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Abstract

High-speed string pattern matching in hardware is
required in many applications including Network In-
trusion Detection applications. Regular expressions
are one method to implement such matching and are
often built in FPGAs using non-deterministic finite
automata (NFAs). To obtain high throughputs it is
necessary to process many bytes in parallel. This pa-
per extends the modular NFA construction method of
Sidhu and Prasanna to handle the processing of many
bytes in parallel. The paper also introduces the con-
cept of partial character decoding in which character
match units are shared but the number of signals
needed to be routed around the FPGA is reduced over
previous shared-decoder approaches. With these ap-
proaches, throughput over 5Gbps is achieved for the
full default Snort rule-set (23401 literals) in a Xilinx
Virtex-2 6000 FPGA. Throughputs over 40Gbps are
achieved on smaller rule-sets. Suggestions to improve
performance are also given.

1. Introduction

There has been much recent work on the topic of
accelerated textual pattern matching, and in particu-
lar, regular expression matching in FPGAs. Much of
this has been in the context of Network Intrusion De-
tection System (IDS) applications - often using the
rules from the Snort IDS [1] as a basis for testing. 

A common and efficient method for implement-
ing regular expression matching in hardware is the
non-deterministic finite automaton (NFA). Since Sid-
hu and Prasanna [2] demonstrated how FPGAs can
efficiently implement NFAs, a number of authors
have presented variations on their approach which
give better performance. 

The work presented here extends the original
modular building-block approach of Sidhu and Pras-
anna [2] by presenting regular expression building
blocks suitable for processing an arbitrary number of
bytes in parallel.
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he paper also extends the work of Clark and
mel [3] who used a shared character decoder to

 efficiently implement NFA regular expression
its. Our results show that in most circumstances
tial decoding approach will give better results
 full 8-to-256 decoding of each character.
 program has been implemented which con-
Snort rules into regular expressions and, from
, constructs a structural VHDL description of an
 circuit which matches the given patterns whilst
ssing multiple bytes in parallel. The construc-
ethod uses the extended NFA building blocks

lso uses the partial decoders proposed in this pa-

he remainder of this paper is organised as fol-
 Section 2 presents some background informa-
Section 3 describes the modular multi-byte NFA
ing blocks and Section 4 describes the partial
cter decoding approach. Section 5 describes the
s from the synthesis of a number of example
ar expression engines. Some discussion of the
s and a description of future enhancements is
nted in Section 6 followed by some conclusions
ction 7.

ackground Information

his section presents background information on
ar expressions, NFAs, NFA implementation in
are, the Snort Network IDS tool, and other
are approaches to Network IDS.

egular Expressions

 regular expression is a pattern which describes
ng (or strings) of characters. A regular expres-
onsists of both characters (from some alphabet)
eta-characters which have special meaning. A

ar expression r can be one of the following:
single character, or literal from the alphabet of
terest - this matches exactly that character; 



• a concatenation of two regular expressions, r1r2 -
this matches regular expression r1 immediately
followed by r2;

• an alternation of two regular expressions, r1|r2 -
this matches either r1 or r2;

• the closure (or star) of a regular expression, r1* -
this matches 0 or more occurrences of r1 (r1* is
the same as |r1|r1r1|r1r1r1|... where  is the empty
(zero-length) string); or

• a parenthesized regular expression, (r1) - this
matches r1 (parentheses are used for overriding
precedence).
More complex regular expression syntaxes with

many more meta-characters (e.g. . + [ ] ? etc.) are
available. In all cases, such an expression can be con-
verted to one using only the meta-characters above
(though often at the cost of greatly increased pattern
length)1.

2.2. Non-Deterministic Finite Automata 
(NFAs)

A non-deterministic finite automaton (NFA) can
be thought of as a directed graph whose nodes are
states [5]. There is a start state and one or more ac-
cepting or final states. Transitions between states are
labelled by any symbol from the alphabet or by , the
empty string. The NFA accepts a string a1a2…an if
there is a path from the start state to an accepting state
with labels a1, a2, … an. (The label  may also appear
any number of times.)

A deterministic finite automation (DFA) is an
NFA in which there are no paths labelled with  and
no two outgoing paths from any state are labelled
with the same symbol. At most one state of a DFA is
active, whereas an NFA may have any number of ac-
tive states. Any NFA can be converted to an equiva-
lent DFA, though in the worst case this will take
O(n2) time and O(n2) space where n is the number of
states in the NFA.

Further details on NFAs can be found in [4].

2.3. NFAs and Regular Expressions

NFAs are suited to regular expression matching
because there is a direct mapping from any regular
expression to an NFA [5] in O(n) time where n is the
length of the regular expression. A software imple-
mentation of an NFA can match a character in O(n)
time2. In hardware, however, multiple state transi-
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1. Such a conversion may not lead to an efficient imple-
mentation but it will lead to correct one.

2. Software implementations of regular expression
matching will typically use an equivalent DFA which
can match any character in O(1) time. Note however
that the conversion process from an NFA to a DFA
may be O(n2) in both time and space. 

C0 CD
0A|";
can be considered in parallel so a hardware NFA
atch a character in O(1) time. 
he implementation of regular expressions in
are was first examined over 20 years ago when
 and Ullman [5] showed that an NFA regular
ssion circuit can be implemented efficiently us-
 programmable-logic array (PLA) architecture.
 recently, Sidhu and Prasanna [2] showed that
s were an efficient method for implementing
ar expressions in FPGAs. Both approaches in-
 a simple conversion process using one-hot en-
g of the states. 
s described in the following section, a number

searchers have examined regular expression
ing in FPGAs.

egular Expression Matching in FPGAs

ince the work of Sidhu and Prasanna [2] a
er of authors have presented enhancements that
ve pattern matching performance. Some of

 are discussed below.
utchings et al. [6] report on a JHDL-based
le generator. This uses the modular approach of
 and Prasanna, but also supports additional reg-
xpression meta-characters “?”, “.” and “[]”. The
le-generator also recognises and shares hard-
between patterns with common prefixes. Char-
 to be matched are broadcast to all character
 units, but a pipelined broadcast tree is imple-

ed to improve performance.
oscola et al. [8] take the approach that in many

 a DFA equivalent to an NFA would actually use
 states. Because a DFA is always in a single
 such an approach enables the state to be cap-
 in a small number of bits, which is ideal for
ping pattern matching contexts in and out of
are. Their work processes a single byte at a time
ses multiple engines in parallel to accelerate
ing.

nort

nort [1] is an open-source Network Intrusion
tion System (IDS). Snort is configured with a
 rules which describe packets of interest and the
 which should be taken upon receipt of such
ts. The rules can specify both packet header in-
tion (e.g. source and/or destination IP address-

ort numbers etc.) as well as packet content
ation to be matched against.
n example Snort rule (with some detail omit-

s:
 tcp $EXTERNAL_NET any -> $HOME_NET 515
"EXPLOIT LPRng overflow"; flow:
rver,established; content: "|43 07 89
 8D 4B 08 89 43 0C B0 0B CD 80 31 C0 FE
 80 E8 94 FF FF FF 2F 62 69 6E 2F 73 68
 …)



The rule specifies the action to take (alert), the
protocol (tcp), the source and destination IP address-
es and ports, some characteristics of the connection
(flow: option) and the content to be matched (con-
tent: option), in this case expressed as a sequence of
hexadecimal character values.

Snort rules are often used as example patterns for
FPGA-based pattern matching implementations be-
cause they represent a large real-world set of patterns. 

2.6. Other Approaches for Network IDS on 
FPGAs

Network IDS implementations on FPGAs need
not be based on NFAs or even regular expressions.
Other approaches have included (but are not limited
to) DFAs [8], variations on the Knuth-Morris-Pratt
(KMP) algorithm [9], parallel Bloom filters [10], and
content-addressable memory (CAM) based ap-
proaches [11],[12].

This paper concentrates on the issue of efficient-
ly implementing regular expression matching in FP-
GAs rather than Network IDS per se. Network IDS, in
the form of Snort rules, is used as the example do-
main.

3. Regular Expression NFA Building 
Blocks

Building on the work of Sidhu and Prasanna [2],
a building-block approach to the construction of NFA
circuits which match regular expressions against mul-
ti-byte inputs is presented. 

Regular expressions describe patterns in a given
alphabet of characters. In Network Intrusion Detec-
tion applications, the alphabet is the set of all possible
byte values (ranging numerically from 0 to 255 if
considered as an unsigned value). Implementations of
regular expression engines (in both software and
hardware) usually consider one incoming symbol at a
time. 

As network speeds accelerate, Network Intrusion
Detection applications have increasing performance
requirements, e.g., needing to scan network traffic at
throughputs of many giga-bits per second (Gbps).
Such throughputs are relatively easy to obtain in hard-
ware, provided that more than one byte of the input
stream can be scanned simultaneously in parallel. 

The easiest way to get greater performance
(throughput) from a pattern matching circuit is to ex-
tend it to handle multiple-bytes in parallel. Sidhu and
Prasanna’s single byte matching unit (Fig. 1 (a)) can
be extended to handle multiple bytes in parallel as
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The resulting circuit from grouping such blocks
will be similar to the multi-byte approach presented
by Cho et al. in [14] but does not break up the pattern
into N-byte chunks (repeated at each of the N possible
offsets). Sourdis and Pnevmatikatos [7] also present a
multi-byte approach in which the pattern is repeated
at different offsets. The approach presented here al-
lows for a building-block approach to the construc-
tion of an NFA and is conceptually cleaner. 

In addition to the multi-byte character matching
block, the single byte concatenation, alternation and
star blocks of Sidhu and Prasanna can be extended to
multiple bytes as shown in Fig. 2. In the case where
n=1, the circuits reduce to those shown in [2].

A tool has been implemented in Tcl [13] which
reads patterns in the format of Snort rules, forms reg-
ular expression parse trees, and then generates struc-
tural VHDL describing an NFA circuit which
matches the given patterns. The final alternation (i.e.
or combination) of all the patterns in the rule-set uses
a pipelined or-tree so as not to be a bottle-neck. The
number of bytes to be considered in parallel is an in-
put parameter to the tool. 

Character match units generated by the tool take
advantage of shared partial decoders as described in
the following section.

4. Partial Character Decoding

Sidhu and Prasanna’s approach (and that of many
others) distributes each input character to each char-
acter match unit in the circuit and replicates compara-
tors. Clark and Schimmel [3] describe a shared
character-decoder approach. An 8-to-256 decoder is
used to generate a single-bit match signal for each
character. These single-bit signals are then distributed
to the appropriate character match units, removing the
overhead of distributing an 8-bit character to each
character match unit and performing redundant char-
acter comparisons. This approach saves logic re-
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ls to be distributed around the FPGA. 
ur work extends this approach by considering
l shared character decoding. Partial decoding

s that instead of decoding all 8 bits of each char-
 we decode groups of bits within each character.
is work, we considered breaking the 8 bits of
character into 1,2,3,4 and 8 groups as shown in
 (One group of 8 bits is not partial decoding - we
der this decoding option to enable comparison
en this approach and partial decoding.)
hared partial decoding allows trade-offs be-
 the amount of logic shared amongst the whole
t (i.e. the number and size of the character de-
s) and the number of signals which have to be
d around the FPGA. 
s shown in Fig. 3, the number of signals which

to be distributed around the FPGA reduces as
mber of decoding groups increases. With full 8-

6 decoding for each character, up to 256 signals
to be distributed around the FPGA3 from our
d decoder block (though each match unit will
need one of these signals). With four 2-to-4 de-
s, for example, only 16 signals need to be dis-
ed around the FPGA (though on average, each
l will be needed in 16 times more places than
8-to-256 decoding). If multiple (n) bytes are be-
rocessed in parallel, the number of signals to be
buted must be multiplied by n.
artial decoding does increase the complexity of

haracter match units. With 8-to-256 decoding,
haracter match unit (shown as blocks labelled
n Fig. 1) becomes just a wire (as shown in Fig.
 With partial decoding, an AND gate is required
ch character match unit. Fig. 4 shows the re-
d character match units (i.e. “C” blocks) for each
 partial decodings considered. It is hypothesized
he cost of this is negligible given that the output

Fewer signals (and decoders) are needed if the pat-
tern-space does not use all 256 possible characters.
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Figure 2. Multi-byte regular-expression NFA building blocks for combination elements: (a) concate-
nation: r1r2, (b) alternation: r1|r2 and (c) star: r1*



of the character match unit is ANDed with the current
NFA state bit or other input (as shown in Fig. 1).

5. Experimental Results

In this section we present the results of combin-
ing partial-character decoding with the modular con-
struction of multi-byte regular expression NFAs. A
number of rule sets are considered. We chose to target
the Xilinx Virtex-2 6000 (speed grade 5) and Xilinx
Virtex-E 2000 (speed grade 7) since those devices are
used as examples in a number of related studies.

5.1. Rule-sets

A number of rule-sets were considered in the ex-
periments. These were subsets of the Snort 2.0.0 rule-
set as follows:

• web-attacks - the set of rules in the file web-at-
tacks.rules

• sql - the set of rules in the file sql.rules
• web-iis - the set of rules in the file web-iis.rules
• default - the set of rules enabled by default in the

2.0.0 rule-set (i.e. those rules included in the
snort.conf file)
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le 1: Experimental rule-set characteristics

ame Number of 
rules

Number of 
content 
patterns

Number of 
literals

attacks 47 47 450
sql 43 49 1034
b-iis 116 130 2016
fault 1554 2260 23401
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Figure 3. Character decoding options considered in this paper: (a) Each character is fully decoded. 
(b) Each character is broken into two groups of four bits each. (c) Each character is broken into three 
groups of 3,3,2 bits. (d) Each character is broken into four groups of 2 bits each. (e) Each character is 
broken into individual bits.

Figure 4. Character match units required for each of the five decoding options shown in Fig. 3
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5.2. Methodology

Structural VHDL was generated (by the tool de-
scribed earlier) for each of the circuits under test. The
design was passed through a standard Xilinx ISE 6.1
tool flow (xst, ngdbuild, map, par) with default op-
tions. The only constraint specified was the target
clock period, which was chosen to be 1.25 times the
predicted clock period reported by the synthesis tool.
This resulted in some designs being overconstrained
(failing to meet the timing constraint) and some un-
derconstrained (easily meeting the timing constraint).
In all cases, the clock period (and hence maximum
frequency) reported is the “Actual” value reported by
the place-and-route tool. The throughput reported (in
Gbps) is the maximum frequency obtained (in MHz)
multiplied by 8 multiplied by the number of bytes be-
ing processed in parallel divided by 1024.

For all of the rule-sets except the largest (“de-
fault”), VHDL was generated, synthesized, placed
and routed for each combination of:

• the two devices being considered;
• the five decoding options; and
• the processing of 1,2,3,4,5,6,7,8,10,12,14 and 16

bytes in parallel. 
For the large “default” rule set, only the process-

ing of 1,2 and 3 bytes in parallel was considered for
some of the five decoding options and only on the
larger Virtex 2 device. Some combinations were be-
yond the memory capacity of the computer concerned
even though the device was not fully utilized.

5.3. Performance

Tables 2, 3, 4, and 5 show the results for the var-
ious rule-sets on the Virtex-2 6000 device. The tables
list the throughput (in Gbps) for the given combina-
tion of number of bytes processed in parallel and the
style of character decoding. The number in parenthe-
ses in each table entry is the proportion of 4-input
lookup-tables (LUTs) utilized in the device. For each
given number of bytes processed in parallel, the de-
coding option which produced the greatest through-
put is shaded light gray. Table 6 shows the results for
the web-attacks rule-set on the Virtex-E 2000 device.
Other results for this device are omitted. 

A discussion of the results is presented below. 

6. Discussion

The most important conclusion to draw from the
experimental results is that there is no obvious rela-
tionship between the style of character decoding and
the best performance (throughput). For any given
rule-set and number of bytes to be processed in paral-
lel, any one of the character decoding styles could
produce the best performance. The best choice also
depends on the device chosen - for the web-attacks

Table

Bytes
in

parall
1
2
3
4
5
6
7
8
10
12
14
16

Table

Bytes i
parall

1
2
3
4
5
6
7
8
10
12
14
16

Table

Bytes
in

paralle
1
2
3
4
5
6
7
8
10
12
14
16

Table

Bytes i
parall

1

2

3

 2: Gbps throughput (LUT utilization%) for 
web-attacks rule-set on Virtex-2 6000

 

el

(a) 8-to-
256

(b) 2 
Decoders

(c) 3 
Decoders

(d) 4 
Decoders

(e) 8 
Decoders

2.69 (0.5%) 2.68 (0.5%) 3.06 (0.5%) 2.68 (0.5%) 3.08 (2%)
5.35 (0.6%) 5.36 (0.6%) 5.43 (0.8%) 4.61 (0.7%) 5.21 (3%)
7.51 (0.8%) 8.63 (1%) 7.88 (1.3%) 7 (1.1%) 8.6 (3.4%)
10.5 (1.2%) 10.6 (1.4%) 8.81 (1.7%) 8.43 (1.6%) 11.3 (4%)
13.7 (1.7%) 13.7 (1.8%) 11.0 (2.2%) 13.5 (2.2%) 13.0 (4.8%)
14.4 (2.1%) 13.3 (2.1%) 14.0 (2.7%) 15.3 (2.7%) 16.0 (5.4%)
16.8 (2.5%) 16.8 (2.6%) 16.5 (3.3%) 16.7 (3.2%) 18.2 (6.2%)
20.6 (3%) 19.3 (3%) 19.5 (3.7%) 19.4 (3.8%) 20.8 (6.3%)
22.2 (3.8%) 23.9 (3.9%) 25 (4.7%) 23.5 (4.9%) 25.1 (8%)
27.1 (4.6%) 27.2 (4.8%) 30.0 (5.7%) 28.0 (5.8%) 30.5 (8.9%)
27.7 (5.4%) 35.1 (5.7%) 34.7 (6.7%) 36.5 (6.9%) 35.4 (10.2%)
38.6 (6.2%) 39.9 (6.7%) 40.1 (7.5%) 40.1 (7.8%) 38.9 (10.8%)

 3: Gbps throughput (LUT utilization%) for 
sql rule-set on Virtex-2 6000

n 
el

(a) 8-to-
256

(b) 2 
Decoders

(c) 3 
Decoders

(d) 4 
Decoders

(e) 8 
Decoders

3.31 (0.7%) 2.76 (0.7%) 2.85 (0.7%) 2.83 (0.7%) 3.3 (3.2%)
5.15 (0.8%) 5.26 (0.8%) 4.86 (1%) 5.33 (1.1%) 4.29 (4%)
7.91 (1%) 8.5 (1.1%) 7.71 (1.4%) 7.88 (2%) 6.59 (5.6%)
11.0 (1.4%) 10.3 (1.5%) 10.7 (1.8%) 11.4 (2.5%) 8.84 (6.1%)
12.0 (2%) 13.7 (2%) 13.1 (2.4%) 13.1 (2.8%) 10.8 (7.7%)
14.2 (2.6%) 14.6 (2.5%) 13.9 (2.9%) 18.0 (3.5%) 13 (8.8%)
16.6 (3%) 16.7 (2.9%) 16.8 (3.4%) 20.6 (3.8%) 15.1 (10.1%)
19.2 (3.7%) 19.1 (3.4%) 19.1 (3.9%) 22.9 (4.4%) 16.2 (11.1%)
23.5 (4.7%) 23.3 (4.3%) 23.5 (5%) 25.1 (5.4%) 20.6 (12.7%)
29.9 (5.6%) 29.9 (5.4%) 23.0 (5.9%) 30.9 (6.4%) 23.7 (15.6%)
35.7 (6.6%) 35.8 (6.3%) 36.0 (7.2%) 35.7 (7.6%) 32.9 (15.5%)
39.0 (7.6%) 39.2 (7.4%) 38.8 (8.2%) 39.7 (8.5%) 32.9 (19.4%)

 4: Gbps throughput (LUT utilization%) for 
web-iis rule-set on Virtex-2 6000

 

l

(a) 8-to-
256

(b) 2 
Decoders

(c) 3 
Decoders

(d) 4 
Decoders

(e) 8 
Decoders

2.76 (2.3%) 3.19 (2.3%) 3.31 (2.2%) 2.78 (2.3%) 3.12 (4.6%)
5.25 (2.6%) 5.11 (2.6%) 4.43 (3.2%) 4.45 (4.2%) 4.68 (5.6%)
7.04 (3%) 8.13 (3.7%) 6.7 (5%) 6.31 (6.3%) 8.99 (9.1%)
9.68 (4.2%) 8.93 (5.3%) 9.03 (6.5%) 8.79 (8.2%) 10.3 (10.5%)
12.7 (5.9%) 11.1 (7.1%) 11.3 (8.4%) 11.2 (9.7%) 13.4 (14.7%)
15.1 (7.6%) 12.8 (8.5%) 13.3 (10.3%) 13.0 (11.5%) 15.4 (16.7%)
17.5 (9.1%) 15.1 (10.1%) 14.3 (11.9%) 14.7 (13.2%) 18.4 (19.5%)
17.9 (10.9%) 21.8 (11.8%) 19.5 (13.9%) 17.0 (15%) 19.9 (21.6%)
24.6 (14%) 21.2 (15.3%) 22.3 (18.1%) 21.0 (19.1%) 23.4 (26.6%)
23.2 (16.5%) 25.5 (18.8%) 24.7 (21.8%) 24.9 (22.5%) 26.0 (31.4%)
Failed 30.1 (22.7%) 35.1 (25.8%) 30.3 (26.3%) 35.4 (36.6%)
Failed 39.2 (26.7%) 38.2 (30.1%) 34.7 (30.5%) 39.2 (41.4%)

 5: Gbps throughput (LUT utilization%) for 
default rule-set on Virtex-2 6000

n 
el

(a) 8-to-
256

(b) 2 
Decoders

(c) 3 
Decoders

(d) 4 
Decoders

(e) 8 
Decoders

Failed 2.36 
(20.2%)

2.58 
(20.2%)

2.66
(20.3%)

2.52 
(23.5%)

Failed 3.92 
(22.7%)

3.73 
(36.4%)

3.56
(41.8%)

2.77 
(38.9%)

Failed 5.12 
(28.5%)

5.13 
(61.1%)

2.96
(61.3%)

Did not fit



rule-set (and also the other rule-sets, although these
results are not shown) the best decoding option dif-
fered for the Virtex-E and Virtex-2 devices consid-
ered. This is likely to be because a device’s balance
between logic and routing resources may determine
the most appropriate decoding approach for any given
rule-set.

It should be noted that in all but a few cases, the
full character-decoding option (8-to-256 decoding)
did not produce the best performance. In most cases,
however, it did produce the best logic utilization.

As expected, throughput improves as the number
of bytes processed in parallel increases. For the three
smaller rule-sets, processing 16 bytes in parallel gave
throughputs (for the best decoding option) at or near
40Gbps. The best performance achieved for the de-
fault rule-set was 5.13 Gbps when processing 3 bytes
in parallel with three shared character decoders (3-to-
8, 3-to-8 and 2-to-4). Higher performance is likely to
be possible.

6.1. Further Advantages of Partial Decoding

Although not applied here, partial decoding of
characters would also allow improved implementa-
tion of pattern ranges (including case-insensitivity).
A reduced number of signals and associated AND
logic will be needed to match a range of characters,
e.g., in the 4 decoder case, only 3 of the 4 signals are
needed to decode a pattern range in which one of the
4 groups is wild (i.e. two of the bits of the character
are wild).

6.2. Further Optimizations

A number of further optimizations are possible,
including many that others have reported on. Clark
and Schimmel [3] implement prefix tree optimization
in which circuitry is eliminated for patterns with com-
mon prefixes. This occurred in our work only to the
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Table 6: Gbps throughput (LUT utilization%) for 
web-attacks rule-set on Virtex-E 2000

Bytes
in

para-
llel

(a) 8-to-
256

(b) 2 
Decoders

(c) 3 
Decoders

(d) 4 
Decoders

(e) 8 
Decoders

1 1.55 (0.9%) 1.67 (0.9%) 2.08 (0.9%) 1.76 (0.9%) 1.85 (3.5%)
2 3.37 (1.1%) 3.03 (1.1%) 3.44 (1.4%) 3.38 (1.2%) 3.28 (5.3%)
3 4.56 (1.5%) 4.9 (1.8%) 4.89 (2.3%) 4.59 (2%) 4.66 (6%)
4 6.18 (2.1%) 6.52 (2.4%) 5.79 (3.1%) 4.98 (2.9%) 6.05 (7%)
5 6.67 (2.9%) 7.19 (3.1%) 6.42 (3.9%) 7.2 (3.9%) 7.68 (8.4%)
6 7.65 (3.7%) 8 (3.8%) 8.21 (4.9%) 7.86 (4.7%) 8.76 (9.5%)
7 8.97 (4.4%) 9.77 (4.6%) 9.64 (5.8%) 8.83 (5.6%) 9.74 (10.8%)
8 10.1 (5.2%) 9.83 (5.3%) 11.1 (6.6%) 9.86 (6.7%) 10.3 (11.1%)
10 12.4 (6.6%) 12.8 (6.9%) 13.1 (8.3%) 12.5 (8.4%) 13.9 (14%)
12 15.3 (8.1%) 15.0 (8.5%) 15.4 (10%) 15.7 (10.2%) 16.3 (15.7%)
14 17.6 (9.5%) 17.2 (10.1%) 17.3 (11.7%) 19.5 (12.1%) 18.0 (18%)
16 20.0 (11%) 21.0 (11.8%) 20.6 (13.3%) 20.1 (13.8%) 20.2 (18.9%)
t that the synthesis tool recognised common log-
dding the capability to the circuit generator
t reduce synthesis time and give improved re-

ittle attempt was made at pipelining in this
 (other than the final or-combination). As shown
, extensive fine-grained pipelining can produce
better performance (at the cost of latency).
n extension to support further regular expres-
eta-characters may also reduce generated cir-

ize as also shown in [6].

onclusions

his paper has presented an extension to the
lar regular-expression to NFA construction

od of Sidhu and Prasanna in order to handle mul-
bytes in parallel in an equivalent modular fash-
he paper has also introduced the idea of shared
l character decoding and demonstrated that full
d character (8-to-256) decoding is usually not
st approach to achieve the best throughput. The
partial decoding option has been experimentally
n to be dependent on the FPGA device con-
d, the number of bytes to be processed in paral-
d the patterns to be implemented. 
 program has been written which converts

 rules to regular expressions and then applies the
-byte modular NFA construction method to pro-
circuits which match given patterns using a par-
r decoding method and processing a given
er of bytes in parallel. The circuits generated are
o match against the complete default Snort rule
 a throughput of over 5Gbps in a Xilinx Virtex-
00 device. Throughputs over 40Gbps are
ved on smaller rule-sets. Future work will in-
 incorporating further optimizations into the cir-
eneration program.
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