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Abstract—Shannon entropy is a powerful tool in image analysis,
but its reliable computation from image data faces an inherent di-
mensionality problem that calls for a low-dimensional and closed
form model for the pixel value distributions. The most promising
such models are Markovian, however, the conventional Markov
random field is hampered by noncausality and its causal versions
are also not free of difficulties. For example, the Markov mesh
random field has its own limitations due to the strong diagonal
dependency in its local neighboring system. A new model, named
quadrilateral Markov random field (QMRF) is introduced in this
paper in order to overcome these limitations. A property of QMRF
with neighboring size of 2 is then used to decompose an image prior
into a product of 2-D joint pdfs in which they are estimated using
a joint histogram under the homogeneity assumption. In addition,
the paper includes an extension of the introduced method to the
computation of image spatial mutual information. Comparisons on
synthesized images as well as two applications with real images are
presented to motivate the developments in this paper and demon-
strate the advantages in the performance of the introduced method
over the existing ones.

Index Terms—Image histogram, image spatial entropy, Markov
mesh random field (MMRF), Markov random field (MRF), quadri-
lateral Markov random field (QMRF).

I. INTRODUCTION

S HANNON entropy (SE), the most widely adopted defini-
tion towards measuring information, is a very useful tool

in image analysis whose computation requires the probability
density function (pdf) of the corresponding random variable(s).
Discrete images are often considered to be finite rectangular
(nontoroidal) lattices in which each site (note the terms “site”
and “pixel” are used equivalently and interchangeably in this
paper) on the lattice behaves as a random variable. Thus, an
image forms a spatial stochastic process that often referred as
random field. The pdf of such a high-dimensional process is re-
quired in order to compute image spatial entropy (ISE). How-
ever, in general, obtaining such a high-dimensional pdf is not a
practically tractable problem.

In the literature, there exist two main approaches towards
computing the ISE [1]. The first approach utilizes the Markovian
models such as Markov random field (MRF) to find a priori dis-
tribution function (Hammersley-Clifford theorem) of an image
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lattice [2], [3]. The second approach utilizes the homogeneity
assumption, treating the normalized joint histogram of an image
lattice as its joint pdf. The first approach faces the difficulty as-
sociated with finding the Gibbs model, computing its partition
function, and optimizing its parameters. In practice, the second
approach faces the difficulty of having only a finite number of
data samples in an image. A review of existing methods for
computing ISE along with their advantages and shortcomings
provided in [1], generalized ising entropy (GIE) falls under the
first category while monkey model entropy (MME), spatial dis-
order entropy (SDE) and Aura matrix entropy (AME) fall under
the second category. The results in [1] show that the existing
definitions do not adequately represent image spatial informa-
tion, and, thus, the need for a more accurate definition deemed
essential.

In this paper, our attempt is to utilize the first order MRF
to reduce the dimensionality of the image lattice. In general,
the only known global closed-form multidimensional pdf for
MRF is the Gibbs function. However, the computation of its
partition function is not practically feasible even for moderate
size images. In spite of such deficiency, the local conditional
probabilities are computable without needing to compute the
partition function. Derivation of the global closed-form pdf of
the MRF from the local conditional probabilities is only pos-
sible under the unilateral (causal) assumption [9]–[11]. The pi-
oneering work on unilateral subclass of MRF by Abend is note-
worthy, which is called Markov Mesh in the literature and later
on denoted as Markov mesh random field (MMRF) [4]. Uti-
lization of unilateral (causal) MRF as an image model is not
free of difficulties, for a discussion of problems associated with
them, see [8]. These problems make utilization of MMRF in-
appropriate in image analysis. Here, a new unilateral (causal)
MRF, called quadrilateral Markov random field (QMRF), is in-
troduced to overcome these problems. The global closed-form
multidimensional pdf for QMRF is then obtained in terms of
low-dimensional local conditional probabilities.

A useful property of QMRF with neighboring size of two is
introduced to decompose the 3-D local conditional probabili-
ties into a product of 2-D conditional pdfs involving horizontal,
vertical, and diagonal neighbors. Fortunately, after the simplifi-
cations afforded by our model, there exist enough data samples
in a typical image to allow estimating the 2-D pdf of the neigh-
boring processes using the normalized joint histogram of the
image lattice under the homogeneity assumption.

The rest of the paper is organized as follows: After a brief
overview of unilateral (causal) MRF, in Section II, the defini-
tion and properties of QMRF is provided. Section III outlines
our method for computing ISE based on QMRF. In Section IV,
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Fig. 1. Regular rectangular lattice � of size � � �: (a) � or � are the
gray area, arrow lines show raster scan, (b) � are the gray area, arrow lines
show zigzag scan.

the same method is used to calculate the image spatial mutual
information (ISMI). In Section V, a validation procedure is car-
ried out via a synthesized image. It is shown how the intro-
duced method outperforms the existing ones in terms of accu-
racy of image spatial entropy. Two sample applications (image
fusion and image registration) are briefly visited in Section VI
to demonstrate the motivation for this undertaking, as well as
evidence of the practicality of the introduced method. Finally,
the paper is concluded in Section IX.

II. UNILATERAL MARKOV RANDOM FIELD

As indicated earlier, images are normally modeled as a finite
rectangular (nontoroidal) lattice form of MRF with each site
in the lattice representing a random variable whose outcome
is a pixel intensity level in the images. In this paper, we adopt
the assumption of 4-nearest neighbor dependency, which is the
direct result of the first order MRF assumption. As shown in
Fig. 1(a), is a random variable allocated to a site located at
the coordinates taking a value from a finite discrete
label set ; denotes the sample space of the family

which
represents the random field. The probability that the random
variable takes the value is denoted by ,

abbreviated as , and the global probability is denoted by
,

abbreviated as . In this case, 4-nearest neighbors of
is given by , as indi-
cated in Fig. 1(a). The conventional neighboring order of MRF
and MMRF may appear confusing when they get referenced to
each other. To prevent such possible confusion here, the neigh-
boring order is referred by the size of the neighboring system.
This way, the first order MRF corresponds to the neighboring
system of size 4 and the second order to the neighboring system
of size 8. In addition, the first order MMRF corresponds to the
neighboring system of size 1, the second order MMRF to the
neighboring system of size 2, and the third order MMRF to the
size of 3.

A. Markov Mesh Random Field

Random field is said
to be a MMRF if

(1)

where is considered to be the
predecessors of in the random field , and indicated in Fig.
1(a). is the unilateral neighbors
of . In [4], Abend proved that for a MMRF with the
neighboring size of 2 is in the following form:

(2)

where the required boundary adjustment is fulfilled by assuming
the sites outside of the finite lattice ,
to be zero. Abend proved that MMRF is also MRF while the
inverse does not necessary holds, i.e., MMRFs form a causal
subclass of MRFs. However, there exists an irregularity issue
with this theorem, which is discussed later in the paper. For the
time being, let us present other unilateral subclasses of MRF.

B. Nonsymmetric Half Plane

Preuss defined another causal subclass of MRF called non-
symmetric half plane (NSHP) Markov chain [5]. The only dif-
ference is in the definition of the predecessors of site in
which

(3)

The relationship between MMRF and NSHP is discussed thor-
oughly in [12]. There is no difference between these two defini-
tions, and it is easily shown that MMRF is indeed equivalent to
NSHP Markov chain.

C. Pickard Random Field

Another interesting unilateral subclass of MRF is Pickard
random field (PRF) [6]. Pickard constructed a lattice by

a generic cell having the following property:

(4)

The conditional independence is also shown with the short-hand
notation; . Pickard shows [6] that the constructed random
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field is MMRF and consequently MRF. It is farther proven that
PRF is the only acknowledged class of nontrivial stationary
Markov field on finite rectangular lattices [11].

D. Mutually Compatible Gibbs Random Field

Mutually compatible Gibbs random field (MC-GRF)
is another causal subclass of MRF [7]. A GRF

is said to be MC-GRF if all
the primary sublattices of defined over are also GRF. The
primary sublattice is defined as a set of sites that includes

, and further has the property that if it contains , it also
contains . Simply stated, a primary
sublattice is a set of pixels that includes the upper left-hand
corner, and also contains all immediate causal neighbors of all
its members. Goutsias proved that MC-GRF and MMRF are
equivalent [7]. However, due to the difference in the algebraic
form of the two definitions, the constraints on MC-GRF are
given based on the Gibbs global potential function while in
MMRF it is based on a local neighboring structure. Utilizing
the local neighboring structure for analyzing the MRF behavior
in MC-GRF is more feasible since it is easier to apply these
conditions over the Gibbs function. However, this advantage
does not provide any relief in computing the ISE. Considering
the equivalence of MMRF, and MC-GRF, we, farther, address
them jointly as the unilateral Markov random field (UMRF).

E. Quadrilateral Markov Random Field

Since all the MMRF are MRF, it is intuitively expected that
the MMRF with neighboring size of two [Fig. 2(a)] is also a
MRF with the neighboring size of four [Fig. 1(a)]. It is already
proven that this is simply not true (refer to Fig. 3 in [4] or Table I
in [7]). The MMRF with neighboring size of two results in an
abnormal MRF as shown in Fig. 2(b). We call it unbalanced
MRF. The neighborhood dependencies in the unbalanced MRF
are biased along the direction. This is the root cause of the
strong directional artifact discussed in [8]. This diagonal bias
also exists in MMRF with the neighboring size of 3, 4, and 5.
However, this may not appear to be obvious in the local neigh-
boring structures of MMRF of size 3, Fig. 2(f), because of its
symmetric structure [8]. The reason behind such abnormality
originates from the definition of MMRF. As shown in Fig. 1(a),

, the past/predecessors of the site , is assumed to start
from the upper-left corner of the image. This is purely an as-
sumption of convenience driven by causality issues and is not
supported by any other reasoning, including Markovianity on
the lattice. While convenient, unfortunately this assumption de-
stroys the MRF equilibrium given by the Gibbs function. MRF
is quadrilateral by nature, meaning that a UMRF supporting a
full MRF realization must equivalently start from all four cor-
ners. To keep this equilibrium in place, it is necessary to enforce
all four unilateral constraints on the lattice.

To illustrate this point further, Fig. 2(c) shows the local neigh-
borhood dependency in MRF under the UMRF constraint with
respect to the upper-right corner. This new definition of UMRF
changes the direction of the diagonal bias to , see Fig. 2(d).
This clearly indicates that the change in orientation of the pre-
decessors of changes the direction of the diagonal bias. In

Fig. 2. Different neighboring structures: (a) UMRF of size 2 with respect to
upper-left and lower-right corner; (b) MRF as a result of UMRF’s shown in (a);
(c) UMRF of size 2 with respect to upper-right and lower-left corner; (d) MRF as
a result of UMRF’s shown in (c); (e) UMRF of size 3 with respect to upper-left
and lower-left corner; (f) MRF as a result of UMRF of size 3.

other words, UMRF with respect to different corners of the lat-
tice creates a different MRF and consequently a MRF cannot be
characterized by a single UMRF. Our solution for this problem
is to enforce all four UMRF constraints into a new field defini-
tion, named QMRF.

Definition 1: Random field
is QMRF with the

neighboring size of two on a finite rectangular lattice if

(5a)

(5b)

(5c)

(5d)

where and
are shown in Fig. 1(a) and (b), and the

two other predecessors are , and
. For simplicity and emphasis

on the UMRF abnormality, the QMRF definition is given
for neighboring system of size two, however, it is simply
extendable to higher order of QMRF.

It is also worth to point out that, the simulation results indicate
that if is UMRF with respect to the upper-left corner of the
lattice, it is also UMRF with respect to the lower-right corner,
and in the same way if is UMRF with respect to the upper-
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right corner, it is UMRF with respect to the lower-left corner.
However, the mathematical proof is still an open problem.

Next, it desired to show that QMRF does not have the irreg-
ularity existing in the UMRF. To this end, we first need to find
the pdf of the QMRF lattice given by Definition 1.

Theorem 1: If is QMRF
with the neighboring size of 2 on a finite rectangular lattice size
of ( being even), then

(6)

where it is assumed outside the lattice boundaries.
Proof: The proof can be obtained by applying the chain

rule to the field in a zigzag scan starting from the upper-
left corner of the lattice. Since the proof is straightforward but
lengthy, it is not included here. Fig. 1 shows the difference be-
tween the raster scan and the zigzag scan. Theorem 1 is also
valid for higher order QMRFs by making some adjustments on
the boundaries.

In (6), without loss of generality, is assumed to be an even
number; however, it is also true for odd numbers by making a
slight modification to the upper limit of the multiplication on
( needs to be substituted with ).

As can be seen, the new in (6) contains both of the di-
agonal cliques along and [compare with (2)]. It is,
thus, intuitive that the directional effect will cancel each other
out. However, this is proven by the next theorem.

Theorem 2: If is a reg-
ular rectangular lattice and QMRF with the neighboring size of
two, then

(7)

where , and outside the lattice
boundaries.

Proof: If is a realization of , by utilizing (2)
for , we get equation (8), shown at the bottom

of the page. Fig. 2(b) shows the spatial order be-
tween the sites involved in (8). By defining as
the joint probability of their random variables,

, and
utilizing Definition 1, we get

(9)

By utilizing the unilateral property (5b) of QMRF and rear-
ranging the chain rule, can be rewritten as shown in (10),
at the bottom of the page. Note that only the first 5 terms in
(10) are dependent on . The rest is factored out of the sum-
mation in the denominator of (9), and consequently gets sim-
plified. It is also known that if , then

. Thus

(11)

Consequently, QMRF of size 2 is a MRF of size 4 with no abnor-
mality. Theorem 2 is only proven for QMRF of size 2; however,
it is simple to extend it to any order of QMRF.

Now we show another interesting conditional independency
in the local neighboring structure of the QMRF of neighboring
size 2 such that is characterized in terms of 2-D conditional
probabilities. Let us start with the following two lemmas.

Lemma 1: For every four random variables , , , and , if

(12)

then there exist at least three functions , , and for
which

(13a)

(13b)

Lemma 2: Random variables and are independent
conditioned on , if and only if

for some arbitrary functions , ,
and .

(8)

(10)



RAZLIGHI et al.: COMPUTATION OF IMAGE SPATIAL ENTROPY USING QUADRILATERAL MARKOV RANDOM FIELD 2633

Fig. 3. Illustration of the sites involved in Theorem 3.

Proofs for both of the above lemmas are given in Appendix.
Now, Theorem 3 gives the new property of QMRF based on
these lemmas.

Theorem 3: If the random field is QMRF with the neigh-
boring size of 2, then

(14)

Proof: The proof is evident by substituting ,
, , and into Lemmas 1 and

2, as it is shown in Fig. 3. This Theorem is only applicable for
neighboring order of size 2 and its mathematical proof for higher
orders remains an open problem. Finally, it is shown that there is
at least one nontrivial field which satisfies the QMRF definition.
The following corollary serves such goal.

Corollary 1: QMRF with the neighboring size of 2 is a
Pickard random field (PRF).

The conditions given by (14) are necessary and sufficient for
a stochastic process to be PRF [6]. Therefore, QMRF with the
neighboring size of 2 is PRF. Note that PRF is the only known
class of nontrivial stationary MRF [6], [11].

III. IMAGE SPATIAL ENTROPY

Extending the Shannon definition of entropy [13] to a finite
rectangular lattice (an image) results in the following equation:

(15)

where denotes the row-wise enumeration of the sites in an
image lattice, is a realization of the field, and

is the global multidimen-
sional pdf of all the variables in the field. Let us first state some
properties of this entropy.

1) Property 1: If
are iid, then

(16)

Thus, each individual site in the lattice contains the marginal
information . The total information in the image will be
the summation of these marginal information if and only if they

are independent of each other. For the identically distributed
case, the total information of the image will be .
It is worth pointing out that for this spatial case, ISE becomes
equal to a factor of MME. When all the random variables are
presumed to be iid, then each pixel value reflects an outcome
of the same variable, i.e., . Hence, the 1-D histogram of the
image can precisely represent its pdf.

2) Property 2: For a general random process, we have the
following bound:

(17)

with equality when ’s are independent. This is known
as the independence bound.

3) Property 3: If the field of random variables is fully pre-
dictable, then we have

(18)

Thus, for a large class of images, the ISE lies in the range
. For comparison purposes, we also

define a normalized ISE as follows:

(19)

where is a normalized ISE which will be used in Sec-
tion V for comparison purposes. The motivation for the intro-
duction of this normalized entropy is to shed light on the dis-
parity between the true value of entropy and its approximate
empirical evaluation based on first-order statistics, which clearly
overestimates the entropy via the slackness in the independence
bound of (17). A similar overestimation of the entropy, resulting
from an undercounting of dependencies in the image, has been
the bane of many existing practical methods. By introducing the
notion of normalized entropy, we shall be able to measure the
level to which the new methods are susceptible to, or immune
from, the overestimation effect.

By incorporating the result from Theorem 3 into (6), we get

(20)

Equation (20) shows how the multidimensional is decom-
posed into a number of 2-D pdfs for QMRF. By placing
from (20) into the extension of Shannon Entropy in (15) and by
performing some algebra, we obtain (21), shown at the bottom
of the page, where is the joint entropy of the random
variables and , and is the conditional entropy of

given . The interesting point is that in (21), not only the joint

(21)
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entropies of the vertical and horizontal neighboring sites are in-
corporated, but also both of the diagonally ( , and )
interacting sites are incorporated into the computation of ISE.
This is quite un-intuitive, since in MRF with the neighboring
size of 4, only the vertical and horizontal neighboring cliques
are incorporated in the Gibbs potential and consequently in the
final , see Fig. 1(a).

Next, the computation of joint and conditional entropies in
(21) is required. Fortunately, there are enough data samples in
a typical image to estimate a 2-D pdf. However, for such es-
timation, the homogeneity assumption is needed. Even though
homogeneity does not hold for images in general, it is a rea-
sonable assumption to make for small blocks of an image. The
homogeneity assumption makes it possible to simplify (21) fur-
ther by utilizing the normalized joint histogram as the joint pdfs.
This simplifies (21) to

(22)

where denotes the joint entropy of the site with
its upper neighbor, the conditional entropy of
given , conditional entropy of given ,

the joint entropy of the left and upper neighbors,
and the joint entropy of the right and upper neigh-
bors. It should be noted that (22) is obtained for a field with
no boundaries even though an image is a finite lattice or field
with boundaries. It is a common practice to assume all the sites
outside of an image lattice is zero. This is so called the “free
boundary” assumption, i.e., the sites on the boundary only
interact with neighbors that are located inside the lattice and are
independent of the ones that are outside the lattice [9]. Based on
the free boundary assumption, (22) can be modified as follows:

(23)

It is clear that for large image sizes, the free boundary as-
sumption does not change ISE significantly. Hence, for the rest
of the paper, we just consider (22) as the estimation of ISE. The
newly defined ISE includes both the marginal and spatial infor-
mation of an image, thus generating a more complete estima-
tion. In Section IV, the same idea is applied to the computation
of mutual information.

IV. IMAGE SPATIAL MUTUAL INFORMATION

Spatial entropy of a single image lattice was defined in Sec-
tion III. In this section, we extend the definition to a pair of
image lattices. We assume that both images belong to the same
scene, but corresponding to different sensors (i.e., color or spec-
tral images) or captured under different lighting conditions. In
many image processing applications, this assumption complies
with real-world scenarios. We obtain ISMI as an extension of the
definition of ISE. The extension is rather straightforward since
the corresponding random variables in two images and can

Fig. 4. Structure of two corresponding image lattices� and�.

be considered to be a single vector-valued random variable ,
that is

(24)

The definition of ISE for this newly defined vector of spatial
stochastic processes is given by

(25)

where is the realization of the image lattices and
under the QMRF assumption. Without loss of generality, one
can assume that and have equal sizes. Fig. 4 shows the
structure of the field .

If is a MRF, a vector located at site is independent
from all the vectors in the field given its 4-nearset neighbor
vectors. QMRF can also be defined in the same way. Therefore,
when considering a QMRF with the neighboring size of 2 for the
field , the following equation can be derived from (22) and (25)

(26)

Under the homogeneity assumption, denotes the
joint entropy of each vector with its upper neighbor,
the conditional entropy of given which is equal to

, the conditional entropy of
given , the joint entropy of the left and upper
neighbors, and the joint entropy of the right and
upper neighbors, as shown in Fig. 4. By substituting processes

into in the first part of (26), we get

(27)

which requires a 4-D pdf to be estimated.
Given the number of available data samples in a typical

image, such estimation would not be accurate. However, under
the QMRF assumption, it is reasonable to consider that and

do not interact as much as and or and . Let us
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Fig. 5. Structure of four corresponding random variables in (27).

assume that and are independent given and . To
keep the symmetry in place, it is also required to assume that

and are independent given and , see Fig. 5. Under
the above assumptions and Theorem 3, (27) can be simplified
as follows:

(28)

where is the joint entropy of the process in lattice
with the corresponding process in lattice , is

the joint entropy of the process with its upper neighbor in
lattice , is the joint entropy of the process with
its upper neighbor in lattice , is the joint entropy
of the process in lattice with the upper neighbor of its
corresponding process in lattice , and , are the
marginal entropies (MME) of the lattices and , respectively.

The other joint entropies in (26) can also be simplified in the
same manner. On the other hand, we have

(29)

As a result

(30)

Derivation of (30) from (29), (28), (26), and (22) is quite lengthy
but straightforward. Now, let us consider some of the important
properties of ISMI.

1) Property 1: with
equality when with probability one. If we substitute
instead of in (30), we get (22), which is equal to , and
visa versa.

2) Property 2: with equality when , are
independent. For independent and , all the joint entropies
in (30) are equal to . Then, the summation of all
the coefficients becomes zero.

3) Property 3: , which should give us
pause because in (30) such a property does not hold in general.
This stems from the fact that is computed for QMRF
lattices, and for general fields, a modification is required. To
address this issue, we can rewrite

(31)

Fig. 6. Synthesized images created with initial point: (a) � � ��, (b) image
a after 60 iterations of randomization.

Equation (31) is obtained simply by enforcing the symmet-
rical balance into (30) to address Property 3, as indicated in
Fig. 4. However, it is easy to show that both (30) and (31) give
the same result for QMRF. However, this is not the case for gen-
eral random fields.

V. VALIDATION VIA A SYNTHESIZED IMAGE

In this section, we have devised a synthesized image in order
to validate the performance of our introduced computation
method, ISE, as compared to the existing methods. The synthe-
sized image is composed by fully correlated processes in which
each site in the image lattice is a deterministic function of only
one random variable (for instance ). Different functions
can be utilized for this purpose. In order to have the highest
marginal information, the following function is considered:

(32a)

(32b)

where denotes the total number of labels in the finite dis-
crete set , which is 256 for 8-bit quantized images. The synthe-
sized image is shown in Fig. 6(a). Equation (32) gives a different
image for every possible . From a theoretical standpoint, all
the random variables in the image have zero information con-
ditioned on . Since the number of the variables is relatively
high in a typical image, the true entropy per pixel of such a syn-
thesized image is very close to zero. On the other hand, the mar-
ginal histogram of this synthetic image is uniform, which can
mislead a nonsophisticated algorithm for the calculation of en-
tropy. The extent to which an algorithm can capture these non-
linear interpixel dependencies can be considered a measure of
the goodness of the method. In other words, such intentionally
imposed characteristics make it possible to alter the image spa-
tial order without changing its marginal histogram and conse-
quently to come up with a comparison mechanism which fo-
cuses on measuring image spatial information rather than mar-
ginal information.

Now let us use the above synthesized image to provide a
mechanism for comparing the effectiveness of ISE and the ex-
isting methods in measuring image spatial information. First, all
the discussed methods of computing image information are ap-
plied to the synthesized image given by (32) for , as
shown in Fig. 6(a). Then, with every iteration, the location of a
certain number of sites is randomized without changing their in-
tensity values and the computation of the entropies are repeated.
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Fig. 7. Behavior of different entropy definitions versus correlation coefficient.

This randomization process is continued until the correlation co-
efficient between a pixel and its 4-nearest neighbors becomes
zero [14]. Notice that at this point, there is no correlation be-
tween the neighboring sites in the image lattice. Fig. 6(b) shows
the resulting images after 60 iterations. It should be noted that
the synthesized image at this point is statistically very close to
an iid image, as per Property 1 in Section III.

Next, let us examine the behavior of the existing measures
of image information as reviewed in [1], and compare them to
our newly introduced measure (ISE). Fig. 7 shows the outcome
of all the existing entropy definitions along with this new def-
inition. As can be seen from this figure, when the correlation
coefficient is minimum (highest uncertainty), all the en-
tropy definitions reflect their maximum level. However, the dif-
ferences between them become more noticeable by increasing

(reducing uncertainty).
As expected, MME does not change throughout all the itera-

tions, since it depends purely on the marginal histogram, and
there are no changes to the image histogram during the ran-
domization process. SDE reduces by increasing , but for a
fully deterministic image given by (32), it reflects the normal-
ized entropy value of 0.72 per pixel, which is not accurate. In
the SDE definition, the same weighting factor for all normal-
ized entropies is assumed without considering the fact that ex-
cept for a few nearest neighbors, there exist little or no depen-
dency between the sites [1]. Incorporating this independency
results in overestimating entropy value as illustrated in Fig. 7.
GIE also does not change during the randomization process
since does not change. Altering the image neighborhood
without changing does not change , thus
does not get altered. It is worth pointing out that there is very
little change in GIE during the randomization process which
is visually not noticeable in Fig. 7 due to its scale. The out-
come shown in Fig. 7 shows that AME provides the most ac-
curate estimation among the previously existing methods, how-
ever, it is not as good as our newly defined ISE. This is because
an Aura matrix for AME is built by the summation of 4 direc-
tional co-occurrence matrices, and such a summation smoothes

out fluctuations in each co-occurrence matrix. Consequently, the
resulting measure still remains higher than what is expected. As
seen from Fig. 7, when the correlation coefficient is maximum

(lowest uncertainty), all the entropy definitions reflect
a value strictly greater than 0, while our ISE is very close to
zero. In Section VI, two image processing applications are pre-
sented to provide further evidence of the effectiveness of ISE in
practice.

VI. IMAGE PROCESSING APPLICATION EXAMPLES

Although the focus of this paper is not on any particular appli-
cation, it is useful to see how this new method performs when
applied to actual image processing applications. Due to space
limitations, we limit the discussion to the outcome produced
rather than the technical discussion or details of these applica-
tions. The two applications considered include the use of spatial
entropy in image fusion and the use of mutual information in
image registration.

1) Image Fusion: In [15]–[17], entropy was used to devise
image fusion algorithms. Our focus here is placed on showing
that ISE can be utilized as a measure of optimality in image fu-
sion applications, with the understanding that the detailed qual-
itative examination of images is out of the scope of this discus-
sion. Let us consider two images of the same scene captured
with two different camera exposure settings. Such two images
are correlated with each other. Let and denote the im-
ages. Theoretically, the values of and reflect the
existing information in each image, and reflect the
entire information in both of the images. Thus, regardless of
the fusion algorithm used, the information in the fused image
would not exceed . Therefore, excluding certain arti-
ficially pathological cases, can be utilized to serve as
an upper bound ISE of the fused image for any fusion algorithm.
Fig. 8 shows the fusion process more explicitly. Two captured
images and are taken from the same scene with different
exposure settings. Then, the simplest fusion method (averaging)
is utilized to fuse them. Since both of the images and are
taken from the same scene, their information cannot exceed the
information in the original image. As a result, their fusion does
not result in an image with more information than the original
image. In this example, . This is the max-
imum information existing in and , which is very close to
the information in the original image. The difference (0.0046)
is due to the fact that any higher order of dependency in the
neighboring pixels is not considered in ISE. An optimal fusion
algorithm is the one which produces an image with an ISE equal
to the original image. The issue addressed here is the benefit of
using ISE instead of the traditional entropy definition. Table I
shows the results when using monkey model entropy (MME).
As can be seen from this table, . This means
that the upper bound entropy for the fused image is 1.0346, but
the normalized entropy per pixel cannot exceed one. The reason
for this outcome is that MME does not consider the dependency
between adjacent pixels, thus unnecessarily increasing the en-
tropy value. Similar results are obtained when using the other
definitions of entropy.
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Fig. 8. Same scene captured by two different exposure settings and the resulting fused image.

TABLE I
ISE AND MME FOR IMAGES IN FIG. 8

2) Image Registration: Viola [18] and Maes et al. [19] were
the first ones utilizing mutual information for image registra-
tion purposes. However, despite the earlier promising results of
Shannon mutual information (SMI), recent research [20], [21]
has indicated that image registration based on SMI has room for
improvement. The objective here is simply to show how ISMI
enhances image registration as compared to regular correlation
and SMI. Only a simple 2-D rigid registration is considered
here. In image registration applications, the aim is to have a mea-
sure which has only one peak at the registration point and drops
monotonically when the amount of mis-registration increases.
The ratio of the peak value to the minimum value gives the ro-
bustness of the measure.

To provide such a comparison, the image shown in Fig. 8
is mis-registered by 5.0 pixels with a step size of 0.1 pixel in
all four directions. For simplicity, Fig. 9 shows the value of the
correlation coefficient, SMI, and ISMI along two of the direc-
tions. Note that the values are normalized to make the compar-
ison easier. As can be seen from this figure, correlation coef-
ficient does not perform well as compared to SMI and ISMI.
The maximum value of while the maximum
value of . At the point of 2.5 pixel mis-registra-
tion, and . Therefore, the ISMI
robustness is 197.2 and the SMI robustness is 7.8 for SMI. In
other words, ISMI outperforms SMI by about 25 times which is
a significant improvement.

VII. CONCLUSION

This paper has presented a new method for computing image
information in order to overcome the shortcomings of the pre-
viously existing methods. For this purpose, a new image model,
named quadrilateral markov random field (QMRF) has been in-
troduced. It has been shown that this model overcomes the ir-

Fig. 9. Comparison of different registration methods.

regularity and directional effects that exist in unilateral markov
random fields (UMRF). The properties of QMRF with neigh-
boring size of 2 make it possible to decompose the image
lattice pdf to a product of 2-D pdfs. As a result, computa-
tion of entropy and mutual information is made practically
feasible in image processing applications where only a finite
number of data samples are available. The discussed compar-
isons based on both synthesized and real images have provided
a validation of the accuracy of the introduced method and its
advantages over the existing methods. This improved method
is general purpose in the sense that it can be applied to any
image processing application that involves the computation of
image information.

APPENDIX

Proof of Lemma 1: From (12), it is well known that there
exist functions , , , and for which the following
conditions hold:

(A1)
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Then

(A2)

and consequently

(A3)

The same approach can be applied to show

Proof of Lemma 2: The proof for necessary condition is
easy since if , then

(A4)

The sufficient condition is proven by contradiction, meaning if
cannot be factorized in the form of (A4), then and

will not be independent given . It is clear that if
is not in the form of (A4), then cannot be written in
the following form:

(A5)

Consequently, cannot be written as .
Therefore, and are not independent given . In fact, if

is written as , it can always be written in
the form of (A5) by choosing . Hence,
there is no case in which the form in (A5) is possible while

. This proves the sufficient condition of
Lemma 2.
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