additional x percent discount

T

F

T

T

T

T

T

F

1 3 5 64

F

T T

T

2

Rules

62

Program Design Language (PDL)

if-then-else

if condition x
 then process a;
 else process b;
endif

PDL

easy to combine with source code

machine readable, no need for graphics input

graphics can be generated from PDL

enables declaration of data as well as procedure

easier to maintain

63

Why Design Language?

can be a derivative of the HOL of choic
e.g., Ada PDL

machine readable and processable

can be embedded with source code,
therefore easier to maintain

can be represented in great detail, if
designer and coder are different

easy to review

64

Component-Based Development

When faced with the possibility of reuse, the
software team asks:
» Are commercial off-the-shelf (COTS) components

available to implement the requirement?
» Are internally-developed reusable components

available to implement the requirement?
» Are the interfaces for available components

compatible within the architecture of the system to be
built?

At the same time, they are faced with the
following impediments to reuse ...

65

Impediments to Reuse

Few companies and organizations have anything that even
slightly resembles a comprehensive software reusability plan.
Although an increasing number of software vendors currently
sell tools or components that provide direct assistance for
software reuse, the majority of software developers do not use
them.
Relatively little training is available to help software engineers
and managers understand and apply reuse.
Many software practitioners continue to believe that reuse is
“more trouble than it’s worth.”
Many companies continue to encourage of software
development methodologies which do not facilitate reuse
Few companies provide an incentives to produce reusable
program components.

66

The CBSE Process

Domain
Analysis

Software
Architecture
Development

Reusable
Artifact

Development

Domain Engineering

Domain
model

Structural
Model

Repository
Reusable
Artifacts/

Components

Software Engineering

User
Requirements

System
Analysis

Specification
&

Design
Construction

System
Spec

Analysis
& Design
Models

Application
Software

67

Domain Engineering

1. Define the domain to be investigated.1. Define the domain to be investigated.
2. Categorize the items extracted from the domain.2. Categorize the items extracted from the domain.
3. Collect a representative sample of applications in 3. Collect a representative sample of applications in
the domain.the domain.
4. Analyze each application in the sample.4. Analyze each application in the sample.
5. Develop an analysis model for the objects5. Develop an analysis model for the objects..

68

Identifying Reusable Components

• Is component functionality required on future implementations?
• How common is the component's function within the domain?
• Is there duplication of the component's function within the domain?
• Is the component hardware-dependent?
• Does the hardware remain unchanged between implementations?
• Can the hardware specifics be removed to another component?
• Is the design optimized enough for the next implementation?
• Can we parameterize a non-reusable component so that it becomes
reusable?
• Is the component reusable in many implementations with only minor
changes?
• Is reuse through modification feasible?
• Can a non-reusable component be decomposed to yield reusable
components?
• How valid is component decomposition for reuse?

69

Component-Based SE

a library of components must
be available
components should have a
consistent structure
a standard should exist, e.g.,
» OMG/CORBA
» Microsoft COM
» Sun JavaBeans

70

CBSE Activities

Component qualification
Component adaptation
Component composition
Component update

71

Qualification

Before a component can be used, you must consider:

• application programming interface (API)
• development and integration tools required by the component
• run-time requirements including resource usage (e.g., memory or
storage), timing or speed, and network protocol
• service requirements including operating system interfaces and
support from other components
• security features including access controls and authentication
protocol
• embedded design assumptions including the use of specific
numerical or non-numerical algorithms
• exception handling

72

Adaptation

The implication of “easy integration” is:

(1) that consistent methods of resource management
have been implemented for all components in the
library;

(2) that common activities such as data management
exist for all components, and

(3) that interfaces within the architecture and with the
external environment have been implemented in a
consistent manner.

73

Composition

An infrastructure must be
established to bind components
together
Architectural ingredients for
composition include:
» Data exchange model
» Automation
» Structured storage
» Underlying object model

74

OMG/ CORBA

The Object Management Group has published a common object
request broker architecture (OMG/CORBA).
An object request broker (ORB) provides services that enable
reusable components (objects) to communicate with other
components, regardless of their location within a system.
Integration of CORBA components (without modification) within
a system is assured if an interface definition language (IDL)
interface is created for every component.
Objects within the client application request one or more services
from the ORB server. Requests are made via an IDL or
dynamically at run time.
An interface repository contains all necessary information about
the service’s request and response formats.

75

ORB Architecture

Interface
Repository

ORB
interface

LAN

Client

Server
Objects

ORB Core

Client
IDL

Stubs

Dynamic
Invocation

Interface
Repository

ORB
interface

Server
IDL

Stubs

Object
Adapter

76

Microsoft COM

The component object model (COM) provides
a specification for using components produced
by various vendors within a single application
running under the Windows operating system.
COM encompasses two elements:
» COM interfaces (implemented as COM objects)
» a set of mechanisms for registering and passing

messages between COM interfaces.

77

Sun JavaBeans

The JavaBeans component system is a portable,
platform independent CBSE infrastructure developed
using the Java programming language.
The JavaBeans component system encompasses a set
of tools, called the Bean Development Kit (BDK),
that allows developers to
» analyze how existing Beans (components) work
» customize their behavior and appearance
» establish mechanisms for coordination and communication
» develop custom Beans for use in a specific application
» test and evaluate Bean behavior.

78

Classification

Enumerated classification—components
are described by defining a hierarchical
structure in which classes and varying
levels of subclasses of software
components are defined
Faceted classification—a domain area is
analyzed and a set of basic descriptive
features are identified
Attribute-value classification—a set of
attributes are defined for all components
in a domain area

79

Indexing

80

The Reuse Environment

A component database capable of storing
software components and the classification
information necessary to retrieve them.
A library management system that provides
access to the database.
A software component retrieval system (e.g.,
an object request broker) that enables a client
application to retrieve components and
services from the library server.
CBSE tools that support the integration of
reused components into a new design or
implementation.

81

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

82

Interface Design

Easy to use?Easy to use?
Easy to understand?Easy to understand?

Easy to learn?Easy to learn?

83

Interface Design

lack of consistencylack of consistency
too much memorizationtoo much memorization
no guidance / helpno guidance / help
no context sensitivityno context sensitivity
poor responsepoor response
Arcane/unfriendlyArcane/unfriendly

Typical Design ErrorsTypical Design Errors

84

Golden Rules

Place the user in control
Reduce the user’s memory
load
Make the interface consistent

85

Place the User in Control

Define interaction modes in a way that does not force a
user into unnecessary or undesired actions.

Provide for flexible interaction.

Allow user interaction to be interruptible and undoable.

Streamline interaction as skill levels advance and allow
the interaction to be customized.

Hide technical internals from the casual user.

Design for direct interaction with objects that appear on
the screen.

86

Reduce the User’s Memory Load

Reduce demand on short-term memory.

Establish meaningful defaults.

Define shortcuts that are intuitive.

The visual layout of the interface should be based on a real
world metaphor.

Disclose information in a progressive fashion.

87

Make the Interface Consistent

Allow the user to put the current task into a meaningful
context.

Maintain consistency across a family of applications.

If past interactive models have created user
expectations, do not make changes unless there is a
compelling reason to do so.

88

User Interface Design Models

User model — a profile of all end
users of the system
Design model — a design realization
of the user model
Mental model (system perception) —
the user’s mental image of what the
interface is
Implementation model — the interface
“look and feel” coupled with
supporting information that describe
interface syntax and semantics

89

User Interface Design Process

90

Interface Analysis

Interface analysis means understanding
» (1) the people (end-users) who will interact

with the system through the interface;
» (2) the tasks that end-users must perform to

do their work,
» (3) the content that is presented as part of the

interface
» (4) the environment in which these tasks will

be conducted.

91

User Analysis

Are users trained professionals, technician, clerical, or
manufacturing workers?
What level of formal education does the average user have?
Are the users capable of learning from written materials or
have they expressed a desire for classroom training?
Are users expert typists or keyboard phobic?
What is the age range of the user community?
Will the users be represented predominately by one gender?
How are users compensated for the work they perform?
Do users work normal office hours or do they work until the
job is done?
Is the software to be an integral part of the work users do or
will it be used only occasionally?
What is the primary spoken language among users?
What are the consequences if a user makes a mistake using
the system?
Are users experts in the subject matter that is addressed by
the system?
Do users want to know about the technology the sits behind
the interface?

92

Task Analysis and Modeling

Answers the following questions …
» What work will the user perform in specific circumstances?
» What tasks and subtasks will be performed as the user does

the work?
» What specific problem domain objects will the user

manipulate as work is performed?
» What is the sequence of work tasks—the workflow?
» What is the hierarchy of tasks?

Use-cases define basic interaction
Task elaboration refines interactive tasks
Object elaboration identifies interface objects
(classes)
Workflow analysis defines how a work process is
completed when several people (and roles) are
involved

93

Swimlane Diagram

pat ient pharmacist physician

request s t hat a
p rescr ip t ion be ref illed

no refills
remaining

checks pat ient
records

det ermines st at us of
prescr ip t ion

refills
remaining

refill not
allowed

approves refill

ev aluat es alt ernat iv e
med icat ion

none

receiv es request t o
cont act phy sician

alternative
available

checks inv ent ory f or
ref ill or alt ernat iv e

out of stockreceiv es out of st ock
not if icat ion

receiv es t ime/ dat e
t o p ick up

in stock

picks up
prescr ip t ion

f ills
prescr ip t ion

Figure 12.2 Swimlane diagram for prescript ion refill funct ion

94

Analysis of Display Content

Are different types of data assigned to consistent
geographic locations on the screen (e.g., photos always
appear in the upper right hand corner)?
Can the user customize the screen location for content?
Is proper on-screen identification assigned to all
content?
If a large report is to be presented, how should it be
partitioned for ease of understanding?
Will mechanisms be available for moving directly to
summary information for large collections of data.
Will graphical output be scaled to fit within the bounds of
the display device that is used?
How will color to be used to enhance understanding?
How will error messages and warning be presented to
the user?

95

Interface Design Steps

Using information developed during
interface analysis, define interface objects
and actions (operations).
Define events (user actions) that will
cause the state of the user interface to
change. Model this behavior.
Depict each interface state as it will
actually look to the end-user.
Indicate how the user interprets the state
of the system from information provided
through the interface.

96

Design Issues

Response time
Help facilities
Error handling
Menu and command
labeling
Application accessibility
Internationalization

97

WebApp Interface Design

Where am I? The interface should
» provide an indication of the WebApp that has been accessed
» inform the user of her location in the content hierarchy.

What can I do now? The interface should always help
the user understand his current options
» what functions are available?
» what links are live?
» what content is relevant?

Where have I been, where am I going? The interface
must facilitate navigation.
» Provide a “map” (implemented in a way that is easy to

understand) of where the user has been and what paths may be
taken to move elsewhere within the WebApp.

98

Effective WebApp Interfaces

Bruce Tognozzi [TOG01] suggests…
» Effective interfaces are visually apparent and

forgiving, instilling in their users a sense of control.
Users quickly see the breadth of their options, grasp
how to achieve their goals, and do their work.

» Effective interfaces do not concern the user with the
inner workings of the system. Work is carefully and
continuously saved, with full option for the user to
undo any activity at any time.

» Effective applications and services perform a
maximum of work, while requiring a minimum of
information from users.

99

Interface Design Principles-I

Anticipation—A WebApp should be designed so that it
anticipates the use’s next move.
Communication—The interface should communicate the
status of any activity initiated by the user
Consistency—The use of navigation controls, menus,
icons, and aesthetics (e.g., color, shape, layout)
Controlled autonomy—The interface should facilitate
user movement throughout the WebApp, but it should do
so in a manner that enforces navigation conventions that
have been established for the application.
Efficiency—The design of the WebApp and its interface
should optimize the user’s work efficiency, not the
efficiency of the Web engineer who designs and builds it
or the client-server environment that executes it.

100

Interface Design Principles-II

Focus—The WebApp interface (and the content it presents) should
stay focused on the user task(s) at hand.
Fitt’s Law—“The time to acquire a target is a function of the distance
to and size of the target.”
Human interface objects—A vast library of reusable human interface
objects has been developed for WebApps.
Latency reduction—The WebApp should use multi-tasking in a way
that lets the user proceed with work as if the operation has been
completed.
Learnability— A WebApp interface should be designed to minimize
learning time, and once learned, to minimize relearning required
when the WebApp is revisited.

101

Interface Design Principles-III

Maintain work product integrity—A work product (e.g., a form
completed by the user, a user specified list) must be automatically
saved so that it will not be lost if an error occurs.
Readability—All information presented through the interface should
be readable by young and old.
Track state—When appropriate, the state of the user interaction
should be tracked and stored so that a user can logoff and return
later to pick up where she left off.
Visible navigation—A well-designed WebApp interface provides “the
illusion that users are in the same place, with the work brought to
them.”

102

Interface Design Workflow-I

Review information contained in the analysis model
and refine as required.
Develop a rough sketch of the WebApp interface
layout.
Map user objectives into specific interface actions.
Define a set of user tasks that are associated with
each action.
Storyboard screen images for each interface action.
Refine interface layout and storyboards using input
from aesthetic design.

103

Mapping User Objectives

objective #1

objective #2

objective #3

objective #4

objective #5

objective #n

List of user objectives

Home page text copy

graphic

graphic, logo, and company name

Navigation
menu

Menu bar
major functions

104

Interface Design Workflow-II

Identify user interface objects that are
required to implement the interface.
Develop a procedural representation of the
user’s interaction with the interface.
Develop a behavioral representation of the
interface.
Describe the interface layout for each state.
Refine and review the interface design
model.

105

Aesthetic Design

Don’t be afraid of white space.
Emphasize content.
Organize layout elements from top-left to
bottom right.
Group navigation, content, and function
geographically within the page.
Don’t extend your real estate with the
scrolling bar.
Consider resolution and browser window
size when designing layout.

106

Design Evaluation Cycle

preliminary
design

build
prototype #1

interface

evaluation
is studied by

designer

design
modifications

are made

build
prototype # n

interface

user
evaluate's
interface

Interface design
is complete

107

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

108

Design Patterns

Each of us has encountered a design problem
and silently thought: I wonder if anyone has
developed a solution to for this?
» What if there was a standard way of describing a

problem (so you could look it up), and an
organized method for representing the solution to
the problem?

Design patterns are a codified method for
describing problems and their solution allows
the software engineering community to capture
design knowledge in a way that enables it to be
reused.

109

Design Patterns

Each pattern describes a problem that occurs
over and over again in our environment and
then describes the core of the solution to that
problem in such a way that you can use the
solution a million times over without ever
doing it the same way twice.

–Christopher Alexander, 1977
“a three-part rule which expresses a relation
between a certain context, a problem, and a
solution.”

110

Basic Concepts

Context allows the reader to understand the
environment in which the problem resides and
what solution might be appropriate within that
environment.
A set of requirements, including limitations
and constraints, acts as a system of forces that
influences how
» the problem can be interpreted within its context

and
» how the solution can be effectively applied.

111

Effective Patterns

Coplien [Cop05] characterizes an effective design pattern in
the following way:
» It solves a problem: Patterns capture solutions, not just abstract

principles or strategies.
» It is a proven concept: Patterns capture solutions with a track record,

not theories or speculation.
» The solution isn't obvious: Many problem-solving techniques (such as

software design paradigms or methods) try to derive solutions from
first principles. The best patterns generate a solution to a problem
indirectly--a necessary approach for the most difficult problems of
design.

» It describes a relationship: Patterns don't just describe modules, but
describe deeper system structures and mechanisms.

» The pattern has a significant human component (minimize human
intervention). All software serves human comfort or quality of life; the
best patterns explicitly appeal to aesthetics and utility.

112

Generative Patterns

Generative patterns describe an important and
repeatable aspect of a system and then provide
us with a way to build that aspect within a
system of forces that are unique to a given
context.
A collection of generative design patterns
could be used to “generate” an application or
computer-based system whose architecture
enables it to adapt to change.

113

Kinds of Patterns

Architectural patterns describe broad-based design problems
that are solved using a structural approach.
Data patterns describe recurring data-oriented problems and
the data modeling solutions that can be used to solve them.
Component patterns (also referred to as design patterns)
address problems associated with the development of
subsystems and components, the manner in which they
communicate with one another, and their placement within a
larger architecture
Interface design patterns describe common user interface
problems and their solution with a system of forces that
includes the specific characteristics of end-users.
WebApp patterns address a problem set that is encountered
when building WebApps and often incorporates many of the
other patterns categories just mentioned.

114

Kinds of Patterns

Creational patterns focus on the “creation, composition, and representation
of objects, e.g.,
» Abstract factory pattern: centralize decision of what factory to instantiate
» Factory method pattern: centralize creation of an object of a specific type

choosing one of several implementations
Structural patterns focus on problems and solutions associated with how
classes and objects are organized and integrated to build a larger structure,
e.g.,
» Adapter pattern: 'adapts' one interface for a class into one that a client expects
» Aggregate pattern: a version of the Composite pattern with methods for

aggregation of children
Behavioral patterns address problems associated with the assignment of
responsibility between objects and the manner in which communication is
effected between objects, e.g.,
» Chain of responsibility pattern: Command objects are handled or passed on

to other objects by logic-containing processing objects
» Command pattern: Command objects encapsulate an action and its

parameters

115

Frameworks

Patterns themselves may not be sufficient to develop
a complete design.
» In some cases it may be necessary to provide an

implementation-specific skeletal infrastructure, called a
framework, for design work.

» That is, you can select a “reusable mini-architecture that
provides the generic structure and behavior for a family of
software abstractions, along with a context … which
specifies their collaboration and use within a given
domain.” [Amb98]

A framework is not an architectural pattern, but rather
a skeleton with a collection of “plug points” (also
called hooks and slots) that enable it to be adapted to
a specific problem domain.
» The plug points enable you to integrate problem specific

classes or functionality within the skeleton.

116

Describing a Pattern

Pattern name—describes the essence of the pattern in a short but expressive name
Problem—describes the problem that the pattern addresses
Motivation—provides an example of the problem
Context—describes the environment in which the problem resides including
application domain
Forces—lists the system of forces that affect the manner in which the problem must
be solved; includes a discussion of limitation and constraints that must be
considered
Solution—provides a detailed description of the solution proposed for the problem
Intent—describes the pattern and what it does
Collaborations—describes how other patterns contribute to the solution
Consequences—describes the potential trade-offs that must be considered when the
pattern is implemented and the consequences of using the pattern
Implementation—identifies special issues that should be considered when
implementing the pattern
Known uses—provides examples of actual uses of the design pattern in real
applications
Related patterns—cross-references related design patterns

117

Pattern Languages

A pattern language encompasses a collection of
patterns
» each described using a standardized template (See section

12.1.3 of textbook) and
» interrelated to show how these patterns collaborate to solve

problems across an application domain.
a pattern language is analogous to a hypertext
instruction manual for problem solving in a specific
application domain.
» The problem domain under consideration is first described

hierarchically, beginning with broad design problems
associated with the domain and then refining each of the
broad problems into lower levels of abstraction.

118

Pattern-Based Design

A software designer begins with a
requirements model (either explicit or implied)
that presents an abstract representation of the
system.
The requirements model describes the problem
set, establishes the context, and identifies the
system of forces that hold sway.
Then …

119

Pattern-Based Design

120

Thinking in Patterns

Shalloway and Trott [Sha05] suggest the following
approach that enables a designer to think in patterns:
» 1. Be sure you understand the big picture—the context in

which the software to be built resides. The requirements
model should communicate this to you.

» 2. Examining the big picture, extract the patterns that are
present at that level of abstraction.

» 3. Begin your design with ‘big picture’ patterns that
establish a context or skeleton for further design work.

» 4. “Work inward from the context” [Sha05] looking for
patterns at lower levels of abstraction that contribute to the
design solution.

» 5. Repeat steps 1 to 4 until the complete design is fleshed
out.

» 6. Refine the design by adapting each pattern to the
specifics of the software you’re trying to build.

121

Design Tasks—I

Examine the requirements model and develop a
problem hierarchy.
Determine if a reliable pattern language has been
developed for the problem domain.
Beginning with a broad problem, determine whether
one or more architectural patterns are available for it.
Using the collaborations provided for the
architectural pattern, examine subsystem or
component level problems and search for appropriate
patterns to address them.
Repeat steps 2 through 5 until all broad problems
have been addressed.

122

Design Tasks—II

If user interface design problems have been
isolated (this is almost always the case), search
the many user interface design pattern
repositories for appropriate patterns.
Regardless of its level of abstraction, if a
pattern language and/or patterns repository or
individual pattern shows promise, compare the
problem to be solved against the existing
pattern(s) presented.
Be certain to refine the design as it is derived
from patterns using design quality criteria as a
guide.

123

Pattern Organizing Table

124

Common Design Mistakes

Not enough time has been spent to understand the
underlying problem, its context and forces, and as a
consequence, you select a pattern that looks right, but
is inappropriate for the solution required.
Once the wrong pattern is selected, you refuse to see
your error and force fit the pattern.
In other cases, the problem has forces that are not
considered by the pattern you’ve chosen, resulting in
a poor or erroneous fit.
Sometimes a pattern is applied too literally and the
required adaptations for your problem space are not
implemented.

125

Architectural Patterns

Example: every house (and every architectural style
for houses) employs a Kitchen pattern.
The Kitchen pattern and patterns it collaborates with
address problems associated with the storage and
preparation of food, the tools required to accomplish
these tasks, and rules for placement of these tools
relative to workflow in the room.
In addition, the pattern might address problems
associated with counter tops, lighting, wall switches,
a central island, flooring, and so on.
Obviously, there is more than a single design for a
kitchen, often dictated by the context and system of
forces. But every design can be conceived within the
context of the ‘solution’ suggested by the Kitchen
pattern.

126

Patterns Repositories

There are many sources for design patterns
available on the Web. Some patterns can be
obtained from individually published pattern
languages, while others are available as part of
a patterns portal or patterns repository.
A list of patterns repositories is presented in
the sidebar (see section 12.3 of textbook)

127

Component-Level Patterns

Component-level design patterns provide a
proven solution that addresses one or more
sub-problems extracted from the requirement
model.
In many cases, design patterns of this type
focus on some functional element of a system.
For example, the SafeHomeAssured.com
application must address the following design
sub-problem: How can we get product
specifications and related information for any
SafeHome device?

128

Component-Level Patterns

Having enunciated the sub-problem that must be
solved, consider context and the system of forces that
affect the solution.
Examining the appropriate requirements model use
case, the specification for a SafeHome device (e.g., a
security sensor or camera) is used for informational
purposes by the consumer.
» However, other information that is related to the

specification (e.g., pricing) may be used when e-commerce
functionality is selected.

The solution to the sub-problem involves a search.
Since searching is a very common problem, it should
come as no surprise that there are many search-
related patterns.
See Section 12.4 of textbook

129

User Interface (UI) Patterns

Whole UI. Provide design guidance for top-level structure and navigation throughout the
entire interface.

Page layout. Address the general organization of pages (for Websites) or distinct screen
displays (for interactive applications)

Forms and input. Consider a variety of design techniques for completing form-level input.

Tables. Provide design guidance for creating and manipulating tabular data of all kinds.

Direct data manipulation. Address data editing, modification, and transformation.

Navigation. Assist the user in navigating through hierarchical menus, Web pages, and
interactive display screens.

Searching. Enable content-specific searches through information maintained within a Web
site or contained by persistent data stores that are accessible via an interactive application.

Page elements. Implement specific elements of a Web page or display screen.

E-commerce. Specific to Web sites, these patterns implement recurring elements of e-
commerce applications.

130

WebApp Patterns

Information architecture patterns relate to the overall structure of the
information space, and the ways in which users will interact with the
information.
Navigation patterns define navigation link structures, such as hierarchies,
rings, tours, and so on.
Interaction patterns contribute to the design of the user interface. Patterns
in this category address how the interface informs the user of the
consequences of a specific action; how a user expands content based on
usage context and user desires; how to best describe the destination that is
implied by a link; how to inform the user about the status of an on-going
interaction, and interface related issues.
Presentation patterns assist in the presentation of content as it is
presented to the user via the interface. Patterns in this category address how
to organize user interface control functions for better usability; how to
show the relationship between an interface action and the content objects it
affects, and how to establish effective content hierarchies.
Functional patterns define the workflows, behaviors, processing,
communications, and other algorithmic elements within a WebApp.

131

Design Granularity

When a problem involves “big picture” issues,
attempt to develop solutions (and use relevant
patterns) that focus on the big picture.
Conversely, when the focus is very narrow
(e.g., uniquely selecting one item from a small
set of five or fewer items), the solution (and
the corresponding pattern) is targeted quite
narrowly.
In terms of the level of granularity, patterns
can be described at the following levels:

132

Design Granularity

Architectural patterns. This level of abstraction will
typically relate to patterns that define the overall structure of
the WebApp, indicate the relationships among different
components or increments, and define the rules for specifying
relationships among the elements (pages, packages,
components, subsystems) of the architecture.
Design patterns. These address a specific element of the
design such as an aggregation of components to solve some
design problem, relationships among elements on a page, or
the mechanisms for effecting component to component
communication. An example might be the Broadsheet pattern
for the layout of a WebApp homepage.
Component patterns. This level of abstraction relates to
individual small-scale elements of a WebApp. Examples
include individual interaction elements (e.g. radio buttons, text
books), navigation items (e.g. how might you format links?) or
functional elements (e.g. specific algorithms).

133

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

134

Design & WebApps

When should we emphasize WebApp
design?
» when content and function are complex
» when the size of the WebApp encompasses

hundreds of content objects, functions, and
analysis classes

» when the success of the WebApp will have
a direct impact on the success of the
business

““There are essentially two basic approaches to design: There are essentially two basic approaches to design:
the artistic ideal of expressing yourself and the the artistic ideal of expressing yourself and the
engineering ideal of solving a problem for a engineering ideal of solving a problem for a
customer.customer.””

JakobJakob NielsenNielsen

135

Design & WebApp Quality

Security
» Rebuff external attacks
» Exclude unauthorized access
» Ensure the privacy of users/customers

Availability
» the measure of the percentage of time that a

WebApp is available for use
Scalability
» Can the WebApp and the systems with which

it is interfaced handle significant variation in
user or transaction volume

Time to Market

136

Quality Dimensions for End-Users

Time
» How much has a Web site changed since the last upgrade?
» How do you highlight the parts that have changed?

Structural
» How well do all of the parts of the Web site hold together.
» Are all links inside and outside the Web site working?
» Do all of the images work?
» Are there parts of the Web site that are not connected?

Content
» Does the content of critical pages match what is supposed to be

there?
» Do key phrases exist continually in highly-changeable pages?
» Do critical pages maintain quality content from version to

version?
» What about dynamically generated HTML pages?

137

Quality Dimensions for End-Users

Accuracy and Consistency
» Are today's copies of the pages downloaded the

same as yesterday's? Close enough?
» Is the data presented accurate enough? How do

you know?
Response Time and Latency
» Does the Web site server respond to a browser

request within certain parameters?
» In an E-commerce context, how is the end to end

response time after a SUBMIT?
» Are there parts of a site that are so slow the user

declines to continue working on it?
Performance
» Is the Browser-Web-Web site-Web-Browser

connection quick enough?
» How does the performance vary by time of day,

by load and usage?
» Is performance adequate for E-commerce

applications?

138

WebApp Design Goals

Consistency
» Content should be constructed consistently
» Graphic design (aesthetics) should present a

consistent look across all parts of the WebApp
» Architectural design should establish templates

that lead to a consistent hypermedia structure
» Interface design should define consistent modes of

interaction, navigation and content display
» Navigation mechanisms should be used

consistently across all WebApp elements

139

WebApp Design Goals

Identity
» Establish an “identity” that is appropriate for the

business purpose

Robustness
» The user expects robust content and functions that

are relevant to the user’s needs

Navigability
» designed in a manner that is intuitive and predictable

Visual appeal
» the look and feel of content, interface layout,

color coordination, the balance of text, graphics
and other media, navigation mechanisms must
appeal to end-users

Compatibility
» With all appropriate environments and

configurations

140

WebE Design Pyramid

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

141

WebApp Interface Design

Where am I? The interface should
» provide an indication of the WebApp that has been accessed
» inform the user of her location in the content hierarchy.

What can I do now? The interface should always help
the user understand his current options
» what functions are available?
» what links are live?
» what content is relevant?

Where have I been, where am I going? The interface
must facilitate navigation.
» Provide a “map” (implemented in a way that is easy to

understand) of where the user has been and what paths may be
taken to move elsewhere within the WebApp.

142

Effective WebApp Interfaces

Bruce Tognozzi [TOG01] suggests…
» Effective interfaces are visually apparent and

forgiving, instilling in their users a sense of control.
Users quickly see the breadth of their options, grasp
how to achieve their goals, and do their work.

» Effective interfaces do not concern the user with the
inner workings of the system. Work is carefully and
continuously saved, with full option for the user to
undo any activity at any time.

» Effective applications and services perform a
maximum of work, while requiring a minimum of
information from users.

143

Interface Design Principles-I

Anticipation—A WebApp should be designed so that it
anticipates the use’s next move.
Communication—The interface should communicate the
status of any activity initiated by the user
Consistency—The use of navigation controls, menus,
icons, and aesthetics (e.g., color, shape, layout)
Controlled autonomy—The interface should facilitate
user movement throughout the WebApp, but it should do
so in a manner that enforces navigation conventions that
have been established for the application.
Efficiency—The design of the WebApp and its interface
should optimize the user’s work efficiency, not the
efficiency of the Web engineer who designs and builds it
or the client-server environment that executes it.

144

Interface Design Principles-II

Focus—The WebApp interface (and the content it presents) should
stay focused on the user task(s) at hand.
Fitt’s Law—“The time to acquire a target is a function of the distance
to and size of the target.”
Human interface objects—A vast library of reusable human interface
objects has been developed for WebApps.
Latency reduction—The WebApp should use multi-tasking in a way
that lets the user proceed with work as if the operation has been
completed.
Learnability— A WebApp interface should be designed to minimize
learning time, and once learned, to minimize relearning required
when the WebApp is revisited.

145

Interface Design Principles-III

Maintain work product integrity—A work product (e.g., a form
completed by the user, a user specified list) must be automatically
saved so that it will not be lost if an error occurs.
Readability—All information presented through the interface should
be readable by young and old.
Track state—When appropriate, the state of the user interaction
should be tracked and stored so that a user can logoff and return
later to pick up where she left off.
Visible navigation—A well-designed WebApp interface provides “the
illusion that users are in the same place, with the work brought to
them.”

146

Aesthetic Design

Don’t be afraid of white space.
Emphasize content.
Organize layout elements from top-left to
bottom right.
Group navigation, content, and function
geographically within the page.
Don’t extend your real estate with the
scrolling bar.
Consider resolution and browser window
size when designing layout.

147

Content Design

Develops a design representation for content
objects
» For WebApps, a content object is more closely aligned

with a data object for conventional software

Represents the mechanisms required to
instantiate their relationships to one another.
» analogous to the relationship between analysis classes and

design components described in Chapter 11

A content object has attributes that include content-
specific information and implementation-specific
attributes that are specified as part of design

148

Design of Content Objects
ProductComponent

partNumber
partName
partType
description
price

createNewItem ()
displayDescription ()
display TechSpec

Sensor Camera ControlPanel SoftFeature

CompDescript ion

Phot ograph

horizontal dimension
vert ical dimension
border style

Schemat ic

horizontal dimension
vert ical dimension
border style

Video

horizontal dimension
vert ical dimension
border style
audio volume

TechDescript ion

text color
font style
font size
line spacing
text image size
background color

Market ingDescript ion

text color
font style
font size
line spacing
text image size
background color

is part of

1

1

1 1..* 0..1 0..1 1

1

149

Architecture Design

Content architecture focuses on the manner in which content objects
(or composite objects such as Web pages) are structured for
presentation and navigation.
» The term information architecture is also used to connote structures that

lead to better organization, labeling, navigation, and searching of
content objects.

WebApp architecture addresses the manner in which the application
is structured to manage user interaction, handle internal processing
tasks, effect navigation, and present content.
Architecture design is conducted in parallel with interface design,
aesthetic design and content design.

150

Content Architecture

Hierarchical
structure

Grid
structure

Linear
structure

Network
structure

151

MVC Architecture

The model contains all application specific content and processing
logic, including
» all content objects
» access to external data/information sources,
» all processing functionality that are application specific
The view contains all interface specific functions and enables
» the presentation of content and processing logic
» access to external data/information sources,
» all processing functionality required by the end-user.

The controller manages access to the model and the view and
coordinates the flow of data between them.

152

MVC Architecture

browser

client

cont roller
manages user request s
select s model behavior
select s view response

view
prepares dat a from model
request updat es from model
present s view select ed by
 cont roller

model
encapsulat es funct ionalit y
encapsulat es cont ent object s
incorporat es all webApp st at es

server

ext ernal dat a

behavior request
(st at e change)

dat a from model

updat e request

view select ion

user request
or dat a

HTML dat a

153

Navigation Design

Begins with a consideration of the user
hierarchy and related use-cases
» Each actor may use the WebApp somewhat

differently and therefore have different
navigation requirements

As each user interacts with the WebApp,
she encounters a series of navigation
semantic units (NSUs)
» NSU—“a set of information and related

navigation structures that collaborate in the
fulfillment of a subset of related user
requirements”

154

Navigation Semantic Units

Navigation semantic unit
» Ways of navigation (WoN)—represents the best

navigation way or path for users with certain profiles
to achieve their desired goal or sub-goal. Composed
of …

• Navigation nodes (NN) connected by Navigation links

NN1

NN2

NN4

NN3link13

link12

link34

link24

NSU

155

Creating an NSU

<<navigat ion link>>
select Room

Room

<<navigat ion link>>
recommend component(s)

ProductComponent

BillOfMaterials<<navigat ion link>>
view BillOfMaterials

<<navigat ion link>>
show descript ion<<navigat ion link>>

return to Room

<<navigat ion link>>
request alternat ive

photograph

schemat ic
video

Market ingDescript ion

techDescript ion

CompDescript ion

<<navigat ion link>>
purchase ProductComponent

<<navigat ion link>>
show ProductComponent

<<navigat ion link>>
purchase ProductComponent

156

Navigation Syntax

Individual navigation link—text-based links, icons,
buttons and switches, and graphical metaphors..
Horizontal navigation bar—lists major content or
functional categories in a bar containing appropriate
links. In general, between 4 and 7 categories are listed.
Vertical navigation column
» lists major content or functional categories
» lists virtually all major content objects within the WebApp.

Tabs—a metaphor that is nothing more than a variation
of the navigation bar or column, representing content or
functional categories as tab sheets that are selected
when a link is required.
Site maps—provide an all-inclusive tab of contents for
navigation to all content objects and functionality
contained within the WebApp.

157

Component-Level Design

WebApp components implement the
following functionality
» perform localized processing to generate

content and navigation capability in a dynamic
fashion

» provide computation or data processing
capability that are appropriate for the
WebApp’s business domain

» provide sophisticated database query and
access

» establish data interfaces with external
corporate systems.

158

OOHDM

Object-Oriented Hypermedia Design Method
(OOHDM)

work product s

design mechanisms

design concerns

Classes, sub-systems,�
relationships, attributes

Classification,�
composition,�
aggregation,�
generalization�
specialization

Modeling semantics�
of the application�
domain

concept ual design navigat ional design
abst ract int erface

design
implement at ion

Nodes, links, access�
structures, navigational�
contexts, navigational�
transformations

Mapping between�
conceptual and�
navigation objects

Takes into account user�
profile and task.�
Emphasis on cognitive�
aspects.

Abstract interface�
objects, responses to�
external events,
transformations

Mapping between�
navigation and�
perceptible objects

Modeling perceptible�
objects, implementing�
chosen metaphors.�
Describe interface for�
navigational objects

executable�
WebApp

Resource�
provided by�
target�
environment

Correctness;�
Application
performance;�
completeness

159

Conceptual Schema

BillOfMaterials

identifier
BoMList
numberItems
priceTotal

addEntry ()
deleteEntry ()
editEntry ()
name()
computePrice ()

BoMItem

quantity
partNumber
partName
partType
price

addtoList ()
deletefromList ()
getNextListEntry ()

ProductComponent

partNumber
partName
partType
description
price

createNewItem ()
getDescription ()
getTechSpec

Sensor Camera ControlPanel SoftFeature

cust omer select s component

Order

orderNumber
customerInfo
billOfMaterials
shippingInfo
billingInfo

Room

roomName
dimensions
exteriorWindows
exteriorDoors

component recommendat ion
request ed

cust omer
request s purchase

cust omercont inues
component select ion

160

33 Component-Level DesignComponent-Level Design

44 User Interface DesignUser Interface Design

Agenda

11 IntroductionIntroduction

77 Summary and ConclusionSummary and Conclusion

22 Architectural DesignArchitectural Design

55 Pattern-Based DesignPattern-Based Design

66 Web Application DesignWeb Application Design

161

Summary – From Analysis and Design to Software Architecture (Part I) – 1/4

All design work products must be traceable to
software requirements and that all design work
products must be reviewed for quality
Software projects iterate through the analysis and
design phases several times
Pure separation of analysis and design may not
always be possible or desirable
There are many significant design concepts
(abstraction, refinement, modularity, architecture,
patterns, refactoring, functional independence,
information hiding, and OO design concepts)
Design changes are inevitable and that delaying
component level design can reduce the impact of
these changes

162

Summary – From Analysis and Design to Software Architecture (Part I) – 2/4

The goal of the architectural model is to allow the
software engineer to view and evaluate the system
as a whole before moving to component design
At the architecture level, data design is the process of
creating a model of the information represented at a
high level of abstraction (using the customer's view of
data)
At the component level, data design focuses on
specific data structures required to realize the data
objects to be manipulated by a component
An architectural style is a transformation that is
imposed on the design of an entire system

163

Summary – From Analysis and Design to Software Architecture (Part I) – 3/4

Design classes in the problem domain
are usually custom-designed, however,
if an organization has encouraged
design for reuse, there may be an
existing component that fits the bill
Design classes corresponding to the
infrastructure domain can sometimes be
often from existing class libraries
A UML collaboration diagram provides
an indication of message passing
between components

164

Summary – From Analysis and Design to Software Architecture (Part I) – 4/4

There are three principles of user interface
design that should be followed to build
software projects:
» The first is to place the user in control (which

means have the computer interface support the
user’s understanding of a task and do not force
the user to follow the computer's way of doing
things)

» The second (reduce the user’s memory load)
means place all necessary information in the
screen at the same time

» The third is consistency of form and behavior. It is
sometimes good to bring in commercial software
and try to see how well the interface designers
seem to have followed these guidelines

165

Course Assignments

Individual Assignments
Reports based on case studies / class presentations

Project-Related Assignments
All assignments (other than the individual assessments) will
correspond to milestones in the team project.
As the course progresses, students will be applying various
methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consist of inter-related deliverables which are
due on a (bi-) weekly basis.
There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.
A sample project description and additional details will be available
under handouts on the course Web site

166

Team Project

Project Logistics
Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-
based electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.
Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged
to form their own 2-pair teams in advance. If some students drop the
course, any remaining pair or team members may be arbitrarily reassigned
to other pairs/teams at the discretion of the instructor (but are strongly
encouraged to reform pairs/teams on their own). Students will develop and
test their project code together with the other member of their programming
pair.

167

Document Transformation methodology driven
approach

Strategy Alignment Elicitation
Equivalent to strategic planning

i.e., planning at the level of a project set

Strategy Alignment Execution
Equivalent to project planning + SDLC

i.e., planning a the level of individual projects + project
implementation

Build a methodology Wiki & partially implement the
enablers
Apply transformation methodology approach to a
sample problem domain for which a business solution
must be found
Final product is a wiki/report that focuses on

Methodology / methodology implementation / sample
business-driven problem solution

Team Project Approach - Overall

168

Document sample problem domain and
business-driven problem of interest

Problem description
High-level specification details
High-level implementation details
Proposed high-level timeline

Team Project Approach – Initial Step

169

Course Project

• Project Logistics
• Teams will pick their own projects, within certain constraints: for instance,

all projects should involve multiple distributed subsystems (e.g., web-based
electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

• Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged to
form their own 2-pair teams in advance. If some students drop the course,
any remaining pair or team members may be arbitrarily reassigned to other
pairs/teams at the discretion of the instructor (but are strongly encouraged to
reform pairs/teams on their own). Students will develop and test their
project code together with the other member of their programming pair.

170

Sample Project Methodology
Very eXtreme Programming (VXP)

After teams formed, 1/2 week to Project
Concept
1/2 week to Revised Project Concept
2 to 3 iterations
For each iteration:
» 1/2 week to plan
» 1 week to iteration report and demo

171

Sample Project Methodology
Very eXtreme Programming (VXP) - (continued)

Requirements: Your project focuses on two application
services
Planning: User stories and work breakdown
Doing: Pair programming, write test cases before coding,
automate testing
Demoing: 5 minute presentation plus 15 minute demo
Reporting: What got done, what didn’t, what tests show
1st iteration: Any
2nd iteration: Use some component model framework
3rd iteration: Refactoring, do it right this time

172

Revised Project Concept (Tips)

1. Cover page (max 1 page)
2. Basic concept (max 3 pages): Briefly

describe the system your team
proposes to build. Write this
description in the form of either user
stories or use cases (your choice).
Illustrations do not count towards page
limits.

3. Controversies (max 1 page)

173

First Iteration Plan (Tips)

Requirements (max 2 pages):
Select user stories or use cases to implement
in your first iteration, to produce a demo by
the last week of class
Assign priorities and points to each unit - A
point should correspond to the amount of
work you expect one pair to be able to
accomplish within one week
You may optionally include additional medium
priority points to do “if you have time”
It is acceptable to include fewer, more or
different use cases or user stories than
actually appeared in your Revised Project
Concept

174

First Iteration Plan (Tips)

Work Breakdown (max 3 pages):
Refine as engineering tasks and assign to
pairs
Describe specifically what will need to be
coded in order to complete each task
Also describe what unit and integration tests
will be implemented and performed
You may need additional engineering tasks
that do not match one-to-one with your user
stories/use cases
Map out a schedule for the next weeks
Be realistic – demo has to been shown before
the end of the semester

175

2nd Iteration Plan (Tips): Requirements

Max 3 pages
Redesign/reengineer your system to use a
component framework (e.g., COM+, EJB,
CCM, .NET or Web Services)
Select the user stories to include in the new
system
» Could be identical to those completed for your 1st

Iteration
» Could be brand new (but explain how they fit)

Aim to maintain project velocity from 1st

iteration
Consider what will require new coding vs.
major rework vs. minor rework vs. can be
reused “as is”

176

2nd Iteration Plan (Tips): Breakdown

Max 4 pages
Define engineering tasks, again try to
maintain project velocity
Describe new unit and integration testing
Describe regression testing
» Can you reuse tests from 1st iteration?
» If not, how will you know you didn’t break

something that previously worked?
2nd iteration report and demo to be presented
before the end of the semester

177

2nd Iteration Report (Tips): Requirements

Max 2 pages
For each engineering task from your 2nd

Iteration Plan, indicate whether it succeeded,
partially succeeded (and to what extent),
failed (and how so?), or was not attempted
Estimate how many user story points were
actually completed (these might be fractional)
Discuss specifically your success, or lack
thereof, in porting to or reengineering for your
chosen component model framework(s)

178

2nd Iteration Report (Tips): Testing

Max 3 pages
Describe the general strategy you followed
for unit testing, integration testing and
regression testing
Were you able to reuse unit and/or integration
tests, with little or no change, from your 1st

Iteration as regression tests?
What was most difficult to test?
Did using a component model framework
help or hinder your testing?

179

Project Presentation and Demo

All Iterations Due
Presentation slides (optional)

180

Assignments & Readings

Readings

Slides and Handouts posted on the course web site

Textbook: Part Two-Chapters 6-8
Individual Assignment (due)

See Session 5 Handout: “Assignment #2”

Individual Assignment (assigned)

See Session 8 Handout: “Assignment #3”

Team Project #1 (ongoing)

Team Project proposal (format TBD in class)

See Session 2 Handout: “Team Project Specification” (Part 1)

Team Exercise #1 (ongoing)
Presentation topic proposal (format TBD in class)

Project Frameworks Setup (ongoing)

As per reference provided on the course Web site

181

Any Questions?

182

Next Session: From Analysis and Design to Software Architecture (Part II)

