
A basic note on group representations and Schur’s lemma

Alen Alexanderian∗

Abstract

Here we look at some basic results from group representation theory. Moreover, we
discuss Schur’s Lemma in the context of R[G]-modules and provide some specialized
results in that case.
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1 Introduction

Group representations allow one to study an abstract group in terms of linear trans-
formations on vector spaces. The main point of studying group representations is to
reduce group theoretic problems to those of linear algebra which are well understood.
The inverse direction can also be fruitful; that is, sometimes one can understand certain
problems of linear algebra better by using ideas from group representation theory. The
goals of this note are two fold: First, we collect some results from group representa-
tion theory leading to Schur’s lemma and some of its consequences. The second major
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goal of the present note is study of R[G]-modules and Schur’s lemma in that context; in
particular, we provide some simple but useful results for the case of R[G]-modules. In
addition, we will also comment on unitary F[G]-modules and some related results.

In our presentation of the classical theory, we mainly follow [2]. We also mention [1]
as another standard reference which was consulted while writing the present note.

2 Definitions

2.1 Group representations

Definition 2.1. A representation of a group G is a vector space V along with a group
homomorphism:

ρ : G→ GL(V)

Remark 2.2. A compact notation for a representation of a group G is:

(V, ρ : G→ GL(V))

In what follows, we use the simplified notation (V, ρ) for a representation of a group G,
having the nature of the mapping ρ in mind.

Given a representation (V, ρ) of a group G, we say a subspace U ⊆ V is invariant
under ρ(G) if,

ρ(g)U ⊆ U , ∀g ∈ G.

Definition 2.3. A representation, (V, ρ) of a group G is said to be irreducible if the
only subspaces of V invariant under ρ(G) are {0} and V. In other words, (V, ρ) is an
irreducible representation of G if for any subspace U ⊆ V,[

ρ(g)U ⊆ U , ∀g ∈ G
]

=⇒ U = {0} or U = V.

Let G be a group and V be a vector space, we say two representations, (V, ρ) and
(V, σ) of G are equivalent (conjugate) if there exists T ∈ GL(V) such that,

ρ(g) = Tσ(g)T−1, ∀g ∈ G.

2.1.1 Unitary representations

Let V be a finite-dimensional inner-product-space space over F with F = C or R, and let
G be a group with a representation (V, ρ). We say this representation is unitary if ρ(g) is
unitary for all g ∈ G. In case of F = R, we say the representation is orthogonal. Unitary
(orthogonal) representations are of interest as it is straightforward to decompose them
into irreducible representations. More detail on this will be provided later when we
discuss Maschke’s Theorem.

2.2 F[G]-modules

Before giving the definition and technical details for F[G]-modules, let us take a
moment to look at the big picture. Consider a group G with a representation (V, ρ),
where V is a vector space over F. For each g ∈ G, we have ρ(g) ∈ GL(V) and as such
we can define a group action G× V → V : (g,v) 7→ g · v by,

g · v = ρ(g)v.
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Therefore, we can view a group representation as a linear action of a group on a vector
space. These observations lead us to the study F[G]-modules.
Definition 2.4. Let V be a vector space over a base field F, and let G be a group. Then
V is an F[G]-module if there exists a multiplication map G× V → V defined by,

(g,v) 7→ g · v, g ∈ G,v ∈ V,

such that the following hold: For all u,v ∈ V, α ∈ F, and g, h ∈ G,

(a) (gh) · v = g · (h · v)
(b) 1G · v = v

(c) g · (αu+ v) = αg · u+ g · v

Let V be an F[G]-module; for any g ∈ G, we define Mg : V → V, by

Mg(v) = g · v. (2.1)

Let 1V denote the identity mapping on V, and 1G denote the identity element in G.
The second requirement in the definition of an F[G]-module says, M1G = 1V and the
third requirement says that Mg is a linear map on V (an endomorphism of V). Given an
F[G]-module with a basis B, sometimes it will be useful to work with the matrix of the
linear transformation Mg which we denote by [Mg]B.

2.2.1 Relation to group representations

The following basic results make the relation between F[G]-modules and group repre-
sentations clear.
Theorem 2.5. Let G be a group with a representation (V, ρ), where V is a vector space
over a base field F. Then, V becomes an F[G]-module if we define the multiplication g ·v
by

g · v = ρ(g)v g ∈ G,v ∈ V.

Proof. The result follows directly from definitions.

Theorem 2.6. Given an F[G]-module V, we can get a representation (V, ρ) of G, with ρ
given by,

ρ(g) =Mg,

where Mg is defined as in (2.1).

2.2.2 F[G]-submodules and reducibility

Let G be a group and let V be an F[G]-module with a multiplication G×V → V : (g,v) 7→
g · v. A subspace U ⊆ V is called an F[G]-submodule of V, if

g · u ∈ U , ∀u ∈ U . (2.2)

Remark 2.7. Note that the idea of an F[G]-submodule is directly related to the notion
of an invariant subspace of a group representation. Let V be a an F[G]-module. We
know by Theorem 2.6 that with ρ : G→ GL(V) defined by

ρ : g 7→Mg, g ∈ G,

3



Group representations and Schur’s lemma

(V, ρ) is a representation of the group G. Now, suppose U is an F[G]-submodule of V.
Then, by (2.2), we have

ρ(g)U =MgU ⊆ U , ∀g ∈ G.

That is, U is invariant under ρ(G).
Definition 2.8. An F[G]-module V is irreducible if its only F[G]-submodules are {0}
and V.

Using Remark 2.7, we can see the equivalence of the notion of an irreducible F[G]-
module and an irreducible representation.

Suppose V is a reducible n-dimensional F[G]-module, with an F[G]-submodule U of
dimension 0 < k < n. Let B0 be a basis of U and extend it to a basis B of V. Then, for
every g ∈ G, the matrix of Mg with respect to the basis B is given by,

[Mg] =

[
Xg Yg
0 Zg

]
.

Where X is k× k. It is simple to see that the mapping ρ : g 7→ Xg gives a representation
of G on the subspaces U = span{B0}.

2.2.3 F[G]-homomorphisms

Let V and W be F[G]-modules. An F[G]-homomorphism is an F-linear map, ϕ : V → W
such that,

ϕ(g · v) = g · ϕ(v), ∀v ∈ V, g ∈ G.

Remark 2.9. Let V be an F[G]-modules with group action Mg. A mapping T : V → V is
an F[G]-homomorphism if and only if

T (Mg(v)) =Mg (T (v)) , ∀g ∈ G,v ∈ V,

or equivalently,
MgT = TMg

Let ϕ be an F[G]-homomorphism; we use Ker{ϕ} and Im{ϕ} to denote its kernel
(null-space) and image. The following basic result turns out to be very useful.
Proposition 2.10. Let V andW be F[G]-modules and ϕ : V → W an F[G]-homomorphism.
Then,

(a) Ker{ϕ} is an F[G]-submodule of V.
(b) Im{ϕ} is an F[G]-submodule ofW.

Proof. The result follows directly from definitions. To see the first statement, note that
Ker{ϕ} is a subspace of V and for all u ∈ Ker{ϕ} and g ∈ G,

ϕ(g · u) = g · ϕ(u) = g · 0 = 0.

That is, g · u ∈ Ker{ϕ} for all g ∈ G and u ∈ Ker{ϕ}.

As for the second statement, first recall that Im{ϕ} is a subspace of W. Take any
w ∈ Im{ϕ}; we know w = ϕ(v) for some v ∈ V. Then, for any g ∈ G,

g ·w = g · ϕ(v) = ϕ(g · v),

and thus, g ·w ∈ Im{ϕ} for all g ∈ G and w ∈ Im{ϕ}.
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2.2.4 Direct sums of F[G]-modules

Let V be an F[G]-module with a multiplication Mg. Suppose,

V = U ⊕W,

where U and W are F[G]-submodules of V. Note that if B1 and B2 are bases for U and
W respectively, then B = B1 ∪B2 is a basis for V and,

[Mg]B =

[
[Mg]B1 0

0 [Mg]B2

]
.

Let V be an F[G]-module, and suppose,

V = U1 ⊕ U2 ⊕ · · · ⊕ Ur,

where Uj , j = 1, . . . , r are F[G]-submodules of V. For each v ∈ V, there exist unique
u1 ∈ U1, . . . ,ur ∈ Ur such that u =

∑
j uj . We define, Pi : V → Ui as follows,

Pi(v) = ui. (2.3)

The following technical result is useful.
Proposition 2.11. Let V be an F[G]-module, and suppose,

V = U1 ⊕ U2 ⊕ · · · ⊕ Ur,

where Uj , j = 1, . . . , r are F[G]-submodules of V. Then for each i ∈ {1, . . . , r}, Pi defined
as in (2.3) is a projections of V into Ui and also an F[G]-homomorphism on V.

Proof. That Pi is F-linear and is a projection is clear. To see that Pi is an F[G]-homomorphism
note that for all g ∈ G and v ∈ V,

Pi(g · v) = Pi

g ·∑
j

uj

 = Pi

∑
j

g · uj

 = g · ui = g · Pi(v).

2.2.5 Unitary F[G]-modules

As we defined unitary representations, we can also discuss unitary F[G]-modules.
Definition 2.12. Let V be an F[G]-module with F = C (or R). Suppose moreover that
V is endowed with an inner-product 〈·, ·〉 : V ×V → F. We say V is a unitary (orthogonal)
F[G]-module, if the group action Mg is unitary (orthogonal) for every g ∈ G:

〈Mg(u),Mg(v)〉 = 〈u,v〉, ∀u,v ∈ V.

3 Maschke’s Theorem

Let G be a finite group, and say V is a C[G]-module. If V is reducible, we know it
has a non-trivial submodule. Now, one may ask the following, is it possible to reduce V
until we are left with finitely many irreducible submodules ? Maschke’s Theorem [3] is a
major result which points us in that direction. We will see shortly that as a consequence
of Maschke’s Theorem, we can say that for a finite group G, any finite-dimensional F[G]-
module with F = R or C can be reduced to a direct sum of irreducible submodules.
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Theorem 3.1 (Maschke). Let G be a finite group and F = R or C. Suppose V is an F[G]-
module and that U is an F[G]-submodule of V. Then, there exists an F[G]-submoduleW
of V such that V = U ⊕W.

Proof. If U is {0} or V then there is nothing to prove; hence, suppose U is a non-trivial
proper F[G]-submodule. Choose any subspaceW0 of V such that,

V = U ⊕W0.

Now, for every v ∈ V, there exist unique u ∈ U and w ∈ W0 such that,

v = u+w. (3.1)

Define, ϕ : V → V by,
ϕ(v) = u,

with u as in (3.1). The mapping ϕ is a projection of V onto U ; we have

Im{ϕ} = U and Ker{ϕ} =W0.

The major part of the proof is to get an F[G]-homomorphism out of ϕ which is also
a projection of V onto U , and use the fact that kernel of such homomorphism is an
F[G]-submodule of V. We proceed by defining the mapping σ as follows,

σ(v) =
1

|G|
∑
g∈G

g−1 · ϕ(g · v) (3.2)

Clearly, σ is an endomorphism of V and Im{σ} ⊆ U . Next, we show that σ is an F[G]-
homomorphism; we need to check

σ(x · v) = x · σ(v), ∀x ∈ G,v ∈ V.

Note that for x ∈ G and v ∈ V,

σ(x · v) = 1

|G|
∑
g∈G

g−1 · ϕ(g · (x · v)) = 1

|G|
∑
g∈G

g−1 · ϕ((gx) · v). (3.3)

Now, as g runs through G so does h = gx and so using (3.3), we have,

σ(x · v) =
1

|G|
∑
h∈G

(xh−1) · ϕ(h · v)

=
1

|G|
∑
h∈G

x ·
[
h−1 · ϕ(h · v)

]
= x ·

[
1

|G|
∑
h∈G

h−1 · ϕ(h · v)

]
= x · σ(v),

so that σ is an F[G]-homomorphism.

Next, we show that σ2 = σ. For every u ∈ U and g ∈ G, since U is an F[G]-submodule,
we know that g · u ∈ U ; thus, ϕ(g · u) = g · u. Then, for u ∈ U , we have

σ(u) =
1

|G|
∑
g∈G

g−1 · ϕ(g · u)

=
1

|G|
∑
g∈G

g−1 · g · u

= u.
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Hence, for every v ∈ V with decomposition as in (3.1),

σ2(v) = σ(σ(v)) = σ(σ(u)) = σ(u) = u = σ(v).

Thus, σ is a projection of V onto U and Im{σ} = U . Now, let W = Ker{σ} and note that
by Proposition 2.10,W is an F[G]-submodule of V. Finally, we can write

V = Im{σ} ⊕Ker{σ} = U ⊕W.

Remark 3.2. Apart from the case of F = R and C, Maschke’s Theorem holds for any
field of positive characteristic p (such as the finite fields) if p (necessarily prime) does
not divide the order of G.

An important consequence of Maschke’s Theorem is the following:
Proposition 3.3. Let G be a finite group and F = R or C. Suppose V is a finite-
dimensional F[G]-module. Then, there exist irreducible F[G]-submodules U1, . . . ,Ur of
V such that

V = U1 ⊕ U2 ⊕ · · · ⊕ Ur.

Proof. The result follows by an induction argument on dimension of V.

3.1 Case of infinite groups and unitary F[G]-modules

Maschke’s Theorem is stated for finite groups, and is not necessarily true for infinite
groups. Unitary F[G]-modules (cf. Section 2.2.5), provide an special case which we
discuss in the section. The results of this subsection are stated in terms orthogonal
R[G]-modules, however, the analogous result holds for the case of unitary C[G]-modules.
Lemma 3.4. Let V be a finite-dimensional orthogonal R[G]-module. Suppose U is an
R[G]-submodule of V. Then, U⊥ is also an R[G]-submodule of V.

Proof. We know the group action Mg is orthogonal for all g ∈ G, and by assumption
MgU ⊆ U . Since U has finite dimension, we actually have MgU = U , and consequently
MT

g U = U also. Therefore, for every v ∈ U⊥ and u ∈ U ,

〈Mg(v),u〉 = 〈v,MT
g (u)〉 = 0,

and so g · v =Mg(v) ∈ U⊥ for all g ∈ G and v ∈ U⊥.

Using this simple result, we get the following analog of Proposition 3.3.
Proposition 3.5. Let G be any group and suppose V is a finite-dimensional orthogonal
R[G]-module. Then, there exist irreducible R[G]-submodules U1, . . . ,Ur of V such that

V = U1 ⊕ U2 ⊕ · · · ⊕ Ur.

4 Schur’s Lemma

Definition 4.1. Let V be a vector space over a base field F. Denote by 1V the identity
mapping on V. A linear map ϕ : V → V is called scalar if ϕ = α1V for some α ∈ F.

The following result, known as the Schur’s Lemma [4], is an important result in
representation theory.
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Theorem 4.2 (Schur). Let V andW be irreducible C[G]-modules.

(a) If ϕ : V → W is a C[G]-homomorphism, then either ϕ is a C[G]-isomorphism, or
ϕ = 0.

(b) If ϕ : V → V is a C[G]-homomorphism, then ϕ is scalar.

Proof. (a) : Suppose ϕ(v) 6= 0 for some v ∈ V. Then, Im{ϕ} 6= {0}. Hence, Im{ϕ} is a
non-zero C[G]-submodule of W and since W is irreducible it follows that Im{ϕ} = W;
that is, ϕ is onto. Moreover, Ker{ϕ} 6= V, and thus, since V is irreducible, Ker{ϕ} = {0}.
Therefore, ϕ is one-to-one also.

(b) : Let ϕ : V → V be a C[G]-homomorphism. Since the base field of V is C, as a linear
mapping on V, ϕ has an eigenvalue α ∈ C. Consider the mapping ρ = ϕ − α1V . Note
that ρ is also a C[G]-homomorphism on V, and since α is an eigenvalue of ϕ, it follows
that Ker{ρ} = Ker{ϕ− α1V } 6= {0}. Consequently, Ker{ρ} is a non-zero C[G]-submodule
of V, and thus, since V is irreducible, Ker{ρ} = V. That is,

ϕ(v)− αv = 0, ∀v ∈ V,

or equivalently, ϕ = α1V .

The second part of Schur’s Lemma has the following converse.
Theorem 4.3. Let G be a finite group and V be a non-zero C[G]-module. Suppose that
every C[G]-homomorphism from V to V is scalar. Then, V is irreducible.

Proof. Suppose every C[G]-homomorphism from V to V is scalar, but assume to the
contrary that V is reducible. Then, V has a non-zero proper C[G]-submodule U . By
Maschke’s Theorem, there exists a C[G]-submoduleW of V such that,

V = U ⊕W.

For every v ∈ V, there exist unique u ∈ U and w ∈ W, such that v = u+w. Define the
projection P : V → V by

P (v) = u, ∀v ∈ V.

By Proposition 2.11, P is a C[G]-homomorphism of V. However, P is clearly not scalar,
and thus we have a contradiction.

Remark 4.4. The above result holds also for the case of R[G]-homomorphisms.
Remark 4.5. Schur’s result holds for the case of finite and infinite groups, but its
converse does not necessarily hold for infinite groups.

The following result states Schur’s result and its converse in terms of group repre-
sentations.
Corollary 4.6. Let G be a finite group and V a vector space over C. Then, a repre-
sentation (V, ρ) of G is irreducible if and only if every linear transformation A : V → V
which satisfies,

Aρ(g) = ρ(g)A, ∀g ∈ G (4.1)

is scalar.

Proof. As in Theorem 2.5, we can turn V to a C[G]-module by defining the group action
G× V → V : (g,v) 7→ g · v by,

g · v = ρ(g)v, g ∈ G,v ∈ V.
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Now, a linear transformation A : V → V is a C[G]-homomorphism of V if and only if
it satisfies (4.1) (cf. Remark 2.9). Hence, the result follows from Theorem 4.2 and
Theorem 4.3.

4.1 The case of R[G]-modules

In this section, we discuss Schur’s lemma in the case of R[G]-modules. The first
statement of Theorem 4.2 holds in the case of R[G]-modules, however the second part
of the result does not, because a linear operator on a vector space over reals may not
have any real eigenvalues. Hence, in the case of R[G]-modules, Schur’s result is as
follows:
Theorem 4.7. Let V andW be irreducible R[G]-modules.

(a) If ϕ : V → W is an R[G]-homomorphism, then either ϕ is an R[G]-isomorphism, or
ϕ = 0.

(b) If ϕ : V → V is an R[G]-homomorphism with a real eigenvalue, then ϕ is scalar.
Remark 4.8. If V is an odd-dimensionalR[G]-module, it follows that any endomorphism
of V will have at least one real eigenvalue. Therefore, for R[G]-modules of odd dimen-
sion, the above result gives the same exact conclusions as that of Theorem 4.2 (Schur’s
result).

Another interesting special case is that of an R[G]-module which is also an inner-
product-space. Let V be an R[G]-module and suppose that V is endowed with an
inner-product (we may call V an R[G]-module with an inner-product). We say an R[G]-
homomorphism ϕ : V → V is self-adjoint if,

〈ϕ(u),v〉 = 〈u, ϕ(v)〉, ∀u,v ∈ V.

A useful special case of Theorem 4.7 is as follows:
Corollary 4.9. Let V be an irreducible R[G]-module with an inner-product. If ϕ : V → V
is a self-adjoint R[G]-homomorphism, then ϕ is scalar.

We may state Corollary 4.6 in the case of real inner-product-spaces as follows:
Corollary 4.10. Let G be a finite group and V an inner-product-space over R. Then, a
representation (V, ρ) of G is irreducible if and only if every self adjoint linear transfor-
mation A : V → V which satisfies,

Aρ(g) = ρ(g)A, ∀g ∈ G (4.2)

is scalar.

Also, in view of Remark 4.8, we have the following result.
Corollary 4.11. Let G be a finite group and V an odd-dimensional vector space over R.
Then, a representation (V, ρ) ofG is irreducible if and only if every linear transformation
A : V → V which satisfies,

Aρ(g) = ρ(g)A, ∀g ∈ G (4.3)

is scalar.

4.2 Unitary F[G]-modules and the converse of Schur’s lemma

Recall that the converse to Schur’s result, Theorem 4.3, is stated for finite groups. In
the case of orthogonal R[G]-modules (or unitary C[G]-modules), we can use Lemma 3.4
to prove the following:
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Proposition 4.12. Let G be a group and V be a finite-dimensional orthogonal R[G]-
module, and suppose that every R[G]-homomorphism from V to V is scalar. Then, V is
irreducible.

The same result holds if replace R by C and orthogonal by unitary in the above
Proposition.
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