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Abstract— Although poorly studied in the literature, Group 

Delay Variations (GDV) versus frequency is an essential factor 

which causes distortion and degradation in wideband satellite 

signals specially when using phase modulation and high data 

rates. In this paper, transmission line is analyzed as a dispersive 

medium and some kinds of coaxial cables such as RG58U, 

RG59U, RG213 and ECOFLEX15 are compared as GDV 

parameter point of view. Then the effect of reflections from 

discontinuities and impedance mismatches at transmission lines, 

on GDV quantity, is investigated by suggesting a novel network 

model of transmission line with discontinuity or impedance 

mismatch, and extracting a new formula for GDV. Graphical 

data are presented based upon the formula developed, and the 

simulation results are also given by AWR software which 

confirms the theory and formula. At last, based on the developed 

formula, some calculations will be carried out both to predict the 

values of GDV parameter and to compensate it. In this paper the 

frequency range of 100-1000 MHz is selected. The main reason 

of this selection is due to the practical application of coaxial 

cables for transmitting wideband satellite signals in remote 

sensing ground stations from down-converter to modem at IF 

frequencies such as: 140, 375, 720 MHz, etc. In addition, the 

introduced model and formula are generalizable to upper 

frequency bands.  

 
Index Terms— group delay variations, transmission lines, 

coaxial cables, dispersion, discontinuity, mismatch.  

 

I. INTRODUCTION 

  In wideband communication systems-e.g. satellite 

communication systems- which are used for transmitting 

wideband signal/data, any distortion causes Signal to Noise 

Ratio (SNR) or Bit Error Rate (BER) degradation [1-4]. 

Distortions are grouped to linear and nonlinear types.  

    Nonlinear distortion happens in systems such as mixers, 

High Power Amplifiers (HPAs), etc., which have a nonlinear 

characteristic. Figure 1(a) shows such systems. This 

phenomenon is explained by AM-to-AM, AM-to-PM, 

Intermodulation Distortion (IMD), etc., and can be 

compensated by several linearization techniques or decreased 

by using elements with weak nonlinear characteristic [5-7 ].           

   Linear distortion happens in linear systems in which the 

magnitude of frequency response is not constant and the phase 

of frequency response is nonlinear. Figure 1(b) shows such 
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systems. The magnitude and phase of frequency response in 

these systems are defined as: 
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Figure 1. block diagram of (a) linear and (b) nonlinear systems 

 

Phase distortion is measured using Group Delay (GD) 

parameter [11-15]. It is expressed in units of time ( gdT : 

nanosecond) [8, 9]. The GD is related to the phase shift 

variation with frequency and for a linear system, at an angular 

frequency 00 2 f  , is defined as follows: 
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In equation (2),  is the phase of frequency response defined 

in equation (1) or phase of S-parameters (e.g. 21S ). 

    In distortionless systems, the phase characteristics must 

have a linear slope so that the ratio 
f

f )(
 is constant for all 

frequencies and this represents a constant GD [9]. However, 

any deviations from linear phase over the frequency range 

will cause Group Delay Variations (GDV); therefore, for a 

linear system, linear distortion over a frequency bandwidth is 

caused by GDV over that bandwidth not GD [2, 8, 9]. The 

past researches show that GDV over a frequency range can be 

caused degradations in wideband satellite signals with phase 

modulation and high data rates. This degradation can be 

neglected when the value of GDV over a frequency 

bandwidth is sub one nanosecond [2].      

   This paper deals with GDV versus frequency caused by 

transmission lines, e.g. coaxial cables that are used in the RF 

block of satellite receiver. Investigations on GDV caused by 

transmission lines have been very scarce [8-10]. The effects 

due to discontinuities of transmission lines on the GD are 

explained in [8] and GD caused by Impedance mismatch is 

also studied in [9, 10, and 11]. 

Total GDV is caused by two factors. The first factor is the 

dispersive nature of transmission line which is analyzed here. 

Low-loss coaxial cables (RG58U, RG59U, RG213 and 

ECOFLEX15) are also compared with respect to GDV they 

cause. The second and essential factor is reflection from 
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discontinuities and impedance mismatches at transmission 

lines whose effects have been investigated for one 

discontinuity between two transmission lines or two 

impedance mismatches separated by a transmission line. A 

novel model of this factor is presented and a new formula is 

extracted. The simulation results confirm the formula and 

theory. At last, on the basis of formula, the prediction methods 

of GDV values are presented and practical solutions are 

introduced for compensation of the GDV. 

II. GDV CAUSED BY DISPERSIVE NATURE OF TRANSMISSION 

LINES  

Here we use a uniform transmission line of length l without 

any discontinuities inside it and without any impedance 

mismatch at two ends. A simple network model is shown in 

Figure 2. 21S  can be obtained  for the 2-ports: 
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Where   is the propagation constant defined by 

 j ,   is the attenuation constant in nepers or dB 

per meter,   is the  phase constant in radians per 

meter,





2
 ; and   is the wavelength. 

Knowing the phase of S-parameter ( lS  21 ), the GD 

is obtained by equation (2): 
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    In equation (4),  is the imaginary term of  . This 

equation shows that GDV in a transmission line, without any 

discontinuities and impedance mismatches, is caused by 

nonlinear variations of phase constant (  ) with frequency 

[20, 23]. If   is not a linear function of frequency, then the 

various frequency components of a wideband signal will 

travel with different phase velocities, and so arrive at the 

receiver end of the transmission line at slightly different times 

[23]. This will lead to dispersion and a distortion of the signal 

and generally has an undesirable effect. 

 
Figure 2. a simple 2-ports model for transmission line of length l , 

without any discontinuities and impedance mismatches 

 

The piece of transmission line can be modeled as a 

lumped-element circuit, as shown in Figure 3. Where R, L, G, 

C are per unit length quantities defined as follows: [21] 

R = series resistance per unit length, for both conductors, in 

m  . 

L = series inductance per unit length, for both conductors, 

in mH . 

G = shunt conductance per unit length, in mS . 

C = shunt capacitance per unit length, in mF . 

 
Figure 3. lumped-element equivalent circuit for an incremental 

length of transmission line 

 

The general expression for the complex propagation 

constant is [20, 21]: 

   )5(CjGLjR    

The series resistance R represents the resistance due to the 

finite conductivity of the conductors, and the shunt 

conductance G is due to dielectric loss in the material between 

the conductors. R and G, therefore, represent loss. In the 

lossless or ideal line, setting 0GR  in (5), gives that: 

)6(,0 CL   

In this case,  varies linearly with frequency and, 

therefore, according to (4) GD is constant with frequency. 

In practice, all transmission lines have loss due to finite 

conductivity and/or lossy dielectric, but these losses are 

usually small (low-loss lines). If LR   and CG  , the 

following approximations are obtained by retaining up to 

second-order terms in the binomial expansions [20]. 
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   In this case,  varies nonlinearly with frequency and 

GDV will exist over a frequency range. In fact, these 

variations of GD are due to inherent nature of transmission 

line as a dispersive medium [17-19]. 

   For example, group delay ( gdT ) of a transmission line 

that has the following per unit length 

parameters: mohmR /1.0 , mnHL /200 ,

mpFC /80 and  length ml 100 , versus  frequency and 

with variations of G is represented in Figure 4. This figure 

shows that GDV is nearly equal 0.012, 0.3 and 1.3 

nanoseconds for G’s: 0.001, 0.005 and 0.01 s/m, respectively, 

over the frequency range of 0.1~1GHz. This points that the 

increase of the transmission line loss results in increase of 

GDV. Therefore, the variations of   from a linear function 

and GDV caused by the low-loss transmission lines are very 

small. 

Granted, as we have argued above, the deviation of   

from a linear function may be quite small, but the effect can be 

significant if the line is very long. There is an exception, 

however, for a lossy line that has a linear phase constant as a 

function of frequency. Such a line is called a distortionless 

line [23], and is characterized by line parameters that satisfy 

the following relation: 
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From (5) the exact complex propagation constant, under 
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condition specified by (9), reduces to 
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Which shows that   is a linear function of frequency. 

Therefore, if the equation (9) is satisfied then GD will be 

constant and GDV will be zero. Since the line parameters (R, 

L, G and C particularly R) are usually weak functions of 

frequency, equation (8) may not be satisfied over a frequency 

range, exactly. To obtain a transmission line with parameters 

that satisfy (8) it is often required to increase L by adding 

series loading coils spaced periodically along the line [20]. 

   For example, GD of a transmission line that has the 

following per unit length parameters: G = 0.001 s/m  ,  L = 200 

nH/m , C=80 pF/m and length ml 100 , versus  frequency, 

and with various R’s is represented in Figure 5. This figure 

shows that GDV is nearly equal 0.01, 0 and 0.06 nanoseconds 

for R’s: 0.1, 2.5 and 8 ohm/m, respectively, over the 

frequency range of 0.1~1GHz. Although, for R=2.5 ohm/m, 

the losses of the line is more than that of R=0.1 ohm/m, but 

since R=2.5 ohm/m satisfies equation (9), GD is constant with 

frequency, and this line is a distortionless line.  

 

 
Figure 4. Group Delay of a transmission line with length 

ml 100  versus frequency for G = 0.001, 005, 0.01 s/m. 

 

 
Figure 5. Group Delay of a transmission line with length 

ml 100  versus frequency for R = 0.1, 2.5, 8 ohm/m 

 

Figures 4 and 5, also, show that GDV for low-loss 

transmission lines is quite small (less than 1 nanosecond per 

0.1~1GHz frequency band) and can be neglected. 

Because of abundant applications of coaxial cables such as 

signal transmitting from LNB to modem at satellite receivers, 

the GDV of these lines is investigated. The parameters of 

coaxial line are obtained as follows [21, 22]: 
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Where: 

   d: diameter of the inner conductor 

   D: diameter of the outer conductor 

   r : relative dielectric constant of the medium between  

         conductors 

   0 : permittivity of air and which is equal to  

         121085.8   f/m 

    : permeability of the medium between conductors  

        tan : loss tangent of dielectric 

   sR : surface resistivity of conductor 

 

In table 1, four types of coaxial cables that used in practical 

applications have been brought. GDV is calculated for 100m 

length of the line over the frequency range of 100~1000 MHz 

by consideration the characteristics of lines. 

 

 

Table 1.  Calculated GDV of four types of coaxial cables   

ECOFLEX15 RG213U RG59U RG58U  

4.5 2.26 0.82 0.82 Conductor 

Diameter 

 (mm) 

11.3 7.24 3.68 2.95 Dielectric 

Diameter 

 (mm) 

86 % 66 % 83 % 66 % Velocity Ratio 

 (%) 

77 100 53 98 Capacitance 

 (pF/m) 

50 50 75 50 Characteristic 

Impedance 

 (ohm) 

1.35 2.25 1.45 2.3 Dielectric 

Constant 

 ( r ) 

9.8 22.5 26.5 54.6 Attenuation 

 @ 1000MHz 

(dB/100m) 

8104.7   7104.2   7106.5   6104.1   GDV for 10m 

length 

over 100 

~1000MHz 

(nanosecond) 
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III. GDV CAUSED BY REFLECTED WAVES DUE TO 

DISCONTINUITY AND IMPEDANCE MISMATCHING 

For investigating the effects of reflected waves caused by 

discontinuity and impedance mismatch on the GD, the 

previous developed models have presented only discontinuity 

[8] or only mismatch [9, 10]. Figure 6 proposes the improved 

model of a transmission line with discontinuity separated by 

the length l , characteristic impedance 1Z  and constant 

propagation 111  j . This model depicts the both 

cases: discontinuity between two transmission lines and two 

impedance mismatches separated by a length of transmission 

lines (e.g., a connector can be modeled by this design if the 

length l of discontinuity is short).  

 

 
Figure 6. The proposed model of transmission line with 

discontinuity separated by length l  of transmission line 

 

It is more convenient to suppose the ends of the 

transmission line in Figure 6 to be matched to the generator 

and load. This means that 0 Lg . Therefore all the 

reflection waves due to discontinuity or mismatching 

impedance. If we suppose that 0000 ,  jZ   are, 

respectively, characteristic impedance and propagation 

constant of the transmission lines that are connected to 

discontinuity at ends. Also 21 , ll  are, respectively, length of 

transmission lines at the left and right of discontinuity then we 

will be written: 
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Where: 

       


1V : main incident wave transmitted from the  

               generator 

       


2V : summation of all forward waves at the load 

       21 , TT : transmission coefficients at ends of  

                     discontinuity 

       :, 21   reflection coefficients at ends of  

                     discontinuity that are equal 

Using the geometric series, s-parameter is calculated: 
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We can let: 
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Then we can write: 
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The characteristic phase  is then: 
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The GD is obtained by multiplying (14) by -1 and 

differentiating the result with respect to angular frequency  , 

and is: 
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We can see in (15) how a change with frequency of the 

attenuation or phase constant or the reflection coefficients of 

the discontinuity, for example, might affect the GD. In 

practical cases and low-loss transmission lines, we can 

neglect the variations of hTT ,,,, 2121   with frequency 

and suppose that 10 ,   vary linearly with frequency, 

approximately. Then we can write: 
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In which 
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propagation delays of discontinuity and transmission lines at 

the ends of it, respectively, and because of the line is low-loss, 

these are constant with frequency. Therefore equation (15) is 

obtained as: 
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In practical case, we have 1h  and can neglect terms of 

2h  in (17). Then the GD is approximated to: 
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In equation (18), first term of the GD  ( 01 TT  ) is the sum 

of the GD’s resulting from all lengths of transmission lines 

that it is constant with frequency and second term results from 

reflection waves caused by discontinuity or mismatching 

impedance. This is called GDV and is equal to: 
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 Equations (18) and (19) show that GDV of reflected waves 

caused by one discontinuity between two transmission lines or 

two impedance mismatches separated by a length of 

transmission lines, are sinusoidal with frequency. Also, more 

than one discontinuity at length of transmission line or more 

than two mismatching, causes multiple reflections and results 

irregular sinusoidal. Equation of GDV of this case is 

complicated. In formula (19), the magnitude of sinusoidal 

GDV is affected by 0T  and h . Also, the ripple frequency of 

the sinusoidal GDV is increased by 0T , because of: 
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IV. PREDICTION METHODS OF THE SINUSOIDAL GDV 

On the basis of formula (18) and by consideration that the 

magnitude and the ripple frequency of sinusoidal GDV is 

affected by 0T  and h , one can predict the sinusoidal GDV. 

Parameters such as: the length of the transmission line 

discontinuity ( l ), the loss and the dielectric constant of 

discontinuity and the magnitude of reflection coefficients can 

affect the magnitude and the ripple frequency of the 

sinusoidal GDV. Here this parameter is studied. 

   The increase the dielectric constant of discontinuity 

decreases the velocity of wave propagation and results in 

increase 0T  in formula (19). This causes to increase both 

magnitude and ripple frequency of the sinusoidal GDV versus 

frequency. This result is shown in Figure 7. This figure is on 

the basis of formula (18). The parameters of discontinuity 

shown in Figure 6, are equal: ml 1 ,  750Z , 

 501Z , mdBloss /01.0  and the relative permittivity of 

the discontinuity dielectric is varied ( 10,5.2,1r ).  

 

 
Figure 7. Group delay versus frequency for three dielectric constants 

of discontinuity by using formula (18) 

 

In Fig. 8, transmission line with discontinuity has been 

simulated by Microwave-Office with aforementioned 

parameters and GD of this circuit versus frequency is shown 

in Fig 9. This figure confirms the theory and formula. 

Therefore, GDV can be compensated by decrease the 

dielectric constant. Also the length of transmission line 

discontinuity has similar effects on sinusoidal GDV. 
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Figure 8. Transmission line with discontinuity that simulated by 

AWR software 

 

 

 
Figure 9. Group delay versus frequency for three dielectric constants 

of discontinuity by using AWR simulator 

 

 

On the basis of formulas (18) and (19), the increase the 

magnitude of the reflection coefficients causes the increase h  

and increases the magnitude of sinusoidal GDV versus 

frequency. This fact is shown in Fig. 10. In this figure, the 

parameters of discontinuity depicted in Fig. 6, are equal: 

ml 1 ,  501Z , mdBloss /01.0 , 5.2r  and the 

characteristic impedance of discontinuity is varied 

(  100,75,600Z ). This means that the magnitude of the 

reflection coefficients is varied as follow: 

33.0,2.0,09.021
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01
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
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ZZ

ZZ
 

Usually, variations of characteristic impedance 0Z , for 

obtaining the minimum magnitude of reflection coefficients, 

are difficult in practice. In these cases, compensation of GDV 

can be done by using impedance matching networks at the 

proper places. 

At last, on the basis of formula (18) and (19), the increase 

the transmission line loss ( ) causes the decrease h  and 

decreases the magnitude of sinusoidal GDV versus frequency. 

This fact is shown in Fig. 11. . In this figure, the parameters of 

discontinuity depicted in Fig. 6, are equal: ml 1 , 

 750Z ,  501Z , 5.2r  and the transmission line 

loss is varied ( mdB /5,1,01.0 ).   
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Figure 10. Group delay versus frequency for three discontinuities 

with different impedances 

 

 

 
Figure 11. Group delay versus frequency for three discontinuities 

with different losses 

 

V. COMPENSATION METHODS 

With due attention to effects due to dispersive nature of a 

transmission line on the GD studied in section 2 of this paper, 

we can reduced or eliminated GDV over frequency by using 

low-loss or distortionless lines. A group of transmission lines 

e.g. coaxial cables with very low loss are introduced in table 

1. GDV of these lines are calculated and can be neglected 

because of their quantities are very low.  

    By consideration of the section 3, since the GDV versus 

frequency caused by reflected waves are sinusoidal in nature, 

it would be very difficult to compensate for them once they 

occur using GD equalizers. At best, one equalizer could 

compensate for one cycle of GDV. Also, these equalizers can 

be quite complex and could introduce additional problems if 

they are not tuned properly. The best way to minimize GDV 

versus frequency is to prevent the occurrence of discontinuity 

and mismatching at transmission lines. If the discontinuity 

and impedance mismatch happen, then the decrease of the 

length of discontinuity, dielectric constant and magnitude of 

reflection coefficients and also increase the transmission line 

loss can be compensated the GDV. These works are 

impossible or difficult in practice because for example 

increase the transmission line loss causes that the transmission 

line may not be a low-loss line. This causes the dispersion in 

line. Here attenuators can be desirable compensators instead 

of increase the line loss, practically. Figure 12 shows the 

proper placement for attenuators used for group delay 

compensation and the effects of the attenuations on GDV are 

depicted in Figure 13.    

ATTEN
ID=U1
R=75 Ohm
LOSS=4 dB

ATTEN
ID=U2
R=75 Ohm
LOSS=4 dB

1 2

3 4

COAXI4
ID=CX4
Z=75
L=1000 mm
K=2.5
A=0.01
F=0.5 GHz

1 2

3 4

COAXI4
ID=CX5
Z=50
L=0.1 mm
K=2.5
A=0.01
F=0.5 GHz

1 2

3 4

COAXI4
ID=CX6
Z=50
L=0.1 mm
K=2.5
A=0.01
F=0.5 GHz

PORT
P=1
Z=50 Ohm

PORT
P=2
Z=50 Ohm

 
Figure 12. Transmission line with discontinuity and attenuators used 

for GDV compensators 

 

 

 
Figure 13. GD versus frequency for figure 12 with variable 

attenuations 

 

   This compensation method is more wideband than 

matching impedance networks and is very simpler than the 

previous methods have been pointed in e.g. [24, 25] as group 

delay equalizers, but because of the weakness of IF signal 

power level at the receiver, attenuation is not desirable. 

Therefore the trade off between attenuation and GD 

compensation is considerable.     

VI. CONCLUSION 

In transmission lines, especially coaxial cables, there are 

some factors which affect group delay. Here a GDV 

parameter introduced which includes two main components. 

First component is dispersive nature of transmission lines 

without any discontinuity in their lengths. The GDV caused 

by this factor can be vanished by using distortionless lines. 

Practically all of the transmission lines have some dispersion 

effects. Meanwhile, GDV can be neglected using low-loss 

lines. The calculation is carried out for 4 difference types of 

coaxial cables over a frequency range of 0.1~1GHz. 

Corresponding GDV are very low and can be neglected. 

   Second component is characterized by reflected waves 

due to discontinuity or impedance mismatch in transmission 

lines. Reflected waves GDV caused by one discontinuity 

between two transmission lines or two impedance mismatches 

separated by a length of transmission lines, are sinusoidal with 

frequency. This investigation is confirmed by formula that 

extracted in this paper. Also the simulation results confirm the 

proposed model. The magnitude  and the ripple frequency of 
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the sinusoidal GDV depends on 4 parameters including: the 

constant dielectric of transmission line ( r ), the length of 

discontinuity ( l ), the magnitude of the reflection coefficients 

(  ) and the transmission line losses ( ).  

   Sinusoidal GDV in a transmission line can be reduced 

and compensated by decreasing the dielectric constant, length 

of transmission line and the magnitude of reflection 

coefficients and also by increasing the transmission line loss. 

Practically, some of improvements are impossible or difficult 

to be implemented, but sinusoidal GDV can be reduced by 

impedance matching networks or attenuators placed properly 

such that they reduce the reflected waves. In spite of the fact 

that the attenuation is undesirable at the weak IF signal, 

attenuators are used because of their wide bandwidths and 

simple structures. 
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