DECLARATIVE ASPECT-ORIENTED SECURITY POLICIES FOR

IN-LINED REFERENCE MONITORS

by

Micah Jones

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Kevin Hamlen, Chair

Dr. Farokh Bastani

Dr. Gopal Gupta

Dr. Bhavani Thuraisingham

(© Copyright 2011
Micah Jones

All Rights Reserved

Dedicated to my parents,

for their teaching, encouragement, and love.

DECLARATIVE ASPECT-ORIENTED SECURITY POLICIES FOR

IN-LINED REFERENCE MONITORS

MICAH JONES, B.S., M.S.

DISSERTATION
Presented to the Faculty of
The University of Texas at Dallas
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2011

ACKNOWLEDGMENTS

The author is thoroughly grateful to have had the opportunity to work under his advisor,
Kevin Hamlen, whose knowledge and creativity helped form the foundation of the research
leading up to this dissertation. Moreover, his patience and clarity of teaching and direction

proved invaluable to the author’s education in the fine art of technical writing and research.

Much of this research could not have been accomplished without the help of the author’s
colleague, Meera Sridhar. Special mention should also go to Richard Wartell, Vishwath
Mohan, Brian DeVries, and Scott Moore, as their work is inextricably linked to that of this

dissertation.

This research was supported in part by U.S. AFOSR YIP award number FA9550-08-1-0044
and NSF Trustworthy Computing collaborative research grant 1065134/1065216.

The author extends his heartfelt thanks to his many excellent and inspiring undergraduate
professors at Oklahoma Baptist University. Dale and Cindy Hanchey taught him com-
puter programming, software development methods, and vital presentation skills, continu-
ally challenging him and never permitting laziness in his studies. John Nichols’s passionate,
kind-hearted teaching style accomplished the impossible task of giving the author a love of
mathematics, along with an even greater love of teaching itself. Karen Youmans and John
Powell instilled in the author an appreciation for literature and history, and helped convince

him to attend graduate school.

Finally, and most importantly, the author thanks his Lord Jesus Christ, who is his greatest
encourager, helper, teacher, and friend. For all things work for the good of those who love

Him.

November 2011

DECLARATIVE ASPECT-ORIENTED SECURITY POLICIES FOR

IN-LINED REFERENCE MONITORS

Publication No.

Micah Jones, Ph.D.
The University of Texas at Dallas, 2011

Supervising Professor: Dr. Kevin Hamlen

Aspect-oriented in-lined reference monitor frameworks provide an elegant and increasingly
popular means of enforcing security policies on untrusted code through automated rewriting.
However, it is often difficult to prove that the resulting instrumented code is secure with
respect to the intended policy, especially when that policy is described in terms of arbitrary
imperative code insertions. The dissertation presents a fully declarative policy language,
powerful enough to enforce real-world security policies yet simple enough for automated
verification systems to correctly reason about them. It also presents an analysis tool that
detects policy inconsistencies, a service-oriented framework for instrumenting untrusted code,
and a full-scale abstract interpretation and model-checking system that verifies the safety of

rewritten programs.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT]

LIST OF TABLES

LIST OF FIGURIEDS)

CHAPTER 1 INTRODUCTION

CHAPTER 2 RELATED WORKI

2.1 Certifying IRMs|.

[2.2 Aspect-Oriented Programming|.

[2.3 Other Approaches|.

2.4 Remaining Challenges|

CHAPTER 3 POLICY LANGUAGE

B.1 OVerviewl.,

[3.2 Language Syntax| e

[3.2.1 Pointcut Languagel 0oL

[3.3 Anmalysis|

[3.3.2 Policy Enforcement| o000

CHAPTER 4 REWRITER IMPLEMBENTATION]

M1 Overviewl.

vil

vi

X1

xii

Ne e S N |

10

13
13
15
22
25
25
32

37

4.2 Implementation Discussion|o 37

[4.2.1 Parsing SPoX| 37
[4.2.2 Rewriting] 39

M3 Case Studies. 42
431 Columba Fmail Clientl 42
[4.3.2 XNap Peer-to-Peer Filesharing Client| 44
[4.3.3 SciMark Benchmarking Tool 46

48

CHAPTER. 5 INCONSISTENCY DETECTION 50
D1 Overviewl. 50
(5.2 Analysis| 52
[5.2.1 Security State Non-determinism| 53
H.2.2 Pointcut Non-determinisml L. 55

.3 Machine-Checked Proofl. oo 59
h.3.1 Data Structuresl 60
h.3.2 Core Functionsl 62
H.3.3 Theorems 66

H.4 Case Studies|. 75
[5.4.1 Filesystem API Protocols| 76
[5.4.2 Transaction Loggingl 78
[5.4.3 Object Aliasing| 79
Hh.4.4 Information Flow| oo 80
[5.4.5 Free-riding Prevention| 82
[>.4.6 Policy Composition| 83
[5.4.7 Summary of Results| 000 85

CHAPTER 6 IN-LINED REFERENCE MONITORING AS A SERVICE

[7.6.2 Event Ordering| 132
[7.6.3 Pop-up Protection| o 133
[[.6.4 Port Restriction] 133
[7.6.5 Resource Bounds| 134
[7.6.6 Anti-freeriding] 134

X

[7.6.7 Malicious SQL and XSS Protection| 135

[7.6.8 Ensuring Advice Execution| 137
[CHAPTER 8 _CONCLUSIONS 139
REFERENCES] 141

VITA

LIST OF TABLES

[0.1 Constraint generation cases| . .

[>.2 Inconsistency detection experimental results|

[7.1 Verification experimental results|

x1

LIST OF FIGURES

(1.1 Flow of a certitying IRM framework.| 3
[3.1 A security automaton prohibiting send atter read| 15
[3.2 SPoX language syntaxl oL oo 16
[3.3 SPoX pointcut syntax| L 17
[3.4 Jom points|. 25
3.5 Denotational semantics for SPoXlo o000 o000 26
[3.6 Matching pointcuts to join points| L. 28
(3.7 Syntax of CLASSICJAVA withret (CJR)| 29
[3.8 Operational semantics of CJR in terms of those for CrLassicJAaval 30
[3.9 Mapping partially reduced CJR expressions to join points{. 31
[3.10 Java pseudo-code for a rewriting algorithm for SPoX| 34
4.1 SPoX fragment for <cflow>p</cflow> 38
4.2 A policy permitting at most 10 email-send events| 39
4.3 Enforcement code for the policy in Figureld.2l 40
.4 Class structure for reification of instance state variables s (tied to library class |

A) and g (tied to library class B, which inherits from A).|. 41
4.5 SPoX policy to limit P2P freeriding| 45
[4.6 Performance overhead from enforcing worst-case security policies on SciMark |

benchmarks| 47
[>.1 LISP syntax for join points|. 61
[>.2 LISP syntax for pointcuts| 62

xil

[>.3 Function match-pcd|o Lo 63

[>.4 Function match-vpl 65
[>.5 FileMode policy|. 7
[0.6 Logger policy| L 79
[.7 FileExists policy| 80
[>.8 GetPermission policy| 81
[5.9 NoFreeride policy| 83
[>.10 Encrypt policy| 84
[6.1 Policy that prohibits network sends after sensitive file reads|. 91
[6.2 Policy that prohibits uploads of files with non-whitelisted extensions|. 92
[6.3 Policy that prohibits more than 5 simultaneous connections|. 93
[7.1 A policy permitting at most 10 email-send events| 98
(7.2 An abstract interpretation of instrumented pseudocode| 99
[7.3 An example verification with dynamically decidable pointcuts| 101
[7.4 Core subset of Java bytecode|. 104
[(.b Core subset of SPoX| 105
[7.6 Concrete machine configurations and programs|. 106
[7.7 Concrete small-step operational semantics| 107
[7.8 Join points|. 107
(7.9 Denotational semantics for SPoX| o000 109
{7.10 Matching pointcuts to jon pomnts| 110
[7.11 Abstract machine configurations| 111
[7.12 Abstract small-step operational semantics| 112

xiil

[7.14 State-ordering relation =<¢|o 114
[[.I5 Soundness relation ~o Lo 115
[7.16 NoExecSaves policy|. 131
[7.17 NoSendsAfterReads policy|., 132
[7.18 NoGui policy|. 133
[7.19 SafePort policy|. 134
[7.20 NoFreeRide policy| 135
[7.21 NoSqlXss policy|. 136
[7.22 LogEncrypt policy| 138

Xiv

CHAPTER 1
INTRODUCTION

One of the greatest challenges facing today’s technology industry is the problem of precisely
and reliably securing untrusted code. In any real-world system, there are a number of pro-
gram actions that are considered to be unacceptable. These actions may include, for example,
dissemination of private information over a network, excessive use of system resources, or
modification of sensitive data. As modern software grows more complex, prohibiting such
actions requires increasingly sophisticated policy specification and enforcement mechanisms.
This gives rise to the further, inextricably linked challenges of limiting the size and proving

the correctness of the enforcing security code.

Modern software security enforcement systems include those that perform static analy-
sis prior to a program’s execution, and those that dynamically monitor its actions during
execution. The Java Virtual Machine (JVM) performs static analysis of Java bytecode to
ensure that it adheres to fundamental rules, such as limiting jump targets to instructions
within the bounds of a method. Execution monitors are implemented in most operating sys-
tems; for example, Windows 7 detects actions that modify the system registry and requires
user permission before such a modification is allowed to occur. Modern anti-virus software

frequently performs both static and dynamic program analysis.

A powerful, highly flexible alternative enforcement approach may be found in In-lined
Reference Monitors (IRMs) (Schneider 2000). An IRM system is a framework in which
untrusted code is automatically rewritten prior to execution, such that the rewritten code
internally enforces a specified security policy. The instrumentation process involves inser-
tion of dynamic guard instructions that detect and prevent impending policy violations at

runtime. The rewritten program is said to be self-monitoring, meaning that it can be safely

executed without the need for external security systems. Rewriting can be applied to either

original source code or binary executables.

The instrumentation of an IRM security policy, in which security-relevant events are
located and new code is injected around them, is essentially an instance of Aspect-Oriented
Programming (AOP) (Kiczales et al. 1997). In AOP, aspects define code fragments called
advice, as well as pointcut expressions that describe the code points at which to insert those
fragments. During program compilation, an aspect weaver performs these code insertions
to create a final executable. Aspects are commonly used to express cross-cutting concerns,

such as generating log entries immediately before file operations.

Other work has recognized and leveraged the connections between IRMs and AOP (Chen
and Rosu 2005)), but in doing so it supports imperative advice that is difficult for policy-
writers to fully and accurately reason about. Advice is normally written using a Turing-
complete language (e.g., Java), and thus constitutes a substantial addition to the security
framework’s Trusted Computing Base (TCB). Aspect-weaving is an inherently complex pro-
cess that can cause unexpected changes to the resulting program, which makes it difficult to
determine whether a given aspectual policy actually enforces the higher-level security policy

it was meant to implement.

Security policies that are amenable to formal analysis are especially important for cer-
tifying IRMs such as Mobile (Hamlen 2006), which secure untrusted code using a process
similar to that in Figure . Such frameworks strictly separate trusted components (secu-
rity policies and a verification tool) from untrusted components (the original and rewritten
program binaries, and the rewriter itself). The trusted components must be as small as

possible in order to minimize the TCB and facilitate proofs of correctness.

An ideal IRM framework should balance power with simplicity, allowing enforcement of
a wide range of security policies without rendering it impractical to prove that the rewritten
program is actually secure. The system must also place strict limitations on the size of the
TCB, thus restricting the manner in which policies are specified and enforced. Such a task

greatly benefits from separation of enforcement components, excluding the more complex

Trusted Untrusted
binary executable
securtty policy > rewriter
verifier [« rewritten binary
ﬂ} reject
yes
v
accept

Figure 1.1. Flow of a certifying IRM framework.

ones from the TCB wherever possible. There is a particular need for a security policy
specification language that is simple enough to be included in the TCB yet powerful enough

to describe desirable policies.

My Thesis. This dissertation presents a purely declarative, aspect-oriented IRM enforce-
ment system, consisting of a security policy specification language, a policy analysis tool,
a rewriter, a rewriting web service, and a static verification system for rewritten code. It
emphasizes the advantages of using a fully declarative policy language, capable of express-
ing complex security automata and describing relevant program events with pointcuts from
AOP, yet amenable to mathematical analysis. It further discusses how programs may be in-
strumented with policies either by a local rewriter or via a web service. Finally, it shows how
rewritten applications can be proved secure through model-checking and the use of linear

constraints.

The dissertation is structured as follows. Chapter|3|describes the SPoX policy specification
language, its denotational semantics, and a simple rewriting algorithm. Chapter {4 presents
our rewriter implementation, and provides three case studies to show its usefulness and
efficiency. Chapter [b| discusses an algorithm for detecting inconsistencies in SPoX policy
specifications, and presents an implementation of our analysis tool. Chapter [6] presents
a service-oriented implementation of our rewriter. Chapter [7| presents Chekov”, a verifier
that certifies a rewritten binary as safe with respect to a SPoX policy. Finally, Chapter

concludes with a summary and a discussion of future work.

CHAPTER 2
RELATED WORK

2.1 Certifying IRMs

The concept of automated program rewriting has existed for some time, but a formal theory
of In-lined Reference Monitoring was not developed until the past decade (Schneider 2000)).
IRMs can be used to enforce safety policies, which prevent some “bad event” from happening.
Furthermore, safety policies can be modeled as security automata that accept all and only
those event sequences that do not have proscribed prefixes. Later work (Hamlen et al. 2006}
Ligatti et al. 2005) explored the use of program rewriting to enforce broader classes of

policies, including some types of liveness policies.

Prior research has shown that in-lined monitors are strictly more powerful than external
execution monitors (Hamlen et al. 2006). This result assumes that neither type of monitor
has access to any resource that the other does not. For example, in multithreaded Java
applications where an external monitor can control the JVM scheduler and an in-lined one

cannot, the external monitor may in fact be more powerful (Dam et al. 2009).

The SASI system (Erlingsson and Schneider 1999) was one of the earliest IRM imple-
mentations. SASI rewrites x86 machine code and Java bytecode programs to enforce safety
policies expressed in PSLang (Erlingsson 2004). PSLang is a simple imperative language
that can be used to identify security-relevant program instructions and provide the code
that the rewriter should inject around each. As with most existing IRM systems, both the

policy and the rewritten code are trusted.

SASI was followed by many other IRM systems, such as Naccio (Evans and Twynman
1999)), Java-MaC (Kim et al. 2004)), and Polymer (Bauer et al. 2005). Naccio enforces

resource bound policies using both declarative and imperative policy specifications, with

separate components for defining system resources, safety policies, and architecture-specific
security-relevant operations. A significant limitation of Naccio is that IRMs may only be
instrumented in the source code of C programs, as opposed to executable binaries. Java-MaC
rewrites Java bytecode to enforce policies written in MEDL/PEDL, a language that defines
security-state variables, security-relevant events, and state changes effected by those events.
This language lacks a powerful mechanism for specifying security-relevant events, which are
limited to method calls and field accesses. Polymer focuses on enforcing composable security

policies in Java using policy combinators and imperative code injections.

Certifying IRMs (Hamlen et al. 2006; Hamlen 2006; Aktug and Naliuka 2008; DeVries
et al. 2009; Sridhar and Hamlen 2011)) are designed to exclude rewritten code from the TCB,
instead using an independent, automated theorem-prover to verify that the new program
cannot violate the security policy. Mobile (Hamlen et al. 2006; [Hamlen 2006) rewrites
.NET CLI binaries according to declarative policy specifications, producing proofs of policy-
adherence in the form of typing annotations in an effect-based type system (cf. (DeLine and
Féahndrich 2004))). Those proofs are then verified by a trusted type-checker. Mobile is limited
by both its policy language—which denotes types in Mobile’s own type system—and by its

requirement that security states are represented in a very specific manner.

ConSpec (Aktug and Naliuka 2008) (Contract Specification Language) simplifies PSLang
such that its non-declarative components consist only of effect-free operations. This restric-
tion helps to facilitate formal reasoning in a contract-based certification system (Dragoni
et al. 2007). However, the fact remains that ConSpec policies include imperative code,
limiting verification to ensuring that such code is placed correctly in the rewritten program.
Independent analysis is required to ensure that the provided guard instructions accurately

enforce the intended policy. Therefore, those instructions are actually included in the TCB.

The Chekov” verification system discussed in this dissertation (Hamlen et al. 2011
extends prior work on model-checking rewritten Adobe ActionScript bytecode (DeVries et al.
2009). The prior work is limited to simple programs, able to consider only a few kinds of

security-relevant events (method calls) and specific forms of guard code. Chekov” greatly

improves upon it, and is able to prove safety for real-world programs instrumented with a

variety of guard code insertions that enforce complex policies.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming was introduced by Kiczales et al. (Kiczales et al. 1997) as a
means to elegantly express and implement cross-cutting concerns for existing source code.
A canonical example of cross-cutting is the scenario in which calls to a logging module need
to be placed before significant program operations (e.g., file operations). AOP languages
such as AspectJ (Kiczales et al. 2001) perform code insertions of this sort through the use

of aspects.

Researchers quickly discovered the close connection between AOP and IRM technolo-
gies (Viega et al. 2001; Shah and Hill 2003; |Hamlen et al. 2006; [Hamlen and Jones 2008]).
AOP’s pointcuts could indicate security-relevant events, while advice could provide policy
enforcement code. Pointcut use turned out to be straightforward, but the range of permissi-
ble types of advice became a subject of much debate. Early aspectual security policies (Viega
et al. 2001) allowed all types of aspects and all types of enforcement code, even including
replacement advice, which actually removes existing code and replaces it with instructions

provided in the policy description.

Java-MOP (Chen and Rosgu 2005) is a Java-based IRM system built upon AspectJ. In
addition to its inclusion of full aspects (consisting of both pointcuts and advice), the Java-
MOP policy specification language supports multiple logic engines, including CFGs, EREs,
FSMs, and LTL. This makes the system very powerful and flexible, capable of expressing
security policies in a number of ways. However, this power comes with such complexity that
formal certification is rendered unfeasible. In particular, proving the correctness of arbitrary

imperative advice is an undecidable problem in general.

The problem of advice with side effects is far-reaching, and is a fundamental barrier to

certification of rewritten code. Recognition of this issue gave rise to the concept of harmless

advice (Dantas and Walker 2006): advice which does not affect the output of the code into
which it is injected, aside from possibly causing slowed execution or premature termination.
ConSpec’s advice is limited to effect-free operations for this reason (Aktug and Naliuka
2008)). However, even effect-free code is difficult to certify, especially in terms of the desired,
higher level policy it is meant to enforce. For this reason, SPoX does not include advice

at all, outside of declarative, mathematical state transition information (Hamlen and Jones

2008).

Even harmless advice can still affect policy-adherent program behavior, so there is much
concern over how to preserve that behavior even after rewriting. For example, injected
instructions consume CPU cycles, which might be noticeable to the end user depending on
the situation. Behavior preservation by an IRM is called transparency (Sridhar and Hamlen
2011). Recent work has provided formal proofs of transparency for an IRM focused on the

enforcement of information flow policies (Chudnov and Naumann 2010).

Ensuring aspectual consistency is important for both IRM policies and AOP programs in
general (Douence et al. 2002; |[Katz and Katz 2010; |Yu et al. 2007; |Jones and Hamlen 2010)).
Conflicting advice for the same join point can cause results at runtime that are difficult
to predict. For example, the order of advice execution may yield different results, as some
advice executions may change the environment in which others run afterward (Katz and
Katz 2010). This can result in nonsensical scenarios, such as one in which a program action
A, is transformed into A; but Ay must be transformed into A; (Yu et al. 2007). If two or
more aspects are strongly independent, then they never conflict for any application; if they
are weakly independent, then they do not conflict for some subset of applications (Douence
et al. 2002). As SPoX advice has been simplified to include only automaton state transitions,
it is possible to use a combination of pointcut intersection detection and linear constraint
analysis to detect policy non-determinism and thus decide strong independence (Jones and

Hamlen 2010).

2.3 Other Approaches

A substantial, well-established body of certifying IRM research (Erlingsson et al. 2006;
McCamant and Morrisett 2006; [Yee et al. 2009) has focused on enforcing specific control
flow and memory safety policies. Microsoft’s XFI system (Erlingsson et al. 2006) places
a signature byte sequence around every possible jump target. That sequence’s existence is
dynamically confirmed by guard instructions before they permit jumps to the correspond-
ing target address, thus enforcing control flow safety. PittSFleld (McCamant and Morrisett
2006)) isolates possible jump targets by partitioning binary instructions into chunks, and
requiring every jump to point to the beginning of one of those chunks. The resulting limi-
tations on a program’s control flow effectively allow the insertion of guard instructions that
cannot be circumvented (Hamlen et al. 2010). Native Client (NaCl) (Yee et al. 2009) uses
sandboxing to allow native x86 code to run inside a web browser. It limits accessible memory
space, prohibits certain instructions like system calls, and uses a chunk partitioning system

similar to PittSFleld’s to enforce both control flow and memory safety.

An alternative to IRM certification is a Proof-Carrying Code (PCC) framework (Necula
1997), in which code-producers provide binary code to the consumer, along with a separate
proof that the code is correct. Subsequently, the consumer must independently verify that the
proof is valid. It is necessary that the untrusted code-producer be involved in the certification
process, as constructing the proof usually requires information about the original source code
and how it is compiled. Moreover, the proof can be enormous, often many times the size of
the code it describes. In contrast, most certifying IRM frameworks operate entirely in the
realm of binary executables, and there is no need for either the rewriter or the code-consumer
to have access to the source code. The instrumentation process obviates the need for a full
proof of safety, generating small, untrusted hints about the rewritten binary code. Those

hints are sufficient for a trusted, automated verifier to independently check the code’s safety.

Model-Carrying Code (MCC) (Sekar et al. 2003)) attempts to bridge the gap between
PCC and IRMs by requiring the code-producer to provide a model of program behavior,

10

which the code-consumer verifies and compares to the security policy. The contract-based
verification system (Dragoni et al. 2007) of ConSpec (Aktug and Naliuka 2008)) is actually a
variant of MCC, where the contract is a model generated through static analysis of the target
application. Enforcing new policies requires a new contract to be generated. Model-checking
certifying IRMs (DeVries et al. 2009; Hamlen et al. 2011) are another form of MCC, but
they avoid requiring assistance from the code-producer by generating their own (implicit)

models automatically during the certification process.

Although it is often unrealistic to rely on the code-producer as part of the verification
process, many programmers wish to have assistance in writing code that is safe to begin with.
Recent work (Vanoverberghe and Piessens 2009) has focused on giving software developers
static verification tools that test code for policy adherence and determine if in-lined guard
instructions are necessary. The key difference between this system and traditional IRM
frameworks is the detection of situations where guard instructions would cause unexpected
side effects at runtime, thus allowing the creation of programs that are robust as well as

secure.

2.4 Remaining Challenges

Multithreaded programs remain among the most significant obstacles current IRM research
must overcome. It is often straightforward to lock security-relevant resources as necessary;
avoiding deadlock and severe drops in program efficiency is not. However, these problems
can often be avoided by writing race-free policies (Dam et al. 2009)), for which threads in
the target program do not interfere in a security-relevant manner. In fact, the cited paper’s
authors argue that non-race-free policies are inherently nonsensical, and are most likely the
manifestation of a bug in the policy logic. Yet regardless of the policy, concurrency support
in a certifying IRM framework necessitates some kind of race detection analysis, such as the

aspect-oriented Racer system (Bodden and Havelund 2008).

11

Modern applications are increasingly networked, running simultaneously across several
machines. For example, massively multiplayer online games may run thousands of client in-
stances at the same time, all of them connected to one or more central servers. An individual
client may even shut down and restart, keeping the same active session from the perspective
of the user and the server. Security policies for such systems may encompass several parallel
and /or successive executions of a program, requiring a more complex treatment of both the
policy definition and inlining processes. One proposed policy language to handle these sit-
uations is 2D-LTL (Massacci et al. 2006)), a bi-dimensional variant of LTL. Dimensionality

here refers to the different possible kinds of executions described above.

Mobile code has become significantly more complex in recent years, and merits attention
in IRM research. The S3MS project (Desmet et al. 2007; |[Vanoverberghe and Piessens
2008; Desmet et al. 2009) provides a framework for enforcing security policies on mobile
applications. Its focus thus far is on code running under the .NET framework. It utilizes
cryptographic signatures, IRMs, and PCC, and supported policy languages include ConSpec
and 2D-LTL. Due in part to its strong connections to the ConSpec project, it is designed

around security-by-contract, and thus inherits all associated strengths and weaknesses.

Untrusted binaries come in a variety of forms, requiring IRM systems that can support
a variety of different languages and platforms. A significant part of current research is
focused on high-level bytecode languages, namely Java (Kim et al. 2004; Bauer et al. 2005;
Chen and Rosu 2005; Hamlen and Jones 2008) and .NET (Hamlen 2006; Vanoverberghe
and Piessens 2008; Desmet et al. 2009). These frameworks are particularly helpful in that
they provide strong built-in security assurances, such as restrictions on dynamic jumps and
memory usage, as well as an easily parsed structure (Lindholm and Yellin 1999; [ECMA
2002)). Other systems target Adobe Flash and ActionScript (DeVries et al. 2009; |Li and
Wang 2010), JavaScript (Yu et al. 2007), and C source code (Evans and Twynman 1999;
Viega et al. 2001; Shah and Hill 2003).

Many critical untrusted applications are x86 assembly programs, which are much more

difficult to secure than high-level source code and bytecode applications. However, their sheer

12

prevalence requires IRM research to focus attention on them. SASI (Erlingsson and Schneider
1999) has been used to enforce a limited software fault isolation (SFI) policy on x86 code.
Critically, PittSFleld’s chunk partitioning system (Erlingsson et al. 2006|) makes it possible
to prevent circumventions of IRM guard instructions, and is used by Native Client (Yee
et al. 2009) to enforce control flow and memory safety policies. The key remaining problem
for x86 IRMs is enforcement of a wider variety of security policies, which is the subject of

current research (Hamlen et al. 2010).

CHAPTER 3
POLICY LANGUAGH]

3.1 Overview

SPoX (Security Policy XML) is a purely declarative, Aspect-Oriented security policy spec-
ification language for In-lined Reference Monitoring. In our analysis we define a formal
denotational semantics for our language that merges the semantics of AOP languages and
that of IRM’s. The result is a language in which policies denote Aspect-Oriented security
automata—security automata whose edge labels are encoded as pointcut expressions. Each
policy in our language therefore encodes a property that can be said to be true or false
of rewritten code apart from any original, unmodified code from which it may have been
derived. The property modeled by a policy is the acceptance condition of the automaton it

denotes.

The existence of a formal denotational semantics for the language is useful because it
provides a means of formally proving that untrusted code satisfies a specified security policy.
This provides the necessary theoretical foundation whereby a certifying In-lined Reference
Monitoring system (cf., (Hamlen et al. 2011)) can generate a proof of policy-adherence for
the code it produces. Code-recipients can use such proofs to independently verify that the
code is safe to execute even when the code-producer is not trusted. A denotational semantics
also facilitates the stronger objective of formally verifying that a program-rewriting system

always produces policy-adherent code.

The purely declarative nature of our language means that policies define what security

property to enforce without overspecifying how it is to be enforced. For any given policy

!This chapter includes previously published (Hamlen and Jones 2008; Jones and Hamlen
2009)) joint work with Kevin Hamlen.

13

14

there will typically be many possible rewriting strategies that enforce it. This flexibility
affords IRM implementations the freedom to choose an optimal rewriting algorithm based
on architectural details, the results of program analyses, and other information that becomes
available at rewriting time. This also makes our language suitable for separate certification
as discussed in Chapter [7] That is, a separate verifier could examine rewritten code to
determine whether it actually satisfies the security policy. We consider this to be important
for building trustworthy IRM systems since it constitutes an extra level of redundancy for

detecting and debugging incorrect policy specifications.

In making policies purely declarative we do not exclude the possibility that some rewriter
implementations might also accept additional input from the policy-writer suggesting how
the policy should be enforced. For example, policy-writers might suggest remedial actions
(e.g., premature termination, roll-back, etc.) expressed as imperative code fragments to be
executed in the event that a policy violation would have otherwise occurred. However, this
information is not trusted and therefore remains separate from the policy. Hence, if the
implementation of roll-back includes an operation that constitutes a violation of the security

policy, this flaw in the rewriting algorithm can be detected and rejected by a verifier.

The process of writing a correct policy specification can be quite challenging, and we an-
ticipate that widespread use of SPoX will require good visualization tools. Recent work (Pat-
wardhan et al. 2010) allows analysis of a target program’s bytecode with respect to a given
policy through security-aware UML models. The tool provides views for comparisons of
original and rewritten code, and uses control-flow diagrams to track all possible security
states for each code block. Also, SPoX-denoted security automata readily lend themselves
to visualization, so GUI-based policy viewers and editors are an interesting avenue for future

work.

The chapter proceeds as follows. The SPoX language is described in Section|3.2] including
its syntax and features. In Section 3.3, we provide analysis of the language, including its

denotational semantics (Section [3.3.1)) and enforcement strategies (Section |3.3.2)).

15

—read —send

read

Figure 3.1. A security automaton prohibiting send after read

3.2 Language Syntax

SPoX is an XML-based security policy specification language suitable for enforcement by
IRM’s. A SPoX specification defines a security automaton (Schneider 2000)—a finite- or
infinite-state machine that accepts all and only those event sequences that satisfy a security
policy. For example, the security automaton in Figure [3.1] encodes the policy that prohibits
any network send operation after a file read operation. Such a policy might be used to
prevent untrusted code from leaking files over the network. Observe that the transitions
of the automaton are labeled with predicates that denote sets of security-relevant events—
program operations that change the security state of the program. Any program operation
satisfying the label of an outgoing edge from the current state causes the automaton to
transition to the destination state. If no outgoing edge label satisfies the next operation to

be executed, that operation is a policy violation and the automaton rejects it.

A grammar for the core language of SPoX is given in Figure 3.2} SPoX specifications are

lists of edge declarations, each consisting of three parts:

e Pointcut expressions identify sets of related security-relevant events that programs

might exhibit at runtime. These serve as edge labels for the automaton.

o Security-state variable declarations abstract the security state of an arbitrary program.

These serve as node labels for the automaton.

n €N natural numbers ceC
sv eSSV state variables welV
id € ID object identifiers ed € ED

pen € PCN pointcut names

pol ::= spc*sd™* edg*
spc ::=<pointcut name="pcn">pcd</pointcut>
sd ::=<state name="sv">[c|</state>
edg 1=
<edge name="ed" [after="true"]>pcd ep*</edge>

|<forall var="iv" from="e;"
to="ey">edg*</forall>

ep ::=<nodes [obj="id"] var="sv">
€1,€2
</nodes>

ex=n| w | e;tes | e1-ey

|erxes | er/es | (e)

Figure 3.2. SPoX language syntax

class names
iteration variables

edge names

policies
stored pointcuts
state declarations
edges

edgesets

iteration

edge endpoints

arithmetic expressions

16

neN natural numbers ceC

re € RE regular expressions md € MD
fd € FD field names od € ID
bt € BI bytecode instructions mo € MO
dt e DT data types pen € PCN

<call>msig</call>
| <execution>msig</execution>
| <get>mo* c.fd</get> | <set>mo* c.fd</set>
| <argval num="n" [obj="id"]>vp</argval>
| <argtyp num="n">dt</argtyp>
|<staticinitialization>c</staticinitialization>
| <handler>c</handler>
|<this [obj="id"]>[c]</this>
| <target [obj="id"]>[c|</target>
| <within>c</within> | <withincode>msig</withincode>
| <cflow>pcd</cflow>
| <instr>bi</instr>
| <pointcutid name="pcn" />
| <and>ped*</and> | <or>ped*</or> | <not>pcd</not>
|<true /> | <false />

msig ::=mo* [dt] c.md [throws ¢[¢[..]]]

vp =<true /> | <isnull /> | <streq>re</streq>

|<integq>n</inteq> | <intne>n</intne>
|<intle>n</intle> | <intge>n</intge>

|<intlt>n</intlt> | <intgt>n</intgt>

Figure 3.3. SPoX pointcut syntax

class names

method names
object identifiers
modifiers

pointcut names

pointcuts
method calls
method executions
field accesses
stack args (values)
stack args (types)
static constructors
exception handlers
this pointer references
target object references
lexical context
control flows
bytecode instructions
predefined pointcuts
boolean combinators
constants

method signatures

value predicates

17

18

o Security-state transitions describe how events cause the security automaton’s state to

change at runtime. These define the transition relation for the automaton.

In the following paragraphs we define the language of edge labels (pointcuts), state labels
(security-state variables), and transition relations supported by SPoX, along with an informal
description of their semantics. A more formal treatment of the denotational semantics of

SPoX along with strategies for enforcing SPoX policies are given in Section [3.3]

Pointcuts. SPoX expresses security automaton edge labels as pointcut designator expres-
sions in the style of Aspect Oriented Programming (AOP) (Kiczales et al. 1997). A pointcut
designator defines a set of program-states that constitute security-relevant events, where a
program-state consists of the complete runtime memory image of the program including the
stack, code, and program-counter (i.e., the next instruction to be executed). For easy ma-
chine parsing, SPoX expresses pointcut expressions in an XML syntax. For example, the

pointcut expression

<and>
<call>File.renameTo</call>
<not><argval num="1" obj="x"><isnull /></argval></not>

</and>

denotes the set of all program-states in which the next instruction to be executed is a call
to the renameTo method of a Java File object, and the first argument being passed to the

method is non-null.

The language of pointcut expressions in Figure includes support for method calls,
field accesses, inspection of stack arguments, lexical contexts, boolean operators, and the
cflow temporal operator from AspectJ (Kiczales et al. 2001). (Informally, a program state
satisfies <cflow>p</cflow> if its call stack contains a frame satisfying p.) SPoX includes all
pointcuts from AspectJ that do not concern advice (e.g., adviceexecution). In addition to

AspectJ pointcuts, SPoX has an <instr> tag that can be used to identify any individual Java

19

bytecode instruction as a security-relevant operation. SPoX also supports predicates that

test nullity of stack arguments, integer comparisons, and string regular-expression matching.

Security states. A security state in a SPoX policy is a set of security-state variables and
their integer values. These sets are dynamic in size; state transitions can add or remove
state variables as well as change the value of existing state variables. Security-state variables

come in two varieties:

o Global security-state variables are members of every security state; they cannot be

added or removed by state transitions.

e [nstance security-state variables describe the security state of an individual runtime
object. Such variables are added to the security state by program operations that
create a new instance of a security-relevant object, and they are removed from the

security state by program operations that destroy a security-relevant object.

Instance security-state variables allow SPoX specifications to express policies that include
per-object security properties. For example, a policy could require that each File object
can be read at most ten times by defining an instance security-state variable associated
with each File object and defining state transitions that increment the object’s security-
state variable each time that individual File object is read (up to ten times). Global
security-state variables allow SPoX specifications to express policies that include instance-
independent security properties. For example, a policy could require that at most ten File
objects may be created during the lifetime of the program by defining a global security-state

variable that gets incremented each time any File object is created (up to ten times).

Security-state variables are not program variables; they are meta-variables declared by the
SPoX specification purely for the purpose of defining the structure of a security automaton
that encodes the policy to be enforced. However, rewriters might implement the security
policy by reifying these meta-variables into the untrusted code and tracking their values

at runtime. For example, a rewriter might add a new global runtime variable for each

20

global security-state variable, and might add a new object field for each instance security-
state variable. The rewriter could then add new runtime operations that update these
new program variables whenever security-relevant operations occur, and might consult their

values to determine whether an impending operation is a policy violation.

The start state of a SPoX security automaton is the state that assigns 0 to all global
security-state variables and that has no instance security-state variables (since no objects
yet exist at program start). Each security-relevant program operation changes the current
security state by adding or removing a finite set of zero or more instance security-state
variables (corresponding to the finite set of security-relevant objects the operation creates
or destroys at runtime). Security-relevant operations change the values of existing security-
state variables (described in more detail below). Thus, each security state consists of a
countably infinite set of security-state variables and their values, and the total number of

security states in the automaton is at most countably infinite.

Security-state Transitions. FEach edge in a security automaton is modeled as a triple
(qo,p,q1), where qg is a source state, ¢ is a destination state, and p is an edge label. In
SPoX, edge labels are pointcut expressions and states are sets of security-state variables and
their values. Since SPoX security automata have a potentially infinite number of states, we
allow a single <edge> element to introduce a possibly infinite set of edges to the automaton.
For example, the following SPoX fragment introduces an edge from every state in which
global variable g has value 3 to a corresponding state in which g has value 4 (and all other

security-state variables are unchanged):
<edge>p<nodes var="g'">3,4</nodes></edge>

The effect is that program operations matching pointcut expression p will change the security

state of variable g from 3 to 4.

To refer to instance security-state variables, pointcut expressions declare object identifiers

associated with the security-relevant arguments of operations that match the expression. For

21

example, the pointcut expression given by

<and>
<call>File.renameTo</call>
<and><argval num="0" obj="x"><true /></argval>
<argval num="1" obj="y"><true /></argval></and>

</and>

declares two identifiers = and y that refer (respectively) to the File object whose renameTo
method is about to be invoked and the object that is being passed as its first argument. One

could then write

<nodes obj="x" var="v">0,1</nodes>

<nodes obj="y" var="v">0,0</nodes>

to specify that when the v security-state variable of both objects is 0, then the v security-
state variable of the object whose method was invoked should change to 1, but that of the
other object should remain unchanged. Note that <nodes> elements in an <edge> element
are conjunctive. That is, a transition is introduced for each pair of states that satisfy all

<nodes> elements given.

The security automata corresponding to many realistic security policies have repetitive,
redundant structure. For example, the security automaton that permits at most 1000 read
operations consists of 1001 states with edges from one to the next, each labeled read. To
allow policy-writers to elegantly specify such structure, SPoX introduces a third kind of

variable for iteration. As an example, the following fragment introduces the 1000 transitions

22

described above:

<forall var="i" from="0" to="999">
<edge>
read
<nodes var="g">i,i+1</nodes>
</edge>
</forall>

Here, i is an iteration variable that ranges from 0 to 999. Security-state variables and itera-
tion variables can appear in simple arithmetic expressions (constants, addition, subtraction,

multiplication, and division) to define the source and destination states of the transitions.

3.2.1 Pointcut Language

In this section we describe the different kinds of pointcuts from Figure [3.3] In general, the
SPoX pointcut language closely resembles that of Aspect] (Kiczales et al. 2001)).

Method invocations are statically matched by <call> pointcuts. Any number of modifiers
(public, static, etc.) may be included, as well as an optional return type to narrow down
the signature. The regular expression wildcard character “*” may also be used to, for
example, match all methods in a class, or all class names with a given prefix or suffix.
So <call>public java.lang.*.clone</call> matches all calls to public methods called
clone in any class under the java.lang package, but not under one of its subpackages.

13

As in AspectJ, the character sequence “..” denotes any sequence of subpackages, and “+”
includes any subclasses. So <call>java..HashMap+.*</call> matches calls to any method
belonging to any class named HashMap such that the top-level containing package is java,

as well as any other class that inherits from that HashMap.
Method entrypoints are statically matched by <execution>. This is different from

<call>, which matches callsites. Thus, <execution> pointcuts will frequently produce less

enforcement code than <call>s, simply because the rewriter need only insert that code at

23

the top of the method and not around every call to that method. However, rewriters usu-
ally can’t modify system libraries, so <execution> should not be used to describe library

methods.

Field accesses are statically matched by <get> and <set>. These work much the same

as <call>, but for field gets and sets, respectively.

The runtime values of method and field access arguments are dynamically matched by
<argval>. The index of the argument to be considered is given by the num attribute, where
index 0 refers to the target object of a virtual method call or field access and any index
n > 1 refers to the nth argument. If an unavailable index is given (e.g., 0 for a static call,
3 for a 2-argument method call, or 1 for a field get operation), <argval> will always fail to

match.

In order to consider runtime values, <argval> uses value predicates. The default predicate
<true /> matches everything, and is often used when the policy writer only wishes to access
a specific instance state variable via the obj attribute. Object nullity is matched using
<isnull />. Integer comparisons are possible through a series of integer predicates; for
example, <intge>n</intge> matches runtime integer values greater than or equal to n.
Finally, <streq> matches strings against regular expressions. Note that <streg> actually
considers the result of an object’s toString output, and is therefore useful even for objects

that are not of type String.

Argument types are statically matched by <argtyp>. Like <argval>, the num attribute
refers to the argument index, where the target object is at index 0. Note that because
<argtyp> is a statically decidable pointcut, it only matches against the type described
in the bytecode signature itself. For example, if a method call signature says that the
first argument is of type Number, but the runtime variable being passed is of the inher-
iting type Integer, then <argtyp num="1">Number</argtyp> will match, but <argtyp
num="1">Integer</argtyp> will not. The <argtyp> pointcut is often used to specify a

method signature, for which dynamic matching is undesirable.

24

Executions of static class initializers are statically matched by <staticinitialization>.
This pointcut is equivalent to an <execution> that refers to a Java class’s <clinit> method.
Executions of the class C’s instance constructor method <init> are matched by <execution>

C.new</execution>.

Exception handler executions are statically matched by <handler>. As with argtyp, this

pointcut only matches the exception type described in the bytecode.

The “this” pointer, which refers to the instance of the class within which code is executing
at runtime, is dynamically matched by <this>. The pointcut is most commonly used to
access the “this” pointer’s instance state variable through the obj attribute. It may also

optionally check the pointer against a dynamically decidable type.

The target object of a method call or a field access is dynamically matched by <target>.
As with <this>, the policy writer may use it to access the object’s instance state variable

or its runtime type.

The lexical context of a join point is statically matched by <within> and <withincode>.
The former only checks the containing class, while the latter may also check the containing

method.

Join points in the control flow of a method are dynamically matched by <cflow>. That
is, <cflow><call>C.m</call></cflow> matches all join points whenever method C.m is at
any point on the runtime call stack. A <cflow> pointcut in SPoX may be removed and

converted into equivalent constructions, as discussed in Section [4.2.1]

Specific bytecode instructions are statically matched by <instr>. The wildcard “*” may
be used to describe sets of instructions, so <instr>if*</instr> matches all conditional
branches in Java bytecode that begin with if.

Stored pointcuts may be referenced anywhere inside other pointcuts by <pointcutid>.
For example, <and><pointcutid name="pc" /><within>C</within></and> matches all

join points in class C that also match the predefined pointcut pc.

25

o€ 0bj objects

v =0 | null values
=) | (k2 jp) join points
k= call c.md | get c.fd | set c.fd join kinds

Figure 3.4. Join points

Finally, pointcuts may be combined using the boolean operators <and>, <or>, and <not>.
Note that <and> and <or> are not strictly binary. For example, <and><true /><true

/><true /></and> is a legal (if trivial) pointcut.

3.3 Analysis

3.3.1 Denotational Semantics

In this section we define a formal semantics for SPoX that unambiguously identifies what
a policy specification means, and what it means for a program to satisfy a SPoX policy.
We begin by defining join points in Figure Following the operational semantics of
AOP (Wand et al. 2004), a join point is a recursive structure that abstracts the control stack.
Join point (k, v*, jp) consists of static information k found at the site of the current program
instruction, dynamic information v* consisting of the arguments about to be consumed by
the instruction, and recursive join point jp modeling the rest of the control stack. The empty

control stack is modeled by the empty join point ().

A SPoX security policy denotes a security automaton whose alphabet is the universe JP
of all join points. We refer to such an automaton as an Aspect-Oriented security automaton.
Such an automaton accepts or rejects (possibly infinite) sequences of join points. A formal
denotational semantics is provided in Figure [3.5] We use W for disjoint union, T for the

class of all countable sets, 24 for the power set of A, C and U for the partial order relation

geEQ=(SVW(0bj x SV)) =N
SeSM=(SVw(IDxSV)) =N
lelIM =1V —~N

b € Bnd = ID — Obj

r € OBnd = Bnd W {Fail}

P :pol — (T x 29 x T x

((Q x JP) — 29))

ES : edg — IM —s 2(JP—0Bnd)xSMxSM
PC : pcd — JP — OBnd
EP:s— IM — (SM x SM)
E:e— IM - N

Pledg, ... edg,] = (Q,{q}, JP,

security states
state-variable maps
iteration var maps
bindings

optional bindings

policy denotations

edgeset denotations
pointcut denotations
endpoint constraints

arithmetic expressions

9)

where go = (SV W (0bj x SV)) x {0}
and 6(q, jp) = {q[S"]] | (f,5,5") € Ur<i<nS[edg;] L
f(p) = b, S[] C q}
ES[<forall var="4v" from="e" to="ey">edg</forall>]I =

Ug[er]I<j<E[e2]I ES[edg](1[j/iv])

ES[<edge>pcd ep; . .. ep,</edge>]] =
{(PClped], Ui<j<nSj, Ui<j<nSi)}

where Vj e N. (1< j<n)=

PCpcd]jp = match-ped(ped)jp

(S5, 85) = EP[ep,]T)

EP[<nodes var="sv">e;,es</nodes>]|I =

({(sv, €[] D)} {(sv, E[e2])})

EP[<nodes obj="id" var="sv">e;,e</nodes>]] =

({((id, sv), E[er] D)}, {((id, sv), E[e2] I)})

En]I =n
Elw]I = I(iv)

Eleitea]I =€&]
Eler-e2]I = &[
Elerxea]I = Eles
Eler/ex]I =€&]

Figure 3.5. Denotational semantics for SPoX

26

27

and join operation (respectively) over the lattice of partial functions, and L for the partial
function whose domain is empty. For partial functions f and g we write f[g] = {(z, f(x)) |
x € fS\g"} Ug to denote the replacement of assignments in f with those in g. When
S € SM is a state-variable map and b € Bnd is a binding of object identifiers to objects, we

let S[b] denote the partial function that results from substituting b into the domain of S:

S[b] ={((b(id), sv),n) | ((id,sv),n) € S}
{(sv,n) | (sv,n) € S}

Security automata (Schneider 2000) are modeled in the literature as tuples (@, Qo, E, J)
consisting of a set () of states, a set Qg C @ of start states, an alphabet E of events,
and a transition function 6 : (Q x E) — 2%. Security automata are non-deterministic; the
automaton accepts an event sequence if and only if there exists an accepting path for the
sequence. In the case of Aspect-Oriented security automata, @) is the set of partial functions
from security-state variables to values, Qo = {qo} is the initial state that assigns 0 to all
security-state variables, &£ = JP is the universe of join points, and ¢ is defined by the set of

edge declarations in the policy (discussed below).

Each edge declaration in a SPoX policy defines a set of source states and the destination
state to which each of these source states is mapped when a join point occurs that matches
the edge’s pointcut designator. The process of matching a pointcut designator to a join point
binds identifiers in the pointcut to runtime objects in the program state abstracted by the
join point. Thus, pointcut designators denote mappings from join points to bindings. The
denotational semantics in Figure defines this matching process in terms of the match-pcd
function from the operational semantics of AspectJ (Wand et al. 2004). We adapt this
definition to SPoX syntax in Figure |3.6]

Defining what it means for a program to satisfy a policy requires an operational semantics
that defines what it means to execute a program. For this purpose we adopt Flatt, Krishna-
murthi and Felleisen’s small-step operational semantics of CLASSICJAVA, as defined in (Flatt

et al. 1998) (with two minor changes introduced below). CLASSICJAVA programs consist

28

match-ped(<call>c.md</call>)(call c.md,v", jp) = L
match-ped(<get>c.fd</get>)(get c.fd,v", jp) = L
match-ped(<set>c.fd</set>)(set c.fd,v" jp) = L
match-pcd(<argval num="n" obj="id">vp</argval>)(k,vy-- v, -, jp)
= {(id,v,)} if vyp=<true /> or (vp=<isnull /> and v,=null)
match-pcd(<and>ped, ped,</and>)jp =

match-ped(ped,)jp A match-ped(ped,)jp
match-ped(<or>ped, ped,</or>)jp =

match-ped(ped,)jp V match-ped(ped,)jp
match-pcd(<not>ped</not>)jp = ~match-ped(ped)

match-ped(<cflow>ped</cflow>)(k,v", jp) =
match-ped(ped) (kw3 jp) V match-ped(<ctlow>ped</cflow>)jp

match-ped(ped)jp = Fail otherwise

bVvr=b Fail Nr = Fail —Fail = 1L
Failvr=r bA Fail = Fail -b = Fail
bAY =bU Y

Figure 3.6. Matching pointcuts to join points

29

P ::=def*(let input = v in e) programs

def :=classc{...} | ... class defs
eu=v | se | mc | retepawme expressions
se :=new c | var simple expr

|(e:c).fd | (e:c).fd =e
|view c e | let var =eine
mc :=e.md(e") | (super = this:c).md(e*) method calls
E: =[]]| (E:¢).fd eval contexts
| (E:c).fd=e¢ | (v:c).fd=E
|E.md(e*) | v.md(v*Ee")
| (super = v:c).md(v*Ee")

|view c E | let var =E in e

Figure 3.7. Syntax of CLASSICJAVA with ret (CJR)

30

E[e'],S") S(o) ={c, F)
(E[retc md(v*)e/] S'>
P ¢y (E[(super = this:c).md(v*)], S) — (El¢/], S")
P tcyr (E[(super = this:c).md(v)]75>

— (E[ret. mq)€],S")
P Feyr (E[ret. nawv], S) = (E[v], S)
P tcyr (Ele], S) — (E[¢'], 5")
P l_CJR (E[retc_md(v*)e],& — <E[retcmd *)6] S,>

Figure 3.8. Operational semantics of CJR in terms of those for CLASSICJAVA

of a sequence of class and interface declarations followed by an entrypoint expression that
models the program’s main method. Small-step judgment P ¢y (e,S) < (€/,S) asserts
that in program P, expression e in store S evaluates to new expression ¢ and new store
S’. Stores S : Obj — (¢ x F') map objects to class-tagged field records. A partial syntax
is provided in Figure for the reader’s convenience; for the full syntax and semantics the

reader is invited to consult (Flatt et al. 1998).

The syntax in Figurediffers from that in (Flatt et al. 1998)) in two important respects.
First, to model program input we adopt the convention that the entrypoint expression must
have the form (let input = v in e), where input is a reserved variable name and value v is the
input supplied to the program. Thus, in our treatment each program P actually denotes the
equivalence class of CLASSICJAVA programs obtained by substituting value v with any other
value of equivalent type. Second, we introduce the expression ret. q(.~) €, which indicates
that subexpression e is the (partially reduced) body of method md of class ¢ that was called
with values v* as parameters. These ret expressions make method-returns explicit. They do
not affect expression evaluation but they make it possible to recover the runtime call-stack
from a partially reduced expression, which is necessary for matching expressions to pointcut

designators in our analysis.

31

J (e x jp) = jp

J((E[(0:c).fd],), jp) = (get c.fd, S(0), jp)

J((E[(0:¢).fd = v],), jp) = (set c.fd, 5(0), jp)

J((Elo.md(v")], S),jp) = (call c.md,ov", jp)
where S(0) = (¢, F)

J((E[(super = o0:¢).md(v")],S), jp) = (call c.md,ov™, jp)

J((E[rete maq)€l,), gp) = J((e, 5), (call c.md, v", jp))
J({e,S), jp) = () for all other e

Figure 3.9. Mapping partially reduced CJR expressions to join points

Hereafter we refer to our modified language as CJR (CLASsiCcJAvVA with ret). Figure

defines the small-step operational semantics of CJR in terms of those for CLASSICJAVA.

Some (but not all) CJR configurations ¢ = (e, S) are join points. In the context of
SPoX policies, we consider join points to be abstractions of security-relevant program states.
Function J(c,()) yields the join point that abstracts configuration ¢ (or the empty join
point () if ¢ is not security-relevant). We lift J to configuration sequences x and to sets
X of configuration sequences in the obvious ways: J(cico--+) = J(cy, () J(c2, () -+ and
JX)={J() | x € X}.

Armed with these definitions we are finally able to formally define what it means for a

CJR program to satisfy a SPoX policy:

Definition 3.3.1 (Executions). Let P = def™ (let input = v in e) be a well-typed CJR
program. An execution x of P is a finite or countably infinite sequence of configurations
(e, So){e1, S1) - -+ such that eq = e, Sy = {(input,vy)} where vy has the same typd] as v,
and for all i < length(x)—1, P F X; < X;11 holds. Furthermore, if x is finite then there

2Formally, there exists a type 7 such that CLASSICJAVA typing judgments (Flatt et al.
1998) P, {} Fe v =0 :7 and P,{} . vo = v : T both hold.

32

exists no configuration (e,,Sy) satisfying Pt Xiengin(x)—1 <> (€n,Sn). We denote the set of
all executions of P by Xp.

Definition 3.3.2 (Policy-adherence). A CJR program P satisfies SPoX policy pol if and
only if J(Xp) C L(P[pol]) holds, where L(A) denotes the language accepted by security

automaton A.

The above asserts that program P satisfies policy pol if and only if every execution of P is
accepted by the Aspect-oriented security automaton that pol denotes. Thus, executing P

will never result in a security violation.

3.3.2 Policy Enforcement

Most (but not all) SPoX policies can be enforced by an IRM system through the insertion
of dynamic security checks into the untrusted code. Dynamic checks are required in general
because many SPoX policies are not statically decidable. In particular, SPoX policies that
involve predicates on runtime values (e.g., those with <argval>) will typically not be stati-
cally decidable since the general problem of deciding whether an arbitrary runtime value will
satisfy an arbitrary predicate is equivalent to the halting problem. However, we argue in this
section that SPoX policies are dynamically decidable, and we sketch a simple algorithm for
inserting runtime checks into untrusted code to detect policy violations before they occur.

This algorithm is the basis for our prototype implementation of SPoX.

A means of detecting impending policy violations before they occur is not always sufficient
for an In-lined Reference Monitor to enforce the policy, however. The IRM can still fail if the
decision algorithm for detecting policy violations commits a security violation when executed
as part of the untrusted code. For example, the SPoX policy <and>p<not>p</not></and>
(where p is any pointcut) is unsatisfiable, rejecting all program states. Therefore, there is no
code that a rewriter could insert that would not itself violate the security policy. Unsatisfiable

policies are a trivial example of this problem but there are more realistic policies that present

33

similar difficulties. For example, the policy

<edge>
<not><call>System.exit</call></not>
<nodes var="g">0,#</nodes>

</edge>

rejects any program that aborts execution prematurely. This restriction effectively disallows
the use of rewriting strategies that halt execution when policy violations are imminent, as

the enforcement operation itself violates the policy.

In what follows we make the simplifying assumption that code inserted as part of the
detection algorithm is not security-relevant. In practice, a certifying In-lined Reference
Monitoring system can check this assumption by using the denotational semantics in Sec-
tion to verify code produced by the rewriter. Rewritten code that fails verification is re-
jected to prevent a security violation. Our prototype implementation discussed in Chapter
checks this conservatively by statically verifying that no rewriter-inserted operations satisfy
any pointcut expression in the policy; thus, no inserted operations are security-relevant.
More precise (but still conservative) verification algorithms are obviously possible (e.g., see
(Hamlen et al. 2006; |Aktug and Naliuka 2008))); we leave the development of such a system
to future work. To simplify the discussion, we also limit our attention in this section to
policies that model deterministic security automata. Non-deterministic automata could be

modeled by tracking sets of states at runtime instead of individual states.

As outlined in Section [3.2] an IRM can track a program’s security state at runtime by
reifying security-state variables into the untrusted code. In particular, consider the following

(non-optimized) rewriting procedure:

1. Inject a new SecurityState class into the untrusted code with a static field for each

global security-state variable and an instance field for each instance security-state vari-

able.

G(edg, ... edg,)jp =
guard: do {
ES(edgy)jp .. ES(edg,)jp
System.exit(1);
} while (false);
ES(<forall var="4v" from="e;" to="ey">edg</forall>)jp =
if (e;<=ey)
for (int iv=e;; w<=ey; ++iv) { ES(edg)jp }
ES(<edge>pcd ep, . .. ep,</edge>)jp =
b = match-ped(ped)jp;
if ((b!'=Fuail) && EP(ep,) && ... && FEP(ep,)) {
EP'(ep,) ... EP'(ep,)
break guard;

}

EP(<nodes var="sv">e;,es</nodes>) =
(SecurityState.sv == e;)

EP(<nodes obj="id" var="sv">ej,es</nodes>) =
(b (id) .sv == e7)

EP'(<nodes var="sv">e;,ey</nodes>) =
SecurityState.sv = ey;

EP'(<nodes obj="id" var="sv">ej,es</nodes>) =
b(id) .sv = ey}

Figure 3.10. Java pseudo-code for a rewriting algorithm for SPoX

34

35

2. Rewrite each instruction that manipulates an object of type ¢ € C to instead manip-
ulate an object pair of type ¢ x SecurityState, where the first member of the pair
is the original object and the second member models the object’s security state. This

expands each original instruction into a chunk of one or more rewritten instructions.

3. To each chunk, prepend an instruction sequence that first computes jp = J({(e, S), (}),
where J is defined in Figure and (e, S) is the current program state; followed by
instruction sequence G(pol)jp, where pol is the policy and G is defined in Figure m

4. Finally, rewrite all static jumps in the original program to target the beginning of
whichever chunk contains their destination addresses. (The only computed jumps in

Java are method returns, which need not be rewritten.)

The rewriting procedure described above enforces a security policy by inserting a runtime
security check before each program operation. When an impending security violation is
detected, the program is prematurely terminated. This is only one method of rewriting
untrusted code to enforce SPoX policies; clearly many other approaches also exist. For
example, instead of premature termination, rewriters could implement other remedial actions
such as event suppression, checkpointing with roll-back, or specific corrective operations

specified by advice external to the policy.

The simple rewriting algorithm presented here does not produce particularly efficient
code, but the code it produces can be significantly optimized through partial evaluation.
For example, for many policies it can be statically determined that most instructions in
the untrusted code are not security-relevant (e.g., they match no pointcut expression in the
policy). For those instructions the code defined in Figure m partially evaluates to an
empty instruction sequence. Thus, in practice a rewriter typically only inserts a few runtime
security checks around the few program operations that might be security-relevant.

The code in Figure [3.10| can be optimized further by replacing the for-loops with a more
efficient integer linear programming algorithm. In particular, each set of n nested <forall>

elements in a SPoX policy that surround m <nodes> elements defines a rational polytope

36

T C Q" with 2(n + m) linear constraints. To decide whether the current runtime security
state matches the source state of any edge defined by this structure it suffices to decide
whether feasible region 7" contains an integer lattice point. (See (Barvinok and Pommersheim
1999)) for a summary of efficient algorithms for computing this.) In the common case where
each <forall> and <nodes> element refers to at most one iteration variable, polytope T is
a box, and therefore the problem can be trivially decided with 2n integer inequality tests

and no loops.

The simple rewriting algorithm outlined in this section might fail when applied to Java
code that is self-modifying or multi-threaded. Self-modifying code can be supported by
adding the rewriter to the load path of the Java virtual machine, so that it can transform any
modified code at runtime before it is first executed. Multi-threaded code can be supported
by making each chunk produced by the rewriting algorithm atomic. Each of these solutions

might have an adverse effect on performance and is worthy of further study.

CHAPTER 4
REWRITER IMPLEMENTATION

4.1 Overview

We have implemented an application that rewrites Java bytecode programs in accordance
with a SPoX policy specification by in-lining runtime security checks into the untrusted
code. The application is written in Java, and uses Apache’s BCEL API (Apache Software
Foundation 2006) to read and write bytecode binaries. Discounting library code, the rewriter

consists of about 13000 lines of Java source code.

The chapter proceeds as follows. Interesting components of our rewriter implementa-
tion are discussed in Section [4.2] including how it handles the parsing of SPoX policies
(Section and rewriting Java binaries (Section [4.2.2). Three realistic case studies are
provided in Section [£.3] showing the practicality and efficiency of the rewriter and the self-
monitoring code it outputs. Finally, Section [4.4] discusses limitations and potential for future

work.

4.2 Implementation Discussion

4.2.1 Parsing SPoX

As SPoX is XML-based, it is easy to parse using commonly available libraries. Our imple-
mentation uses Java’s built-in XML parsing libraries under the javax.xml packages. This
provides all the benefits native to XML, including its support for importing of external XML

files via <xi:include> tags. Because SPoX allows the use of predefined pointcuts, it is pos-

!This chapter includes previously published (Hamlen and Jones 2008; Jones and Hamlen
2009)) joint work with Kevin Hamlen.

37

38

1 <state name="c" />
2 <forall var="i" from="0" to="MAXINT">
3 <edge name="cflowinc">

4 p

5 <nodes var="c">i,i+1</nodes>

6 </edge>

7 <edge name="cflowdec" after="true'">
8 p

9 <nodes var="c">i+1,i</nodes>

10 </edge>
11 </forall>

Figure 4.1. SPoX fragment for <cflow>p</cflow>

sible to define large, complex pointcut libraries and import those into a smaller core policy

file (see the Columba example in Section [1.3).

The implementation converts the policy XML tree into corresponding recursive Java class
objects. We take advantage of Java’s typing system in our data structures, so that pointcut

objects such as Call and ArgVal are all subtypes of Pointcut.

Our management of the pointcut <cflow> is critical in the rewriter implementation as well
as our work on policy disambiguation (Chapter |5|) and certification (Chapter [7)). Pointcuts
of the form <cflow>p</cflow> match join points whose call stacks contain a frame matching
pointcut p. During parsing, each such pointcut is replaced by the policy fragment seen in
Figure E] Control flow operators in edges are then replaced with equivalent <nodes>
elements that stipulate an equivalent condition (e.g., ¢ > 1). This translation of <cflow>
pointcuts into other SPoX constructions greatly reduces the complexity of enforcing them

at rewrite time, as injecting code that tracks the runtime call stack is nontrivial.

2In Figure [4.1]} ¢ is a thread-local state variable and is instantiated with a unique name
for each cflow instance in the policy.

39

1 <state name="s" />

3 <forall var="i" from="0" to="9">
4 <edge name="count">

5 <call>Mail.send</call>
6 <nodes var="s'">i,i+1</nodes>
7 </edge>

g </forall>

10 <edge name="10emails">

11 <call>Mail.send</call>

12 <nodes var="s">10,#</nodes>
13 </edge>

Figure 4.2. A policy permitting at most 10 email-send events

4.2.2 Rewriting

The implementation linearly scans through every class and method in the given Java pro-
gram, looking for code points that match any pointcut in the policy definition. Wherever a
security-relevant join point is discovered, new code is placed before and/or after it to consult
the reified security state and make changes depending on its current value. If a policy viola-

tion is determined to be imminent, the program is aborted using a call to System.exit(1).

Consider the example policy in Figure [£.2] which prohibits an application from calling
Mail.send more than 10 times. When given that policy, the rewriter will inject the code in
Figure prior to every call to Mail.send in the target program. Note that this example
provides source code purely for simplicity; the rewriter translates enforcement instructions

down to the bytecode level.

Observe that in this example security state s has been reified as two separate fields of
class Policy—s and temp_s. The double reification is part of a mechanism for resolving
potential interference in the enforcement code. Had there been no temp_s with which to

store state changes prior to their finalization, the first alteration to the reified state variable

40

1 if (Policy.s >= 0 && Policy.s <= 9)
2 Policy.temp_s = Policy.s + 1;

3 if (Policy.s == 10)

4 System.exit(1);

5 Policy.s = Policy.temp_s;

7 Mail.send();

Figure 4.3. Enforcement code for the policy in Figure [4.2

could affect the result of later checks on the same variable (here, setting Policy.s = 10 too
early would trigger premature termination).

For dynamically decidable pointcuts, more complex code insertions are necessary. Con-
sider the pointcut that guards against SQL injection attacks by comparing a text argument

to a regular expression:

<and>
<call>Database.query</call>
<not><argval num="1"><streq>[a-zA-Z0-9]*</streq></argval></not>

</and>

In addition to checking state variable preconditions, guard code must also check the runtime
value of the first argument in any call to Database.query. For string regular expression
comparisons of this sort, we use the JVM library’s own methods to perform the comparison.
If the security-relevant call is of the form Database.query(x), the conditional will be as

follows:

if (regex.Pattern.matches("[a-zA-Z0-9]*",x.toString())) { ... }

Whereas global state variables may be reified in Java as static fields, reifications of in-
stance state variables must be generated and mapped to every corresponding runtime object.
There are many ways to accomplish this, some more complex than others. Our implemen-

tation handles instance states for non-library classes by directly reifying state variables as

41

Interface A_State Class A
S_Methods (abstract)
,-':\
“._| ClassA_stateful
) State S
Interface B_State S-Methods ClassB
G_Methods (abstract) |

Class B_Stateful
StateS
State G

S_Methods
G_Methods

Figure 4.4. Class structure for reification of instance state variables s (tied to library class
A) and g (tied to library class B, which inherits from A).

private instance fields in the class definitions themselves. Library classes, however, are not

rewritten and are thus far more complex to manage.

Instance state variables for library classes are reified as instance state fields in new,
inheriting classes. Wherever the original program created an instance of library class A, the
rewritten program instead creates an instance of a new class A_Stateful, which inherits
from A and contains all corresponding reified instance state fields. For any class B that
is a descendant of A, another class B_Stateful is also created, which inherits from B and
contains the reified state fields defined for A_Stateful along with any other instance states
that correspond specifically to B. To maintain the ability to reference reified fields at any
point in the class hierarchy (e.g., if B_Stateful is upcast to A, but we need to check A’s
instance state variable s), we include interfaces for every Stateful class. These interfaces
emulate the original class hierarchy and provide accessor methods for each reified state field

(so A can always be cast to its interface A_State to get to state variable s whether it is in an

42

instance of A_Stateful or B_Stateful). Figure |4.4|shows the class structure for an example

scenario.

4.3 Case Studies

Here we discuss three case studies. The first two show how SPoX can be used to enforce
practical SPoX policies on an email client and a file-sharing client. The third uses a processor-
intensive benchmarking program to show the effect guard instructions can have on runtime

efficiency.

All tests were performed on a Dell Studio XPS notebook computer running Windows 7
64-bit with an Intel i7-Q720M quad core processor, a Samsung PMS800 solid state drive, and

4 GB of memory.

4.3.1 Columba Email Client

Columba is an open-source Java email application. For this program, we enforced a policy
that prevents creations or accesses of files whose names end in .exe. Such a policy is useful

for inhibiting viruses propagation through email attachments.

Effectively enforcing this policy requires constraining calls to Java library methods that
access the file system. The number of such methods is surprisingly vast; it includes methods
that stream data, those that create and manipulate SQL databases (since those databases
reside in files that could have a prohibited name), etc. Listing all such methods would be
difficult (and error-prone) for the average administrator, so we developed a pointcut library

that identifies these method calls. The following is an excerpt:

<pointcut name="fileMethods">
<or>
<call>java.io.File.new</call>
<call>java.io.FileWriter.new</call>

<call>java.io.FileReader.new</call>

43

</or>

</pointcut>

SPoX’s aspect-oriented design allows such libraries to be maintained modularly by a trusted
expert. Policy-writers can then refer to these libraries to compose higher-level, application-
specific policies.

To precisely enforce the policy, the specification must constrain the runtime arguments

to these calls. For this we use SPoX’s argval predicate:

<or>
<and><pointcutid name="fileMethods" />
<or><argval num="1"><streq>.*\.exe.*</streq></argval>
<argval num="2"><streq>.*\.exe.*</streg></argval></or></and>
<call>java.lang.Runtime.exec</call>

</or>

In addition to constraining the arguments of file-related methods, we also prohibited
all use of Java’s java.lang.Runtime.exec method. This is a standard addition to many
of the policies we have enforced because this method can be used to execute an arbitrary

(untrusted) external application.

The original Columba JAR file was approximately 2.8MB in size and rewriting added
about 112K. Analysis found 403 security-relevant join points across 1702 class files. The
rewriting process took approximately 84 seconds. The runtime performance of the rewritten
code could not be measured formally because Columba requires user interaction when exe-
cuted; however, we did not observe any noticeable performance overhead due to the inserted
security checks. Likewise, no behavioral change to the application was observed except in
the event of a policy violation—accessing a file with a .exe extension resulted in premature

termination of the application as intended.

We did encounter one interesting side-effect after applying the policy: the spell checker

for email composition no longer worked. After examining the disassembled bytecode of the

44

rewritten program, we found that this feature used Runtime.exec to launch an external spell
check application, which was blocked by the policy. Had we wished to allow this program
to run anyway, we could have modified the policy to whitelist certain application names as

follows:

<and><call>java.lang.Runtime.exec</call>

<not><argval num="1"><streq>filename</streq></argval></not></and>

where filename is a regular expression denoting legal file names. For modularity, the list of

trusted executables could be maintained as a separate pointcut library.

The policy specification above defends against certain malware propagation attacks, but
has several deficiencies that could be remedied by a more sophisticated specification. For
example, one could easily extend the regular expressions to prohibit other dangerous file
extensions. In addition, our fileMethods library was somewhat informally derived. A more
rigorous examination of the Java runtime libraries would likely uncover additions to the

library that would be necessary to rule out all possible violations.

4.3.2 XNap Peer-to-Peer Filesharing Client

XNap is an open-source file-sharing client implemented in Java. We enforced an anti-
freeriding policy that requires the number of downloads to be at most two larger than the
number of uploads during a given session. This is an interesting policy because it is both
history-based and application-specific. In addition, the security state space is potentially
large—one security state for each possible difference between the number of downloads and

uploads.

To enforce the policy, we wrote the specification seen in Figure 4.5l The policy effectively
creates a counter where additions to the download queue increment the value of state variable
s and additions to the upload queue decrement it. A user is allowed to download two more
files than he has uploaded; if he tries to download any more than that, a policy violation is

triggered and the program halts.

10

11

12

13

14

15

16

17

<pointcut name="download">
<and><call>xnap.util.DownloadQueue.add</call>
<not><argtyp num="2">boolean</argtyp></not></and></pointcut>
<pointcut name="upload">
<and><call>xnap.util.UploadQueue.add</call>
<argtyp num="1">xnap.net.IUploadContainer</argtyp></and></pointcut>

<state name="g" />
<forall var="i" from="-10000" to="1">
<edge name="download">
<pointcutid name="download" />
<nodes var="s">i,i+1</nodes></edge></forall>
<forall var="i" from="-9999" to="2">
<edge name="upload">
<pointcutid name="upload" />
<nodes var="s">i,i-1</nodes></edge></forall>
<edge name="too_many_downloads">
<pointcutid name="download" />
<nodes var="s">2,#</nodes></edge>

Figure 4.5. SPoX policy to limit P2P freeriding

45

46

Since this is an application-specific policy, its formulation required some knowledge of the
internal structure of the application; however, this was easily gleaned without any access to
the application source code. We pinpointed the relevant methods for download and upload

operations via a cursory examination of the bytecode disassembly.

The original program was 1290K in size, and rewriting actually reduced it by 68K. This
is actually common in our tests, as unneeded metadata is stripped from rewritten bytecode.

7 join points were found across 878 class files, and rewriting took 58 seconds in total.

We tested the rewritten application with various combinations of downloads and uploads.
As expected, XNap halted whenever we downloaded three more files than we had uploaded.

Aside from this, there were no observable differences in program execution.

We are aware of at least two important deficiencies in this policy as we have defined it
here. First, since the security state does not persist across application instances, users can
exit out of the application and restart it after every two downloads to reset the counter and
thereby increase downloads over uploads over time. Previous work has demonstrated how
to implement persistent security state in an IRM to remedy such vulnerabilities (Aktug
and Naliuka 2008)). Second, our policy only tallies queued downloads and uploads but
not completed ones. A malicious user could freeride by cancelling queued uploads before
completion. To close this vulnerability, we could have added extra logic regarding download

completions and cancellations.

4.3.3 SciMark Benchmarking Tool

To measure the runtime overhead introduced by the rewriter we applied a security policy
to the SciMark benchmark suite and measured the performance of each benchmark before
and after rewriting. SciMark includes five processor-intensive mathematical routines: Fast
Fourier Transform (FFT), Jacobi Successive Over-Relaxation (JOR), Monte Carlo integra-
tion (MCI), sparse matrix multiplication (SMM), and dense LU matrix factorization (LU).
The policy we applied prohibits a program from performing more than n floating point mul-

tiplication operations during its lifetime, where we set n to an unreachably high number to

47

2000

1800

1600

1400

1200

1000

M Original

MFlops

800

600
400
200 I —
0
FFT JOR MCl SMM LU

Benchmark

Rewritten

Figure 4.6. Performance overhead from enforcing worst-case security policies on SciMark
benchmarks

prevent the application from violating the policy and terminating prematurely. The rewriter
enforced this policy by inserting runtime security checks around all 71 dmul instructions in

the untrusted code.

Figure graphs the runtime overhead introduced by our rewriter by comparing the
number of MFlops before and after rewriting for each benchmark. Overall we observed an
average 78% reduction in performance with individual benchmarks ranging from 66% to 83%.
We view these statistics as worst-case scenarios, since this particular policy was designed to
force the rewriter to insert many dynamic checks within the innermost loops of intensive
numerical calculations. For less pathological policies that we tried (e.g., monitoring method
invocations), the runtime overhead introduced was so small as to be unmeasurable. The
SciMark JAR file was 34K in size prior to rewriting and dropped to 32K afterward. (See the
discussion above for a possible explanation for the size reduction.) Our rewriter loaded and

transformed the entire suite in 1.5 seconds.

48
4.4 Limitations

Although the rewriter accepts programs and policies of arbitrary size and complexity, it has
some important current limitations. Some of these are simply implementation details, while
a few are limitations of the SPoX language itself. The former can be mitigated by more
sophisticated rewriters, while the latter can often be handled through additional, untrusted
policy enforcement components. A few limitations are actually desirable, as they make the

development of a trustworthy certifying IRM system much more feasible.

Perhaps the most significant limitation is a lack of support for multithreaded programs.
This is purely a matter of policy enforcement, not policy definition, and so it is a weakness
of our current rewriter, not SPoX. A more complex rewriter that locks security-relevant vari-
ables (reified state variables, runtime arguments considered by dynamically decidable point-
cuts, etc.) while executing guard code should provide support for parallelization (Hamlen
2006)). However, avoiding inefficiency and deadlock is nontrivial, suggesting a need for race-

free policies (Dam et al. 2009).

Write-reflective and call-reflective (but not read-reflective) programs are unsupported by
our rewriter implementation, and are conservatively rejected by the verifier discussed in
Chapter []] We believe that reflection is used rarely enough that this is not a significant
problem. For those programs that do use it, the rewriter itself could be integrated into a
wrapper for the reflection API. However, it should be noted that such a solution would be
difficult to manage in a certifying IRM system, as it requires certifying the entire rewriting

algorithm.

The rewriter’s general approach is very simple: every security-relevant instruction gets
its own independent block of surrounding guard code. As seen in the SciMark example, this
can sometimes lead to inefficiency in the rewritten program. Advanced code analysis could
lead to reorganized enforcement code, reducing the impact on performance. Some possible

techniques are discussed in Section [3.3.2

49

Our system rewrites target programs, not the JVM libraries. Any instructions considered
security-relevant by the policy are therefore ignored if they occur within JVM library code.
In effect, we are trusting these libraries, which is intentional. Enforcing several simultane-
ous policies on core libraries is usually unnecessary and impractical, especially since they

frequently call low-level system code.

In Section [£.2.2] we described how our implementation uses inheritance and interfaces to
reify instance state variables for JVM library class objects. This approach does not work for
classes that are declared final, disallowing inheritance. Reifying instance state variables for
such classes requires an alternative kind of object wrapping, or a mapping scheme to link

new instances of state variables to new instances of their corresponding objects.

At this time, SPoX state variables can only be set to integer values. There are situations
in which other types would be useful. For example, consider the policy which says that a
collection cannot be altered while its iterator is cycling through its contents. Java collection
objects spawn independent Iterator objects, which must be somehow mapped to their
source collection to enforce such a policy. We know of no way to do this in SPoX using
integer assignments, but it is possible to emulate a mapping if we assign actual object
pointers to the state variables. This pointer could be assigned and accessed within <nodes>

tags, allowing us to modify the appropriate instance state variable and enforce the policy.

SPoX advice is deliberately limited to automaton state alterations for verification pur-
poses; however, many sophisticated, real-world policies cannot be enforced without the use
of specialized actions, code libraries, and method calls. For example, some users may want
to enforce a policy that forces a program to add an entry to a log file every time it accesses
the network. In Section[7.5] we describe a way to combine SPoX with other aspect-oriented
IRM systems to enforce such a policy while still allowing certification of the final, rewritten

application.

CHAPTER 5
INCONSISTENCY DETECTION

5.1 Overview

Expressing high-level security policies programmatically as aspects is often a difficult and
potentially error-prone process. This is especially true when policies are intended to be
generic, applying to a broad class of programs rather than just a few known programs.
Correctly implementing generic, aspect-oriented security policies often requires highly non-
trivial reasoning about how the aspect-weaving process might affect new, previously unseen,
untrusted code. Unit testing tends to be an unreliable means of detecting errors in these
policy encodings, since an incorrect aspectual policy implementation may correctly enforce
the policy for most untrusted programs even if it permits policy-violating behavior or breaks

policy-adherent behavior of a few unusual programs.

Two useful approaches to addressing the aspect-oriented security policy specification
problem include eliminating side-effects from advice (often strengthening the pointcut lan-
guage to compensate) (Dantas and Walker 2006; Dantas et al. 2008; Hamlen and Jones
2008)) and synthesizing aspect-oriented policy implementations automatically from higher-
level specification languages, such as LTL (cf., (Chen and Rogu 2005)) or TemporalZ (Kallel
et al. 2009). SPoX (Hamlen and Jones 2008) excludes imperative advice altogether, mini-

mizing the potential for undesired, effectful interactions with untrusted code.

However, policy errors are not limited to advice; they also arise in pointcuts. Pointcut

errors tend to arise even in high-level specifications since the policy-writer must still somehow

IThis chapter includes previously published (Jones and Hamlen 2010) joint work with
Kevin Hamlen.

50

ol

specify the set of security-relevant operations, and the language of operations is often an

unfamiliar domain (e.g., Java bytecode instructions).

We have found that one of the most pernicious sources of error when writing complex,
aspectual security policies is undesired pointcut non-determinism. Pointcut non-determin-
ism arises when multiple pointcuts in an aspect-oriented security policy provide conflicting,
inconsistent advice for a shared join point. As a trivial example, a policy that restricts
file accesses might mandate different runtime security checks for calls to methods named
x0penx than for calls to methods named *Read*. This policy might have unintended results
when applied to a program that calls the ReadOpenedFile method, which matches both
pointcuts. When pointcuts involve complex boolean expressions, regular expressions, class
subtyping constraints, and mixtures of static and dynamic tests, even experts are prone to

such mistakes.

We present the design and implementation of a pointcut analysis utility that automat-
ically detects potential non-determinism in pointcut libraries. Our tool targets the SPoX
aspect-oriented policy specification language described in Chapter [3] Other aspect-oriented
security policy languages such as those supported by JavaMOP (Chen and Rosu 2005) have
natural encodings in SPoX, permitting easy analysis of such policies using our utility. We
have found this automated analysis invaluable for discovering bugs in policy specifications

for real systems.

This chapter is structured as follows. In Section [5.2] we describe our two-phase algorithm
for detecting non-determinism in SPoX policies. In Section[5.3] we provide a machine-checked
proof of correctness for the pointcut non-determinism detection part of the algorithm. Fi-
nally, Section discusses several case studies in which our analysis algorithm discovered

and reported inconsistencies in real policies.

52
5.2 Analysis

A SPoX policy is non-deterministic if it denotes a non-deterministic security automaton.

Formally, we define policy non-determinism as follows.

Definition 5.2.1. A SPoX policy is non-deterministic if it denotes a security automaton in
which there exists a stateﬂ q € (SV x O) = Z and two edges (q,q1) and (q,qz2) labeled with
pointcuts ped, and ped., respectively, such that ¢ # qo and ped, and pedy, match non-disjoint

sets of join points.

IRM systems typically exhibit implementation-defined behavior when provided a non-
deterministic policy specification as input. The implementation-defined behavior depends
upon the order in which the IRM implements the runtime security checks that decide whether
to perform each possible state transition at matching join points. The instrumentation
(aspect-weaving) process does not detect the non-determinism statically because it cannot
decide if multiple checks inserted at the same join point always result in mutually exclusive

outcomes at runtime.

Two obvious solutions to this problem are to automatically determinize the security
automaton prior to weaving it into untrusted code, or to automatically resolve conflicts by
imposing a default ordering on conflicting edges. However, our experience indicates that these
approaches often result in an automaton that does not reflect the intentions of the policy-
writer. Instead, they often have the counterproductive effect of silently concealing policy
design errors from the user. Non-determinism typically arises in practice when separate
parts of a specification constrain event sets that the policy-writer expected to be disjoint,
but that intersect at a few unusual join points or security states that the policy-writer did
not adequately consider. Our goal is to bring these possible design errors to the attention of

the policy-writer so that specification bugs can be manually corrected.

2Set O denotes the universe of object instances plus a global meta-object that models the
storage context of global security state variables.

53

We therefore adopt the approach of detecting and rejecting non-deterministic policies
automatically prior to enforcement. To support generic policies, the decision algorithm
considers the universe of all possible untrusted target programs rather than a specific program
to which the policy is to be applied. When non-determinism is detected, the algorithm yields
a witness in the form of a security state and join point for which the non-determinism is
exhibited. This allows policy-writers to understand and correct design flaws that may have

led to the ambiguity.

At a high level the decision algorithm consists of two phases. In the first phase, state
variable pre-conditions and post-conditions of every pair of <edge> declarations are compared
to determine which edge pairs have common source states but distinct destination states.
SPoX supports state transitions both immediately before and immediately after (via the
after keyword in Figure the matched join point. The SPoX language semantics adopt
a point-in-time join point model (Endoh et al. 2006)) in which after-transitions are distinct
from before-transitions of any following join point. Thus, an after edge can never conflict
with a before edge in SPoX, and such edge pairs can be safely ignored when searching for

potential non-determinism during the first phase.

In the second phase, pointcut labels of edge pairs identified in the first phase are compared
to decide if their intersection is non-empty. If any labeled edge pair is identified as non-deter-
ministic by both phases, a witness is then synthesized from a common source state from the
first phase and a common join point from the second phase. Both phases are discussed in

detail in the following subsections.

5.2.1 Security State Non-determinism

The problem of deciding whether there exist automaton edges (¢, ¢1) and (g, ¢2) with ¢; # 2
can be reduced to a linear programming problem. Each <edge> declaration in the policy
defines its source (resp. destination) states in terms of pre-conditions (resp. post-conditions)
that are expressed as integer equality constraints over state variables and iteration vari-

ables. Iteration variables are further constrained by inequality constraints imposed by the

54

surrounding <forall> blocks that declare the iteration variables and the closed intervals

over which their values range.

Thus, each set of n nested <forall> blocks that surround an <edge> containing m
<nodes> elements defines a convex, rational polytope 7' C Q" with 2(n + m) linear con-
straints. Each integer lattice point in feasible region T corresponds to a source state for
an automaton edge defined by the <edge> declaration. The m post-condition constraints in
such a structure define an affine transformation f : 7T — Q" that maps each source state to

a destination state.

To decide whether an edge pair ey, e5 is potentially non-deterministic, we therefore adopt

the following procedure.

1. Alpha-convert iteration variables to unique names. (Instance state variables are re-
named since the analysis must conservatively assume that all object references of sim-

ilar type may alias.)

2. Compute feasible regions 77 and 75 for edges e; and es by collecting the linear con-
straints encoded in relevant <forall> declarations and the pre-conditions of <nodes>

declarations.

3. Compute affine transformations f; and f, by collecting the linear constraints encoded

in the post-conditions of the <nodes> declarations.
4. Compute the set of common source states T' = T7 N T5.

5. Compute extrema of objective function m(q) = fi(q) — fa(q) over g € T. If m has a
maximum or minimum other than 0 at any ¢ € T', then ¢ is a common source state for

which edges e; and ey lead to different destination states fi(q) and f5(q).

As an example, consider the following pair of edge declarations, which refer to the same

instance state variable s:

95

<forall var="i" from="0" to="10"> <forall var="i" from="0" to="3">
<edge name="edge_pl"> <edge name="edge_p2">
<argval num="1" obj="x">pl</argval> <argval num="2" obj="y">p2</argval>
<nodes var="s" obj="x">i,i-3</nodes> <nodes var="s" obj="y">i*3,i+2</nodes>
</edge> </edge>
</forall> </forall>

Step 1 alpha-converts the iteration variables to unique names 7¢ and 7;. Since objects x and
y may alias (e.g., at a join point whose first and second arguments refer to the same object),
instance state variable s is not alpha-converted. Step 2 then defines feasible region T} by
linear constraints (ig > 0) A (ip < 10) A (s = 4p) and feasible region Ty by (i; > 0) A (i1 <
3) A (s = 3iy). Transformations f; and fo are defined in Step 3 by fi(s) = s — 3 and
fa(s) = s/3+2. Step 4 defines intersection 7' = T3 NT, by the conjunction of the constraints
defining T} and T5.

Step 5 considers objective function m(s) = s —3 — (s/3 +2), which is maximized in 7" at
(s,10,71) = (9,9, 3) and minimized at (0,0, 0) (with values 1 and -5, respectively). Thus, non-
determinism could potentially be exhibited when x.s = y.s € {0, 9} if there exists a program
operation that matches both of pointcuts p1 and p2. Disjointness of pointcut expressions is

discussed in the next section.

5.2.2 Pointcut Non-determinism

Pointcut disjointness is reducible to pointcut unsatisfiability. That is, pointcuts pcd; and
ped, match disjoint sets of join points if and only if pointcut (and ped; ped,) is unsatisfiable.
Pointcut satisfiability can, in turn, be reduced to boolean satisfiability (SAT). The remainder
of the section describes an algorithm S that transforms a pointcut ped into a boolean sentence
S(ped) such that sentence S(ped) is satisfiable if and only if pointcut ped is satisfiable.
Conjunction, disjunction, and negation in pointcut expressions can be translated directly
to boolean conjunction, disjunction, and negation. The only remaining pointcut syntaxes

are primitives (forms such as <call> that do not include nested pointcuts) and control flow

56

operators such as <cflow>. Control flow operators are removed from pointcuts prior to the

analysis by translating them to an equivalent automaton encoding (see Section 4.2.1]).

This leaves the various pointcut primitives, such as <call>, <get>, and <argval>. For
each unique primitive, a unique boolean variable is introduced. This results in a boolean
sentence that is satisfiable if the original pointcut is satisfiable, but which might be satisfiable

even if the original pointcut is unsatisfiable. For example, the pointcut
<and><call>File.open</call><call>File.close</call></and>

yields the sentence a A b, which is satisfiable even though the original pointcut is not. To
correct this, a constraint term must be added to the sentence for each pair of boolean variables
that denote non-independent pointcut primitives. In this case, the appropriate constraint
term is =(a A b) since a and b denote primitives that cannot both be true for the same join

point. A systematic approach to deriving constraint terms is provided later in the section.

Algorithm S can therefore be summarized as follows:

1. Construct a mapping V' : P — B from pointcut primitives to unique boolean variables.

2. For each subset of pointcut primitives S C P, potentially generate a constraint term

c(9).

3. Construct sentence S(ped) as follows:

S(ped) = T(ped) A () <(9))

SCP
T (pedy) AT (pedy)

T (pedy) V T (pedy)

T (ped,)

V(pcd) for ped primitive

where T (and ped, ped,

T (or ped, pedy

) =
)
T (not ped,)
)

T (ped

57

Table 5.1. Constraint generation cases

call exec get set argv targ argt with
call | CR

exec E CR

get E E CR

set E E E CR

argv C CcC E C RV

targ | CR CR CR CR I CR

argt C ¢c E C T I CR

with I CR 1 I I I I CR

Legend:
I: independent (no constraint required)
: mutually exclusive (use constraint —(a A b))
: independent except for known classes
: regular expression non-emptiness check
: argval check

H<< @ QH

. argval-argtyp compatibility check

Generating constraint terms ¢(S) in Step 2 is the most difficult step in the reduction.
Most of the necessary constraints can be generated by considering only pairs of pointcuts
S = {p1, po} rather than larger sets. (The one exception involves regular expressions, and
is described in greater detail below.) The possible cases for such pairs can be divided into
the various possible syntactic forms for p; and ps. These cases are summarized in Table [5.1]
The columns and rows of the table are labeled with the abbreviated names of the most
interesting pointcut primitives listed in Figure [3.3] Note that argv and argt represent

argval and argtyp, respectively, while with refers to withincode.

Cells labeled I are always independent; no constraint term is required in these cases.
For example, a call join point can potentially appear within any lexical scope, so call
and withincode pointcuts are independent. Cells labeled E are mutually exclusive; the
necessary constraint term is —(7 (p1) A T(p2)). For example, no join point is both a call

instruction and a field-get instruction, so call and get are mutually exclusive.

58

Deriving appropriate constraints for cells labeled C' requires a model of the trusted portion
of the class hierarchy. Trusted classes typically consist of those implemented by the Java
standard libraries or other system-level libraries. When one or both pointcut primitives
name a known, trusted class, the constraint generator performs a subclass test over the
trusted class model; otherwise the two pointcuts are independent. For example, two target
pointcuts are typically independent since in an arbitrary untrusted program any type could
be a subtype of any other type. However, if one pointcut names a standard library class ¢
that is declared final and the other uses a type pattern that does not match any superclass

of ¢, then the two are mutually exclusive.

A regular expression non-emptiness test is required for cells marked R in Table [5.1]
and is the only case that requires consideration of sets S C P that are larger than size
2. For each set of pointcuts S that place regular expression constraints upon the same join
point component (e.g., the same instruction argument), the constraint generator must decide
whether there exists a string that satisfies all regular expressions in S and none in P — S.
If so, no constraint is generated for .S; otherwise a mutual exclusion constraint is generated.

For example, consider the pointcut fragment
<and><call>x*</call><call>xx*</call><call>xy</call></and>

which initially reduces to the sentence a A b A ¢ before constraints are added. Regular
expressions xx* and xy are both subsets of x*, and xy is disjoint from xx*. The algorithm
above therefore represents these with a conjunction of three constraints: =(b A =a) A =(c A
—a) A=(aANbAc).

The space of subsets S C P that must be considered is potentially exponential in the size
of P, but in practice the space can be significantly pruned through memoizing. That is, if
any subset S has an empty intersection, then no supersets of S need be considered further.
Thus, working upward from small subsets to larger ones tends to result in a smaller number

of regular expression emptiness sub-problems that must be solved.

59

The cell of Table marked V' concerns the special case of two argval predicates. Two
argval predicates are always independent unless they regard the same argument index n
and both contain value predicates that are relevant to the same type of data (object, integer,
or string). String predicates reduce to regular expression non-emptiness problems, described
above. Integer predicates result in implication, bi-implication, or mutual exclusion con-

straints. For example, if p; contains <inteq>3</inteq> and ps contains <intlt>4</intlt>,
then c({p1, p2}) = (T (p1) = T (p2))-

Finally, the table cell marked T concerns the special case of an argval and an argtyp
primitive. These are always independent if they refer to different runtime arguments, they
are mutually exclusive if they refer to differing types, and otherwise the argval predicate
implies the argtyp predicate. For example, if p; = <argval num="1"><inteq>3</inteqg>
</argval>and p, = <argtyp num="1">int</argtyp> then we obtain the constraint 7 (p;) =

T (p2) because any join point satisfying p; also satisfies po.

Once boolean sentence S(ped) has been constructed, it is delivered to a SAT-solving
engine. The SAT-solver yields a satisfying assignment of boolean variables if one exists. From
such an assignment it is trivial to recover a witness join point that lies in the intersection of
the two original pointcuts. This facilitates disambiguation of the flawed policy specification
by providing the human expert with an example target program fragment for which the

policy is ambiguous.

5.3 Machine-Checked Proof

To prove the correctness of our inconsistency detection algorithm, we used the automated
proof assistant ACL2 (Kaufmann and Moore 2006)). ACL2 accepts models of system behav-
ior written with LISP syntax, and can be guided by a user to produce proofs of correctness
for those models. Many companies and researchers have used ACL2 to provide proofs re-
garding the behavior of their systems, including the floating point operations of AMD and
IBM processors, information flow properties of the AAMP7G system developed by Rock-

60

well Collins, and key components of the standard JVM bytecode verifier (Kaufmann and
Moore 2011). Machine-checkable proofs are widely considered to be the highest standard of
mathematical rigor, and therefore appropriate for verification of security-critical components
in large software systems. Automated theorem-provers also facilitate rigorous verification
of proofs containing large numbers of sub-cases, making them well-suited for proving the

correctness of our algorithm.

Our proof establishes the correctness of the constraint-generation cases summarized in
Table [5.1] Correctness of the integer-based security state analysis then follows directly
from the definition of automaton non-determinism. The first, non-constraint part of the
pointcut reduction to SAT is similarly trivial, as it simply produces a boolean sentence that
is structurally equivalent to the original pointcut expression. These parts of the algorithm

are therefore not included in the ACL2-checked proof.

We have not yet proved any theorems regarding trusted class hierarchies (C in Table .

These are left to future work.

In this section we discuss our ACL2 functions and theorems, and how they accurately
model and prove the correctness of various constraint generation cases. The primary data
structures are described in Section [5.3.1] the core functions in Section|5.3.2] and the theorems

themselves in Section [5.3.3]

5.3.1 Data Structures

We model the abstract syntaxes of both pointcuts and join points with the standard LISP
notation for lists. Notation (a b c¢) denotes a true (nil-terminated) list with elements a, b,
and c. Notation (a b ¢ . d) denotes a possibly non-true (not nil-terminated) list whose

first three elements are a, b, and ¢, and whose final “cdr” is d (instead of nil).

Join points The abstract LISP syntax for join points is listed in Figure [5.I} A join point
jp is a list whose first element is an instruction, whose second element is a lexical scope,

and whose remaining elements are any relevant arguments on the evaluation stack. The

61

jp ::= (instr scope . arglist)
instr ::= (’call . string)
| ’entry
| ("get . string)
| (’set . string)
| anything
scope ::= (static-scope . dynamic-scope)
arglist ::= (tp al a2 ... an)
tp ::= nil | anything
a ::=n | string | nil | (string . anything)

Figure 5.1. LISP syntax for join points

first of these dynamic arguments is the “this” pointer if the instruction requires one, or
nil otherwise. Each remaining argument is an integer, a string, a null pointer (nil), or an
object. An object is represented as a list whose first element is a string representation of the
object’s type.

The join point syntax needs only model components that are relevant to our pointcut
language. Therefore, we are only concerned with three primary types of instructions: call,
get, and set. In order to match against execution pointcuts, we also use an artificial entry

join point to model the entry point of a method.

A join point’s scope is comprised of both a static element and a dynamic element. The
static scope is consulted by exec and withincode pointcuts, and identifies the lexical context
of any join point. The dynamic scope is not used by any existing pointcuts in our language,
but is potentially used by anything that considers dynamic context. For example, if class B
inherits method m from class A, then any runtime join point occurring within B.m would fall

into the static scope A.m but the dynamic scope B.m.

Pointcuts The abstract LISP syntax for pointcuts is listed in Figure [5.2] A pointcut

designator pcd is a list whose first element is the name of the pointcut and whose remaining

62

pcd ::= (’call . re)
| (exec . re)
| ("get . re)
| (’set . re)
| (Cargval n . vp)
| (Cargtyp n . re)
| (target . re)
| (withincode . re)
vp ::= ’true | ’isnull | (’streq . re) | (’inteq . n) | (’intne . n)
| (’intle . n) | (Pintge . n) | (CPintlt . n) | (’intgt . n)
re ::= string | anything

Figure 5.2. LISP syntax for pointcuts

elements are that pointcut’s parameters. Note that n denotes integers and re denotes regular

expressions.

A regular expression re is either a string constant (to denote an expression that matches
exactly and only itself) or a non-string (to denote an expression matching zero or two or
more strings). Our theorems do not care exactly how regular expression matching works, so
we do not specify exactly how those non-strings are encoded. As seen in the next subsection,

we use the stub function set-member as a black box to represent the matching process to

ACL2.

5.3.2 Core Functions

The most important function used by our ACL2 theorems is match-ped in Figure [5.3]
which returns ¢rue if and only if pointcut pcd matches join point jp. Observe that there are

several helper functions, which we describe below.

Most pointcuts make use of regular expressions, which are matched using re-member:

(defun re-member (x re)

(if (stringp re) (equal x re) (set-member x re)))

1 (defun match-pcd (jp pcd)

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

(or

(and (equal (car pcd) ’call)

(and

(and

(and

(and

(and

(and

(and

(equal (caar jp)
(re-member (cdar
(equal (car pcd)

’call)
jp) (cdr pcd)))
’exec)

(equal (car jp) ’entry)
(re-member (caadr jp) (cdr pcd))
(null (cdadr jp)))

(equal (car pcd)
(equal (caar jp)
(re-member (cdar
(equal (car pcd)
(equal (caar jp)
(re-member (cdar
(equal (car pcd)

‘get)

‘get)

jp) (cdr pcd)))
’set)

’set)

jp) (cdr pcd)))
>argval)

(plusp (cadr pcd))
(< (cadr pcd) (len (cddr jp)))

(match-vp (nth (cadr pcd) (cddr jp)) (cddr pcd)))

(equal (car pcd)

’argtyp)

(plusp (cadr pcd))
(< (cadr pcd) (len (cddr jp)))

(re-member (valtype (nth (cadr pcd) (cddr jp))) (cddr pcd)))

(equal (car pcd)

(re-member (caaddr jp) (cdr pcd)))

(equal (car pcd)

(re-member (caadr jp) (cdr pcd))))

Figure 5.3. Function match-pcd

’target)

’withincode)

63

64

The function returns true if and only if string x matches the regular expression re. When
re is a string constant, a match occurs when x and re are equal. When it is anything else,

we use the following function to determine if x belongs to the set of strings matched by re:

(defstub set-member (*x %) => x)

The set-member function is an opaque stub with no implementation, as the process of
reasoning about whether a complex regular expression matches a string has no real impact
on our pointcut interference theorems. The stub effectively allows us to consider both the
case where a match occurs and the case where it doesn’t, avoiding any loss of generality in

ACL2’s proofs.

The argtyp pointcut uses the specialized function valtype to obtain the type of an

argument:

(defun valtype (x)
(cond ((integerp x) "int")
((stringp x) "string")
((consp x) (car x))

(nil)))

This function is uniquely necessary for argtyp, as arguments can be either primitive types
(int or string), objects, or null pointers. The target pointcut only ever matches against

objects, so it has no need of this function.

The most complex pointcut is argval, which utilizes the function match-vp from Fig-
ure to match arguments against value predicates. The only possibly confusing predicate
is streq, which can be used to match either a string literal (x when (stringp x) is true)

or an object’s string representation ((cdr x)).

1 (defun match-vp (x vp)

2 (or

3 (equal vp ’true)

4 (and (equal vp ’isnull)

5 (null x))

6 (and (equal (car vp) ’inteq)
7 (integerp x)

8 (= x (cdr vp)))

9 (and (equal (car vp) ’intle)
10 (integerp x)

11 (<= x (cdr vp)))

12 (and (equal (car vp) ’intne)
13 (integerp x)

14 (/= x (cdr vp)))

15 (and (equal (car vp) ’intge)
16 (integerp x)

17 (>= x (cdr vp)))

18 (and (equal (car vp) ’intlt)
19 (integerp x)

20 (< x (cdr vp)))

21 (and (equal (car vp) ’intgt)
22 (integerp x)

23 (> x (cdr vp)))

24 (and (equal (car vp) ’streq)

(or (and (stringp x)

(re-member x (cdr vp)))
(and (stringp (cdr x))
(re-member (cdr x) (cdr vp)))))))

Figure 5.4. Function match-vp

65

66

5.3.3 Theorems

In order to prove the overall correctness of Table we prove smaller theorems for each
table entry. In general, for each pair of pointcuts, we prove one of the following: implication,
mutual exclusion, or independence. Many of the proofs share some complex theoretical

components, necessitating extra ACL2 functions and sub-theorems.

ACL2’s support for existential quantification is limited, so we describe many of our the-
orems in terms of witnesses. For example, wherever we wish to prove something of the form
Jdz.P(z), we instead prove P(w) directly for some witness w. Likewise, to prove an implica-
tion of the form (3x.Py(z)) = (Jy.Pa(y)), we instead prove Py(w;) = Pa(f(w1)), where f is
a Skolem function that computes a witness for P, from the witness w, for P;. If we can find

any f for which this is provable, we have proved the more general existential theorem.

To determine if two pointcuts pcdl and pcd2 both match some witness join point w, we

use the following function:

(defun pcd-intersects (pcdl pcd2 w)
(and (match-pcd w pcdl) (match-pcd w pcd2)))

If pcd-intersects returns true, then we have proved that there exists at least one join point

matching both pcdl and pcd?2, specifically w.

Many pairs of pointcuts share join points if and only if their regular expressions have
a non-empty intersection. We use the function re-intersects to determine whether two

regular expressions both match some witness string w:

(defun re-intersects (rel re2 w)

(and (re-member w rel) (re-member w re2)))

That function is used in the two templates below, which describe the if and only if implica-

tions, respectively:

67

(defabbrev regexp-if (pcdl pcd2 s-witness)
(implies (pcd-intersects pcdl pcd2 jp-witness)

(re-intersects rel re2 s-witness)))

(defabbrev regexp-onlyif (pcdl pcd2 jp-witness)
(implies (re-intersects rel re2 s-witness)

(pcd-intersects pcdl pcd2 jp-witness)))

Here, pcdl and pcd2 are pointcut expressions that contain free variables rel and re2. In
regexp-if, s-witness must be a string matched by both rel and re2; it may be expressed
in terms of variable jp-witness, which is guaranteed to be a join point matched by both
pcdl and pcd2. In regexp-onlyif, jp-witness must be a join point matched by both pcdl
and pcd2; it may be expressed in terms of variable s-witness, which is guaranteed to be a

string matched by both rel and re2.

Two pointcuts pcdl and pcd2 are mutually exclusive if and only if every join point
that satisfies pcdl fails to satisfy pcd2. Therefore, we can represent the mutual exclusion
constraint =(A A B) with the theorem A = —B. We encode this in ACL2 using the mutex

template:

(defabbrev mutex (pcdl pcd2)

(implies (match-pcd jp pcdl) (not (match-pcd jp pcd2))))

Proving independence is somewhat more complex. Two pointcuts are independent if and
only if the existence (or non-existence) of a join point matching one of them does not affect
the existence (or non-existence) of a join point matching the other. This can happen when
one or both pointcuts pcdl and pcd2 match nothing or everything, or when there exist
witness join points tt, tf, ft, and £f such that tt satisfies both pcdl and pcd2, tf satisfies
pcdl but not pcd2, ft satisfies pcd2 but not pcdl, and ff satisfies neither pcdl nor pcd2.

This can be formulated as a constructive proof. Given join points t1, t2, f1, and £2 that

68

satisfy pcdl, satisfy pcd2, do not satisfy pcdl, and do not satisfy pcd2 (respectively), we
prove that there are join points tt, tf, ft, and ff that satisfy pcdl and pcd2, pcdl but not
pcd2, pcd2 but not pcdl, and neither pcdl nor pcd2 (respectively). The ACL2 template

that models this theorem is as follows:

(defabbrev independent (pcdl pcd2 tt tf ft ff)
(implies (and (match-pcd tl pcdl) (not (match-pcd f1 pcdl))
(match-pcd t2 pcd2) (not (match-pcd £2 pcd2)))
(and (match-pcd tt pcdl) (match-pcd tt pcd2)
(match-pcd tf pcdl) (not (match-pcd tf pcd2))
(not (match-pcd ft pcdl)) (match-pcd ft pcd2)
(not (match-pcd ff pcdl)) (not (match-pcd ff pcd2)))))

Note that if either pcdl or pcd2 universally matches everything or nothing, the left-hand

side of the implication is false, and the theorem can still be proved.

The following paragraphs describe several representative theorems that describe relation-
ships between pairs of pointcuts in Table [5.1] The remaining cases generally resemble the

ones provided in this section. ACL2 has proved the correctness of all of them.

call-call Two call pointcuts intersect for some set of join points if and only if their
regular expressions intersect. This is split into two theorems, each of which describes one

implication direction:

(defthm call-call-if
(regexp-if (cons ’call rel) (cons ’call re2)

(cdar jp-witness)))

(defthm call-call-onlyif
(regexp-onlyif (cons ’call rel) (cons ’call re2)

(cons (cons ’call s-witness) ’(nil))))

69

Observe that (cdar jp-witness) extracts the regular expression from a given join point wit-
ness, using it as the s-witness parameter being passed to regexp-if. In the reverse direc-
tion, (cons (cons ’call s-witness) ’(nil)) constructs a join point witness jp-witness

from a given regular expression witness and passes it to regexp-onlyif.

call-exec A call matches invoke instructions and an exec matches method entry points,

so the two pointcuts are mutually exclusive:

(defthm call-exec

(mutex (comns ’call rel) (cons ’exec re2)))

call-withincode A call matches based on instruction identity, while withincode matches

based on instruction lexical context, so the two pointcuts are independent:

(defthm call-withincode
(independent (cons ’call rel) (cons ’withincode re2)
(1ist (cons ’call (cdar t1)) (cadr t2))
(list (cons ’call (cdar t1)) (cadr £2))
(list ’non-call (cadr t2))

(list ’non-call (cadr £2))))

From top to bottom, the list constructions generate: tt, an invoke instruction matching
(call . rel) within a context matching (withincode . re2); tf, an invoke instruction
matching (call . rel) but within a context not matching (withincode . re2); ft, a non-
invoke instruction within a context matching (withincode . re2); and ff, a non-invoke

instruction within a context not matching (withincode . re2).

70

exec-withincode An exec and a withincode intersect on the same entry join point if

and only if their regular expressions rel and re2 intersect{’|

(defthm exec-withincode-if
(regexp-if (cons ’exec rel) (cons ’withincode re2)

(caadr jp-witness)))

(defthm exec-withincode-onlyif
(regexp-onlyif (cons ’exec rel) (cons ’withincode re2)

(list* ’entry (cons s-witness nil) nil)))

argtyp-argval The argument pointcuts argtyp and argval have a specialized implicative
relationship. For example, if an argval contains the integer comparison predicate inteq,

any join point matching it must also match an argtyp that considers variables of type int:

(defthm argtyp-inteq
(implies (match-pcd jp (list* ’argval n ’inteq x))

(match-pcd jp (list* ’argtyp n "int"))))

argval-argval There are many subcases for argval-argval relationships, due to the num-
ber of possible value predicate combinations. For example, suppose pcdl contains inteq x
and pcd2 contains intle y. Then pcdl implies pcd2 when x <y, otherwise the two point-

cuts are mutually exclusive:

(defthm inteq-le-intle
(implies (and (<= x y)

(match-pcd jp (list* ’argval n ’inteq x)))

3This relationship is consistent with the pointcut behavior described in the AspectJ doc-
umentation (The AspectJ Team 2003). However, execution and withincode pointcuts
usually conflict in version 1.6.12 of the AspectJ implementation.

71

(match-pcd jp (list* ’argval n ’intle y))))

(defthm inteq-gt-intle
(implies (> x y)

(mutex (list* ’argval n ’inteq x) (list* ’argval n ’intle y))))

If pcdl contains intle x and pcd2 contains intge y, we must prove all of the following
if x > y, then pcdl or pcd2 or both must match any instruction with an integer argument;
if x <y, then pcdl and pcd2 are mutually exclusive; and if x = y — 1, exactly one of pcdl

or pcd2 must match any instruction with an integer argument.

(defthm intle-ge-intge

(implies (and (>= x y)
(integerp x)
(integerp y)
(plusp n)
(< n (len (cddr jp)))
(integerp (nth n (cddr jp))))

(or (match-pcd jp (list* ’argval n ’intle x))

(match-pcd jp (list* ’argval n ’intge y)))))

(defthm intle-lt-intgel
(implies (< x y)

(mutex (list* ’argval n ’intle x) (list* ’argval n ’intge y))))

(defthm intle-lt-intge2
(implies (and (= x (- y 1))
(integerp x)

(integerp y)

72

(plusp n)
(< n (len (cddr jp)))
(integerp (nth n (cddr jp))))
(xor (match-pcd jp (list* ’argval n ’intle x))

(match-pcd jp (list* ’argval n ’intge y)))))

If pcdl contains a streq predicate and pcd2 contains any int predicate, then the two

pointcuts are mutually exclusive:

(defthm streq-int
(implies (or (equal int-vp ’inteq)
(equal int-vp ’intne)
(equal int-vp ’intle)
(equal int-vp ’intge)
(equal int-vp ’intlt)
(equal int-vp ’intgt))

(mutex (list* ’argval n ’streq re) (list* ’argval n int-vp x))))

Argument Index If an argument index n does not exist for a given join point, then it

cannot match any argval pointcut:

(defthm argval-nonexist
(implies (and (plusp n) (integerp n)
(>=n (len args)))
(not (match-pcd (list* ’any-name ’any-lex args)

(list* ’argval n any-vp)))))

A similar theorem proves the same for argval.

When any two argument pointcuts (either argval or argtyp) consider different argument

indices, the two are independent. Proving this is actually quite challenging, due to the

73

complexity of constructing the witness argument lists. Therefore, we need some ACL2

machinery to prove any independence theorems.

To start, we use a function mklist, which constructs padding lists of a given size n. Lists

created with mk1list represent unused argument slots, so we just fill them with nil elements.

(defun mklist (n)

(if (> (nfix n) 0) (coms nil (mklist (1- n))) nil))

To help ACL2 reason about mklist, we use a helper lemma to prove that the function

creates lists of a correct size:

(defthm mklist-length

(equal (len (mklist n)) (nfix n)))
The key to proving independence is the following lemma:

(defthm nth-append-secondlist
(implies (>= (nfix n) (len x))
(equal (nth n (append x y))
(nth (- n (len x)) y)))
:hints (("Goal"

:induct (nth n x))))

The lemma proves that the nth element of (append x y) is the (n — |x|)th element of y
whenever n > |x|. This introduces a rewrite rule into ACL2 that encourages length-checking
of x whenever such expressions appear. To get ACL2 to prove the lemma, we provide a hint

that says to induct on n and x (but not y).

We also include a corollary:

(defthm nth-append-mklist-sameindex

(equal (nth n (append (mklist n) x)) (car x)))

74

It’s not a necessary theorem, but it helps ACL2 complete subsequent proofs more quickly.

Each witness join point in the argument independence theorems is constructed by creating
anew argument list that has the same ith argument as witness wl and the same jth argument

as witness w2, where i # j. The following function constructs such a list:

(defun mklist2 (i wil j w2)
(let ((x (list (nth i (cddr w1))))
(y (1ist (nth j (cddr w2)))))
(if (< (nfix i) (nfix j))
(append (mklist i) x (mklist (1- (- (nfix j) (nfix i)))) y)
(append (mklist j) y (mklist (1- (- (nfix i) (nfix j)))) x))))

Each independence theorem proves that if i # j, then there are 4 witness join points
that prove independence of the pointcuts. The 4 witnesses are constructed using mklist2.

The following template states this in a general form:

(defabbrev arg-independent (pcdtypl pcdtyp2)
(implies (and (/= (nfix i) (nfix j))
(< (nfix i) (len (cddr t1)))
(< (nfix j) (len (cddr t2)))
(< (nfix i) (len (cddr £f1)))
(< (nfix j) (len (cddr £2))))
(independent (list* pcdtypl (nfix i) x)
(list* pcdtyp2 (nfix j) y)
(list* ’any-i ’any-s (mklist2 i t1 j t2))
(list* ’any-i ’any-s (mklist2 i t1 j £2))
(list* ’any-i ’any-s (mklist2 i f1 j t2))

(list* ’any-i ’any-s (mklist2 i f1 j £2)))))

Finally, we may prove argument independence for specific pointcuts:

75

(defthm argtyp-argval-independence
(arg-independent ’argtyp ’argval)
thints (("Goal"

:hands-off (re-member valtype match-vp))))

The hint tells ACL2 not to bother expanding the definitions of some functions that lead to
rabbit trails, drastically reducing the time required to prove the theorem. The theorems for

argtyp-argtyp and argval-argval have essentially the same form as the one above.

5.4 Case Studies

We implemented our non-determinism detection tool using a combination of Java and SWI-
Prolog. The Java component consists of a SPoX parsing library (approximately 5000 lines
of Java code) and an analysis engine that includes a Prolog-generating back-end (approxi-
mately 4200 lines of Java code). It extracts relevant information from the policy, including
automaton transitions and pointcut expressions, and uses this to generate Prolog predicates

that model the extracted policy information.

The Prolog half of the implementation is the heart of the analysis engine, and consists
of dynamically generated code. It decides whether any pair of pointcut-labeled edges in the
policy are non-deterministic using the algorithm described in Section[5.2] State variable non-
determinism is decided through the use of a Prolog-based linear constraint solver. Pointcut
non-determinism is decided by submitting the boolean sentence derived by algorithm S of
Section to a C implementation of the MiniSat SAT-solving engine (Eén and Soérensson
2007)). If the sentence is satisfiable then the policy is non-deterministic, and the analysis

tool identifies the conflicting portions of the specification.

In this section, we discuss six policy scenarios in which our analysis tool discovered policy
bugs through non-determinism detection. For each case study, we discuss the origins of the
policy, the design flaw that led to unintended non-determinism, and how we removed the

error. Runtime statistics for all experiments are summarized at the end of the section.

76

5.4.1 Filesystem API Protocols

An important class of software security policies are those that prescribe protocols for access-
ing system API’s. For example, the JavaMOP documentation (Formal Systems Laboratory
2011)) includes a policy that prevents writing to a file that is not already open. Such a policy
can be naturally encoded in SPoX as a 2-state automaton, where the open operation tran-
sitions the automaton from the closed to opened state, write operations are only permitted
in the opened state, and the close operation transitions the automaton back to the closed

state.

In practice such protocols can be significantly more complex. For example, a natural
extension to the example above makes the set of acceptable operations contingent upon the
mode in which the file has been opened. Files opened in read-mode may be read but not
written, only those opened in random access mode may be seeked, etc. As the number of
possible operations increases, policy complexity and the opportunity for error increase as

well.

The FileMode policy specification in Figure models a simplified filesystem API policy
that supports read and write modes, open and close operations, and read and write opera-
tions. Lines |18 and [23|of the policy use the reserved # post-condition to cause the automaton
to reject if a write or read operation is attempted in an incompatible mode. In addition,

lines prohibit all I/O operations when a file is in the closed state.

Line 32 of the policy contains a bug that has the unintended effect of rejecting even open
operations when a file is in the closed state. The bug arises because the regular expression

in that line is overly broad.

After submitting this policy to our analysis tool, it reported that the edge at line
conflicts with the edges at lines [3] and [9] Specifically, calls to File.open with a second
argument of "OpenRead" or "OpenWrite" and a security state of £ = 0 solicit conflicting

advice.

11

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<state name="f">File</state>

<edge name="openFileRead">
<and><call>File.open</call>
<argval num="2"><streg>OpenRead</streq></argval>
<target obj="x" /></and>
<nodes var="f" obj="x">0,1</nodes></edge>

<edge name="openFileWrite">
<and><call "File.open">

<argval num="2"><streq>OpenWrite"</streq></argval>

<target obj="x" /></and>
<nodes var="f" obj="x">0,2</nodes></edge>

<edge name="illegalWrite">
<and><call>File.write</call>
<target obj="x" /></and>
<nodes var="f" obj="x">1,#</nodes></edge>

<edge name="illegalRead">
<and><call>File.read</call>
<target obj="x" /></and>
<nodes var="f" obj="x">2,#</nodes></edge>

<forall var="i" from="1" to="2">
<edge name="fileClose">
<and><call>File.close</call>
<target obj="x" /></and>
<nodes var="f" obj="x">i,0</nodes></edge></forall>

<edge name="illegalFile(Op">
<and><call>File.*</call>
<target obj="x" /></and>
<nodes var="f" obj="x">0,#</nodes></edge>

Figure 5.5. FileMode policy

7

78

Upon discovering the bug, we disambiguated the policy by replacing the pointcut at lines
with the following refinement of the original pointcut expression.

<and><call>File.*</call>
<not><call>File.open</call></not>

<target obj="x" /></and>

The resulting policy passed the analysis and correctly enforced the desired policy.

5.4.2 Transaction Logging

A classic application of Aspect-Oriented Programming in the literature is transaction log-
ging (e.g., (Laddad 2002)). An AOP-style transaction logger is one specific enforcement of a
more general audit policy. The audit policy dictates that impending security-relevant trans-
action operations must be first logged via a trusted logging mechanism. An IRM or other
security implementation can enforce the policy by injecting the necessary logging operations

immediately before each transaction operation.

Figure provides a fragment of one such audit policy for a hypothetical credit card pro-
cessing library. The library includes a CreditCardProcessor class that contains numerous
transaction implementations, all accessed via methods with names ending in *Transaction.
The desired audit policy mandates exactly one call to the trusted logTransaction method

before each such transaction.

The specification in Figure [5.6| contains bugs at lines [8| and that mistakenly treat
calls to the logTransaction method itself as transactions. Our analysis uncovered these
bugs in the form of two sources of non-determinism: one associated with the edges at lines
and [15] and the other associated with those at lines [7] and [II} In the first case calls to
logTransaction solicit conflicting advice in security state 0. In the second case the same

ambiguity arises in state 1.

To correct the error, we introduced a named pointcut that lists each security-relevant

transaction method explicitly in a large disjunctive pointcut. (An alternative would be to

79

1 <state name="logged" />

3 <edge name="log">
4 <call>CreditCardProcessor.logTransaction</call>
5 <nodes var="logged">0,1</nodes></edge>

7 <edge name="transaction">
s <call>CreditCardProcessor.*Transaction</call>
9 <nodes var="logged">1,0</nodes></edge>

11 <edge name="badLog">
12 <call>CreditCardProcessor.logTransaction</call>
13 <nodes var="logged">1,#</nodes></edge>

15 <edge name="badTransaction">
16 <call>CreditCardProcessor.*Transaction</call>
17 <nodes var="logged">0,#</nodes></edge>

Figure 5.6. Logger policy

explicitly except the logging method using pointcut negation and conjunction operators.)

This eliminated the non-determinism and passed the analysis.

5.4.3 Object Aliasing

A particularly elusive form of unintentional non-determinism arises from object aliasing. As
an illustration, consider the policy fragment in Figure [5.7] which tracks whether Java File
objects refer to existent or non-existent files. When an existing file is renamed, the policy
marks the source File object as referring to a non-existent file and the destination File

object as referring to an existent one.

However, this policy has a subtle non-determinism bug that arises when the same object
is passed as both the source and destination arguments of the File.renameTo method. In
this case the policy stipulates that the File object transitions to both the existent and non-
existent security states. A malicious program could exploit this loophole to transition File

objects to incorrect security states and potentially circumvent the intended policy.

80

1 <state name="exists">File</state>

3 <forall var="i" from="0" to="1">
4 <edge name="rename">

5 <and><call>File.renameTo</call>

6 <target obj="x" />

7 <argtyp num="1" obj="y">File</argtyp></and>

8 <nodes var="exists" obj="x">1,0</nodes>

9 <nodes var="exists" obj="y">i,1</nodes></edge></forall>

Figure 5.7. FileExists policy

Our non-determinism analysis detected this bug in the form of a join point in which object
identifiers x and y alias to a common File object. We corrected the error by changing the i
in line [9] to the constant 0. This resolves the non-determinism by restricting only renameTo
operations that change the name of an existing file to an unused filename; thus the source and

destination cannot be the same object. The resulting policy was validated as deterministic.

5.4.4 Information Flow

A canonical information flow policy example in the IRM literature prevents untrusted pro-
grams from leaking confidential files over the network. One standard encoding of this policy
prohibits all network send operations after a confidential file has been read (Schneider 2000));
however the resulting policy can sometimes be too draconian to be useful in practice. A
useful relaxation introduced in (Aktug and Naliuka 2008) permits subsequent network send
operations only after the user has explicitly permitted them via a trusted authentication and

authorization mechanism.

We ported this latter policy specification to SPoX in Figure [5.8, The user interface
method GUI.grantConnectPermission has a trusted implementation that authorizes new
connections. (When authorization is denied, the method does not return.) The policy main-
tains two security state variables: permission and accessed. The former is set to 1 (line[6)

when the user authorizes a new connection, and reset to 0 (line [15]) after a new connection

1 <state name="accessed" />

2 <state name="permission" />

3

4+ <edge name="authorize">

5 <call>GUI.grantConnectPermission</call>

6 <nodes var="permission">0,1</nodes></edge>
7

s <forall var="i" from="0" to="1"

9 <edge name="read">

10 <and><call>File.open</call>

11 <argval num="2"><streg>0OpenRead</streq></argval></and>
12 <nodes var="accessed">i,1</nodes></edge>

13 <edge name="send">

14 <call>Connection.open</call>

15 <nodes var="permission">i,0</nodes></edge></forall>

16

17 <edge name="badsend">

183 <call>Connection.open</call>

19 <nodes var="accessed">1,1</nodes>

20 <nodes var="permission">0,#</nodes></edge>

Figure 5.8. GetPermission policy

81

82

is established. Thus, future connections require subsequent authorizations. The accessed
variable is set to 1 (line when a confidential file is read. Unauthorized, new connections

subsequent to such reads are prohibited by line 20, which signals a policy violation.

The policy specification contains a bug in the edge at line [I3] which resets permission
to 0 even when the new connection constitutes a policy violation. This results in a conflict
between that edge and line which signals the violation. In this case the unintended

non-determinism therefore arises at the security state level rather than at the pointcut level.

To fix the problem, we split the edge at line [13| into two cases, one for new connections

after confidential reads and another for new connections prior to any confidential reads:

<forall var="i" from="0" to="1"> <edge name="send2'">

<edge name="sendl"> <call>Connection.open</call>
<call>Connection.open</call> <nodes var="accessed">1,1</nodes>
<nodes var="accessed">0,0</nodes> <nodes var="permission">1,0</nodes>
<nodes var="permission">i,0</nodes> </edge>

</edge>

</forall>

This repartitioning of the security state space intentionally omits the case where the send
operation occurs after a confidential file-read and without authorization, since that case is
adequately covered by the edge at line[I7} The resulting policy is deterministic and therefore

passed the analysis.

5.4.5 Free-riding Prevention

The original version of the free-riding prevention policy in Section differed slightly from
the one provided in Figure , and was in fact published in a conference paper (Jones and
Hamlen 2009). That original policy is reproduced in simplified form in Figure .

Surprisingly, this policy specification contains a non-determinism bug, which was uncov-

ered by our analysis utility. Specifically, when counter i reaches 2 and another download

83

1 <state name="counter" />

3 <forall var="i" from="-10000" to="2">
4 <edge name="download">

5 <call>Connection.download</call>

6 <nodes var="counter">i,i+1</nodes></edge>
7 <edge name="upload">

8 <call>Connection.upload</call>

9 <nodes var="counter">i,i-1</nodes></edge>

11 <edge name="illegalDownload">
12 <call>Connection.download</call>
13 <nodes var="counter">2,#</nodes></edge>

Figure 5.9. NoFreeride policy

operation occurs, the edges at lines 4| and |[11] of the specification give conflicting advice. The
design flaw can be traced to an off-by-one error in the bounds of the forall loop, which
permit line [6] to increase the counter beyond 2 and line [9 to decrease the counter beyond

-10000.

To correct the error, we reduced the upper bound in line [3| from 2 to 1 and changed the
decrement operation in line [9) from i,i-1 to i+1,i. This corrected the bug and yielded a

deterministic policy.

5.4.6 Policy Composition

Automated non-determinism detection is also useful for composing related policies because
it reveals join points for which the different policies conflict. This affords policy-writers an
opportunity to decide how such conflicts should be resolved on a case-by-case basis.

For example, (Douence et al. 2004) discusses challenges related to merging policies that

mandate logging and encryption of the same data in untrusted program operations. We

adapted that example to SPoX in the form of a data encryption policy for the credit card

84

1 <state name="encrypted" />

3 <edge name="encrypt">
4 <call>CreditCardProcessor.encryptTransaction</call>
5 <nodes var="encrypted">0,1</nodes>

7 <edge name="transaction">

s <or><call>CreditCardProcessor.creditTransaction</call>

9 <call>CreditCardProcessor.debitTransaction</call></or>
10 <nodes var="encrypted">1,0</nodes></edge>

11

12 <edge name="badEncrypt">
<call>CreditCardProcessor.encryptTransaction</call>

14 <nodes var="encrypted">1,#</nodes></edge>

-
w

16 <edge name="badTransaction">

17 <or><call>CreditCardProcessor.creditTransaction</call>

18 <call>CreditCardProcessor.debitTransaction</call></or>
19 <nodes var="encrypted">0,#</nodes></edge>

Figure 5.10. Encrypt policy

transaction system discussed in Section [5.4.2l The encryption policy specification is shown
in Figure [5.10}

Combining the policy in Figure [5.10] with the one in Figure [5.5] resulted in a composite
policy that our analysis tool identified as non-deterministic. The non-determinism was wit-
nessed by join points that both policies considered to be security-relevant, such as calls to

creditTransaction.

In each case, we were able to resolve the unwanted non-determinism by prescribing an
ordering (via an appropriate automaton encoding) on the policy-mandated security checks.
For this example we adopted the strategy of requiring the encryption operations to be ex-
hibited before the logging operations. Once all conflicts were resolved, the final composite

policy passed the analysis and correctly enforced both policies.

85

5.4.7 Summary of Results

The results of our experiments are summarized in Table 5.2 As in Section [4.3] all tests
were performed on a Dell Studio XPS notebook computer running Windows 7 64-bit with
an Intel i7-Q720M quad core processor, a Samsung PMS800 solid state drive, and 4 GB
of memory. In the table headings, size refers to the number of characters in each policy
specification (including spaces) and pointcut vars refers to the number of unique boolean
variables introduced during the reduction to SAT described in Section [5.2.2] In one case
(FileExistsFixed) no pointcut variables were generated because all potential non-deter-

minism was eliminated after the first phase of the algorithm.

The MiniSat Prolog interface converts boolean sentences to conjunctive normal form
(CNF) before processing. To indicate the size and complexity of the resulting SAT problems,
we list the number of boolean variables and the number of clauses in the resulting CNF
sentences in columns 4 and 5 of the table, respectively. Finally, the last column reports
the average execution time in milliseconds that our analysis tool required for each policy

including parsing, Prolog-generation, and both phases of the algorithm.

In general we found that runtimes and boolean sentence sizes were well within the range
of practical use for the policies we tested. The only potential scaling issue we encountered
concerns policies that contain large numbers of non-independent regular expressions contain-
ing wildcards. In those cases our treatment of regular expressions generates a large number
of constraint terms, slowing the analysis. We believe this drawback could be overcome by
making better use of the memoizing technique mentioned in Section An interesting
and potentially more elegant alternative is to replace the SAT solver with an SMT solver

equipped with a theory of regular languages.

Table 5.2. Inconsistency detection experimental results

Size Pointcut CNF CNF

Policy (chars) vars vars clauses Runtimes
FileMode 1488 9 1764 2061 1294ms
FileModeFixed 1570 8 706 850 189ms
Logger 722 2 10 12 166ms
LoggerFixed 956 3 34 40 112ms
GetPermission 938 5 44 o7 70ms
GetPermissionFixed | 1189 D 49 61 7Hms
FileExists 437 3 10 14 46ms
FileExistsFixed 423 0 0 0 22ms
NoFreeride 1024 3 22 28 60ms
NoFreerideFixed 1075 3 18 22 63ms
Encrypt 986 3 34 40 118ms
Log&Encrypt 2281 4 972 1180 370ms
Log&EncryptFixed 2321 4 o278 703 270ms

86

CHAPTER 6
IN-LINED REFERENCE MONITORING AS A SERVICH]

6.1 Overview

In a service-oriented architecture (SOA), non-local resources, systems, and functions are
made available to applications through network interfaces called web services. The underly-
ing concept of decomposing application functions across multiple systems and linking them
through network APIs has existed for some time, but the “service” terminology did not
become widespread until the late 1990s (Townsend 2008). One of the more notable early
SOA projects involved making Wells Fargo the first Internet banking company, though at
the time the developers called their system Distributed Object Technology (Ronayne and
Townsend 1996)).

SOA web service interfaces are often called Software as a Service (SaaS), while the back-
end datacenter and computation systems have come to be known as the Cloud (Armbrust
et al. 2009). Cloud computing offers many benefits to both corporations and end users,
most notably the ability to utilize large-scale computing resources at an accessible cost.
For example, Amazon’s EC2, S3, and SQS services (Garfinkel 2007) and Microsoft’s Win-
dows Azure system (Chappell 2010) allow software developers to run applications and store
data on remote servers with pricing relative to the quantity of computing power or data
involved. Similarly, consumers can now store, access, and share personal documents, pho-
tos, videos, and music through a multitude of well-known services, including Google Docs,

Picasa, YouTube, and Apple’s iCloud. In many of these cases, the cloud is actually a large

!This chapter includes previously published (Jones and Hamlen 2011) joint work with
Kevin Hamlen.

87

88

network of machines, which interoperate using complex protocols such as that of the Google

File System (Ghemawat et al. 2003)).

Many forms of software security naturally lend themselves to service-oriented solutions.
McAfee currently offers a wide suite of SaaS tools, including website and email filters, vulner-
ability assessment software, and anti-virus scanners (McAfee, Inc. 2011)). As the cloud itself
is under the control of the software manufacturer, these systems can be kept consistently
up-to-date. CloudAV (Oberheide et al. 2008) detects malware by running several anti-virus
and behavioral detection engines in parallel, a technique the authors call N-version protec-
tion. All associated computing overhead is pushed to the cloud, freeing up resources on the

user’s local system.

However, current cloud-based security enforcement systems have significant limitations.
They are generally not policy-specific, only accepting or rejecting a program based on
database matches regarding known malware signatures or behaviors. Although they pro-
vide better protection against new malware than traditional, client-based systems (because
a centralized cloud is easier to keep up-to-date), truly zero-day attacks can still go unde-
tected. Also, their filtering mechanisms are designed to reject entire programs they deem

unsafe, rather than dynamically rejecting only unsafe executions.

To avoid these limitations, clients typically must use their own local protection systems,
which are often realized as a fixed part of the execution environment. For example, Java
bytecode applets undergo both static validation and dynamic monitoring by the JVM to
protect the client from potentially malicious code provided by untrusted service-providers.
This arrangement results in a relatively inflexible collection of security policies. For example,
the JVM enforces basic memory-safety and object-encapsulation properties, but it does not
enforce user- or application-specific policies, such as a policy that prohibits untrusted applets
from opening more than 3 pop-up windows per run. While enforcing such custom policies is
possible, it frequently requires developing and installing new client-side VM or OS extensions
for each new policy to be enforced—an impractical undertaking for many organizations and

users.

89

Mobile devices, such as smartphones and tablets, are in particular need of good service-
oriented security solutions. Although it is true that portable hardware is becoming more
powerful, the code that runs on it is also getting much more complex, necessitating sophis-
ticated security enforcement software. Client-based solutions therefore require undesirable

processor and memory overhead.

As a more flexible alternative, we present an IRM-based, device-independent, service-
oriented approach to securing binary code. In this framework, code-consumers submit un-
trusted Java bytecode and a desired security policy to a trusted in-lining service that instru-
ments the bytecode with an IRM that enforces the policy. The resulting self-monitoring code
is digitally signed and returned to the code-consumer, who can then verify the signature and

safely execute it.

This approach allows code security to become a separate service in a service-oriented
architecture, rather than an obligation that each client must satisfy for itself individually.
The significant complexity of policy enforcement implementation is shifted to a trusted
third party, affording code-consumers the flexibility of enforcing a wide array of potentially
organization- and application-specific policies without implementing that functionality them-

selves.

The service-oriented approach has numerous potential security advantages, including im-
proved deployment speed and wider client coverage than traditional patching approaches.
For example, a web client that is configured by default to always pass untrusted bytecode
through an in-lining service before execution receives the benefits of security updates imple-
mented by that service instantly, without needing to download and install security updates
or patches for its OS or VM. Moreover, as new vulnerabilities are discovered and new en-
forcement strategies are invented, third-party in-lining services can often be updated and
adapted more rapidly than typical OS/VM patches can be developed. This is because soft-
ware patches can usually only be developed by a relatively small collection of experts who
have access to the OS/VM source code, whereas IRM implementations depend only on byte-

code language standards available to the public. The service-oriented approach therefore

90

provides defenders a means to quickly and comprehensively react to zero-day attacks for
which no patch yet exists, and to protect users of legacy software who may be slow to apply

patches.

In Section [6.2], we describe our implementation and the three real-world case studies we

used to test it.

6.2 Web Service Implementation

We have implemented a version of our rewriter that acts as a Java web service application.
Using an HTTP request with the POST method, a client uploads two files: a SPoX policy
and an untrusted JAR (Java ARchive) file. The server then provides these two files as input
to the rewriter, which creates a new, rewritten JAR that enforces the security policy. Finally,

the rewritten JAR file is returned as an HTTP response to the client.

The web service acts as a front end for the rewriter discussed in Chapter 4| The servlet
by itself is comprised of 200 lines of Java code. In order to manage the file uploads, we use
the Apache Commons fileUpload library, which obtains Java FileInputStreams from the
request data. The files are saved locally on the server in temp files, which are submitted as
input to the rewriter. The newly rewritten JAR file is then copied to the HTTP response as

a binary stream.

We ran the rewriter service on three different applications, with different policies for
each. As with all tests in this thesis, we used a Dell Studio XPS notebook computer running
Windows 7 64-bit with an Intel i7-Q720M quad core processor, a Samsung PM800 solid state
drive, and 4 GB of memory. The server-side code ran on an instance of GlassFish Server 3.1.
Provided runtimes account only for time spent rewriting and performing related file 1/0,

and do not include any network operations such as uploading and downloading files.

jWeatherWatch For the weather widget application jWeatherWatch (jWeatherWatch

2009)), we enforced a policy that prohibits network send operations after the application

91

1 <state name="s" />

2 <edge name="fileAccess">

3 <nodes var="s">0,1</nodes>

4 <and><call>java.io.File*</call>

5 <argval num="1"><streq>.*WINDOWS\\.*</streq></argval></and>
6 </edge>

7 <edge name="illegalSocketOutputStream">

8 <nodes var="s">1,#</nodes>

9 <call>java.net.Socket.getOutputStream</call>

10 </edge>

Figure 6.1. Policy that prohibits network sends after sensitive file reads

has accessed a file in the WINDOWS directory. Figure shows a simplified version of the pol-
icy; the complete one utilizes the file access libraries of the policy enforced in Section [4.3.1]
and handles both upper-case and lower-case forms of the string WINDOWS. The application
obeys this policy, so the rewritten program showed no observable change in behavior. The
uploaded JAR was 140 KB in size and rewriting increased its size by 6K (4%). Total pro-

cessing time was approximately 4.3 seconds.

Google.mE Google.mE (Google.mE 2010) is an open source Java application that acts
as a client for various Google web applications, including Google Docs, Picasa, YouTube,
and GMail. One of its features supports uploading of files to many of those services. We
chose to enforce the policy in Figure [6.2] which prohibits uploads of non-picture files to
Picasa and non-document files to Google Docs. The file type is identified by whitelisting
permissible file extensions; filenames with extensions not explicitly listed in the respective
<streqg> elements are prohibited. When we attempted to upload a file with an unsupported

extension to Google Docs, the rewritten application halted execution as expected.

The original JAR was 921 KB in size while the rewritten one was 513 KB—a size reduction

of over 44%. The reduction is primarily to the lack of compression in the original JAR,

92

1 <state name="s" />

2 <edge name="badUpload">

3 <nodes var="s">0,#</nodes>

14 <or><and><set>Picasa.UploadPhoto.name</set>

5 <not><argval num="1">

6 <streq>.*\.(jpgljpegltif|tiff |pngl|bmpl|gif)</streq>
7 </argval></not></and>

8 <and><set>GoogleDocs.UploadDoc.file</set>

9 <not><argval num="1">

10 <streg>.*\.(docldocx|txt|rtf)</streqg>

1 </argval></not></and></or>

12 </edge>

Figure 6.2. Policy that prohibits uploads of files with non-whitelisted extensions

whereas our rewriter compresses the output JAR by default. The runtime was reported as

21.7 seconds.

Jeti Jeti (Jeti 2007) is a simple Jabber IM client. We enforced the policy in Figure [6.3]
which limits the number of simultaneous socket connections to 5. Such a policy might be
used to protect a user from DDoS malware disguised as legitimate web service clients. Socket
connection events increment security state s until s = 5, at which point the next connection

event signals a policy violation. Socket close events decrement s.

Interestingly, enforcement of this policy uncovered an apparent bug in the application.
When a login is successful and the user later logs out, the connection is properly closed;
however, connections for failed logins are never properly closed. Thus, six successive failed

login attempts trigger a policy violation, and the rewritten program halts.

The original JAR file was 533 KB in size and rewriting decreased it by 59 KB (11%). In
this case, the size reduction is a result of the rewriter stripping out unnecessary metadata

in the JAR’s internal class files. The total processing time was 20.4 seconds.

10

11

12

<pointcut name="connect">
<or><and><call>java.net.Socket.new</call>
<argtyp num="2">int</argtyp></and>
<call>java.net.Socket.connect</call></or></pointcut>
<state name="s" />
<forall var="i" from="0" to="4">
<edge name="inc_connections">
<nodes var="s">i,i+1</nodes>
<pointcutid name="connect" /></edge>
</forall>
<forall var="i" from="1" to="5">
<edge name='"dec_connections">
<nodes var="s">i,i-1</nodes>
<call>java.net.Socket.close</call></edge>
</forall>
<edge name="six_connections">
<nodes var="s">5,#</nodes>
<pointcutid name="connect" /></edge>

Figure 6.3. Policy that prohibits more than 5 simultaneous connections

93

CHAPTER. 7
VERIFICATION

7.1 Overview

Software security systems that employ purely static analyses to detect and reject malicious
code are limited to enforcing decidable security properties. Unfortunately, most useful pro-
gram properties, such as safety and liveness properties, are not generally decidable and can
therefore only be approximated by a static analysis. For example, signature-based antivirus
products accept or reject programs based on their syntax rather than their runtime behav-
ior, and therefore suffer from dangerous false negatives, inconvenient false positives, or both
(cf., (Hamlen et al. 2009))). This has shifted software security research increasingly toward
more powerful dynamic analyses, but these dynamic systems are often far more difficult to

formally verify than provably sound static analyses.

To provide exceptionally high assurance guarantees, recent work has sought to reduce
the (potentially large) trusted computing bases of IRM frameworks by separately machine-
verifying the self-monitoring code they produce (Hamlen et al. 2006; Aktug and Naliuka
2008; |Sridhar and Hamlen 2010b; [Sridhar and Hamlen 2011)). For example, the S3MS project
uses a contract-based verifier (Aktug and Naliuka 2008)) to avoid trusting the much larger
in-liner (over 900K lines of Java code if one includes the underlying AspectJ system (Kiczales

et al. 2001)) that generates the IRMs.

However, TCB-minimization of large IRM systems has been frustrated by the inevitable
inclusion of significant, trusted code within the AOP-style policy specifications themselves.

Verifiers for these systems can prove that the IRM system has correctly in-lined the policy-

IThis chapter includes previously published (Hamlen et al. 2011) joint work with Kevin
Hamlen and Meera Sridhar.

94

95

prescribed advice code but not that this advice actually enforces the desired policy. Past
case studies have demonstrated that such advice is extremely difficult to write correctly,
especially when the policy is intended to apply to large classes of untrusted programs rather
than individual applications (Jones and Hamlen 2010)). Moreover, in many domains, such
as web ad security, policy specifications change rapidly as new attacks and vulnerabilities
are discovered (cf., (Li and Wang 2010; |Sridhar and Hamlen 2010a; Sridhar and Hamlen
2010b)). Thus, the considerable effort that might be devoted to formally verifying one
particular aspect implementation quickly becomes obsolete when the aspect is revised in

response to a new threat.

Therefore, rather than proving that one particular IRM framework correctly modifies
all untrusted bytecode instances, we instead consider the challenge of machine-certifying a
broad class of instrumented code instances with respect to purely declarative (i.e., advice-
free) policy specifications. Unlike contracts, which denote code transformations, policies
in our system denote pure code properties. Such properties can be enforced by untrusted
aspects that dynamically detect impending policy violations and take corrective action. The
woven aspects are verified (along with the rest of the self-monitoring code) against the trusted

policy specification prior to its execution.

The result of our efforts is Chekov”, a light-weight Java bytecode abstract interpreter and
model-checker capable of certifying a large class of realistic IRMs fully automatically, but
without introducing the significant overheads typically required for model-checking arbitrary
code. Chekov” is the first IRM certification system that can verify AOP-style IRMs and
IRM-policies without appealing to trusted advice. It extends prior work on model-checking
IRMs (Sridhar and Hamlen 2010b} |Sridhar and Hamlen 2010a; DeVries et al. 2009) with the

following substantial additions:

e Support for a full-scale Java IRM framework (the SPoX IRM system from Chapter 3
that includes stateful (history-based) policies, event detection by pointcut-matching,

and IRM implementations that combine (untrusted) before- and after-advice insertions.

96

e A novel approach to dynamic pointcut verification using Constraint Logic Program-

ming (CLP) (Jaffar and Maher 1994)).

e Proofs of correctness based on Cousot’s abstract interpretation framework (Cousot and
Cousot 1977) that link the denotational semantics of SPoX policies to the operational

semantics of the abstract interpreter.

The chapter proceeds as follows. We begin with an overview of our framework in Sec-
tion [7.2] providing a high-level description of the verification algorithm. In Section we
present Chekov”’s formal mathematical model. A detailed treatment of Chekov”’s soundness
and associated proofs is provided in Section . Chekov”’s implementation is discussed in
Section [7.5] Finally, Section presents in-depth case studies of eight classes of security
policies that we enforced on numerous real-world applications, along with a discussion of

challenges faced in implementing and verifying these policies.

7.2 System Introduction

Our verifier takes as input (1) a SPoX security policy, (2) an instrumented, type-safe
Java bytecode program, and (3) some optional, untrusted hints from the rewriter (detailed
shortly). It either accepts the program as provably policy-satisfying or rejects it as potentially
policy-violating. Type-safety is checked by the JVM, allowing our verifier to safely assume
that all bytecode operations obey standard Java memory-safety and well-formedness. This

keeps tractable the task of reliably identifying security relevant operations and field accesses.

The main verifier engine takes the approach of (Sridhar and Hamlen 2010b), using ab-
stract interpretation to non-deterministically explore all control-flow paths of untrusted code,
and inferring an abstract program state at each code point. A model-checker then proves
that each abstract state is policy-adherent, thereby verifying that no execution of the code
enters a policy-violating program state. Policy-violations are modeled as stuck states in the
operational semantics of the verifier—that is, abstract interpretation cannot continue when

the current abstract state fails the model-checking step. This results in conservative rejection

97

of the untrusted code. The verifier is expressed as a bisimulation of the program and the
security automaton. Abstract states in the analysis conservatively approximate not only the
possible contents of memory (e.g., stack and heap contents) but also the possible security

states of the system at each code point.

The heart of the verification algorithm involves inferring and verifying relationships be-
tween the abstract program state and the abstract security state. When policies are stateful,
this involves verifying relationships between the abstract security state and the correspond-
ing reified security state(s). These relationships are complicated by the fact that although
the reified state often precisely encodes the actual security state, there are also extended
periods during which the reified and abstract security states are not synchronized at run-
time. For example, guard code may preemptively update the reified state to reflect a future
security state that will only be reached after subsequent security-relevant events, or it may
retroactively update the reified state only after numerous operations that change the security
state have occurred. These two scenarios correspond to the insertion of before- and after-
advice in AOP IRM implementations. The verification algorithm must be powerful enough
to automatically track these relationships and verify that guard code implemented by the

IRM suffices to prevent policy violations.

To aid the verifier in this task, we modified the SPoX rewriter to export two forms
of untrusted hints along with the rewritten code: (1) a relation ~ that associates policy-
specified security state variables s with their reifications r, and (2) marks that identify code
regions where related abstract and reified states might not be synchronized according to the

following definition:

Definition 7.2.1 (Synchronization Point). A synchronization point (SYNC') is an abstract

program state with constraints ¢ such that proposition ¢ N\ (\/TNa(r #* a)) 1s unsatisfiable.

Chekov” uses these hints (without trusting them) to guide the verification process and to
avoid state-space explosions that might lead to conservative rejection of safe code. In par-

ticular, it verifies that all non-marked instructions are SYNC-preserving, and each outgoing

98

1 <state name="s" />

3 <forall var="i" from="0" to="9">
4 <edge name="count">

5 <call>Mail.send</call>
6 <nodes var="s'">i,i+1</nodes>
7 </edge>

g </forall>

10 <edge name="10emails">

11 <call>Mail.send</call>

12 <nodes var="s">10,#</nodes>
13 </edge>

Figure 7.1. A policy permitting at most 10 email-send events

control-flow from a marked region is SYNC-restoring. This modularizes the verification task
by allowing separate verification of marked regions, and controls state-space explosions by
reducing the abstract state to SYNC' throughout the majority of binary code which is not
security-relevant. Providing incorrect hints causes Chekov” to reject (e.g., when it discov-
ers that an unmarked code point is potentially security-relevant) or converge more slowly
(e.g., when security-irrelevant regions are marked and therefore undergo unnecessary extra

analysis), but it never leads to unsound certification of unsafe code.

7.2.1 A Verification Example

Figure demonstrates a verification example step-by-step. The pseudocode constitutes
a marked region in the target program, which includes code injected by the rewriter to enforce
the policy in Figure (reproduced for convenience from Section . The verifier requires
that the abstract interpreter is in the SYNC' state immediately before and after blocks of

marked code.

99

opooopnesd pajuewnIsul Jo uoryejardiajur joeIjsqe Uy °g') 231

99
g'9
79
€9
¢9
9

¢S
T°¢

v
v

(Y
'€

¢'c
1°c

T'T

T°0

(V=V VOI£V V(6<,V A0>V)V.I=S VOI#S V (6<,8 AN0>,8) V. I=V V ,S=V)
(#=V VOI=V V.I=S VOI#,S V (6<,8 N0>,8)V I=V V ,.S=V)
(I+I=V V6>IVOIVI=V V.I=S V0I#S V (6<,8 AN0>,8)V.I=V V ,S=V)
(WV=V VOT#AYV V (6<,V A0>V)V I=S VOI#S VI+,S=LV6>,8 V0,5V . I=V V ,S=V)
(#=V VOI=,V V.I=8 VOI#,S VI+,8=LV 6>,8 V0,8V L=V V ,S=V)
(I+1=V V6>IVOIVI=V V.I=S VOI#S VI+,S=LV6>,5 V0,8V . L=V V,S=V)
f()pues- TTel TTeD
(I=8 V 01#,8 V (6<,5 A0>,8) V. I=V V ,S=V)
(L=S VOI#,SVI+,S=LV6>,SV0<,SV .I=VV,S=V)
‘s~dweq - LoTT0d =: s-LoTTOd
(01#£S V (6<S A 0>S) V I=V V §=V)
(0T#S V I+S=LV 65§ V0<S V L=V V S=V)
$(1)aTxe weashg TTED
(01=5 V (6<S A 0>8) V.I=V V §=V)
(01=8 VI+S=IV6>S V0<S V L=V V S=V)
(0T == s-£ot110d) JIT
((6<5 A0>S) V I=V VS=V)
(I+S=1ILV6>S V0<S V L=V V S=V)
‘1+s-£o1T0d =: s dweq-£oTT0(d
(6>8 V 0<S V.I=V VS=V)
(6 => s £o1T0d B8 0 =< s-£o1T0d) JIT
(I=V V S=V)

100

At each code point, the verifier infers an abstract program state that includes one or
more conjunctions of constraints on the abstract and reified security state variables. These
constraints track the relationships between the reified and abstract security state. Here,
variable A represents the abstract state variable s from the policy in Figure Reifications
Policy.s and Policy.temp_s are written as S and T, respectively, with S ~ A and T ~ A.
Thus, state SYNC' is given by constraint expression (A =S A A =T) in this example.

The analysis begins in the SYNC state, as shown in constraint list 0.1. Line 1 is a
conditional, and thus spawns two new constraint lists, one for each branch. The positive
branch (1.1) incorporates the conditional expression (S > 0 A S < 9) in Line 2, whereas the
negative branch (2.2) incorporates the negation of the same conditional. The assignment in
Line 2 is modeled by alpha-converting 7" to 7" and conjoining constraint S = T+ 1; this
yields constraint list 2.1[]

Unsatisfiable constraint lists are opportunistically pruned to reduce the state space. For
example, list 3.1 shows the result of applying the conditional of Line 3 to 2.1. Conditionals 1
and 3 are mutually exclusive, resulting in contradictory expressions S < 9 and S = 10;

therefore, 3.1 is dropped. Similarly, 3.2 is dropped because no control-flows exit Line 4.

To interpret a security-relevant event such as the one in Line 6, the verifier simulates the
traversal of all edges in the security automaton. In typical policies, any given instruction fails
to match a majority of the pointcut labels in the policy, so most are immediately dropped.
The remaining edges are simulated by conjoining each edge’s pre-conditions to the current
constraint list and modeling the edge’s post-condition as a direct assignment to A. For
example, edge count in Figure imposes pre-condition (0 < I < 9) A (A = I), and its
post-condition can be modeled as assignment A := I + 1. Applying these to list 5.1 yields
list 6.1. Likewise, 6.2 is the result of applying edge 10emails to 5.1, and 6.4 and 6.5 are the
results of applying the two edges (respectively) to 5.2.

2To account for arithmetic overflow, the + operator actually denotes two’s-complement
addition over an appropriate bitwidth.

101

(A=SANA=T) 0.1
1 X =1;
(A=SNA=T AN X=1) 1.1
> if (Policy.s == 0 && x > 2)
(A=SANA=TANX=1ANS5=0NX>2) 2.1
3 System.exit();
(A=SNA=T ANX=1A(SA0V X<2)) 3.1
4 call secure_method(x);
(A=SANA=TANX=1A(SAOV X<2) NA=0ANX>2NA=#) 4.1
(A=SANA=TANX=1A(SAOV X<2) N(AA0V X<2) N A'=A) 4.2

Figure 7.3. An example verification with dynamically decidable pointcuts

Constraints 6.3 and 6.6 model the possibility that no explicit edge matches, and therefore
the security state remains unchanged. They are obtained by conjoining the negations of all
of the edge pre-conditions to states 5.1 and 5.2, respectively. Thus, security-relevant events
have a multiplicative effect on the state space, expanding n abstract states into at most

n(m + 1) states, where m is the number of potential pointcut matches.

If any constraint list is satisfiable and contains the expression A = #, the verifier cannot
disprove the possibility of a policy violation and therefore conservatively rejects. Constraints
6.2 and 6.5 both contain this expression, but they are unsatisfiable, proving that a violation
cannot occur. Observe that the IRM guard at Line 3 is critical for proving the safety of this

code because it introduces constraint S’ # 10 that makes these two lists unsatisfiable.

At all control-flows from marked to unmarked regions, the verifier requires a constraint list
that implies SYNC'. In this example, constraints 6.1 and 6.6 are the only remaining lists that
are satisfiable, and conjoining them with the negation of SYNC expression (A = S)A(A=T)

yields an unsatisfiable list. Thus, this code is accepted as policy-adherent.

Verification of events corresponding to statically undecidable pointcuts (such as argval)
requires analysis of dynamic checks inserted by the rewriter, which consider the contents
of the stack and local variables at runtime. An example is shown in Figure [7.3] which

enforces a policy that prohibits calls to method secure method with arguments greater

102

than 2. Verifying this IRM requires the inclusion of abstract state variable X in constraint
lists to model the value of local program variable x. The abstract interpreter therefore tracks
all numerically typed stack and local variables, and incorporates Java bytecode conditional

expressions that test them into constraint lists.

Non-numeric dynamic pointcuts are modeled by reducing them to equivalent integer
encodings. For example, to support dynamic string regexp-matching (streq pointcut ex-
pressions), Chekov” introduces a boolean-valued variable X, for each string-typed program
variable x and policy regexp re. Program operations that test x against re introduce con-

straint X,. = 1 in their positive branches and X,. = 0 in their negative branches.

7.2.2 Limitations

We support some forms of Java reflection, but require that security policies be extended to
restrict cases that could circumvent our algorithm. Reflection can be used to invoke methods,
instantiate new objects, and alter the values of class fields. Any of those actions can be used
to perform security-relevant events in a manner that is difficult to detect, so we prohibit them
altogether. Thus, in order to pass verification, rewriters must modify or otherwise restrict
reflection in target programs. A less draconian approach would be to have the rewriter
modify Java’s reflection API to include some of the rewriter’s own instrumentation code.
Verification would then require a much more complex analysis of the rewritten program,

greatly increasing our TCB.

Our system supports IRMs that maintain a global invariant whose preservation across the
majority of the rewritten code suffices to prove safety for small sections of security-relevant
code, followed by restoration of the invariant. Our experience with existing IRM systems
indicates that most IRMs do maintain such an invariant (SYNC') as a way to avoid reasoning
about large portions of security-irrelevant code in the original binary. However, IRMs that
maintain no such invariant, or that maintain an invariant inexpressible in our constraint
language, cannot be verified by our system. For example, an IRM that stores object security

states in a hash table cannot be certified because our constraint language is not sufficiently

103

powerful to express collision properties of hash functions and prove that a correct mapping

from security-relevant objects to their security states is maintained by the IRM.

To keep the rewriter’s annotation burden small, our certifier also uses this same invariant
as a loop-invariant for all cycles in the control-flow graph. This includes recursive cycles in
the call graph as well as control-flow cycles within method bodies. Most IRM frameworks do
not introduce such loops to non-synchronized regions. However, this limitation could become
problematic for frameworks wishing to implement code-motion optimizations that separate
security-relevant operations from their guards by an intervening loop boundary. Allowing
the rewriter to suggest different invariants for different loops would lift the limitation, but
taking advantage of this capability would require the development of rewriters that infer and
express suitable loop invariants for the IRMs they produce. To our knowledge, no existing

IRM systems yet do this.

While our certifier is provably convergent (since Chekov” arrives at a fixpoint for every
loop by enforcing SYNC' at the loop back-edge), it can experience state-space explosions that
are exponential in the size of each contiguous unsynchronized code region. Typical IRMs
limit such regions to relatively small, separate code blocks scattered throughout the rewritten
code; therefore, we have not observed this to be a significant limitation in practice. However,
such state-space explosions could be controlled without conservative rejection by applying
the same solution above. That is, rewriters could suggest state abstractions for arbitrary
code points, allowing the certifier to forget information that is unnecessary for proving safety
and that leads to a state-space explosion. Again, the challenge here is developing rewriters

that can actually generate such abstractions.

Our current implementation and theoretical analysis are for purely serial programs; con-
currency support is reserved for future work. Analysis, enforcement, and certification of
multithreaded IRMs is an ongoing subject of current research with several interesting open
problems (cf., (Dam et al. 2009)). For example, concurrency support requires a race detec-

tion analysis such as the one implemented by Racer (Bodden and Havelund 2008)).

104

ifle L conditional jump
getlocal / read field given in static operand
setlocal / write field given in static operand
jmp L unconditional jump
event, n security-relevant operation

Figure 7.4. Core subset of Java bytecode

7.3 System Formal Model

The certifier in our certifying IRM framework forms the centerpiece of the trusted computing
base of the system, allowing the monitor and monitor-producing tools to remain untrusted.
An unsound certifier (i.e., one that fails to reject some policy-violating programs) can lead to
system compromise and potential damage. It is therefore important to establish exceptionally

high assurance for the certification algorithm and its implementation.

In this section we address the former requirement by formalizing the certification algo-
rithm as the operational semantics of an abstract machine. For brevity, we here limit our
attention to a core subset of Java bytecode that is representative of important features of
the full languagel]] We additionally formalize the JVM as the operational semantics of a
corresponding concrete machine over the same core subset. These two semantics together
facilitate a proof of soundness in Section [7.4 The proof establishes that executing any

program accepted by the certifier never results in a policy violation at runtime.

7.3.1 Java Bytecode Core Subset

Figure lists the subset of Java bytecode that we consider. Instructions ifle L and jmp n
implement conditional and unconditional jumps, respectively, and instructions getlocal n

and setlocal n read and set local variable values, respectively. Instruction event, n models

3The implementation supports the full Java bytecode language.

105

*

pol ::= edg
edg = (forall v=e;..e5 edg) | (edge pcd ep™)
ped = (or pec’)

pce = (and pct™)

pct := pea | (not pea)

pca = (event, n) | (arg ny (intleq n9))
ep ::= (nodes a e ey)
ex=n|Ll]r|ald|ete | ex—ex | erxes | €1/ea | (e)

Figure 7.5. Core subset of SPoX

a security-relevant operation that exhibits event n and pops y arguments off the operand
stack. While the real Java bytecode instruction set does not include event,, in practice it
is implemented as a fixed instruction sequence that performs a security-relevant operation
(e.g., a system call).

Figure defines a core subset of SPoX for the Java bytecode language in Figure [7.4]

We here use a simplified LISP-style notation instead of XML for purposes of readability.

Without loss of generality, we assume all pointcuts are expressed in disjunctive normal form.

7.3.2 Concrete Machine

We start out by formalizing the JVM as the operational semantics of a concrete machine
over our core Java bytecode subset. Following the framework established in (Sridhar and
Hamlen 2010b)), Figure defines the concrete machine as a tuple (C, xo,+), where C is the
set of concrete configurations, xq is the initial configuration, and — is the transition relation
in the concrete domain. A concrete configuration x ::= (L:i, p, o) is a triple consisting of a
labeled bytecode instruction L:i, a concrete operand stack p, and a concrete store o. The

store o maps heap and the local variables ¢, abstract security state variables a, and reified

X
L

l

Yi(rdawl) —~7Z

oceX
pu=-|xup
x €L

X0

P = (L,p,s)
p:L—1
s:L— L

w=(L:i,p,0)

(configurations

(code labels

(Java bytecode instructions
(concrete store mappings

(concrete stores

(concrete program values
(initial configurations
(programs

(instruction labels

)
)
)
)
)
(concrete stack)
)
)
)
)
)

(label successors

Figure 7.6. Concrete machine configurations and programs

106

security state variables r to their integer values. A security automaton state is o restricted

to the abstract state variables, denoted o|,.

Figure[7.7] provides the small-step operational semantics of the concrete machine. Policy-

violating events fail to satisfy the premise of Rule (CEVENT); therefore the concrete semantics

model policy-violations as stuck states. The concrete semantics have no explicit operation

for normal program termination; we model termination as an infinite stutter state. The

soundness proof in Section [7.4] shows that any program that is accepted by the abstract

machine will never enter a stuck state during any concrete run; thus, verified programs do

not exhibit policy violations when executed.

7.3.3 SPoX Concrete Denotational Semantics

The contents of this section are adapted from Section |3.3.1}

107

To < 1y
(Ly :ifle Lo,y xo : p,o) = (Lo : p(Le), p, o)
Ty > Tq

(Ly :ifle Lo,y x5 p,o) = (s(Lq) : p(s(L1)), p,0)

(CIFLEPOS)

(CIFLENEG)

(L : getlocal £,p,0) — (s(L) : p(s(L)),0 () :: p, o) (CGETLOCAL)

(L :setlocal £,z :: p,o) — (s(L) : p(s(L)), p, o[= x]) (CSETLOCAL)

: CJwmp
(Ly : jmp Lo, p,0) — (Ls : p(Ls), p, a>()

o' € 0(olq, (event, n,xy mxg -y -, ()

(L:event, n,zy = xg -+ xy 2 ppyo) = (S(L) : p(s(L)), pr,ola = o'(a)]) (CEVENT)

Figure 7.7. Concrete small-step operational semantics

veEZL integer values
o= | (ko jp) join points
k::=call c.md | get c.fd | set c.fd join kinds

Figure 7.8. Join points

108

A SPoX security policy denotes a security automaton whose alphabet is the universe JP
of all join points. We refer to such an automaton as an aspect-oriented security automa-
ton. A join point, defined in Figure is a recursive structure that abstracts the control
stack (Wand et al. 2004)). Join point (k,v*, jp) consists of static information & found at the
site of the current program instruction, dynamic information v* including any arguments
consumed by the instruction, and recursive join point jp modeling the rest of the control

stack. The empty control stack is modeled by the empty join point ().

Figure provides denotational semantics for SPoX, and is adapted from Figure |3.5]
Without loss of generality, we simplify the semantics such that ¢© = {a}. The semantics
transform a SPoX policy into an aspect-oriented security automaton, which accepts or rejects
(possibly infinite) sequences of join points. We use W for disjoint union, T for the class of
all countable sets, 24 for the power set of A, T and U for the partial order relation and join
operation (respectively) over the lattice of partial functions, and L for the partial function
whose domain is empty. For partial functions f and g we write f[g] = {(z, f(z)) | = €

f\g* } U g to denote the replacement of assignments in f with those in g.

Security automata are modeled in the literature (Schneider 2000) as tuples (@, Qo, E, J)
consisting of a set () of states, a set Qg C @ of start states, an alphabet E of events,
and a transition function ¢ : (Q x E) — 2¢. Security automata are non-deterministic; the
automaton accepts an event sequence if and only if there exists an accepting path for the
sequence. In the case of aspect-oriented security automata, () is the set of partial functions
from security-state variables to values, Qo = {qo} is the initial state that assigns 0 to all
security-state variables, &£ = JP is the universe of join points, and ¢ is defined by the set of

edge declarations in the policy (discussed below).

Each edge declaration in a SPoX policy defines a set of source states and the destination
state to which each of these source states is mapped when a join point occurs that matches the
edge’s pointcut designator. The denotational semantics in Figure defines this matching
process in terms of the match-ped function from the operational semantics of AspectJ (Wand

et al. 2004). We adapt a subset of pointcut matching rules from this definition to SPoX

gEQ=a—7 security states
SeSM =SV —~17 state-variable maps
YeV=0—-7Z meta-variable maps
pweWw XX abstract-concrete map pairs
P : pol — (T x 29 x T x policy denotations
(@ x JP) = 29))

ES : edg — U — 2P {Suce Fail})x SMxSM edgeset denotations

PC : pcd — JP — {Succ, Fail} pointcut denotations

EP:s =V — (SM x SM) endpoint constraints
Eie— (U xX)—Z expression denotations

Pledg, ... edg,] = (Q,{q0}, JP,)
where ¢o = SV x {0}
and 0(q,jp) = {q[S] | (f,5,9') € Ui<i<a€S[edg;] L, S T g, f(jp) = Succ}
ES[(forall v=e;..ep edg)]tp =
Uglerhw<i<eleayv €S[edg](17/])
ES[(edge pcd ep;...ep)Y =
{(PClped], Ui<j<nS;, Ui<j<aS)) }
where Vj € N.(1 < j < n) = ((S;,5)) = EP[ep;]v)
PClpcd]jp = match-ped(ped)jp
EP[(nodes "sv" ey ex)] =
({(sv, Elea] (¥, L)} A(sv, Eea] (¥, 1))})

Figure 7.9. Denotational semantics for SPoX

109

110

match-ped((call c.md)){call c.md,v" jp) = Succ

(
match-ped((get c.fd))(get c.fd, v jp) = Succ
match-pcd((set c.fd))(set c.fd,v", jp) = Succ
(

match-ped((argval nvp))(k,vo:- vy, p)

= Succ if vp= (true) or (vp= (isnull) and v,=null)
match-ped((and ped;pedy))jp =

match-ped(ped,) jp A match-ped(ped,,)jp
match-ped((or pedypeds))jp =

match-ped(ped,) jp V match-ped(ped,,)jp
match-ped((not ped))jp = —match-ped(ped)
match-ped((cflow ped))(k, v, jp) =

match-ped(ped) (kv jp) V match-ped((ctlow ped))jp
match-ped(ped)jp = Fail otherwise

Suce V Suce = Suce Suce N Suce = Suce —Succ = Fail
Fail v Fail = Fail Fail N Fail = Fail - Fail = Succ
Suce V Fail = Succ Suce N\ Fail = Fail
Fail v Suce = Suce Fail N Suce = Fail

Figure 7.10. Matching pointcuts to join points

111

X =L | (L,¢,p,0) (abstract configs)

(constraints)

N
I

- >
S+
8
vV
=

~
|
~
b
Sy
N
N

(predicates

clenp (abstract stack

SH M s
m i
™ ? I

&

=

Q)

)

)

(abstract store mappings)
(abstract stores)

)

(initial abstract config

>=>
=)

Figure 7.11. Abstract machine configurations

syntax in Figure [7.10] Note that that this version of match-ped is largely identical to the
one in Figure |3.6] except that it ignores instance state variables and only ever returns Succ

or Fail.

7.3.4 Abstract Machine

In order to statically detect and prevent policy violations, we model the verifier as an abstract
machine. The abstract machine is defined as a triple (A, xo,~), where A is the set of
configurations of the abstract machine, xo € A is an initial configuration, and ~- is the
transition relation in the abstract domain. Figure defines abstract configurations x to
be either L (denoting an unreachable state) or a tuple (L:i,(, p,d), where L:i is a labeled
instruction, ¢ is a constraint list, and p and & model the abstract operand stack and abstract
store, respectively. The domains of p and & consist of symbolic expressions instead of integer

values.

The small-step operational semantics of the abstract machine are given in Figure [7.12]

Rules (AIFLEPOS), (AIFLENEG), and (AEVENT) are non-deterministic—the abstract machine

112

: — —— (AIFLEPOS
(Ly :ifle Ly, G e1 ieg i p,0) ~ (Lot p(La), (A (e2 < e1), p, U>()

(L1 ifle By, Cor 7 63 5 ,0) = (5(E) - pUo(E0), CA (g = en)o o) o)

(AGETLOCAL)

(L + getlocal £, p, 5) — (s(L) : p(s(L)), C, (1) pr)
0 1is fresh

(L :setlocal ¢,(,e:: p,6) ~ (s(L) : p(s(L)),C[v/€], p[v/L], av/l][l := e[v/l]])) (ASETLOCAL)

(AJwmp)

<L1 jmp L27C7157 (3'> ~ <L2 :p(L2)7€aﬁa a->
(2 € P[O(pol)]{event, n,e; iz ey - ey - ()
(L :event, n,(j,eq:ex: ey P, 0) ~

(s(L) : p(s(L)), Qul0(a)/a] A (o[0(a)/ac], pr, 5))

(AEVENT)

Figure 7.12. Abstract small-step operational semantics

non-deterministically explores both branches of conditional jumps and all possible security

automaton transitions for security-relevant events.

Rule (AEVENT) is the model-checking step. Its premise appeals to an abstract denota-
tional semantics P for SPoX, defined in Figure to infer possible security automaton
transitions for policy-satisfying events. Policy-violating events (for which there is no transi-
tion in the automaton) therefore correspond to stuck states in the abstract semantics.

In Figure j?? € JP denotes an abstract join point—a join point (see Figure
whose stack consists of symbolic expressions instead of values. Valuation function P accepts
as input a policy and an abstract join point that models the current abstract program state.
It returns a set of constraint lists, one list for each possible new abstract program state. If

(1 is the original constraint list, then the new set of constraint lists is

{Cil8(a)/a] A Goff(a) fac) | G2 € P6(poD)]ip}

Here, 6 : (a W v) — 0 is an alpha-converter that assigns meta-variables fresh names. We

lift 6 to policies so that #(pol) renames all iteration variables in the policy to fresh names.

113

P:pol—>j]\3—>2c
<SIS’:edg—>j]\3—>2C
73/C7):pcd—><7f’—>2<
7§C\C:pcc—>j]\34(’
EP:ep —(

Pledg, ... edg,lip = J ES[edg]ip
i=1
ES[forall d=e;..es edg]jp = {(0 > e1) A (6 < ex) AC | ¢ € ES[edg]jp}

ESledge ped epy .. ep,Jip = { N (N EP[ep]) | ¢ € PCD[ped]jp)
@[or peey ... pee, |jp = {7§C\C[[pcci]]ﬁ7 | 1<i<n}

PCClland pety . . . pet, Jjp = /\ PCClpct,]jp
i=1

7§C\C[[not pealjp = ﬂ(@[[pca]]ﬁ?)

7§C\C[[eventy n](event, m, e*, jp) = (n=m)

7§C\C[[arg n (intleq m)](k, er::- - - ene®, ip) = (e, < m)

g’[[nodes ae e = (ag=-e1)A(a=e)

Figure 7.13. Abstract Denotational Semantics

114

T e — 2V%%

TIT] = x
TIF] =0
Tlen<e] ={ne ¥ x| Ele]p < Ele]u}

C:(— 2V

[A tl= () T

i=1...n i=1...n

Elel](CI¢1]) € Elex](CIE])
(C1e1) Ze (Ca€2)
C

(
Clal € Clé]

(

(

(Cla) j C27)
(C1,e1) =e (G, 62) (1, p1) = = (C2: p2)
(Ciyeq

p1) 2
o7 =05 VmEa“S[[&(
51) 2

(

P 52762)

)ICIG]) cg[[@()I(Cl¢])

o (2702)

cla]cc C?ﬂ (C1, 1) =5 (G2, P2) (C1,01) 2o (¢2,02)
X1 = (L :1,C1, p1,01) j X2 = (L :4,(s, P2, 02)

Figure 7.14. State-ordering relation <

Meta-variable ag is a reserved name used by P to denote the old value of a. Substitution

[0(a)/ag| replaces it with a fresh name, and substitution [f(a)/a] re-points all old references

to a to the same name.

7.3.5 Abstract Interpretation

Abstract interpretation is implemented by applying the abstract machine to the untrusted,
instrumented bytecode until a fixed point is reached. When multiple different abstract states
are inferred for the same code point, the state space is pruned by computing the join of the
abstract states. State lattice (A, <) is defined in Figure [7.14] This reduces the number of

control-flows that an implementation of the abstract machine must explore.

115

wikEp pipEp
1, (K, p, gp) = (K, p, jp)

m(EMPJP—SOUND)

(EMPSTK-SOUND)
220): :

Elelp=n_ ppEp
Wy ep = nip
ot =0% Ve € o Elo(x)]p = o(z)
p,oE=o
peCld] wmpEp poEQo
(L:i,p,o) ~(L:i,(,p,0)

(Jp-SounD)

(STK-SOUND)

(STR-SOUND)

(SouND)

Figure 7.15. Soundness relation ~

7.4 Soundness

The abstract machine (defined in Section[7.3.4)) is sound with respect to the concrete machine
(defined in Section in the sense that each inferred abstract state y conservatively
approximates all concrete states x that can arise at the same program point during an
execution of the concrete machine on the same program. The soundness of state abstractions

is formally captured in terms of a soundness relation (Cousot and Cousot 1992) written

~ C € x A, defined in Figure

Our proof of soundness relies upon a soundness relationship between the concrete and
abstract denotational semantics of SPoX policies. This soundness relation is described by
the following theorem.

Theorem 7.4.1 (SPoX Soundness). If Plpol] = (...,9) and (w,a),ﬁv = Jjp holds, then
o' € 0(0la,jp) if and only if there exist ¢' € P[O(pol)]jp and (" ") € C[('] such that
V' (ap) = o(a) and 0" (a) = o'(a).

116

Proof. The proof can be decomposed into the following series of lemmas that correspond to
each of the SPoX policy syntax forms. Without loss of generality, we assume for simplicity

that alpha-conversion 6 is the identity function. O

Lemma 7.4.2. If EP[ep]y) = (0,0") then there exists (", 0') € C[[é/'7\3[[ep]]]] such that " C
Ylag = o(a)] and ¢"(a) = o(a).

Lemma 7.4.3. If (1,0),jp = jp then PClor...Jjp = Succ if and only if there exists
(e 'P/CT)[[OT’ .. ljp such that (v, L) € C[¢] and " E 4.

Lemma 7.4.4. If (¢,0),jp | jp then PClpcc]jp = Succ if and only if (¢, L) = C[[P/C\C[[
pcc]]ﬁ)]] where 1" C 1.

Lemma 7.4.5. If (¥, 0),jp |= jp and f(jp) = Succ then (f,0|a,0") € ES[edg]y if and only
if there exists ¢ € ES[edg]jp such that (v, ") € C['], 0" (a) = o'(a), and V' (ao) = o(a).

Proof. Proofs of Lemmas follow from a straightforward expansion of the defini-
tions in Figs. and O

Soundness of the abstract machine with respect to the concrete machine is proved via
preservation and progress lemmas for a bisimulation of the abstract and concrete machines.
The preservation lemma proves that the bisimulation preserves the soundness relation, while
the progress lemma proves that as long as the soundness relation is preserved, the abstract
machine anticipates all policy violations of the concrete machine. Together, these two lem-
mas dovetail to form an induction over arbitrary length execution sequences, proving that

programs accepted by the verifier will not violate the policy.

Lemma 7.4.6 (Progress). For every x € C and x € A such that x ~ X, if there exists
X = (Ly iy, (', p,0") € A such that X ~ X' and C[('] # 0, then there exists X' € € such
that x — x'.

Proof. Let x = (L :i,p,0) € €, x = (L :14,(,p,0) € A, and X’ € A be given, and assume
x ~ x and x ~ Y’ both hold. Proof is by case distinction on the derivation of x ~> x’.

117

Case (AIFLEPOS): The rule’s premises prove that y = (L : ifle L', (, ej:ies::p,, 6) and
X = (L :p(L),(A (es < e1),pr,0), Relation y ~ x implies that p is of the form
x1::wep,. Choose configuration X' = (L' : p(L'), pr,0). If o < xq1, then x — X/
is derivable by Rule (CIFLEPOS). If x5 > x1, then xy — X’ is derivable by Rule
(CIFLENEG).

Case (AIFLENEG): Similar to (AIFLEPOSs), omitted.

Case (AGETLocAL): The rule’s premises prove that y = (L : getlocal ¢,(,p,5) and
X' = (s(L) : p(s(L)), ¢, a()::p, &). Relation y ~ x implies that ¢ € 0. Choos-
ing configuration X’ = (s(L) : p(s(L)), o({)::p, o) allows x +— x’ to be derived by Rule
(CGETLOCAL).

Case (ASETLocAL): The rule’s premises prove that y = (L : setlocal ¢, (, e::p, &) and
X = (s(L) : p(s(L)), C[v/l], plv/e], alv/l)[¢ = e[v/l]])), where © is fresh. Rela-
tion x ~ x implies that p has the form z::p,. Choosing configuration ' = (s(L) :
p(s(L)), pr, o[l := z]) allows x — X’ to be derived by Rule (CSETLOCAL).

Case (AJwmp): Trivial, omitted.

Case (AEVENT): The rule’s premises prove that abstract configuration x = (L : event, n,

Cuy exziegie - neyiipy, 6) and X = (s(L) : p(s(L)), ¢, by, 6), where (" = Gi[f(a)/a] A
(216(a)/ag) with ¢ € P[0(pol)]jp, and jp = (event, n, eyzeq:: - - - ey,).
To derive x — X’ using Rule (CEVENT), one must prove that there exists o’ € §(c|q,,jp)
where jp = (event, n, xi:xq::-- -z, (). Once this is established, we may choose
configuration x' = (s(L) : p(s(L)),pr,0la := o'(a)]) to derive x +— x' by Rule
(CEVENT).

We will prove o’ € 6(o|,,jp) using Theorem [7.4.1] The premises of the derivation of
x ~ X suffice to derive ,u,j% = jp by Rule (JP-Sounp). Denotation C[(] is non-empty
by assumption; therefore we may choose (¢, 0¢) € C[('] and define ¢" = 1ylag := o(a)]

and ¢” = 0¢. Observe that the definition of ¢’ in terms of (; proves that (¢, 0") €

C[¢2]. Furthermore, since ¢’ is heretofore unconstrained, we may define o’(a) = o (a).

Theorem therefore proves that ¢’ € §(a|q, jp). O

The following substitution lemma aids in the proof of the Preservation Lemma that

follows it.

Lemma 7.4.7. For any expression ey, mappings (¢, 0), variables ¢ € o and O & 0%, and

value x, Eleo] (Y, 0) = E[eo[v/4]](¥[0 := a(0)], o[l := x]).

Proof. Proof is by a straightforward induction over the structure of ey, and is therefore

omitted. n

Lemma 7.4.8 (Preservation). For every x € C and x € A such that x ~ X, for every ' € C
such that x — X' there exists X' € A such that X ~ X' and ' ~ X'

Proof. Let x = (L :i,p,0) € C, x € A, and x’ € C be given such that xy — x’. Proof is by

case distinction over the derivation of xy — x'.

Case (CIFLEPOS): Rule (CIFLEPOS) implies that i = ifle L', stack p has the form x::29::p,,
and X" = (s(L) : p(s(L)),pr,0). Relation x ~ x proves that y has the form (L :
ifle L', (, e1::e2::p,,). Choose ' = (s(L) : p(s(L)),(A (es < e1), pr, 0) and observe
that ¥ ~» X’ is derivable by Rule (AIFLEPOS).

Relation y ~ x implies (1) p € C[(], (2) u,p | p, and (3) u, 0 = o. Proving x' ~ X’

requires deriving the three premises of Rule (SounDp):

(A) To derive € C[C A (eg < e1)], observe that C[(A (e2 < e1)] =C[¢{]NT[ex < eq].
It follows from (1) above that p € C[(]. By definition, Tes < e1] = {p/ € U xX |
Elea]p < EJer]'}. Rule (STK-SouND) proves that E]ei|u = x1 and Efex]u = xo.
Since o < x; (from Rule (CIFLEPOS)), this implies E[ex]u < E]er]pu. From the
definition of T, it follows that p € Tex < eq].

(B) u, pr | pr follows directly from (2) above and Rule (STK-SOUND).

119

(C) p,0 | o follows directly from (3) above.
Case (CIFLENEG): Similar to (CIFLEPOS), omitted.

Case (CGetrLocaL): Rule (CGETLOCAL) proves that ¢ = getlocal ¢, and x' = (s(L) :
p(s(L)),o(€)::p,0). Relation y ~ x proves that x has the form (s(L) : p(s(L)),, p,).
Choose \' = (L : getlocal ¢,(, 6(¢)::p,), and observe that y ~» X’ is derivable by
Rule (AGETLOCAL).

Relation x ~ x implies (1) p € C[C], (2) i, p = p, and (3) p, 6 | o. Proving x’ ~ X’

requires deriving the three premises of Rule (Sounp):

(A) p e C[¢] follows directly from (1) above.
(B) wu,0(0)::p = o(f)::p can be derived with Rule (STk-Sounp) by combining &|
d(0)]pu = o(f) (from Rule (STR-SounD)) and (2) above.

(C) p,0 | o follows directly from (3) above.

Case (CSETLocAL): Rule (CSeETLOCAL) proves that i = setlocal ¢, that p has the form
x:py, and that x' = (s(L) : p(s(L)), pr, o[l := z]). Relation x ~ x implies that y has
the form (L : setlocal ¢, (, e::p,, 7).
Choose X' = (s(L) : p(s(L)),C[0/L], pr[v/0),c[v/C)[¢ = e[v/l]])) where ¥ is a fresh
meta-variable, and observe that y ~~ x’ is derivable by Rule (ASETLOCAL).
Relation x ~ x implies (1) p € C[¢], (2) p,e:pr = x:py, and (3) u,0 = 0. Proving
X' ~ X' requires deriving the three premises of Rule (Sounp), where p/ = ([0 =

o(0)], oll := x]):
(A) By a trivial induction over the structure of ¢, if u = (¢, 0) € C[(] and © does not
appear in ¢, then p' = ([0 := o(¢)], ol := z]) € C[¢[v/1]].

(B) By Rule (STk-SounD), the derivation of (2) contains a sub-derivation of u, p, =
pr. A trivial induction over p, therefore proves that p/, p.[0/0] = pr.

120

(C) Deriving ', a[0/0][¢ == e[v/l]] = o[l := z] requires deriving the two premises of

Rule (STrR-SOUND):

(C1) To prove o[l := z|* = a[v/l)[¢ := e[0/l]]*, observe that o[¢ := z|* =
o U{l} and a[0/l][¢ = e[v/l]]" = ¢ U{l}. From (3) above and Rule
(STR-SOUND), it follows that o = *; therefore o~ U {¢} = 6 U {(}.

(C2) To prove Yy € o[l := x|~ . E[o[v/l)[l = e[v/0](y)]p = o[l = z](y), let
y € o U{l} be given:

o Ify = (then E[6[0/(][¢ := e[0/0]](0)] = E[e[0/4]]. Applying Lemmal7.4.7]
with eg = e yields E[e[v/l]]u' = E[e]u. By (2) above, and Rule (STk-
SounD), Ele]u = x = o[l == x|({).

o If y # ¢ then E[a[v/l)[l = el0/l]](y)] = E[a[0/¢](y)]. Applying Lemma

with ey = 6(y) yields E[a[v/l)(y)]i' = E]o(y)]u. By Rule (STR-
SounD) and (3) above, E[a(y)]n = o(y) = o[l = x](y).

Case (CJwmp): Trivial, omitted.

Case (CEVENT): Rule (CEVENT) proves that i = event, n, that p has the form x;::z5:: -+ -

xyipy, and that x' = (s(L) : p(s(L)), pr,ola := o'(a)]), where o’ € §(o|,, (event, n,

Tyimgi e nxye, ().
Relation x ~ x implies that x = (L : event, n, (i, ej:ieg::-- - iey:p,, 0) and that
for some p = (,0): (1) p € C[G1], (2) pyerens---eyiip, = xpwei -+« nxyipy, and

(3) p,6 = 0. Theorem therefore implies that there exists ¢/ € P[0(pol)]jp and
(", ") € C[('] such that (4) ¢”(a) = 0'(a) and (5) ¥"(a,) = o(a).

Choose X' = (s(L) : p(s(L)),¢1[0(a)/a] A ('[0(a)/ac), pr,7) and observe that y ~» Y’ is
derivable by Rule (AEVENT). Deriving x’' ~ X’ requires deriving the three premises of
Rule (Sounp), where u/ = (¢ W "[0(a)/ao], ola := o'(a)]):

(A) €C[G]0(a)/a] A('[0(a)/ag]] is provable in two steps:

e 1/ €C[¢[0(a)/al]] follows from (1) and (5) above.

121

o 1/ €C[('0(a)/ap]] follows from (4) above.

(B) 1/, pr = pr is derivable by an induction on the height of stack p, (which is equal
to the height of stack p, by (2) above). The base case of the induction follows
trivially from Rule (EMPSTK-SOUND). The inductive case is derivable from Rule
(STK-SounD) provided that E[e] (v W"[0(a)/a], ola := o'(a)]) = E[e] (¢, o). To
prove this, observe that e mentions neither ay (because by the definition of 75, ag
is a reserved meta-variable name that is not available to programs) nor a (because
the abstract state is not directly readable by programs, and therefore cannot leak

to the stack). A formal proof of both follows from an inspection of the rules in
Figure [7.12]
(C) W',6 [ola := d'(a)] is derivable by Rule (STr-SounD) by deriving its two
premises:
e ola:=0'(a)]" =6 follows trivially from a € 0.
o Vz € gla := d'(a)]” . E]o(x)]y = ola = o’(a)](x) follows from (3) above,
whose derivation includes a derivation of premise Vo € 0 . E[6(z)]u = o(x).

]

Theorem 7.4.9 (Soundness). Fvery program accepted by the abstract machine does not

commit a policy violation when executed.

Proof. By definition of abstract machine acceptance, starting from initial state xo the ab-
stract machine continually makes progress. By a trivial induction over the set of finite prefixes
of this abstract transition chain, the progress and preservation lemmas prove that the con-
crete machine also continually makes progress from initial state xo. Every security-relevant
event in this concrete transition chain therefore satisfies Rule (CEVENT) of Figure[7.7, whose

premise guarantees that the event does not violate the policy. O]

122
7.5 Implementation

Our prototype verifier implementation consists of 5200 lines of Prolog code and 9100 lines
of Java code. The Prolog code runs under 32-bit SWI-Prolog 5.10.4, which communicates
with our Java libraries using the JPL interface. The Java side handles the parsing of SPoX
policies and input Java binaries, and compares Java bytecode instructions to the policy to
recognize security-relevant events. The Prolog code forms the core of the verifier, and handles

control-flow analysis, model-checking, and linear constraint analysis using CLP.

In this section, we discuss interesting parts of the implementation that were not previously
addressed in Section In Section [7.5.1], we describe how we use SWI-Prolog’s CLP system
to do linear constraint analysis. In Section [7.5.2] we discuss how the abstract interpreter

considers all possible control flows through a program.

7.5.1 Linear Constraints

Linear constraints are modeled as lists of lists of mathematical expressions. For example,

consider the following Prolog list:
C = [[A=S,A=T,X<1], [A=S,A=T1,T=S+1,X>=1]]

The list C contains two possible lists of constraints. In the first, the abstract state variable A
remains in synchronization with both reified state variables S and T, and a runtime variable X
is less than 1. In the second, A remains equal to S, but T has been assigned a new value equal
to S+1, and the old T has been replaced by a new placeholder variable T1. Also, runtime

variable X is known to be greater than or equal to 1.

Constraints are continuously and aggressively checked for satisfiability through SWI-
Prolog’s CLP system. To check a single list of constraint expressions, we use the recursive

add_constraints predicate:

add_constraints([]).

add_constraints([C|Cs]) :- {}(C),add_constraints(Cs).

123

The predicate fails if the list of expressions proves to be unsatisfiable. If an entire list of
lists of constraints is unsatisfiable, then Chekov” knows that a control flow is impossible and

halts abstract interpretation along that execution path.

An undesired side effect of SWI-Prolog’s CLP system is its tendency to unify variables
with actual values wherever possible, so we alpha-convert all constraint variables to fresh
variables prior to calling add_constraints. The predicate below alpha-converts a single

variable in a single expression:

% alpha_convert(+0ldVar,+NewVar,+01dExpr,-NewExpr)
alpha_convert (0ldVar,NewVar,0l1dExpr,NewVar) :-
0l1dExpr == 0ldVar.
alpha_convert(0ldVar, NewVar,Expr,Expr) :-
\+compound (Expr) ,
Expr \== 0ldVar.
alpha_convert(0ldVar,NewVar,0ldExpr,NewExpr) :-
compound (01dExpr) ,
01dExpr \== 0ldVar,
01dExpr =.. [Functor,Arg],
alpha_convert(0ldVar,NewVar,Arg,NewArg) ,
NewExpr =.. [Functor,NewArg].
alpha_convert (0ldVar,NewVar,0ldExpr,NewExpr) :-
compound (01dExpr) ,
01dExpr \== 0ldVar,
0l1dExpr =.. [Functor,Argl,Arg2],
alpha_convert(0ldVar,NewVar,Argl,NewArgl),
alpha_convert(0ldVar,NewVar,Arg2,NewArg2) ,

NewExpr =.. [Functor,NewArgl,NewArg2].

124

Alpha-conversion allows us to maintain ambiguity in the values of our constraint variables,

ensuring soundness throughout abstract interpretation.

In order to prove an implication of the form A = B (e.g., to prove that a constraint list
implies SYNC'), we submit an expression of the form A A =B to the constraint solver. The

implication is true if and only if that expression is unsatisfiable.

W

SWI-Prolog’s CLP system natively supports conjunction and disjunction using the “,
and “;” characters, but it does not directly support negation. Therefore, we use DeMorgan’s
Laws to convert expressions into their negated forms. The following predicate submits the

negation of a given constraint list to the CLP solver:

add_constraints_neg([(’,’(C1,C2))|Cs]) :-
add_constraints_neg([C1,C2]) ;
add_constraints_neg(Cs) .
add_constraints_neg([(’;’(C1,C2))[Cs]) :-
(add_constraints_neg([C1]),add_constraints_neg([C2])) ;
add_constraints_neg(Cs) .
add_constraints_neg([(C1=C2)[Cs]) :-
{}(C1=\=C2) ; add_constraints_neg(Cs).
add_constraints_neg([(C1=\=C2) |Cs]) :-
{}(C1=C2) ; add_constraints_neg(Cs).
add_constraints_neg([(C1>C2) |Cs]) :-
{}(C1=<C2) ; add_constraints_neg(Cs).
add_constraints_neg([(C1>=C2) |Cs]) :-
{}(C1<C2) ; add_constraints_neg(Cs).
add_constraints_neg([(C1<C2) [Cs]) :-
{}(C1>=C2) ; add_constraints_neg(Cs).
add_constraints_neg([(C1=<C2)|Cs]) :-

{}(C1>C2) ; add_constraints_neg(Cs).

125

7.5.2 Non-deterministic Abstract Interpretation

Model-checking is only applied to code that the rewriter has marked as security-relevant.
Unmarked code is subjected to a linear scan that ensures that it contains no potential
pointcut matches or possible writes to reified security state. If any such code is detected

during that scan, the program is rejected before abstract interpretation even begins.

The abstract interpreter steps through each marked bytecode instruction, inferring any
necessary information regarding local variables, the runtime operand stack, and objects on
the heap. Local variable stores and the operand stack are both modeled using lists. In the
case of the operand stack, the top element is the head of its representative list. All heap
variables (including object and field references) are encoded as simple Prolog variables, and
are moved in and out of local variable registers and the stack as appropriate. Constants are
tracked as equivalent Prolog atoms. Wherever possible, Chekov” adds relational information

to the constraints.

In our implementation, the target program is required to maintain the SYNC' invariant
from Definition at the beginning and end of every loop. This speeds up verification, as

there is no need to consider the effect of multiple loop iterations on the security state.

Similarly, all methods are required to maintain SYNC' at their entrypoints and at all
return instructions. This obviates the need to perform complex inter-procedural analysis,
and allows Chekov” to independently verify any methods that generate intractable control
flows, such as recursive methods, static initializers, and call-backs (e.g., event handlers).
Marked policy enforcement methods are treated as if they were in-lined in place of their
invocations. A call graph analysis confirms that there is no way for a policy enforcement

method to recursively call itself; if it can, the verifier rejects.

The execution environment is represented throughout our code as EE, and is a compound

variable of the following form:

EE = env(C, M, 0S, LVs, IH)

126

Lists 0S and LVs represent the operand stack and the local variables, respectively. Variables
C, M, and IH are actually pointers to Java BCEL ClassGen, MethodGen, and Instruction-
Handle objects, respectively. Each such object contains detailed information about the
containing class, the containing method, and the current instruction. Whenever the abstract
interpreter needs specific information (e.g., the name of the method), it calls Java methods

through the JPL interface.

We treat invoked methods as in-lined, but we must still have some way of tracking the
call stack so that we can maintain separation of operand stacks, local variables, and lexical
context. We therefore model the call stack as a list of execution environments, where EEs are
appended and removed at method invocations and returns, respectively. Recall that we do
not do this for recursive method calls, as they would cause the call stack to become infinitely

large.

Note that we always begin abstract interpretation at the beginning of the program’s
execution, so the bottom EE on the call stack always refers to the starting method even if it
contains no marked code. Likewise, any method involved in a control flow to marked code is
included in the call stack, even if it contains no marked code itself. For example, if starting
method A calls method B, which in turn calls method C, and C contains marked, security-
relevant code, then the bottom three elements of the call stack are execution environments

with A, B, and C' as lexical contexts.

Wherever a conditional branch occurs, all paths are explored non-deterministically, and
any possible inferences are stored in the constraints. For example, the integer comparison

instruction if _icmple is handled by the following (simplified) state transition predicate:

% branch_instr(’if_icmple’,+State,-NewState)
branch_instr(’if_icmple’, State, NewState) :-
State = state([EE|EEs],Constraints),

EE

env(C, M, 0S, LVs, IH),
0S

[01,02]081],

update_constraints((02=<01) ,Constraints,NewConstraints),

127

check_all_constraints(NewConstraints),

get_next_instr(C,M,IH,true,PosIH),

PosEE = env(C, M, 0S1, LVs, PosIH),

NewState = state([PosEE|EEs],NewConstraints).
branch_instr(’if_icmple’, State, NewState):-

State = state([EE|EEs],Constraints),

EE

env(C, M, 0S, LVs, IH),

0S [01,02]081],
update_constraints((02>01),Constraints,NewConstraints),
check_all_constraints(FW),
get_next_instr(C,M,IH,false,NegIH),

NegEE = env(C, M, 0S1, LVs, NegIH),

NewState = state([NegEE|EEs],NewConstraints) .

The predicate update_constraints appends the given expression to every constraint list in
the list of constraint lists. The predicate check_all constraints checks every constraint list
for satisfiability, and removes any that are unsatisfiable. If all constraints are unsatisfiable,
it fails, thus pruning that control flow from the abstract interpreter’s search tree. Finally,
the predicate get next_instr obtains the next instruction in the chosen control flow. The
code above uses an alternate rule for the predicate that selects the appropriate “true” or

“false” branch of the if instruction.

Whenever the abstract interpreter encounters an invocation whose called method is re-
solved at runtime (e.g., an interface call), it non-deterministically branches to all possible
methods. To make this approach feasible, the verifier’s initialization stage looks at all meth-
ods in the Java classpath and stores their signatures in a hierarchical database. Chekov” uses
this database to determine all methods that could be called by a given invoke instruction.

For any instruction that can throw one or more exceptions, Chekov” non-deterministically
branches to all appropriate handlers. For example, an array reference instruction that can

throw an ArrayIndexOutOfBoundsException may spawn a control flow that branches to a

128

generic Exception handler. If the current method lacks a handler that catches the exception,
we must determine whether one could exist elsewhere on the runtime call stack. In such cases,
our interpreter pops execution environments from the stack until either the stack is empty
or a handler is found. If a handler is not found, then we may safely say that the exception
would be uncaught at runtime, causing the program to halt. Therefore, no new control flows

are considered by the abstract interpreter.

If the interpreter does not directly enter a method at its point of invocation (e.g., a library
or recursive method), then it branches from that invoke instruction based upon all possible
exceptions that the method could throw. These include all thrown exceptions listed in the
method’s signature, as well as any unchecked exceptions (e.g., ArithmeticException). If
an exception is later thrown within a method undergoing independent analysis, it is not
caught by anything on the (necessarily incomplete) call stack, and occurs while the current
constraints all imply SYNC| then it is ignored. Any such exception-driven control low must
have been considered during a prior analysis, when the method was not entered at its point
of invocation. In order to maintain soundness with this approach, we require all exception

handlers to begin with constraints equal to SYNC.

Chekov” memoizes to drastically reduce time spent in verification. Exceptions in partic-
ular can produce an intractable number of control flows, but most of those flows are likely
to be abstractly equivalent. We use Prolog assertions to globally declare that the interpreter
has reached a given instruction with particular local variables, stack contents, and constraint
lists. If a control flow creates a branch to that instruction with constraints and an execution
environment of the same form as one that was previously asserted, that branch is pruned
from the search tree. The pruning is safe because no new information could be learned on a
repeat traversal of that control flow; if a policy violation was ruled out before, we know that

it would be ruled out again.

Table 7.1. Verification experimental results

129

Total Model
File Sizes (KB) # Classes Rewrite # Verif. Check
Program Policy old/ new/ libs old / libs Time (s) Evts. Time (s) Time (s)
EJE NoExecSaves 439/ 439/ 0 147/ 0 6.1 1 202.8 16.3
RText 1264/ 1266/ 835 448/ 680 52.1 7 2797.5 54.5
JSesh 1923/ 1924/ 20878 863/ 1849 57.8 1 5488.1 196.0
vrenamer NoExecRename 924/ 927/ 0 583/ 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 35/ 36/ 0 33/ 0 0.6 2 115.7 15.1
jWeather NoSndsAftrRds 288/ 294/ 0 186/ 0 12.3 46 308.2 156.7
YTDownload 279/ 281/ 0 148/ 0 17.8 20 219.0 53.6
jfilecrypt NoGui 303/ 303/ 0 164/ 0 9.7 1 642.2 2.8
jknight OnlySSH 166/ 166/ 4753 146/ 2675 4.5 1 650.1 3.0
Multivalent EncrpytPDF 1115/ 1116/ 0 559/ 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 646/ 646/ 0 416/ 0 85.4 2 2598.2 23.6
jrdesktop SafePort 343/ 343/ 0 163/ 0 8.3 5 483.0 17.8
JVMail TenMails 24/ 25/ 0 21/ 0 1.6 2 35.1 8.0
JackMail 165/ 166/ 369 30/ 269 2.5 1 626.7 8.9
Jeti CapLgnAttmpts 484/ 484/ 0 422/ 0 15.3 1 524.3 8.8
ChangeDB CapMembers 82/ 83/ 404 63/ 286 4.3 2 995.3 12.0
projtimer CapFileCreat 34/ 34/ 0 25/ 0 15.3 1 56.2 6.1
xnap NoFreeRide 1250/ 1251/ 0 878/ 0 24.8 4 1496.2 56.4
Phex 4586,/ 4586/ 3799 1353/ 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 429/ 431/ 6338 159/ 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 1781/ 1783/ 24279 932/ 17185 78.7 6 2897.0 37.3
SQuirreL SafeSQL 1788/ 1789/ 1003 1328/ 626 140.2 1 3352.1 37.3
JVMail LogEncrypt 25/ 26/ 0 22/ 0 1.8 6 71.3 43.2
jvs-vfs CheckDeletion 277/ 277/ 0 127/ 0 4.4 2 193.9 6.3
sshwebproxy EncryptPayload 36/ 37/ 389 19/ 16 1.1 5 66.7 7.0

130
7.6 Case Studies

We have used our prototype implementation to rewrite and subsequently verify numerous
Java applications. These case studies are discussed throughout the remainder of the section,
and statistics are summarized in Table [/.1] Once again, all tests were performed on a Dell
Studio XPS notebook computer running Windows 7 64-bit with an Intel i7-Q720M quad

core processor, a Samsung PM800 solid state drive, and 4 GB of memory.

In Table each cell in the FILE S1ZES column has three parts: the original size of
the main program before rewriting[] the size after rewriting, and the size of included system
libraries that needed to be verified (but not rewritten) as part of verifying the rewritten code.
Verification of system library code is required to verify the safety of various control-flows
that pass through them. Likewise, each cell in the NO. CLASSES column has two parts: the

number of classes in the main program and the number of classes in the libraries.

Six of the rewritten applications listed in Table (vrenamer, jWeather, jrdesktop,
Phex, Webgoat, and SQuirreL) were initially rejected by our verifier due to a subtle security
flaw that our verifier uncovered in the SPoX rewriter. For each of those cases, a bytecode
analysis revealed that the original code contained a form of generic exception handler that
can potentially hijack control-flows within IRM guard code. This could cause the abstract
and reified security state to become desynchronized, breaking soundness. We corrected the
issue by manually editing the rewritten bytecode to exclude guard code from the scope of the
outer exception handler. This resulted in successful verification. Our fix could be automated
by in-lining inner exception handlers for guard code to protect them from interception by

an outer handler.

This section partitions our case-studies into eight policy classes. SPoX code is provided
for each class in a general form representative of the various instantiations of the policy that
we used for specific applications. The instantiations replace the simple pointcut expressions

in each figure with more complex, application-specific pointcuts.

“In order to make the comparison more meaningful, we stripped out unnecessary meta-
data and compressed the original class files to obtain initial size.

131

1 <edge name="saveToExe">
2 <nodes var="s">0,#</nodes>

3 <and>

4 <call>java.io.FileWriter.new</call>

5 <argval num="1"><streqg>.*\.(exel|bat|...)</stregq></argval>
6 <withincode>FileSystem.saveFile</withincode>

7 </and>

s </edge>

Figure 7.16. NoExecSaves policy

7.6.1 Filename Guards

Figure [7.16] shows a generalized SPoX policy that prevents file-creation operations from
specifying a file name with an executable extension. This could be used to prevent malware
propagation.

The regular expression in the streq predicate on Line [5 matches any string that ends in
“.exe”, “.bat”, or a number of other disallowed file extensions. There is a very large number

of file extensions that are considered to be executable on Windows. For our implementation,

we included every extension listed at (FileInfo.com 2011)).

This policy was enforced on three applications: EJE, a Java code editor; RText, a text
editor; and JSesh, a hieroglyphics editor for use by archaeologists. After rewriting, each

program halted when we tried to save a file with a prohibited extension.

Another policy that prevents deletion of policy-specified file directories (not shown) was
enforced on jconsole. The policy monitors directory-removal system API calls for ar-
guments that match a regular expression specifying names of protected directories. For
vrenamer, a mass file-renaming application, we prohibited files being renamed to include

executable extensions.

132

1 <edge name="FileRead">
2 <nodes var="s">0,1</nodes>

3 <and>

4 <call>java.io.File.*</call>

5 <argval num="1"><streq>[A-Za-z]*:\\windows\\.*"</streq></argval>
¢ </and>

7 </edge>

8 <edge name="NetworkSend">

9 <nodes var="s">1,#</nodes>
<call>java.net.Socket.getOutputStream</call>
11 </edge>

-
o

Figure 7.17. NoSendsAfterReads policy

7.6.2 Event Ordering

Figure is essentially the same policy as the one in Figure[6.1], and encodes the canon-
ical information flow policy in the IRM literature that prohibits all network-send operations
after a sensitive file has been read (cf. Figure . Specifically, this policy prevents calls
to Socket.getOutputStream after any java.io.File method call whose first parameter

accesses the windows directory.

We enforced this policy on jWeatherWatch, a weather widget application, and YouTube
Downloader, which downloads videos from YouTube. These programs are listed in Table
as jWeather and YTDownload, respectively. Neither program violated the policy, so no
change in behavior occurred. However, both programs access many files and sockets, so

SPoX instrumented both programs with a large number of security checks.

For multivalent, a document browsing utility, we enforced a policy that disallows saving
a PDF document until a call has first been made to the program’s built-in encryption method.

The two-state security policy is structurally similar to the one in the Figure [7.17]

133

1 <edge name="no_gui'">
2 <nodes var="s">0,#</nodes>

3 <and>

4 <call>jfilecrypt.GuiMainController.new</call>

5 <withincode>jfilecrypt.Application.main</withincode>
¢ </and>

7 </edge>

Figure 7.18. NoGui policy

7.6.3 Pop-up Protection

The NoGui policy in Figure |[7.18| prevents applications from opening windows on the user’s
desktop. We enforced the NoGui policy on jfilecrypt, a file encrypt/decrypt application.
Similar policies can be used to prohibit access to other system API methods and place

constraints upon their arguments.

7.6.4 Port Restriction

Policies such as the one in Figure limit which remote network ports an application may
access. This particular policy, which we enforced on the Telnet client tn5250j, restricts the
port to the range from 20 to 29, inclusive. Attempting to open a connection on any port
outside that range causes a policy violation.

We also enforced a similar policy on jrdesktop, a remote desktop client, prohibiting the
use of ports less than 1000. For jknightcommander (jknight in Table[7.I)), an FTP-capable
file manager currently in the pre-alpha release stage, we enforced a policy that prohibits

access to any port other than 22, restricting its network access to SFTP ports.

134

1 <edge name="badPort">
2 <nodes var="s">0,#</nodes>

3 <and>

4 <set>Config.port</set>

5 <or>

6 <argval num="1"><intgt>29</intgt></argval>
7 <argval num="1"><intlt>20</intlt></argval>
8 </or>

9 </and>

10 </edge>

Figure 7.19. SafePort policy

7.6.5 Resource Bounds

In Section we described a policy which prohibits an email client from sending more
than 10 emails in a given execution. The policy is reproduced in Figure [7.1] We enforced it

on the email clients JVMail and JackMail.

We enforced similar resource bound policies on various other programs. For Jeti, a
Jabber instant messaging client, we limited the number of login attempts to 5 in order to
deter brute-force attempts to guess a password for another user’s account. For ChangeDB, a
simple database system, we limited the number of member additions to 10. For projtimer,
a time management system, we limited the number of automatic file save operations to 5,

preventing the application from exhausting the user’s file quota.

7.6.6 Anti-freeriding

Figure reproduces the policy from Section that prohibits freeriding in file-

sharing clients. We enforced the policy on xnap and Phex.

135

1 <forall var="i" from="-10000" to="1">
2 <edge name="download">

3 <nodes var="s">i,i+1</nodes>
4 <call>Download.download</call>
5 </edge>

6 </forall>
7 <forall var="i" from="-9999" to="2">
8 <edge name="upload">

9 <nodes var="s">i,i-1</nodes>
10 <call>Upload.upload</call>
11 </edge>

12 </forall>

13 <edge name="too_many_downloads">
14 <nodes var="s">2,#</nodes>

15 <call>Download.download</call>
16 </edge>

Figure 7.20. NoFreeRide policy

7.6.7 Malicious SQL and XSS Protection

SPoX’s use of string regular expressions facilitates natural specifications of policies that
protect against SQL injection and cross-site scripting attacks. One such policy is given in
Figure This figure is a simplified form of a policy that we enforced on Webgoat, an
educational web application that is designed to be vulnerable to such attacks. The policy uses
whitelisting to exclude all input characters except for those listed by the regular expressions

(alphabetical, numeric, etc.).

The XSS_injection occurred edge starting on Line[§|includes a large number of dynamic
argval pointcuts—12 in the actual policy. Nevertheless, verification time remained roughly
linear in the size of the rewritten code because the verifier was able to significantly prune the
search space by combining redundant constraints and control-flows during model-checking

and abstract interpretation.

A similar policy was used to prevent SQL injection in OpenMRS, a web-based medical

database system. Injection was prevented for the patient search feature. The library por-

1 <edge name="SQL_Injection_occurred">
2 <nodes var="s">0,#</nodes>

3 <and>

4 <call>Login.login"</call>

5 <not><argval num="1"><streq>[a-zA-Z0-9]*</streq></argval></not>
6 </and>

7 </edge>

8 <edge name="XSS_injection_occurred">
9 <nodes var="s">0,#</nodes>

10 <and>

11 <call>Employee.new</call>

12 <not>

13 <and>

14 <argval num="2"><streq>[A-Za-z_0-9,.\-\sl*</streq></argval>
15 <argval num="3"><streq>[A-Za-z_0-9,.\-\s]*</streq></argval>
16 “ .

17 <argval num="16"><streq>[A-Za-z_0-9,.\-\sl*</streqg></argval>
18 </and>

19 </not>

20 </and>

21 </edge>

Figure 7.21. NoSqlXss policy

136

137

tion of this application is extremely large but contains no security-relevant events. Thus,
the separate, non-stateful verification approach for unmarked code regions was critical for

avoiding state-space explosions in this case.

We also enforced a blacklisting policy (not shown) on the database access client SQuirreL,
preventing SQL commands which drop, alter, or rename tables or databases. Specifically,

the policy identified all SQL commands matching the regular expression
.x(droplalter|rename) .*(table|database) .*

as policy violations.

7.6.8 Ensuring Advice Execution

Most aspectual policy languages (e.g., (Chen and Rosu 2005; |Aktug and Naliuka 2008}
Erlingsson 2004; Ligatti et al. 2009)) allow policies to include explicit advice code that
implements IRM guards and interventions. Such systems can be applied to create custom
implementations of SPoX policies, such as those that perform custom actions when impend-
ing violations are detected. Chekov” can then take the SPoX policy as input and verify
that the implementation correctly enforces the policy. This promotes separation of concerns,

reducing the TCB so that it does not include the advice.

We simulated the use of advice by manually added encryption and logging calls immedi-
ately prior to email-send events in JVMail. Each email is therefore encrypted, then logged,
then sent. The LogEncrypt policy in Figure requires these events to occur in that
order. After inserting the advice, we used the verifier to prove that the rewritten JVMail
application satisfies the policy. A similar policy was applied to the Java Virtual File System
(jvs-vfs), only allowing file deletion after execution of advice code that consults the user.
Finally, we enforced a policy on sshwebproxy that requires the proxy to encrypt messages

before sending.

1 <state name="logged" />
2 <state name="encrypted" />
3 <forall var="i" from="O0" to="1">

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

<edge name="encrypt">

<nodes var="encrypted">0,1</nodes>

<nodes var="logged">0,0</nodes>

<call>Logger.encrypt"</call></edge>
<edge name="badOrderEncryptSecond">

<nodes var="encrypted">0,#</nodes>

<nodes var="logged">1,#</nodes>

<call>Logger.encrypt</call></edge>
<edge name="transaction">

<nodes var="encrypted">1,0</nodes>

<call>SMTPConnection.sendMail</call></edge>
<edge name="badEncrypt">

<nodes var="encrypted">1,#</nodes>

<nodes var="logged">i,i</nodes>

<call>Logger.encrypt</call></edge>
<edge name="bad_transactionl">

<nodes var="encrypted">0,#</nodes>

<call>SMTPConnection.sendMail</call></edge>
<edge name="log">

<nodes var="logged">0,1</nodes>

<nodes var="encrypted">1,1</nodes>

<call>Logger.log</call></edge>
<edge name="badOrderLogFirst">

<nodes var="logged">0,#</nodes>

<nodes var="encrypted">0,#</nodes>

<call>Logger.log</call></edge>
<edge name="bad_log">

<nodes var="logged">1,#</nodes>

<nodes var="encrypted">i,i</nodes>

<call>Logger.log</call></edge>
<edge name="bad_transaction2">

<nodes var="logged">0,#</nodes>

<call>SMTPConnection.sendMail</call></edge>

37 </forall>

Figure 7.22. LogEncrypt policy

138

CHAPTER 8
CONCLUSIONS

This dissertation presents a purely declarative, aspect-oriented security policy language,
along with an accompanying IRM enforcement system. We have aggressively sought to
minimize the system’s TCB, excluding advice from the policy language and providing a
verifier for rewritten code. We have also developed helpful tools for debugging policies and

rewriting untrusted code via a web service.

Chapter |3 presented SPoX. We discussed how SPoX code uses pointcuts to denote
security-relevant events, and how it declaratively describes automaton state transitions with-
out imperative advice. In addition, we defined a formal denotational semantics for SPoX,
which allows us to precisely identify the meaning of a policy, and what it means for a program
to adhere to it. We provided a general algorithm for rewriting untrusted programs, including

a way to synthesize enforcement code from declarative state transition information.

In Chapter {4 we presented a rewriter that automatically modifies untrusted binaries
to enforce SPoX policies. We described the basic approach of the system, and discussed
our solutions to some of the interesting problems we encountered in its development. Case
studies showed that the rewriter could be used on a variety of real-world applications, with

a realistic runtime overhead.

In Chapter 5| we presented a tool that automatically detects inconsistencies in SPoX
policies. Specifically, it determines if the security automaton denoted by a policy is non-
deterministic. We presented an algorithm that detects security state non-determinism and
pointcut non-determinism; when both occur simultaneously, the policy is considered am-
biguous. We proved the correctness of the constraint generation part of the pointcut non-

determinism detection algorithm using ACL2. Our implementation of the tool found am-

139

140

biguities in several SPoX policies, exhibiting its usefulness in debugging errors that are not

always obvious.

Chapter [0 described how IRMs lend themselves to service-oriented architectures, and
presented a web service implementation of our rewriter. Our approach targets devices which
cannot reliably obtain and run the rewriter itself, as all code analysis and instrumentation

occurs at a central server.

Finally, Chapter [7| presented Chekov”, a trusted certifier for rewritten binaries. Chekov”
abstractly interprets a binary, non-deterministically tracking the security state using a linear
constraint analysis, and either accepts the program as safe with respect to a SPoX policy or
conservatively rejects. We formally modeled the operational semantics of a concrete machine
over a core Java bytecode subset, and proved that the corresponding behavior of our abstract
machine is sound. We discussed interesting parts of the verifier implementation, the core of
which was written in Prolog. We provided the experimental results of submitting twenty-five

real-world programs to both our rewriter and Chekov”.

We consider these systems to be significant contributions to the field; however, there
remain numerous avenues of future work that would improve the practicality and widen the

applicability of our approach. Several of these future directions are summarized below.

Multithreading and reflection remain outstanding problems for certifying IRM systems.
In order to manage multithreading properly, rewriters and verifiers must consider race con-
ditions while avoiding issues of deadlock and inefficiency. Policy writers can also help to
mitigate such issues by creating race-free policies. Fully supporting reflection requires that
reflection APIs be instrumented with the rewriter itself, greatly complicating the verification

process.

SPoX is expressive enough to denote many kinds of policies, but some specialized policies
cannot be described without additional tools and extensions. For example, policies that
involve mappings between objects require declarative extensions to the language that can be

used to track such relationships at runtime. Sophisticated management of policy violations

141

(e.g., roll-back) typically requires specific enforcement advice, which could be provided to

rewriters as a secondary input apart from the declarative SPoX policy.

Rewriting sometimes impacts code efficiency, necessitating more sophisticated instru-
mentation algorithms. For example, guard code placed inside a processor-intensive loop
can sometimes be lifted outside of that loop, effectively combining multiple updates to the
security state. However, complex rewriting approaches make certification more difficult,

requiring even more complex verification algorithms.

Correctly specifying security policies can be difficult in any language, suggesting a need
for good visualization tools. Bytecode analysis tools make it easier to reason about the
effects of program events on the security state, as well as how rewriting will affect an ap-
plication’s execution. As SPoX policies denote security automata, a graphical policy viewer

and development environment has the potential to be a very useful tool.

Finally, although our system targets Java bytecode, there are many other types of binaries
to consider in any large-scale IRM system. Adapting SPoX rewriters and verifiers to other
bytecode languages, such as .NET and Python, should be straightforward. IRM frameworks
targeting x86 machine code are much more difficult to develop, but are a necessary part of

future work.

REFERENCES

Aktug, I. and K. Naliuka (2008). ConSpec - a formal language for policy specification.
Science of Computer Programming 74, 2-12.

Apache Software Foundation (2006). Byte code engineering library.
http://jakarta.apache.org/bcel/.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, and M. Zaharia (2009, February). Above the clouds: A
Berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, Electrical

Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA,
USA.

Barvinok, A. and J. E. Pommersheim (1999). An algorithmic theory of lattice points in
polyhedra. In New Perspectives in Algebraic Combinatorics, Volume 38, pp. 91-147.

Bauer, L., J. Ligatti, and D. Walker (2005, June). Composing security policies with Poly-
mer. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, USA, pp. 305-314.

Bodden, E. and K. Havelund (2008, July). Racer: effective race detection using AspectJ. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),
Seattle, WA, USA, pp. 155-166. ACM.

Chappell, D. (2010, October). Introducing the Azure services platform. http://
microsoft.com/windowsazure/Whitepapers/introducingwindowsazureplatform/.

Chen, F. and G. Rosu (2005, April). Java-MOP: A Monitoring Oriented Programming
environment for Java. In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Edinburgh, UK,
pp. 546-550. Springer.

Chudnov, A. and D. A. Naumann (2010, July). Information flow monitor inlining. In
Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF), Ed-
inburgh, UK, pp. 200-214.

Cousot, P. and R. Cousot (1977). Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of

the Symposium on Principles of Programming Languages (POPL), Los Angeles, CA,
USA, pp. 238-252. ACM.

142

http://microsoft.com/windowsazure/Whitepapers/introducingwindowsazureplatform/
http://microsoft.com/windowsazure/Whitepapers/introducingwindowsazureplatform/

143

Cousot, P. and R. Cousot (1992, August). Abstract interpretation frameworks. Journal of
Logic and Computation 2(4), 511-547.

Dam, M., B. Jacobs, A. Lundblad, and F. Piessens (2009, July). Security monitor inlining
for multithreaded Java. In Proceedings of the 23rd Furopean Conference on Object-
Oriented Programming (ECOOP), Genova, Italy, pp. 546-569. Springer-Verlag.

Dantas, D. S. and D. Walker (2006, January). Harmless advice. In Proceedings of the 8th
ACM Symposium on Principles of Programming Languages (POPL), Charleston, SC,
USA, pp. 383-396.

Dantas, D. S., D. Walker, G. Washburn, and S. Weirich (2008, May). AspectML: A poly-
morphic aspect-oriented functional programming language. ACM Transactions on Pro-
gramming Languages and Systems 30(3), 14:1-14:60.

DeLine, R. and M. Fahndrich (2004, June). Typestates for objects. In Proceedings of the
18th European Conference on Object-Oriented Programming (ECOOP), Oslo, Norway,
pp. 465-490.

Desmet, L., W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens, and
D. Vanoverberghe (2007, November). A flexible security architecture to support third-

party applications on mobile devices. In Proceedings of the 2007 ACM Computer Secu-
rity Architecture Workshop (CSAW), Fairfax, VA, USA, pp. 19-28. ACM.

Desmet, L., W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens, and
D. Vanoverberghe (2009, December). The S3MS.NET run time monitor. Electronic
Notes in Theoretical Computer Science 253(5), 153-159.

DeVries, B. W., G. Gupta, K. W. Hamlen, S. Moore, and M. Sridhar (2009, June). Ac-
tionScript bytecode verification with co-logic programming. In Proceedings of the ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS),
Dublin, Ireland. ACM.

Douence, R., P. Fradet, and M. Siidholt (2002, October). A framework for the detection and
resolution of aspect interactions. In Proceedings of the 1st ACM SIGPLAN/SIGSOFT

Conference on Generative Programming and Component Engineering (GPCE), Pitts-
burgh, PA, USA, pp. 173-188. Springer-Verlag.

Douence, R., P. Fradet, and M. Siidholt (2004, March). Composition, reuse and interaction
analysis of stateful aspects. In Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), Lancaster, UK, pp. 141-150.

Dragoni, N., F. Massacci, K. Naliuka, and I. Siahaan (2007, June). Security-by-contract:
Toward a semantics for digital signatures on mobile code. In European PKI Workshop:
Theory and Practice (EuroPKI), Mallorca, Balearic Islands, Spain, pp. 297-312.

144

ECMA (2002, December). ECMA-335: Common Language Infrastructure (CLI) (Second
ed.). Geneva, Switzerland: ECMA (European Association for Standardizing Informa-
tion and Communication Systems).

Eén, N. and N. Sorensson (2007). MiniSat. http://minisat.se/.

Endoh, Y., H. Masuhara, and A. Yonezawa (2006, March). Continuation join points. In
Proceedings of the Foundations of Aspect-Oriented Languages Workshop (FOAL), Bonn,
Germany, pp. 1-10.

Erlingsson, U. (2004). The inlined reference monitor approach to security policy enforce-
ment. Ph. D. thesis, Cornell University, Ithaca, NY, USA. Adviser-Schneider, Fred
B.

Erlingsson, U., M. Abadi, M. Vrable, M. Budiu, and G. C. Necula (2006, November). XFI:
Software guards for system address spaces. In Proceedings of the 7Tth Symposium on
Operating Systems Design and Implementation (OSDI), Seattle, WA, USA, pp. 75-88.
ACM.

Erlingsson, U. and F. B. Schneider (1999, September). SAST enforcement of security policies:
A retrospective. In Proceedings of the New Security Paradigms Workshop (NSPW),
Caledon Hills, Ontario, Canada, pp. 87-95. ACM.

Evans, D. and A. Twynman (1999, May). Flexible policy-directed code safety. In Proceed-
ings of the 20th IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp.
32-45.

FileInfo.com (2011). Executable file types. www.fileinfo.com/filetypes/executable.

Flatt, M., S. Krishnamurthi, and M. Felleisen (1998, January). Classes and mixins. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), San Diego, CA, USA, pp. 171-183. ACM.

Formal Systems Laboratory (2011). JavaMOP 2.0 Finite State Machine (JavaFSM).

Garfinkel, S. L. (2007). An evaluation of Amazon’s grid computing services: EC2, S3 and
SQS. Technical Report TR~08-07, School for Engineering and Applied Sciences, Harvard
University, Cambridge, MA, USA.

Ghemawat, S., H. Gobioff, and S.-T. Leung (2003, October). The Google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP),
Bolton Landing, NY, USA, pp. 29-43. ACM.

Google.mE (2010). http://sourceforge.net/projects/googleme.

Hamlen, K. W. (2006, August). Security Policy Enforcement by Automated Program-
rewriting. Ph. D. thesis, Cornell University, Ithaca, NY, USA.

http://minisat.se/
www.fileinfo.com/filetypes/executable
http://sourceforge.net/projects/googleme

145

Hamlen, K. W. and M. Jones (2008). Aspect-oriented in-lined reference monitors. In Pro-
ceedings of the ACM Workshop on Programming Languages and Analysis for Security
(PLAS), Tucson, AZ, USA, pp. 11-20. ACM.

Hamlen, K. W.; M. Jones, and M. Sridhar (2011, May). Chekov: Aspect-oriented runtime
monitor certification via model-checking (extended version). Technical Report UTDCS-
16-11, Computer Science Department, The University of Texas at Dallas, Richardson,
Texas.

Hamlen, K. W., V. Mohan, M. M. Masud, L. Khan, and B. Thuraisingham (2009, Novem-
ber). Exploiting an antivirus interface. Computer Standards & Interfaces Journal 31(6),
1182-1189.

Hamlen, K. W., V. Mohan, and R. Wartell (2010, June). Reining in Windows APT abuses
with in-lined reference monitors. Technical Report UTDCS-18-10, Computer Science
Department, The University of Texas at Dallas, Richardson, Texas.

Hamlen, K. W., G. Morrisett, and F. B. Schneider (2006). Computability classes for en-
forcement mechanisms. ACM Transactions on Programming Languages and Systems
(TOPLAS) 28(1), 175-205.

Jaffar, J. and M. J. Maher (1994). Constraint logic programming: A survey. Journal of
Logic Programming 19/20, 503-581.

Jeti (2007). http://jeti.sourceforge.net.

Jones, M. and K. W. Hamlen (2009, June). Enforcing IRM security policies: Two case
studies. In Proceedings of the IEEE Intelligence and Security Informatics Conference
(1SI), Dallas, TX, USA, pp. 214-216.

Jones, M. and K. W. Hamlen (2010, March). Disambiguating aspect-oriented policies. In
Proceedings of the 9th International Conference on Aspect-Oriented Software Develop-
ment (AOSD), Rennes and Saint Malo, France, pp. 193-204. ACM.

Jones, M. and K. W. Hamlen (2011, September). A service-oriented approach to mobile code
security. In E. Shakshuki and M. Younas (Eds.), Proceedings of the 8th International
Conference on Mobile Web Information Systems (MobiWIS), Niagara Falls, Ontario,
pp. 531-538.

jWeatherWatch (2009). http://code.google.com/p/jweatherwatch.

Kallel, S., A. Charfi, M. Mezini, M. Jmaiel, and K. Klose (2009, February). From formal ac-
cess control policies to runtime enforcement aspects. In Proceedings of the International
Symposium on Engineering Secure Software and Systems (ESSoS), Leuven, Belgium,
pp. 16-31.

http://jeti.sourceforge.net
http://code.google.com/p/jweatherwatch

146

Katz, E. and S. Katz (2010, March). Semantic aspect interactions and possibly shared join
points. In Proceedings of the 9th International Workshop on Foundations of Aspect-
Oriented Languages (FOAL), Rennes, France, pp. 7-12.

Kaufmann, M. and J. S. Moore (2006). ACL2. http://www.cs.utexas.edu/~moore/
acl2/.

Kaufmann, M. and J. S. Moore (2011). ACL2: Interesting Applications. http://www.cs.
utexas.edu/users/moore/acl2/v4-3/INTERESTING-APPLICATIONS.html.

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold (2001,
June). An overview of Aspect]. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP), Volume 2072, Budapest, Hungary, pp. 327
355. Springer.

Kiczales, G., J. Lamping, A. Medhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin
(1997, June). Aspect-oriented programming. In Proceedings of the 11th European Con-
ference on Object-Oriented Programming (ECOOP), Volume 1241, Jyviskyla, Finland,
pp. 220-242. Springer.

Kim, M., M. Viswanathan, S. Kannan, I. Lee, and O. V. Sokolsky (2004, March). Java-
MaC: A run-time assurance approach for Java programs. Formal Methods in System
Design 24(2), 129-155.

Laddad, R. (2002, January). I want my AOP!, part 1. http://www.javaworld.com/
javaworld/jw-01-2002/jw-0118-aspect.htmll

Li, Z. and X. Wang (2010, December). FIRM: capability-based inline mediation of Flash be-
haviors. In Proceedings of the 26th Annual Computer Security Applications Conference
(ACSAC), Austin, TX, USA, pp. 181-190. ACM.

Ligatti, J., L. Bauer, and D. Walker (2005, September). Enforcing non-safety security
policies with program monitors. In Proceedings of the 10th FEuropean Symposium on
Research in Computer Security (ESORICS), Milan, Ttaly, pp. 355-373. Springer.

Ligatti, J., L. Bauer, and D. Walker (2009, January). Run-time enforcement of nonsafety
policies. ACM Transactions on Information and Systems Security 12(3), 19:1-19:41.

Lindholm, T. and F. Yellin (1999). The Java Virtual Machine Specification (Second ed.).
Addison-Wesley.

Massacci, F., F. Massacci, K. Naliuka, and K. Naliuka (2006, November). Multi-session
security monitoring for mobile code. Technical Report DIT-06-067, University of Trento,
Trento, Italy.

McAfee, Inc. (2011). McAfee SaaS Total Protection. http://www.mcafee.com/us/
products/saas-total-protection.aspx.

http://www.cs.utexas.edu/~moore/acl2/
http://www.cs.utexas.edu/~moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/v4-3/INTERESTING-APPLICATIONS.html
http://www.cs.utexas.edu/users/moore/acl2/v4-3/INTERESTING-APPLICATIONS.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
http://www.mcafee.com/us/products/saas-total-protection.aspx
http://www.mcafee.com/us/products/saas-total-protection.aspx

147

McCamant, S. and G. Morrisett (2006, July). Evaluating SFI for a CISC architecture. In
Proceedings of the 15th Conference on USENIX Security Symposium, Vancouver, BC,
Canada, pp. 209-224. USENIX Association.

Necula, G. C. (1997, January). Proof-Carrying Code. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages (POPL), Paris, France, pp. 106—
119. ACM.

Oberheide, J., E. Cooke, and F. Jahanian (2008, July). CloudAV: N-version antivirus in
the network cloud. In Proceedings of the 17th conference on Security Symposium (SS),
San Jose, CA, USA, pp. 91-106. USENIX Association.

Patwardhan, A., K. W. Hamlen, and K. Cooper (2010, October). Towards security-aware
program visualization for analyzing in-lined reference monitors. In Proceedings of the

International Workshop on Visual Languages and Computing (VLC), Oak Brook, IL,
USA, pp. 257-260.

Ronayne, M. L. and E. S. Townsend (1996, October). A case study: Distributed object
technology at Wells Fargo bank. The Cushing Group, Inc.

Schneider, F. B. (2000). Enforceable security policies. ACM Transactions on Information
and Systems Security 3(1), 30-50.

Sekar, R., V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney (2003, October).
Model-carrying code: a practical approach for safe execution of untrusted applications.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP),
Bolton Landing, NY, USA, pp. 15-28. ACM.

Shah, V. and F. Hill (2003, April). An aspect-oriented security framework. In Proceedings of
the DARPA Information Survivability Conference and Exposition (DISCEX), Volume 2,
Washington, DC, USA, pp. 143-145.

Sridhar, M. and K. W. Hamlen (2010a, January). ActionScript in-lined reference monitor-
ing in Prolog. In Proceedings of the International Symposium on Practical Aspects of
Declarative Languages (PADL), Madrid, Spain, pp. 149-151. Springer.

Sridhar, M. and K. W. Hamlen (2010b, January). Model-checking in-lined reference moni-
tors. In Proceedings of the 11th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI), Madrid, Spain, pp. 312-327. Springer.

Sridhar, M. and K. W. Hamlen (2011, January). Flexible in-lined reference monitor certifica-
tion: Challenges and future directions. In Proceedings of the ACM SIGPLAN Workshop
on Programming Languages meets Program Verification (PLPV), Austin, TX, USA, pp.
55-60. ACM.

148

The AspectJ Team (2003). The AspectJ programming guide. http://www.eclipse.org/
aspectj/doc/released/progguide/index.html.

Townsend, E. (2008, July). The 25-year history of service-oriented archi-
tecture. http://www.eriktownsend.com/white-papers-technology/doc_view/
4-1-the-2b5-year-history-of-service-oriented-architecture.raw.

Vanoverberghe, D. and F. Piessens (2008, June). A caller-side inline reference monitor
for an object-oriented intermediate language. In Proceedings of the 10th IFIP WG
6.1 International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS), Oslo, Norway, pp. 240-258. Springer-Verlag.

Vanoverberghe, D. and F. Piessens (2009, July). Security enforcement aware software
development. Information and Software Technology 51(7), 1172-1185.

Viega, J., J. Bloch, and P. Chandra (2001, February). Applying aspect-oriented program-
ming to security. Cutter IT Journal 14(2), 31-39.

Wand, M., G. Kiczales, and C. Dutchyn (2004, September). A semantics for advice and dy-
namic join points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems (TOPLAS) 26(5), 890-910.

Yee, B., D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar (2009, May). Native Client: A sandbox for portable, untrusted x86

native code. In IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp.
79-93.

Yu, D., A. Chander, N. Islam, and I. Serikov (2007, January). JavaScript instrumentation
for browser security. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), Nice, France, pp. 237-249. ACM.

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eriktownsend.com/white-papers-technology/doc_view/4-1-the-25-year-history-of-service-oriented-architecture.raw
http://www.eriktownsend.com/white-papers-technology/doc_view/4-1-the-25-year-history-of-service-oriented-architecture.raw

VITA

Micah Jones was born in Fort Worth, Texas, on November 12, 1984, as the son of Bill and
Beverly Jones. Early on, they elected to take the route of homeschooling, a remarkably
efficient and flexible form of education that left him time to pursue his childhood love of
books and video games. He soon grew tired of simply reading and playing other people’s
work, and sought to create his own. Before he developed actual writing skills, he narrated
stories to his mother, but she quickly grew tired of that and introduced him to that brilliant
piece of antique equipment known as a typewriter. He later upgraded to DOS-based word
processors (which finally allowed him to erase mistakes), and in the process discovered that

computers could be used to write not only stories, but also games!

Micah’s early attempts at programming assumed that his 80386 IBM-compatible com-
puter handled complex natural language processing, so his first BASIC program contained
code such as, “REM This is a game with a space ship. It will have 5 levels.” He
was thoroughly disappointed when the BASIC interpreter did absolutely nothing, and looked
for books containing printed code. After meticulously copying down and running code for
programs like Wumpus and Eliza, he decided to make his own games. BASIC’s limitations
became apparent, and he upgraded to the much more powerful and challenging C language.
After making a small game that involved robots shooting at each other, he decided he lacked

the motivation to learn much more on his own.

During high school, Micah further pursued interests in writing and acting, but he decided
to return to computers for his studies at Oklahoma Baptist University. There he encountered
professors like Dale Hanchey, Cindy Hanchey, and John Nichols, whose teaching furthered
his appreciation and knowledge of mathematics, logic, and software development. He also
thoroughly enjoyed his courses in history, literature, and theater, and was disappointed that

he could only realistically major in one field. He spent one month abroad during this time,

150

teaching English as a Second Language in Urumgqi, China, and worked for one summer as
an intern at Lockheed Martin in Fort Worth. After four years of study, he graduated in
May of 2007, Summa Cum Laude with College Honors, with a B.S. degree in Computer
Science. In addition, he wrote a thesis entitled, Mathematics and Physics Applications in

Two-Dimensional Video Games: Two Case Studies.

Micah immediately entered the Ph.D. program at the University of Texas at Dallas in the
Fall of 2007. Kevin Hamlen took him on as a research assistant, and introduced him to the
fascinating world of programming language-based security, automated bytecode rewriters,
and abstract interpretation. Finally, after four years of work in the area, including one

semester as a teaching assistant, Micah wrote this dissertation.

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER INTRODUCTION
	CHAPTER RELATED WORK
	Certifying IRMs
	Aspect-Oriented Programming
	Other Approaches
	Remaining Challenges

	CHAPTER POLICY LANGUAGE
	Overview
	Language Syntax
	Pointcut Language

	Analysis
	Denotational Semantics
	Policy Enforcement

	CHAPTER REWRITER IMPLEMENTATION
	Overview
	Implementation Discussion
	Parsing SPoX
	Rewriting

	Case Studies
	Columba Email Client
	XNap Peer-to-Peer Filesharing Client
	SciMark Benchmarking Tool

	Limitations

	CHAPTER INCONSISTENCY DETECTION
	Overview
	Analysis
	Security State Non-determinism
	Pointcut Non-determinism

	Machine-Checked Proof
	Data Structures
	Core Functions
	Theorems

	Case Studies
	Filesystem API Protocols
	Transaction Logging
	Object Aliasing
	Information Flow
	Free-riding Prevention
	Policy Composition
	Summary of Results

	CHAPTER IN-LINED REFERENCE MONITORING AS A SERVICE
	Overview
	Web Service Implementation

	CHAPTER VERIFICATION
	Overview
	System Introduction
	A Verification Example
	Limitations

	System Formal Model
	Java Bytecode Core Subset
	Concrete Machine
	SPoX Concrete Denotational Semantics
	Abstract Machine
	Abstract Interpretation

	Soundness
	Implementation
	Linear Constraints
	Non-deterministic Abstract Interpretation

	Case Studies
	Filename Guards
	Event Ordering
	Pop-up Protection
	Port Restriction
	Resource Bounds
	Anti-freeriding
	Malicious SQL and XSS Protection
	Ensuring Advice Execution

	CHAPTER CONCLUSIONS
	REFERENCES

