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ABSTRACT

Multiscale processing, in particular using the wavelet transform, has emerged as an incredibly effective paradigm for
signal processing and analysis. In this paper, we discuss a close relative of the Haar wavelet transform, the multiscale
multiplicative decomposition. While the Haar transform captures the differences between signal approximations at
different scales, the multiplicative decomposition captures their ratio. The multiplicative decomposition has many
of the properties that have made wavelets so successful. Most notably, the multipliers are a sparse representation
for smooth signals, they have a dependency structure similar to wavelet coefficients, and they can be calculated
efficiently.

The multiplicative decomposition is also a more natural signal representation than the wavelet transform for some
problems. For example, it is extremely easy to incorporate positivity constraints into multiplier domain processing.
In addition, there is a close relationship between the multiplicative decomposition and the Poisson process; a fact
that has been exploited in the field of photon-limited imaging. In this paper, we will show that the multiplicative
decomposition is also closely tied with the Kullback-Leibler distance between two signals. This allows us to derive
an n-term KL approximation scheme using the multiplicative decomposition.

1. INTRODUCTION

Multiscale signal and image processing, in particular the wavelet transform, has enjoyed tremendous success in recent
years. In particular, wavelets are responsible for state-of-the-art algorithms for compression, segmentation, denoising,
and many other applications in statistical signal processing.!> In this paper, we will consider another multiscale
transformation closely related to the Haar wavelet transform: the multiscale multiplicative decomposition. The
multiplicative decomposition is similar to the Haar transform in that it decomposes the image at a nested set of
scales, but for many problems it provides a more natural representation.

Most of the discussion in this paper with focus around multiplicative decompositions for 1-D signals. Although
extending the multiplicative decomposition to two dimensions is not quite as straightforward as with, say, the Haar
transform (see Section 2.3), most of the results are the same.

To illustrate the multiplicative decomposition, we compare it to its close (and perhaps more familiar) relative the
Haar transform. Let = (zg,21,... ,on_1), N = 27 be a 1-D signal. We form the (un-normalized) Haar scaling
coefficients u; ; by taking

ULk = Xk k=0,..., N—1 ' 1)
Ujk = Ujt1,2k + Ujt1,2k+1 j=L-1,...,0 k=0,...,27-1

The Haar transform divides the signal into dyadic intervals at each scale and calculates the (renormalized) average
of the signal over these intervals. The scaling coeflicients can easily be arranged into a binary tree (see Figure 1).
Each node represents a scaling coefficient u;j with children wjiq 2k, %j41,2k+1 that further refine the signal in the
same spatial location (we will refer to u;  as the parent of wj41 2, and wjy1 2p+1).

The Haar wavelet coefficients w, r, are calculated by taking the difference (again, renormalized) between each pair
of scaling coefficients that share the same parent:

wik = 287D (uj o —ujpiok41) j=L-1,...,0 k=0,...,29 -1 (2)
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Since the Haar coefficients tell us how to refine the local averages from scale to the next, each one can be associated
with an edge in the binary tree in Figure 1. The Haar coeflicients represent additive refinements; we have ;i 21 =
wjg + 2057w and wjgs ppr =y — 2079wy

In contrast, the multipliers m;; are calculated by taking the ratio of each left (by convention) child over its
parent
M = u’:]% j=L—-1,...,0 k=0,...,27~1 (3)
(we only need to store one of these ratios, the ratio of a right child over its parent is given by 1 — m; ;). Each
multiplier can also be associated with an edge in the binary tree. The multipliers (as the name suggests) represent
multiplicative refinements; w;y1 06 = M xt;r and w11 2641 = (1 — mjx)uj k. Since mass is preserved from scale to
scale (up to a normalization constant), we can interpret m; ; as the ratio of the total mass that is “pushed” to the
left as we move to a finer scale.

Although closely related to the Haar transform, the multiplicative decomposition is a different representation
of the signal. A moments reflection shows that there is not an easy relationship between the wj and mj. In
particular, logm; r # w; , for a given signal.

The multiplicative decomposition has several properties that make it a more natural representation than the Haar
transform in certain situations. For example, when the signals of interest are positive, e.g. images, we would like
to constrain any processing to produce a result with all positive values. This constraint is perfectly natural in the
multiplicative domain: if all the multipliers are between 0 and 1, the resulting signal will be positive. This is not
true of the Haar transform; thresholding the Haar coefficients of a positive valued signal can give a result with values
below zero.

The Haar wavelet transform (and wavelet transforms in general) owes much of its success in image processing to
two basic facts. First, it provides a sparse decomposition for real-world images. Most of the image is represented
by a few large Haar coefficients, with the rest being close to zero. Second, it is very easy to capture the statistical
structure of images in the Haar domain. Simple statistical models with local dependencies have yielded state-of-
the-art algorithms in denoising,®* compression,® segmentation,® and many other problems in statistical image
processing. Because of its close relationship to the Haar transform, the multipliers also enjoy these properties, as
can be seen in Figure 3. Representation of real-world images is as natural in the multiplicative domain as it is in the
Haar domain.

The multiplicative decomposition can also be used to model Poisson processes. This is useful when analyzing
images that have been formed by photon-limited imaging; images with Poisson noise. As discussed in Section 3,
the multiplicative decomposition retains the decoupling between the signal and the Poisson noise. Since images
themselves can be modeled well in the multiplicative domain, we can solve denoising/estimation problems using
powerful Bayesian techniques.”-8

Another useful property of the multiplicative decomposition is that the KL distance between two signals, given
by

N-1 . N-1
dir(z,y) =Y @i logj + ) (i — ). (4)
i=0 v =0

and described in Section 5, can be easily expressed in terms of their multipliers. Using this fact, we can derive
an n-term approximation algorithm using the multipliers; it is easy to choose which multipliers represent the most
information about the image. Since the decomposition is sparse for real-world images, an image is well approximated
using a small percentage of its multipliers (see Figure 4).

We begin in Section 2 by describing the multiplicative decomposition and its relationship to the Haar transform.
Section 3 discusses the statistics of multipliers, and shows that the multiplicative decomposition is well suited for
Poisson processes. In Section 4, we introduce the KL signal distance as a measure of the distinctness of two images.
In Section 5, we show that the KL signal distance is easily expressed using the multiplicative decomposition and use
this fact to derive an n-term approximation algorithm.



2. MULTIPLICATIVE DECOMPOSITIONS

The multiplicative decomposition is a multiscale signal representation. Like the Haar transform, the multiplicative
decomposition describes how piecewise constant approximations of the signal evolve from scale to scale. While
the Haar coefficients describe the additive changes in the approximation from scale to scale, the multiplicative
decomposition describes the change by a multiplicative cascade.

2.1. The multiplicative and Haar decompositions

We start by recalling the unnormalized Haar scaling coefficients of a discrete, 1-D, finite length signal © = (zo,z1,... ,ZN—-1),
N =2L:
UL,k = Tk kZO,...,N—l
Uik = Wipiak T Uitk J=L—1,...,0 ()
k=0,...,27 —1.

Y

The scaling coefficients are found by subdividing the signal into dyadic sets at each scale, and finding the total mass
over each set. As such, it is convenient to represent the w;; as nodes in a binary tree, as shown in Figure 1. By
summing the scaling coefficients of the two child nodes, we calculate the scaling coefficient of the parent. The leaves
of the tree, the nodes at scale L, represent the signal itself.

To generate the Haar coefficients from the scaling coefficients, we set

wik = Cj(ujyror — Ujt12k41) J (©)
k=0,...,21 -1

where C; = 2(L=3)/2 " The Haar coefficients are associated with the edges between the nodes on the binary tree
(Figure 1). The result of adding w;/C; to the parent scaling coefficient (u; ) is the left child scaling coefficients
(4j+1,2k). The right child coefficient is given by subtracting w; /C; from the parent coefficient. Thus, the Haar
coefficients can be thought of as an additive cascade. To calculate a leaf z;, we can take the scaling coefficient uj, k
of any ancestor of z;, and add to it all the Haar coefficients (or negative Haar coefficients) associated with edges on
the path from u;  to z;.

As the structure of equations (5) and (6) suggests, calculating the Haar coefficients is extremely efficient. The
O(N) computational complexity is a significant factor of the popularity of the Haar transform (and of wavelet
transforms in general).

To generate the multiplicative decomposition of x, we simply take the ratio

mi = M G=L-1,...,0 k=0,..,2-1 (7)
where we use the (admittedly odd) convention 0/0 = 1/2. To reconstruct z from its multipliers, we also need
knowledge of the top scaling coefficient ug9. The multiplicative decomposition consists of ugo and the m;; for
j=L—1,....,0and k=0,...,2 —1.

The multipliers m; , can also be associated with edges on the tree of scaling coefficients (Figure 1). To calculate
the left child scaling coefficient %;41,2%, we simply multiply the parent scaling coefficient u;; by the multiplier m;
on the edge between the two. To calculate the right child, we multiply the parent by 1 — mj ;. The multiplicative
decomposition represents a multiplicative cascade. To calculate a leaf z;, we can take the scaling coefficient w;; of
any ancestor of z;, and multiply it by all the mj/ j» (or 1 — mj 4r) associated with the edges on the path from w;
to z;. The multiplicative decomposition also has O(N) computational complexity, so no efficiency has been lost.

The scaling coefficients at a scale .J can be used to construct a piecewise constant approximation & of x
& = 27uyy, k2F—7 < i< (k+1)207. (8)

The approximation &7 is the average of x over a dyadic index set. As we saw above, increasing the scale j splits
the scaling coefficient into two children coefficients. This mean that each region in which #7 is constant gets broken
up into two smaller piecewise constant regions. Whereas on the tree we add a Haar coefficient to the parent scaling
coefficient, a series of pulses with heights proportional to the Haar coefficient are added to #” resulting in /%1 (this
is illustrated in Figure 2). Using the multiplicative decomposition, this refinement from #7 to 27! is equivalent to
point-wise multiplying #7 by a series of pulses with values between 0 and 1 (also shown in Figure 2).



2.2. Basic properties of multipliers

When the signal is flat in a dyadic region, there is no refinement from one scale to the next, and the corresponding
“no-information” multipliers are 1/2 (note that the “no-information” Haar coefficients are 0). Jumps in the signal
correspond to multipliers away from 1/2. However, unlike the Haar transform, the multiplicative decomposition is
nonlinear. As a consequence, jumps of equal height are not represented by the same multipliers. For example, if
Ujr = 3 with ug41 2k = 1 and we41 2641 = 2, then wj, = —C; and mj = 1/3. If, however, u; r = 5 with w41 21 = 2
and ug41 2641 = 3, we still have w;, = —C; but m;x = 2/5. A jump of a certain size appears more drastic to the
multiplicative decomposition if it happens at small signal values. We will exploit this property later in Section 5.2.

When the signal to be analyzed is predominantly smooth (much of the signal is well approximated by piecewise
constants), most of the multipliers will be close to 1/2. As discussed in the next section, we see this behavior in
images (the corresponding behavior for the Haar wavelet coefficients is well documented!). This suggests that a few
multipliers carry most of the image information, an idea we will develop further in Section 5.1.

2.3. Multiplicative decompositions in 2-D

Extending the multiplicative decomposition to higher dimensions is not as straightforward as for the Haar transform.
In this section, we will extend the multiplicative decomposition in two different way, and discuss the properties of
each. We will refer to 2-D signals as images, since this is the primary application for higher dimensional signal
processing.

In the analog of (5), the 2-D scaling coefficients are given by sums of the image over dyadic squares.
The coefficients are best represented on a quad tree, with each w;; breaking up into four smaller coefficients
Wit aky Uj1 ak+1, Ujt1,4k+2, Ujt1,4k+3 aS we move to finer and finer scale.

In the first representation, which we’ll call the non-separable 2-D multiplicative decomposition, the multipliers
are calculated by taking the ratio of each child with the parent

non __ Uj41,4k

Mjko = Tui 9)
non __ Uj41,4k41

Mik1 = “a. (10)
non __ Uj41,4k42

Mik2 =  ~u . (11)
non __ Uj41,4k+3 non non non

Miks = oo = L=mgyle —miih —miy, (12)

forj=1...,L,k=0,. — 1. We have used the notation m}3", for the multiplier associated with the edge on

the quad tree that connects uj and ujyq apt+¢e- The transform saves the first three coefficients (by convention), since
the last is redundant.

Again, for positive valued images, we have m39", € [0,1] for all j, k, £. Since we must also have m}" +mj% +
m59y < 1, we have an implicit dependence between the three multipliers we store. When we process the multlphers
it is not enough to simply keep each ones value between [0, 1] independently, we must also make sure that the three
multipliers that share the same parent sum to less than 1. Hence, do any kind of processing with the mq, is tricky,
since we must account for this dependence.

*

To address this problem, we introduce the “separable” 2-D multiplicative decomposition *. Here, we first break
the dyadic square into right and left halves, and then each of these into top and bottom halves:

Ujt1,4k T Ujt1,dk+1
m2j,k — 7+1, J+1,4k+ (13)
Uj,k
mM2j+1,2k i+1,4k (14)
Jj+1,
Ujil,ak T Ujil,dk+1
W
Jj+1,4k+2
moj+1,2k+1 = . (15)

Ujg1,ak4+2 T Ujt1,4k43

*The word separable is a bit of a misnomer here. Although this representation separates into two stages the right-left and up-down
splits of the dyadic squares, these operations are not reversible; the decomposition that splits left-right first is slightly different than the
decomposition that splits up-down first.



(a) Haar tree (b) Multiplier tree
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Figure 1. (a) The Haar transform can be naturally represented with a binary tree with the scaling coefficients on the nodes
and the Haar wavelet coefficients on the edges. (b) The multiplicative decomposition again has the scaling coefficients on the
nodes, but now the edges are associated with multipliers.

(a) Haar approximation refinement (b) Multiplier approximation refinement

+ X
1 2m
W ik

o
IR AN
‘ ‘ -1 2(1' m]k)
" Cj Wik

Figure 2. Function refinement moving down one scale. (a) For the Haar transform, this is captured by adding in a pulse
with height proportional to the size of the Haar wavelet coefficient. (b) For the multiplicative decomposition, we point-wise
multiply the approximation at one scale by another piecewise constant function with values proportional to the multipliers.

As the indexing in (13)—(15) suggests, this basically flattens the quad tree into a binary tree, with each level transition
in the quad tree being represented by two level transitions (one for left-right, one for up-down) in the binary tree.
The separable 2-D and the 1D multiplicative decompositions share the same properties.

In the remainder of the paper, whenever we refer to the multiplicative decomposition of an image, we will be
referring to the separable decomposition in (13)—(15).

3. STATISTICAL MODELING AND MULTIPLIERS

One of the main advantages of a multiscale representation of an image is that it makes the image’s salient statistical
properties easier to characterize. For example, models that treat the wavelet coefficients of images as independent®-®
or as having simple, local dependencies®*® have produced tremendously successful algorithms for many problems in
statistical image processing.



3.1. Poisson noise and the multiplicative decomposition

Although multiscale decompositions provide a domain in which the signal is easy to describe, they don’t necessarily
do the same for noise processes. In situations where the algorithm is dealing with corrupted data (such as denoising or
any kind of processing with photon-limited images), having a tractable noise model is critical. For example, wavelet
based denoising results, in both theory and in practice, rely heavily on the noise being Gaussian. Independent
Gaussian noise has a very simple wavelet-domain description; if an image is corrupted by additive white Gaussian
noise (AWGN), the wavelet coefficients are also corrupted by AWGN. Other types of noise, e.g. Poisson, Gamma,
or Cauchy, do not have nice representations in the wavelet domain.

Just as the Haar transform is a natural representation for Gaussian noise, the multiplicative decomposition, as
described in Section 2, is natural for Poisson noise.”!'® To make these notions more precise, consider a 1-D signal
x = (xg,x1,... ,xn—1) with scaling coefficients u; r, Haar coefficients w; ; and multipliers m; . We’ll consider two
“noisy” versions of z. Let y be an observation of z in additive white Gaussian noise;

Yi NN(l“iaUQ) (16)

with the y; independent given the z;. By Parseval’s theorem, the Haar coefficients of y, denoted (Hy);, are
distributed

(Hy)jr ~N(wjk,0°). (17)

The independence of the noise in the time domain has been preserved in the transform domain. Let z be an
observation of x in Poisson noise,

z; ~ Poisson(z;) (18)

with the z; independent given the z;. It is clear that the distribution of the Haar transform H z can not be expressed
nicely as in (17). However, we can write distribution of M z, the multiplicative decomposition of z, by

uo,0 ~ Poisson (Z a:l) (19)

(M2)j+1,2 ujx ~ Binomial(uj gk, mji1,2k) (20)

with the (M2z); , independent.'©

The factorization given by (19)—(20) shows that the multipliers of a Poisson process are independent. This makes
the multiscale multiplicative decomposition natural for analyzing Poisson processes, just as the Haar transform is
natural for analyzing Gaussian processes.

3.2. Image modeling with the multiplicative decomposition

In order to take a Bayesian approach to image processing problems, we need a statistical model of the image itself
as well as the corruption process. The statistical structure of real-world images can be as readily characterized
in the multiplier domain as in the wavelet domain. Indeed, because the multiplicative decomposition and the
Haar transform are so intimately related, the multipliers and Haar coefficients of images share the same statistical
“erammar” (dependency structure). Since this structure is much easier to characterize than dependencies in the
spatial domain, and since this statistical grammar (in the context of the wavelet domain) has been exploited in the
past to create powerful transform-domain algorithms,>® the multiplicative decomposition is a promising domain in
which to build an image model.

The two key properties of the multipliers of real-world images, illustrated in Figure 3, are
1. The decomposition is sparse (most of the multipliers are clustered around 1/2).

2. The multipliers exhibit persistence across scale (large values— values that are much smaller or much greater
than 1/2— tend to exist on connected paths in the tree in Figure 1).
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Figure 3. (a) Cameraman image and (b) its multiplicative decomposition. A histogram of the multipliers at one scale is
given in (c). Notice that most of the multipliers are close to 1/2. Also note the persistence of “large” multipliers (those not
close to 1/2) near the edges in the image.

These properties suggest a relatively simple statistical model for the multiplicative decomposition of an image fol-
lowing the hidden Markov modeling paradigm in Crouse et al.> Since most of the multipliers will be close to 1/2,
and all of them lie between 0 and 1, the marginal distributions can be given by the symmetric beta (B(p,p), with a
large value of p for sparsity) distribution as in Timmermann and Nowak.” The dependencies between multipliers at
different scales can be specified by a conditional distribution on the parameter p; Q(p1,p2) = the probability that a
multiplier is distributed B(p1,p1) given that its parent is distributed B(p2,p2). We propose this model only as an
illustration of how to capture the structure of image multipliers, and we don’t pursue it further in the sequel.

4. KULLBACK-LEIBLER DISTANCE AND METRICS FOR SIGNAL SPACES

Section 3 and Kolaczyk'® show that different kinds multiscale decompositions are appropriate for processing signals
with different kinds of degradation (noise processes). In this section, we will show that the appropriate metric to
use on the image space (a measure of the distinctness of two images) also depends on the type of degradation. We
derive this metric by looking at the Kullback-Leibler distance between the distributions of the noisy observations of
two signals.

We start by recalling the notion of Kullback-Leibler (KL) distance, a metric that quantifies the distinctness of
two discrete probability distributions p(x) and ¢(z) both with support S:

Dlla) = 3 pla) log 2. (21)

zeS (:L“

The KL distance D(p||q) has a number of interpretations.'! Perhaps the most notable comes from detection theory

via Stein’s Lemma. Consider the following classic problem: given a set of independent and identically distributed
samples {z1, 2, ... ,z,} determine which of the distributions (p or ¢) is more likely to have produced the data. We
do this simply by finding the larger of [] p(z;) and [ ¢(z;). The Stein Lemma tells us that the probability that
we misclassify samples from ¢(z) as being from p(z) (termed the “miss probability” Pys) decays as n — oo with an
exponent proportional to the KL distance between p and g¢:

Py ~ e~ mD@lla) (22)

Equation (22) tells us that the KL distance is fundamentally related to our ability to distinguish between data sets
drawn from different distributions. If the KL distance between two distributions is small, then we can think of them
as being similar.

We can leverage this idea to assign a metric on a space of signals (1-D in this discussion, but the analysis can
be extended to images) that have been corrupted with noise. Given a space of signals X, we want to assign a
number d(s,t) to every pair of signals s,t € X that quantifies the similarity of s and ¢. For example, if X is a set of



images, we want d(s,t) to be small if s and ¢ look alike, and large if they look very different. Since we are observing
noisy versions of the signals, d(s,t) should be small if it is hard to distinguish statistically the observations of s and
observations of ¢.

To make this more precise, consider two signals s = (sg, s1,...,$nv—1) and ¢t = (to,t1,... ,tn—1) observed under
less than ideal conditions. Since we are making observations of these signals in the presence of noise, a measurement
of s is a random variable distributed ps(z) and a measurement of ¢ is distributed p;(z). The KL distance between
ps(x) and pi(z) dictates (roughly) how easy it is to confuse observations of s and ¢, so a reasonable metric is
d(s,t) = D(ps(x)||pe(z)). Of course, since D(p||q) # D(q||p) in general, d(s,t) will not be a metric in the strict
mathematical sense.

For example, if we make measurements of s and ¢ in the presence of additive white Gaussian noise with variance

0?2, we have

N-1
d(s,t) = DN (s, > D)||N (£, 02T)) = 2%2 S (s — 1)°. (23)

i=0

Equation (23) show that for signals observed in Gaussian noise, the KL distance between the observations induces
the normal Euclidean (Ly) metric on the space X of signals.

Now assume that s and t are corrupted by Poisson noise (we’ll assume that s;,t; > 0). Each component of an
observation of s (and likewise t) is a Poisson random variable with parameter s; (and ¢;). For the induced metric on
the signal space we have

N—-1 N-1
d(s,t) = D(Poisson(s)||Poisson(t)) = Z 8 log% + Z (t; — s4). (24)
=0 ! =0

The KL distance between the observations becomes a sort of deterministic KL on the underlying signals. We will call
(24) the KL signal distance (to distinguish it from the classical KL distance for probability distributions) between s
and t. Note that in general, dixr,(x,y) # dxr(y, ), so (24) does not define a “distance” in the strict mathematical
sense. However, it can still be used as a measure of the similarity of two signals.

Since Stein’s lemma gives a fundamental relationship between the KL distance of two processes and the ability
of an optimal detector to distinguish between them, we expect that the metric (d(s,t)) the KL distance imposes on
the parameter space (signal space X in our case) will do likewise. Equation (24) tells us that if we are observing
signals created by a Poisson processes, the KL signal distance determines our ability to distinguish between them.
In Section 5, we will explore the properties of (24) as a metric for images.

5. MULTIPLICATIVE DECOMPOSITIONS AND THE KL SIGNAL DISTANCE

In Section 4 we saw that the KL signal distance (24) is appropriate for images that will be observed as Poisson
processes. In this section, we show that the multiplicative decomposition provides a convenient way to express the
KL signal distance between two signals; we can write down the contribution of each multiplier individually. Using
this fact, we can form n-term approximations to signals by finding the n multipliers of a signal that contribute most
to the KL signal distance.

Much of the success of the wavelet transform in image processing is based on the fact that the wavelet coefficients
are a sparse representation for images. Since a small number of large coefficients represent most of the information
about an image, we can approximate the image by setting the small coefficients to zero and inverting the wavelet
transform. A distance metric measures the effectiveness of this procedure; the smaller the distance between the
original image and the approximate (for a given order of approximation), the more the approximation resembles
the original. For an image z and a given n, the n-term approximation is the image that is closest (under the given
metric) to  using n of its coefficients.

For these types of approximations to be feasible, there must be an easy way to choose the n coefficients that will
give the best approximation. To do this, the distance metric must be easily expressible in terms of the transform
coefficients. If this is the case, then we can easily deduce the effect of including each coefficient, and the selection
procedure simply becomes choosing the coefficient at each step that decreases the distance the most.



The most commonly used distance metric for n-term approximation is Ly; the n-term approximate finds the n
coefficients that minimize the sum of the square of the differences between the original and approximate images. The
L, norm is easily expressed in terms of the Haar coefficients. Indeed, by Parseval’s theorem (and the linearity of
the Haar transform), the Lo error is the same in the Haar domain as it is in the spatial domain. This means that
choosing the n-terms for the approximation is easy: we just choose the n largest Haar coefficients.

5.1. n-term KL approximation using multipliers

The Lo metric can not be written easily in terms of the multiplicative decomposition of an image. However, another
useful metric between two images, namely the KL signal distance introduced in Section 4, can be simply expressed
using the multipliers. Recalling (24), the KL signal distance between two discrete signals is given in the spatial
domain by

dir(z,y) = Zmllog—+2yl—ml (25)

A quick example will illustrate the ease of calculating the KL metric between two 1-D signals in terms of their
multiplicative distributions. Let signals = {zo,z1, 22,23} and &’ = {x{, 2], z}, 4} have multiplicative decomposi-
tions {uo,0,0,0,M1,0,m1,1} and {ug o, Mg 9, M} o, M} ; } respectively, following the notation from Section 2. For ease
of exposition, we’ll assume that ug o = ug . By simply plugging in the reconstruction equations for z; and ] into
equation (25), we have

dir(z,z') = mgoemyo(logmeomi o — log mgﬁom'lyo) + (26)
mo,0(1 —ma,0)(log mo,o(1 —my) — logmfm(l — m'LO)) +
(1 —mg,0)mi1(log(l —mgo)mi1 —log(l —mgg)my ;) +
(1 —mo,0)(1 —ma1)(log(l —mo,o)(1 —mi1) —log(l —mg ) (1 —mi,)).

Expanding (26) and collecting like log terms we write

drr(z,z") = k(moollmgg) +mook(miollm} o) + (1 —moo)k(mi1||m] ;) (27)
where
p (1-p)
k =plog=+(1—p)lo 28
(pllg) =p gy (1-p) T (28)

is the KL distance between two Binomial distributions with different parameters. In (27) we have written the KL
signal distance as a sum of positive terms, each of which depends only on one of the multipliers of z’. For length NV
signals, we extend (27) to

w
it (z,2") =) —u]’k k(mjk|lm} ) (29)
gk

)

with 5—1 being the product of all the multipliers on the path down the tree to branch i.

Let A, be the set of indices of multipliers included in an n-term approximate x' of z. The distance between a
signal x and its z' is given by (29) with

1 mj.k (.77 k) € An
m, = . 30
P { 5 (k) €A (30)
To pick the n multipliers that minimize this distance, we want to choose the multipliers corresponding to the largest
terms in (29). Since each of the terms depends on only one of the m/ ;, the selection of a m/ , (changing it from 1/2
to m; ) does not affect the other terms in the sum. As a result, we have that A, C Apys and we can easily measure
each multiplier’s contribution to the distance. By noticing that

m;‘,k =Mmyk = k(mjk”m;k) =0 (31)
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Figure 4. n-term approximation of the 256 X 256 cameraman image (n = 2103). The original cameraman image is shown
in (a). (b) Ly 2103-term approximation using Haar coefficients, || — z||> = 581.8. (c¢) KL 2103-term approximation using
multipliers, dixr(x,%) = 57940.1.

and
m;-7k =1/2=> k(mj,k||m;-7k) =h(mj)+1 (32)

where h(p) = plogp+ (1 — p) log(1 — p) is the negative entropy of a binomial random variable with parameter p, we
can summarize n-term approximation with multipliers of a signal x with the following steps

1. Calculate the multipliers m = M (z) using the method outlined in Section 2

2. Calculate T} =

Uik

22 (h(myk) + 1) for each multiplier mj

3. Include in the index set A, the values of (4, k) corresponding to the n largest T
4. Construct d' with the rule in (30)

5. Reconstruct the approximate signal 2’ = M~'m' from m/.

Because the multipliers are (empirically) sparse, we expect most of the T to be small. Therefor, most of the
distance in (29) can be made up with a few multipliers (much like most of the Lo energy of a signal is represented
by few Haar coefficients). n-term approximation results for an image are shown in Figure 4.

5.2. KL as a metric for images

We have shown that the multiplicative decomposition is a natural setting for n-term KL approximation. For this
to have application in image processing, the KL signal distance must be compatible with visual perception; if the
KL distance is small between a pair of images, the images should appear to be similar. In this section, we’ll discuss
which features in images KL discriminates between and how it compares to using L.

The most important aspect of an image in terms of perception is its edge structure. Indeed, the wavelet transform
owes its success across the whole of image processing to this fact. Wavelet coefficients tend to be large near the edges
of an image and small in the smooth regions. Since the ideal domain in which to analyze signals has a few large
coefficients representing important features, wavelets are well suited to image processing.

Haar wavelet coefficients capture local differences. Therefor, the size of a Haar wavelet coefficient on an edge is
proportional to the difference in grayscale values on either side of the edge. An edge jumping from 3 to 7 is represented
the same way as an edge from 8 to 13. However, the human visual system picks up edges at low grayscale (white
areas) better than at high grayscale (black areas). The metric we use to distinguish images should be more sensitive
to the low grayscale areas.

This is precisely how the KL distance behaves. Figure 5.2(a) shows a simple image with squares in white and
black areas. The square in the white region lies 10 grayscales above its white background, while the square in the
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Figure 5. (a) Squares image, (b) low order Haar L» approximation, (c) low order multiplicative KL approximation. Notice
that the Haar approximation captures the square in the black region, as opposed to the multiplicative approximation which
captures the higher contrast square in the white region.

black region lies 20 grayscales below its black background. Notice that the light gray square in the white region is
easier to see than the dark gray square in the black region. Figure 5.2(b) shows a low order Haar L, approximation of
the image. The visually more important square in the white region is not well represented, the Haar transform treats
square in the black region (with the greater size jump) with greater care. In Figure 5.2(c) we see a multiplicative
KL approximation of the same order. The square in the white region is well represented; the multipliers have done
a better job of representing the visually important features in the image.

6. CONCLUSIONS AND FUTURE WORK

The multiplicative decomposition, closely related to but very distinct from the Haar wavelet transform, is a multiscale
representation well-suited to certain types of problems. In particular, signals represented by Poisson processes are
naturally represented (and hence easily processed) in the multiplicative domain. Since the multipliers also provide a
sparse decomposition of images, Bayesian modeling in the multiplicative domain offers many of the same advantages
as modeling in the wavelet domain.

We have also showed that the KL distance between two positive valued signals is easily expressed by their
multiplicative decompositions. Using this fact, we introduced an n-term approximation scheme using the multipliers
which compared favorably to n-term approximation using Haar wavelets.

We have, however, avoided mentioning until now one real shortcoming of the multiplicative decomposition. Many
wavelet based processing algorithms show greatly improved results when using smoother wavelet than Haar. While
the extension in the wavelet domain is easy, It is not clear how to extend the multiplicative decomposition to include
more complicated scale-to-scale transitions. This is a subject of the author’s current research.

In this paper (although it is not the first to do such), we have presented the multiplicative decomposition as
a paradigm for multiscale signal and image analysis. However, some of the techniques could be useful elsewhere.
Specifically, given the similarity of equations (21) and (24), we can use the n-term approximation scheme described
in Section 5.1 to approximate probability density functions in general. In this context, the closest KL approximation
has a solid statistical meaning, so the algorithm may be of more general interest.
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