Accepted for 3rd International Conference on Policies for Distributed Systems (POLICY 2002), June 2002

Policies in Accountable Contracts

Brian Shand, Jean Bacon

University of Cambridge Computer Laboratory
JJ Thomson Avenue, Cambridge CB3 OFD, UK
email : {Firstname.Lastname } @cl.cam.ac.uk

Abstract

In this paper, accounting policies explicitly control re-
source usage within a contract architecture. Combined
with a virtual resource economy, this allows efficient ex-
change of high-level computer services between untrust-
worthy participants. These services are specified as con-
tracts, which must be signed by the participants to take ef-
fect. Each contract expresses its accounting policy using a
limited language, with high expressiveness but predictable
execution times. This is evaluated within a novel resource
economy, in which physical resources, trust and money are
treated homogeneously. A second-order trust model contin-
ually updates trustworthiness opinions, based on contract
performance; trust delegation certificates support flexible,
distributed extension of these trust relationships. The in-
trospectible contracts, resource and trust models together
provide accountability and resilience, which are particu-
larly important for large-scale distributed computation ini-
tiatives such as the Grid. Thus participants can take cal-
culated risks, based on expressed policies and trust, and
rationally choose which contracts to perform.

1 Introduction

This paper presents a contract framework in which so-
phisticated accounting policies can be specified. Par-
ticipants’ trustworthiness is constantly measured against
these policies, ensuring that resources are allocated ratio-
nally. This provides robust protection against fraud, even in
widely distributed environments such as the Grid.

These introspectible contracts are integrated into a vir-
tual economy with a sophisticated second-order trust model.
In this economy, the trustworthiness of participants is con-
stantly assessed and updated, through the use of account-
able contracts and resource measurement. Thus, partici-
pants can estimate the risks of contracts, both in advance
and while they are being performed.

Section 2 introduces the contract framework within

which participants interact, while section 3 details the lan-
guage in which participants express their contractual obli-
gations to each other. Next, section 4 presents the resource
model of the contract framework; here trustworthiness is
measured as the ratio between actual and specified resource
reimbursement for a contract. Trust transfer mechanisms
are also proposed, for scalable distribution of these local
trust measurements. In section 5, the steps involved in the
execution of a contract are illustrated, and section 6 de-
scribes the testing framework in which the efficiency and
robustness of the contract framework is assessed. Finally,
section 7 summarizes the contributions of this work.

2 Contract Framework

The contract framework in which accounting policies
are specified is introduced in this section. In this archi-
tecture, contracts are the building blocks of relationships.
They codify agreements between participants, and empha-
size the distinction between planning and performance of
actions. Since the accounting function of each contract is
separated from the contract action, a participant can predict
whether a contract is suitable before accepting it, by treating
the accounting function as the contract’s policy statement.
This introspection allows better planning of resource needs,
and makes explicit the risks of dealing with other, possi-
bly untrusted participants. Other frameworks also empha-
size some of these needs: Gisler et al. [11] outline a secure
process for electronic contracts, while Linington, Milosevic
and Raymond [18] stress the importance of applying trust
metrics to contracts.

This section details how contracts themselves are repre-
sented, and the contract negotiation protocol by which they
are established.

2.1 Contract Representation

A contract represents an action to be performed, and si-
multaneously provides a high-level description of the ac-
tion. In our framework, this layering is made explicit in the
following attributes of contracts:

Graham Titmus

Graham Titmus
Accepted for 3rd International Conference on Policies for Distributed Systems (POLICY 2002), June 2002

Server identity. This identifies the participant that will
perform the contract action.

Client identity. The client is responsible for reimbursing
the server for resources used in performing the contract.

Estimated resource consumption. This has three con-
stituents: constant consumption, rate of consumption, and
estimated maximum durations. It is the highest level de-
scription of the contract, and allows approximate resource
allocation and planning, moderated by trustworthiness con-
siderations.

e Constant consumption. A collection of basic re-
sources, summarizing the resource inputs needed to
perform the data-driven [14] portion of the contract.

e Rate of consumption. Similar to constant consump-
tion, but detailing the expected resource consumption
per second, for the time sensitive portion of the con-
tract; this could ensure the promise of resources for
multimedia applications, for example.

e Maximum durations. These identify the maximum
and expected durations of the constant and time sensi-
tive processing.

The overall estimated resource consumption would
then be (constant consumption) + (rate of consumption) x
(expected duration).

Accounting function. The accounting function de-
scribes the contract’s accounting policies, and determines
the instantaneous resource exchange rates during the per-
formance of the contract. This uses a limited language, de-
scribed in detail in section 3, which allows only computa-
tions which will complete in a predictable amount of time
— the language lacks constructs for recursion and iteration,
but allows the preservation of a predefined, finite amount of
state.

Contract action. This is the primary action which the
server is contracted to perform. Its format is independent of
the contracting architecture, but it would typically identify
a program or subroutine to be executed. For example, this
might be a Java method signature, specifying an action to
be performed in a secure sandbox [12].

Terms of payment. The time allowed for payment after
the use of a resource is specified here. If resources are
required as a pre-payment or deposit, this can be specified
in the accounting function.

Contracts must be signed by both client and server to be
valid or enforceable; the signing and security of contracts is
discussed in more detail in 2.2 below. The distributed trust
framework is then used to assess which contracts are to be
accepted — contracts themselves do not usually make trust
issues explicit. However, trustworthiness can be used to
determine which contracts are offered to particular clients,
providing better terms for trusted participants.

Resilience and accountability are particularly important
for applications such as peer-to-peer ‘compute servers’ and
the Grid [19] — the concept of creating a global distributed
computing framework as ubiquitous and usable as the elec-
tricity grid. One of the great challenges of the Grid will be
enabling unfamiliar services to interact in novel and mean-
ingful ways. For example, a ray-tracing service idle at night
in Japan might render a video sequence for a design com-
pany in America, while it was day-time there. Only by
contractually formalizing agreement on actions to be per-
formed, and taking fluctuating trustworthiness into account,
can these services be made reliable and self-supporting.

2.2 Contract Protocol

Contract acceptance requires a contract negotiation pro-
tocol with sufficient security to discourage attacks and sup-
port trust management.

The contract protocol described here is a point-to-point
protocol for non-repudiable contract negotiation, perfor-
mance and termination, using typed asynchronous mes-
sages between participants. The tasks of providing direc-
tory services and initially matching suitable servers and
clients are considered prerequisites, which can be provided
by techniques such as the contract net framework [21].

We assume that a secure public-key framework for dig-
ital signatures is available, such as PKI [8], in which par-
ticipants sign messages to prove that they accept them. It
must be computationally infeasible to fake the signature of a
given message, or to find another message corresponding to
a known signature. Furthermore, if a signature is compro-
mised, then it loses all trustworthiness and its owner will
have to create a new identity to enter into new contracts,
with a concomitant loss of trust.

The contract protocol introduces a new accounting mes-
sage type to the usual message types in the asynchronous
messaging system. There are three basic sub-categories of
these accounting messages:

Contract A contract message represents a pact between
a client and a server: the server will perform an action on
the client’s behalf, for which resources will be exchanged.

Payment A payment message identifies a contract, and
includes resource tokens such as digital money or a digital

cheque owed in terms of the contract.

Termination A termination message ends a contract.
This may occur once all services and payments have been
completed, or it may signal premature termination by client
or server. Clients and servers recovering from a crash
should send termination messages for all contracts they can
no longer support to ensure closure without further loss of
trust.

Signing, countersigning and requests are combined with
these messages, to complete the accounting framework:

Signed messages prove that the signatory will be bound
by the message contents. Contracts, payments and termina-
tions must be signed to be binding. Ordinary messages may
also be signed, if extra security is required.

Countersigned messages prove that the countersigner
has received the signed message, and also agrees to its con-
tents. Contracts, payments and terminations may be coun-
tersigned. Ordinary messages are countersigned only if
proof of receipt is required.

Request messages wrap ordinary accounting messages,
and ask the other party to send a contract, payment or
termination. Request messages are typically signed as well.
(This prevents a third party from staging denial of service
attacks by generating fraudulent requests.) Other ordinary
messages are generally not wrapped in requests.

It is assumed that messages from each participant are
uniquely identified by a local timestamp or sequence num-
ber. Stale or replayed messages should always be ignored.
(Messages also include an expiry time or expiry sequence
number. A stale message is one received after its expiry
time, or after another message from the same source which
postdates the expiry sequence number.)

In summary, the contract description language and pro-
tocol enable participants to exchange services by negotia-
tion. Contract descriptions have many levels, allowing ac-
curate prediction and accounting of the resource costs in-
volved. As we will show, by combining these predictions
with trust histories, participants can make rational decisions
about which contracts to accept, and monitor the contracts
as they are performed. Since all resources are accounted
for, attacks such as denial of service are thus more easily
detected and prevented. By using a language with a con-
strained syntax for accounting functions, accounting over-
heads and utility can be predicted. This allows complex
contract terms to be specified even by untrusted clients, and
analysed to predict the risks, even before they are executed
within the contract architecture.

3 Accounting Language

Our contract framework uses a novel accounting lan-
guage, to specify the resource exchange rates for each con-
tract. This allows complex accounting policies to be spec-
ified, including those based on market prices or featuring
sophisticated pricing functions.

Accounting functions are written using a simple proce-
dural language, to represent the exchange of resources re-
quired by a contract. The grammar of this language has
been designed to ensure that all accounting functions are
also legal statements in the Python language [24], so that it
may easily be learnt. However, its expressive power is de-
liberately limited, to guarantee that accounting operations
can be performed in a predictably short time interval. An
example of an accounting function follows:

l:class Accountant (resources.ResourceContract) :

2 importList = [’localResourceValuesl’]

3 totalCPU = 0

4 def processResourceAtom(self, atom, imports):
5: if atom.type != resources.cpuTime:

6 return [] # Charge for CPU only

7 rate = imports[0]

8 if self.totalCPU < 10: result = rate+0.01
9: else: result = rate+0.002
10: self.totalCPU += atom.quantity

11: return [ResourceAtom(resources.money, '£',
12: result*atom.quantity,
13: atom.startTime,

14: atom.endTime)]

This illustrates a sophisticated payment policy, in which
a contract action will be charged for the CPU time which it
uses. The price proposed is slightly more than the market
rate, but with a discount if more than 10 seconds of CPU
time is used.

No direct communication between the accounting func-
tion and the contract action is allowed — this ensures that
the accounting code is entirely self-contained. This also al-
lows servers to simulate and predict the effects of accepting
a particular contract, and thus model the attendant risks.

The accounting language has a tightly constrained syn-
tax. It allows each accountant to specify a list of resource
rate inputs, and initial values for any persistent variables.
Whenever the accountant processes a basic resource atom,
it returns the list of resources owed under the contract — to
do this, it can consider only its current state, the details of
the atom, and the current values of the resource rates ini-
tially requested.

Two special resource atoms, with types
resources.begin and resources.end, are
used to signal to the accountant when a contract begins and
ends, allowing initial and final charges to be implemented.
For example, an accounting function might specify that the
client would be reimbursed if the server ended the contract
prematurely, as shown by the subtype of the terminating
resource.

The state of an accountant is stored in the persistent vari-
ables listed at the start of its specification. These and all
local variables may store only numbers — either integers or
floating point numbers, depending on the calculation which
generated them. Strings and arrays may be used only to
specify imported resources and to construct new resources
owed under a contract.

3.1 Accounting Language Grammar

An extract of the accounting language’s BNF grammar
is given below. The remaining rules are simplifications of
the rules of the standard Python grammar [24], to allow
only variable assignment, numerical arithmetic, and i £
elif else statements. There are no general rules for
exception handling, object creation, array or list processing,
iteration or function calls; instead, specific rules and key-
words allow resource atoms to be returned and import lists
to be specified.

accounting_input: ’‘class’ NAME ' (’ BASE-
CLASS)" 7/
NEWLINE INDENT import_list var_list+
accounting_fn DEDENT

import_list: ’importList’ ’=’ ' [’ [string_list] ']’

NEWLINE
var_list: NAME ’=’ NUMBER NEWLINE
accounting_fn: "def’ PRO-

CESSEN ' (/ ’'self’ ’,’ ’"atom’

’,’ ’imports’ ')’ ’':’ suite
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT
stmt: simple_stmt | if_stmt | return_stmt
return_stmt: ’‘return’ ' [’ [result_list] ']’
result_list: resource (’,’ resource)* [',’]
simple_stmt: small_stmt (’;’ small_stmt)* [’;']

NEWLINE
small_stmt: expr_stmt | pass_stmt
expr_stmt: test (augassign test | (’=' test)?¥*)
test: and_test (‘or’ and_test)*
not_test: ’'not’ not_test | comparison
resource: ’'ResourceAtom’ ' (' test ’,’

(test | STRING) ’,’ test ’,’ test ’,’ test ')’
atom: ’ (' [test] ’)’ | NAME | NUMBER |

’imports’ ' [’ NUMBER ']

Additional checks on accounting functions are per-
formed when they are compiled, such as ensuring that only
previously declared persistent variables are referenced. The
lexical analyser also imposes certain restrictions, partic-
ularly on the use of dotted notation: all occurrences of
self.var are parsed into a NAME token, where var is
any legal variable name. Similarly, resources.id and
atom. id are NUMBER tokens, provided that id is one of
the predefined attributes allowed.

3.2 Special Considerations
Flawed accounting functions may cause run-time errors,

such as arithmetic errors or out of bounds indexing of im-
ports. In that case, the contract server’s actions are unspec-

ified. Depending on the circumstances, it would be reason-
able to ignore the error or cancel the contract (and decrease
the client’s trustworthiness rating), or to estimate the reim-
bursement based on previous values. The contract’s client
may also be notified, so that the error can be corrected in
future contracts.

The granularity and ordering of resource atoms can also
affect pricing. For example in the accounting function given
above, different prices would have been assigned to 20 sec-
onds of CPU usage, depending whether these were pre-
sented to the accountant as a single 20-second entry, or as
two 10-second entries. Changing the order in which re-
sources are presented to an accountant can have a similar
effect. The granularity issue can often be resolved by writ-
ing the accounting function more carefully. For example,
the code in lines 8-14 above could be replaced with

newCPU = self.totalCPU + atom.quantity
if newCPU < 10:
cost = (rate+0.01) * atom.quantity
elif self.totalCPU<10 and newCPU >= 10:
cost = (rate+0.01) * (10-self.totalCPU) \
+ (rate+0.002) * (newCPU-10)
else: cost = (rate+0.002) * atom.quantity
self.totalCPU = newCPU
return [ResourceAtom(resources.money, '£',
cost,

atom.startTime,
atom.endTime)]

The contract framework guarantees that events will be
presented to the accounting function in increasing order of
start time, which greatly reduces order-related fluctuations.
Beyond that, it is the responsibility of accounting function
authors to ensure that reordering causes only small price
fluctuations.

3.3 Predictability and Stability of Accounting

Because the accounting language has no looping or re-
cursive constructs, each statement in a specification will be
executed at most once per atom processed. Only simple op-
erations are allowed, so each statement can be guaranteed
to complete within a predictable amount of time. Therefore
the total resources required per atom by the accountant can
be predicted. Thus the accounting overheads of a contract
action are limited by the number of resource atoms gener-
ated. (Resource atoms are defined later, in section 4.)

Accounting overheads result in additional resource con-
sumption, generating more accounting overheads. How-
ever, these overheads can be controlled and minimized by
adjusting the resource atom size used by the server, preserv-
ing system stability. When a contract terminates, there may
be one accounting iteration unaccounted for. Nevertheless,
this overhead is both small and bounded, and can therefore
be factored into resource predictions.

Servers and clients can thus predict the suitability of a
contract, and ensure that it will be profitable, by analysing

the terms of the accounting function and predicting its over-
heads. Many contracts will be profitable over all circum-
stances, moderated by client and server trustworthiness.
Otherwise, an estimate of the cost of stochastically simulat-
ing the contract may be obtained easily from the contract’s
estimated resource consumption. If this cost is justified,
then the simulation will allow the profitability of the con-
tract to be estimated under the expected situations. From
this, a participant can decide whether to accept it.

Accounting policies allow participants in the contract
framework to prioritise their actions, and plan their be-
haviour. The following section outlines a virtual resource
economy and trust model, for enforcing these contracts.
Section 5 then shows how this overarching trust policy may
be implemented, while section 6 presents tests to assess the
effectiveness of these policies.

4 Resource and Trust Models

Contractual obligations must be properly enforced, to
ensure the robustness of the contract framework presented
here. This requires a resource model in which all resource
usage is measured, and also a trust model to identify and
discourage cheating. Here, trust distribution can improve
efficiency, by allowing participants to vouch for others’
trustworthiness by standing surety. This is particularly im-
portant for widely distributed systems, where centralised
trust management or reputation schemes are inappropri-
ate, and where individual participants’ keys are occasion-
ally compromised by hackers. This section outlines our
resource and trust models, and introduces trust delegation
certificates.

4.1 Resource Model

For risk analyses to be realistic, a local account must
be kept of all of the resources used, both while planning
and also retrospectively. By comparing these values, cur-
rent and completed contracts can be monitored to identify
breaches of trust and incorrect budgeting. This helps pre-
vent losses and avoid both accidental and malicious exploits
of contract design. Operating system architectures which
give applications explicit control over their resource usage,
such as Nemesis [20] and the MIT exokernel project [16]
would greatly facilitate this, though conventional operating
systems could also be used.

All resources must be measured and incorporated, in-
cluding those used in establishing the contracts; in this con-
text, money can be seen as just another scarce resource, but
with the advantage that it is fungible and commonly ex-
changed for other resources. Similarly, trustworthiness can
also be seen as a resource, albeit subjective and difficult to
measure.

The actual exchange of resources is dictated by contracts
here; these may be facilitated by the addition of capital —
by providing proof of trustworthiness or solvency, the con-
tract may proceed more easily [6]. In the contracting archi-
tecture, each basic resource has five attributes:

Resource type. This distinguishes fundamentally differ-
ent resources from each other, such as CPU cycles, network
bandwidth, disk storage, money and trust.

Subtype. Identifies the location or denomination of the
resource, e.g. the computer name for CPU usage, or net-
work type and destination class for bandwidth, or currency
for money.

Quantity. The number of units of the resource used, or
expected to be used.

Start time, and

End time. These mark the time during which the
resource was to be used.

It is assumed that the resource was used evenly over
the associated time interval. Otherwise, the resource usage
should be represented using shorter intervals.

This resource representation is a compromise between
expressiveness and compactness. It allows arbitrarily fine-
grained accounting where necessary, but can also be used
for summary representations of large quantities of re-
sources. For most real applications, minute precision in
accounting is unjustified, since the accounting overheads
would overwhelm any savings. The precise break-even
point will vary between systems and between contracts; fur-
thermore, external practical or accounting considerations
may constrain this choice.

Resources can be combined as well as split; assuming
two basic resources have the same type and subtype, and
adjoining or overlapping time intervals, then they may be
combined into a larger basic resource — the maximum dis-
crepancy allowed here is an accounting decision. The limits
of amalgamation show the fundamental resource types in
this framework; these are represented as pairs consisting of
resource type and subtype.

The value of a resource depends on which other re-
sources it can be exchanged for. The contract architec-
ture prices resources by establishing the terms of exchange
within each contract. Participants then accept contracts only
if they expect that the rewards of the contract will exceed
the costs of the resources which they contribute. By as-
signing realistic costs to resources, and values to contracts,
it becomes possible for computers to decide on the most

effective use of those resources. During idle periods, for
example, there would be an oversupply of computational
resources, which could be offered at a discount in exchange
for other resources, such as money.

Accurate resource accounting requires proper support
from the underlying operating system, in allocating and ac-
counting for resources. Nevertheless, even approximate re-
source accounts can be used, provided that they overesti-
mate the real resource consumption. This is because, as
long as the computer system is meeting its real-world costs,
it remains profitable to maintain. A more awkward problem
occurs when participants are using a shared operating sys-
tem or other common resources, and are unable to predict
their own resource allocations. In that case, the participants
may lose trust because of the underlying unpredictability,
unless they can reserve resources in advance.

Resource accounting reduces the risk of Denial of Ser-
vice and other attacks. This is because any leak of resources
will be represented by an unprofitable contract or other pro-
cess, which will in future be given a lower priority. There-
fore, these attacks are possible only by infiltrating a num-
ber of trusted participants simultaneously, or by expending
more resources on the attack than the costs to the victim,
which is ultimately ineffective.

The representation scheme for resources shown above is
an essential requirement for the contract architecture pre-
sented in this paper. It provides a complete and homoge-
neous resource model for contracts to describe their needs,
for both prospective and retrospective accounting. The uni-
fication of both fine- and coarse-grained representation of
resources allows multi-resolution risk analyses to be per-
formed, and accounting overheads to be controlled.

4.2 Subjective Trust Model

A subjective trust model is one of the foundations of the
contract architecture. This allows participants’ trust beliefs
to be constantly updated during the course of their inter-
actions. In this paper, a second order model of trustworthi-
ness is adopted, based on Jgsang’s [15] Subjective Logic, an
extension of the Dempster-Shafer theory of evidence, and
proposed for use in electronic markets by Daskalopulu et
al. [5]. This allows uncertainty in a trustworthiness assess-
ment to be considered explicitly, in contrast with simpler
trust representations.

Conventional trust systems assume that trustworthiness
is known in advance, and unchanging. The degree of trust
is then represented in various ways: as a number in eco-
nomic models [4], as membership of a trust class in privacy
systems such as PGP [3] and in other trust frameworks [1],
or as membership of a role in access control systems [2].
These models implicitly assume that there will be no further
information about agents’ trustworthiness, and therefore do

not represent the accuracy of the knowledge assessments.

Trust models are frequently designed for security appli-
cations, which must ultimately make a once-off decision to
accept or reject a user’s credentials based on the trustwor-
thiness estimate. Thus, no further provision is made for lim-
iting the risk of fraud from authenticated participants, since
these conditions are very difficult to express as security poli-
cies.

By contrast, the need to take calculated risks is a cor-
nerstone of a contract performance framework. For these
decisions to be sensible, constant reassessment of trustwor-
thiness is required to discourage cheating and encourage
cooperative behaviour. In the game-theoretical Prisoner’s
Dilemma, simple retaliatory automata perform well, though
a degree of forgiveness is required when measurement er-
rors may occur [13, 17]. However more complex introspec-
tion is required when prioritising resource allocations, in or-
der to identify the most productive contracts — the classic
Prisoner’s Dilemma does not allow the selection of oppo-
nent.

In subjective logic, a combination of belief, disbelief and
uncertainty functions represents the apparent trustworthi-
ness of a participant. These values are subjectively deter-
mined by each participant, based on their experiences. For
example, if participant A knew nothing about participant B,
then A would initially assign a belief value of 0, a disbelief
value of 0, and an uncertainty of 1 to proposition ¢ that B
would behave truthfully. Thus A’s opinion wg‘ would be
represented by the triple (0,0,1). Conversely, if A knew
that participant C' had been truthful in only 5 out of 10 deal-
ings, then A might hold the opinion w;Z‘ = (0.3,0.3,0.4)
where 1) is the proposition that C' would behave truthfully.
One of the coordinates of each opinion triple is redundant;
their sum is always 1.

Strictly, a fourth value should be included: the relative
atomicity, which measures the overlap or correlation be-
tween the data on which the opinion is based, and the do-
main of the proposition ¢ under consideration. This relative
atomicity is required to accurately estimate the expected
probability of ¢:

E(p) = b(p) + a(p)u(p) where w, = (b(¢), d(), u(), alp))

M

In this paper, for simplicity, it is assumed that past be-
haviour is a good predictor of future behaviour, i.e.

ifb(p) + d(p) # 0, otherwise E(¢) = k

@)

where k is a constant reflecting the expected behaviour
of previously unknown participants.

By making uncertainty in trust explicit, it is possible to

estimate the effects of decisions based on trust, and their

_ by
B = 50+ dip)

expected bounds. In the above example, given k¥ = 0.5,
A’s expected returns would be the same when transacting
with B or C; however, the predicted minimum and maxi-
mum returns would cover a wider range for B than for C.
This would be particularly important if the cost of a failed
transaction were significantly greater than the benefits of a
successful transaction, or A were very risk averse.

Because this framework is subjective and based on ex-
perience, each participant forms its own opinions of oth-
ers’ trustworthiness. The mechanisms for this are outlined
in the next section, while the following section shows how
participants share their opinions to provide more accurate
trustworthiness estimates.

4.3 Trustworthiness Measurement

Here we show the application of subjective logic to
contractual agreements between computerised participants,
within our contracting framework.

Opinions in the subjective logic are based upon belief
mass assignments; these reflect the apparent probabilities
of state combinations within the appropriate frame of dis-
cernment. In our application, each frame of discernment
represents the trustworthiness of a participant, ranging con-
tinuously between O (always cheats) and 1 (always reliable).
These belief masses are assigned according to each partici-
pant’s contract performance.

A contract is an agreement between two or more par-
ties about the actions they are to perform; participants enter
into contracts which they expect to be to their advantage.
In this paper, contracts involve an exchange of resources,
and participants aim to obtain resources which they con-
sider valuable. Progress is achieved through the constant
production of resources by hardware and users, which are
then consumed in the performance of contracts.

Opinions are formed based on completed actions, and the
corresponding belief masses are weighted in proportion to
the return on investment of the actions. These completed ac-
tions may represent entire or partial contracts, provided only
that their success can be assessed. Thus for each completed
action, the belief masses represent the expected truthfulness
of the corresponding participant. For example, if a trans-
action were successfully performed, the continuous belief
mass function m,(z) = 2z might apply, where z € [0, 1].
This represents no belief that the participant always cheats,
and a high belief that the participant is truthful.

The individual belief mass functions of each action are
then combined according to their resource commitments,
and normalised, to yield the overall belief mass function for
a participant.

This framework allows continual updating and refine-
ment of trust estimates, based on actual behaviour. This
is essential in ensuring that best use is made of the available

resources. In addition, it provides protection against partic-
ipants whose security has been compromised, and against a
participant engaging in numerous small transactions with a
view to cheating on a large transaction later.

If a participant is compromised, an intruder might gain
control of its signature and use this to steal resources un-
der an assumed identity; the trust framework allows partici-
pants to limit this risk, and detect resource leaks (unless the
intruder can also fake network packets).

Because trustworthiness is based on the value of re-
sources, not the number of transactions performed, partici-
pants cannot generate trust spuriously. Furthermore, trust-
worthiness is continuously monitored, so only very limited
resources will be speculated on participants that have not
proven their trustworthiness, or on participants that begin to
cheat.

4.4 Transfer of Trust

The subjective logic framework is well adapted to large
systems, since it is not dependent on a central trust or repu-
tation authority. This allows good scalability, because each
participant will have dealings with only a relatively small
number of others.

However, the disadvantage of this occurs if contracts are
usually between participants previously unknown to each
other. The corresponding lack of trust could stifle the for-
mation of new contracts, particularly if unknown partici-
pants were generally unreliable — thus even prolific and
completely honest participants might find it impossible to
establish contracts. In effect, all participants would be pun-
ished for the untrustworthiness of a few.

These difficulties can be overcome in two ways: by pool-
ing trust information, or through trust delegation mecha-
nisms together with only local trust.

If participants pool their information, their trust esti-
mates can be improved, but only if the contributing partic-
ipants are trustworthy themselves and not supplying disin-
formation. One solution would be to share trust information
through the equivalent of a credit bureau. If all credit entries
at the bureau included evidence, such as signed contracts,
the risk of slander would be limited to those participants
that had previously dealt with each other. However, this so-
lution relies on continuity of identity for its effectiveness,
increasing the costs of remaining anonymous. (It may also
require post-unforgeable transaction logs, to protect the bu-
reau’s entries.)

This pooling of trust would therefore be most appropri-
ate within an organisation or institution, where fraud and
reliability issues could be most easily managed. Neverthe-
less, conventional security and logging mechanisms would
still be needed to prevent an attacker from infiltrating one
of the participating computers and thus corrupting the trust

repository. (With careful design, the effect of a single in-
trusion could be limited, but distributed intrusions would
remain an issue.) Other techniques for reducing slander are
discussed by Dellarocas [7], while Szabo [23] outlines the
general limitations of reputation systems.

In this context, the attack could be a worm installed on
each of the participating computers, intercepting and modi-
fying messages to the credit bureau before they were signed.
The effects of the intrusion could be reversed, but detect-
ing the intrusion would be very difficult. If the attack were
limited to a single computer, this could be detected statis-
tically from discrepancies between its credit bureau entries
and those from other contributors. By requiring consensus
for all credit bureau recommendations, the results of the at-
tack could even be hidden from the users, but at the cost of
ignoring potentially useful data.

An alternative is to allow participants to delegate trust
to each other, through the issue of certificates. These trust
delegation certificates bind the trustworthiness of pairs of
participants together. For example, participant A might is-
sue a certificate of 50% trust to participant B, stating that
she is prepared to pay 50% of B’s bad debts. Therefore par-
ticipants that trusted A would increase their trust in B, by
incorporating A’s trustworthiness.

PGP has an analogous mechanism whereby one partici-
pant can sign another’s public key, to act as an ‘introducer’
to a third party. The resulting ‘web of trust’ [3] allows the
identity of previously unknown participants to be verified
indirectly, to allow secure communication to take place.
This was novel because it allowed arbitrary trust relation-
ships, instead of enforcing hierarchical delegation of trust.
Similarly in our framework, it is possible to build complex
chains of trust, either systematically or in an ad hoc manner.

There are four main constituents to a trust delegation cer-
tificate:

Guarantor. A participant willing to accept responsibility
for making reparation, should the guaranteed party default
on a contract.

Guaranteed party.
the guarantor.

A participant that is partly trusted by

Terms. These typically specify the percentage of the debt
that would be repaid, the maximum resource reimburse-
ment, and the domain in which the certificate applies.

Signature. The guarantor’s public key is used to prove
the authenticity of the trust certificate.

When a participant receives a trust certificate, it uses the
discounting operator of subjective logic to adjust its opin-
ion of the guaranteed party’s trustworthiness. This operator

allows one participant to incorporate another’s advice about
a proposition.

The use of these trust certificates extends beyond stand-
ing surety for a close acquaintance. They could also be used
on a larger scale, to create communal entities for trust shar-
ing — the equivalent of a cooperative association for bulk
purchases. Similarly, companies could issue certificates to
employees, allowing them to commission services as com-
pany representatives.

In summary, a sophisticated trust model is an essential
constituent of a distributed contract architecture. It allows
trustworthiness estimates to be continually updated, incor-
porating new data and recommendations. This allows par-
ticipants to better allocate their resources, and assess the
risks of contracts under consideration. These trust estimates
are local and subjective — and thus encapsulate the basic
trustworthiness of the other participant, and the reliability
of both participants’ environments and the messaging ser-
vice between them. With trust delegation, participants can
stand surety for each other, cooperating to make best use of
their trust.

S Implementation

Each server has a scheduler to guide the execution of
its contracts. It selects and processes contracts with the
help of trust recommendations, while recording all resource
usage. It includes a communication module which is re-
sponsible for collecting and distributing the reimbursements
required by contracts, and for resending signed messages
which might have been lost in transit (in the case of unreli-
able asynchronous messaging).

For a cluster of servers, a proxy scheduler could be used
to pre-accept contracts on behalf of the cluster. Correspond-
ingly, each client has a user agent to request and accept con-
tracts, and make appropriate payments on the client’s be-
half; this agent would typically seek the user’s permission
before accepting a contract, but make payments automati-
cally, by weighing the risk of a mistaken payment against
the cost of the user’s time to make the payment decision.

At the heart of the scheduler is a list of current contracts.
Each contract has the following associated information:

Status. This determines whether the contract is current
or not, and whether or not it should be processed. The states
are similar to those of an operating system scheduler [22],
but include additional states for contract negotiation and ter-
mination.

o Server proposed. The server has offered a signed con-
tract to the client. If the client returns a countersigned
copy within the given timeout period, the contract will
come into force. (There is currently no corresponding

‘Client proposed’ state, since this would last only mo-
mentarily while the scheduler decided whether or not
to accept it.)

e Ready. The contract has been signed and counter-
signed by server and client, and is ready to be executed.

e Waiting. The contract is waiting for input, or for a par-
ticular time (for continuous multimedia applications).

o Running. The contract is currently being executed.

e Server terminating. The server has signed a contract
termination message, and is waiting for the client to
countersign it.

o Client terminating. The client has signed a termina-
tion message, and the server is waiting for outstanding
payments to be collected.

e Terminated. The contract termination has been signed
and countersigned.

Contract terms.
lined in section 2.

The specification of this contract, out-

Resources allocated and used. Resources set aside for
this contract, to avoid scheduling more contracts than can
be processed, and the allocation used already.

Total resources used to date. This has two parts: re-
sources used and accounted for (including reimbursements
to the client), and fractional resources not yet accounted for.
The reimbursements should be signed and countersigned.

Total reimbursement received. This is a list of reim-

bursements, with signatures.

Cost of reimbursable resources. The cost to the sys-
tem of the resources which the contract has used, which
have either been reimbursed, or for which the reimburse-
ment period has elapsed even though they have not been
reimbursed.

Contract profitability. This is the ratio of reimburse-
ment received to reimbursable resources, and is used to up-
date the trustworthiness of the contract client.

Signatures. A list of signatures, which may include
client and server signatures of the contract, and client and
server contract termination signatures.

At each scheduling opportunity, the scheduler returns
waiting processes to the ready queue if their conditions have

been satisfied. It then selects a process to run from the ready
queue, giving precedence to those processes for which
(Resource allocation unused x Contract profitability) is
highest. This may be seen as a variant of the stride schedul-
ing algorithm [25] for operating systems. If all resource
allocations have been used, then contracts are prioritised by
profitability.

The selected process then runs until it terminates or is
interrupted — because one of the waiting processes is ready
to proceed, or because it has exhausted its current resource
allocation.

The process’s accounting function is then passed any re-
sources used, to determine the reimbursement required. The
contract metrics and client trustworthiness are updated ac-
cordingly, and the resources used for this and for the ac-
counting are themselves added to the list of resources to be
accounted for on the next iteration.

Finally, any new communication required is performed.
This includes receiving contract requests and deciding
whether or not to sign them, based on the current resource
allocation and their expected profitability. Communication
resources are charged to the corresponding contract. Any
resources used in the scheduling iteration which have not
yet been accounted for are assigned to a special null con-
tract, to ensure that no resource leaks go undetected; only
if the null contract exceeds its predetermined allocation is a
warning produced. The scheduling cycle then repeats itself.

Simple resource reservation is used in the current model,
to ensure that the server does not over-commit itself and
therefore earn distrust. A consequence of this is that the
server will not discard a current contract simply because an
apparently more profitable contract is presented. Two pa-
rameters allow this behaviour to be adjusted, instructing the
server to over-commit itself only by a certain percentage,
and specifying the profitability ratio at which a contract will
be spontaneously discarded. In this way, contracts which
are proving unprofitable can be terminated prematurely; this
would occur only if a client proved less trustworthy than ini-
tially expected, otherwise the contract would not originally
have been accepted.

For honest clients, this resource reservation model pro-
vides consistency — once a contract has been accepted it
will be performed, because the server attempts to remain
trustworthy. Otherwise, if a server decided to give a new,
more profitable contract precedence over an existing con-
tract, it would also have to estimate the secondary costs of
the resulting loss of trust.

The contract execution engine presented in this section
prioritises the execution of contracts according to profitabil-
ity. It uses the trust model to help calculate expected re-
turns, and then uses resource measurements as feedback
to update its opinions of trustworthiness. In this way, it
aims to make best use of its resources while taking cost and

trustworthiness into account.

6 Testing Framework

To assess the effectiveness of the contract framework de-
scribed in this paper, automatic tests are required. Thus, in-
trospectible contracts and second order trust techniques can
be compared against simpler solutions. This section out-
lines an automatic testing framework, to measure the per-
formance of our architecture.

The tests are performed using computers on a local net-
work, but delays and unreliability are artificially introduced
to simulate performance in a widely distributed network
such as the Internet. Although large networks are difficult
to simulate [26, 9], each participant in our contract frame-
work interacts with only a limited number of other partici-
pants over a given interval. As a result, we need to simulate
only a small group of nodes — though these may be widely
dispersed in the underlying network topology. The inter-
actions of this group with the rest of the network can be
modelled iteratively in terms of aggregated resource over-
heads, provided that performance is measured for only the
internal nodes of the group.

6.1 Network Simulation

The contract framework is implemented using asyn-
chronous message-passing semantics, detailed in section 2.
Therefore we simulate network behaviour at the message
level in the testing framework. Because only relatively
small networks with hundreds of nodes are simulated, we
make the following simplifying assumptions:

1. The topology of the simulated network is specified ex-
plicitly in advance. That specification could be gener-
ated automatically from a statistical model, or based on
measurements from an actual network. The topology
could also be changed on the fly within our architec-
ture, though this has not yet been implemented.

2. Each simulated node has a routing table, which deter-
mines the route each message will follow over the un-
derlying network — either directly to its destination,
or via an intermediate node. This allows shared band-
width network links to be simulated. The intermedi-
ate node may or may not be one of those visible to
the contract framework; for example a 128kbps ISDN
bridge from a corporate network to the Internet could
be simulated by adding a concealed node, and routing
all non-local messages through it.

3. The underlying, simulated network links are repre-
sented by a table showing bandwidth and reliability for
each pair of nodes. For efficiency in networks with

10

sparse links, this is implemented with a hash table,
with no entries for node pairs which are not directly
connected in the routing tables. Initially, bandwidth
and reliability are represented as a pair of numbers,
but accurately modelling extra congestion overheads
or congestion collapse [10] on networks such as non-
switched Ethernet would require a more advanced rep-
resentation. A lower bound for performance can be
obtained by assuming that the worst-case congested
bandwidth is available.

4. Each simulated node is also given a list of the CPU,
network and storage resources at its disposal, and a re-
liability description: mean time to failure, failure mode
and recovery interval. This allows modem users and
slow clients to be simulated, and also client failures.
A failed node also does not forward others’ messages,
until it recovers.

Timing issues can be important if the message simula-
tion overheads are higher than the delays expected in the
simulated network. Therefore, the message simulation may
need to slow the actual performance of contracts propor-
tionally to ensure that the simulation remains faithful. The
current implementation achieves this by detecting messages
received after they were supposed to be delivered. (All sim-
ulating nodes are assumed to be on a local network, so that
the clocks can be synchronized, or clock skews can be mea-
sured and accounted for.) The messaging subsystem then
instructs the execution engine’s scheduler to insert artificial
delays in local contract execution. This allows each local
simulated clock to lag behind the real time. The execution
engine’s scheduler also limits the CPU resources used lo-
cally to the budget given when it was created.

A later implementation will make the simulation frame-
work more generally applicable by introducing both forms
of lag by temporarily blocking on calls to the message pass-
ing simulator instead, or pausing processes using the oper-
ating system scheduler. These may be seen as ways of con-
straining resource usage, suggesting that the contract frame-
work could eventually be used to simulate itself.

Clock adjustments are propagated through the simula-
tion network primarily when other messages are sent. Each
conventional message is annotated with the real time at
which it was sent, the simulated sending time, the lag factor
on the sending node, and the sender’s identity. If a message
is received at a simulated time that significantly precedes
the simulated sending time, that message is queued before
being delivered locally; it may also be delayed further be-
cause of simulated network delays. In addition, the sender
should temporarily pause its local simulation, allowing the
recipient to resynchronize its time frame. Clock lag factors
propagate in the same way, to minimise the number of cor-
rections required.

To avoid large clock skews between independent net-
work partitions, occasional keep-alive messages are sent
within the simulation network. These messages also allow
clock lag factors to be reduced: if no messages are received
too late to deliver (after taking into account simulated net-
work delays), then the lag factors may be too high.

Each real machine may simulate a number of nodes. In
the current implementation, each node simulator runs as an
independent process, operating a single contract scheduler.
For greater efficiency, a shared library could be used in-
stead, reducing message passing overheads and allowing lag
factors to be coordinated more efficiently.

6.2 Initialising the Simulation

The testing framework is initialised using a script, com-
bined with the topology specification described above. A
control module executes the script and also acts as a well-
known node in the simulation network, allowing it to in-
terject contracts and other messages, and to establish ini-
tial trust relationships for the simulation. The script there-
fore specifies a list of initial contracts which are automati-
cally accepted and interpreted by the control node; these can
spawn other contracts within the simulated network. Each
of these contracts also has an associated start time, and a
list of node and subjective trustworthiness pairs; this trust
can then be transferred to participants on other nodes in the
simulation via trust delegation. Finally, the control node
passes the complete list of simulated nodes to each initial
contract action clause, allowing contracts to be distributed
throughout the network.

6.3 Tests and Results

Testing of the contract framework aims to measure the
overhead it introduces, and the effects of introspection and
constant trust assessment. The results are collated by con-
tracts themselves, and also by the network simulation envi-
ronment. Three tests were carried out:

Contract Overheads. This tests stochastic optimisation
with and without contracts. In the contract-based portion of
this test, the control node establishes a PBIL optimisation
server at one node, which uses contracts to establish clients
on remote nodes. Each client runs optimisations for approx-
imately a minute (of simulated time), returning intermediate
results at 10 second intervals. The server spawns 10 genera-
tions of client before reporting its conclusions to the control
node.

The conventional portion of this test uses dedicated PBIL
clients, with the same simulated network topology: ISDN
links between all nodes. The results of this test give the
CPU and network overheads of the contract framework.

11

For this test, contract messages accounted for 26% of all
communication messages, but only 16% of the communi-
cation bandwidth. The CPU overheads were approximately
2% of total CPU usage.

Introspection. This test assesses the usefulness of intro-
spectible contract accounting. For this test, a server with or
without introspection is presented with five contracts within
its resource budget. The first proves unprofitable to perform
(though this may not be clear in advance), two are excep-
tionally lucrative, and the others are moderately profitable.
When a contract is completed (each uses a minute of sim-
ulated CPU time), another identical contract is offered to
the server; after 10 minutes, the overall profitability of the
server is measured, to determine whether it has prioritised
effectively.

Using the conservative resource allocation strategy de-
scribed earlier, the simple server treated all contracts
equally, and had an overall profitability of 26%. With in-
trospection, the profitable contracts were successfully iden-
tified, and the overall profitability rose to 38%.

Trustworthiness. This test compares second order trust
modelling and blind trust. Here, four clients request one
contract each on a single server. The first client is always
trustworthy, the second pays 50% of its bills, the third pays
diminishing fractions of each bill, and the last pays each bill
late. The server’s costs and the contract terms ensure that at
least 30% payment is required for a contract to be worth-
while. Each contract uses 1 minute of simulated CPU time,
and each contract is renewed when it terminates. Again, the
overall server profitability is measured, for each of the trust
models.

This test yielded profitability values of 165% and 132%,
although further tests are still needed, with more complex
clients in a larger network.

7 Conclusion

The contract framework presented in this paper allows
flexible contracts to be established between computers,
based on a novel language for accounting policy. These
policies are interpreted within a virtual resource economy
in which favourable contracts are identified, moderated by
trust assessments; participants take calculated risks, then
audit the results to update their assessments of trustworthi-
ness. The homogeneous treatment of trust, money and other
resources simplifies the structure of this resource economy.

The accounting language has a predictable and stable
execution profile, yet it allows sophisticated policies to be
specified. Combined with contract resource estimates, this
enables flexible prediction of contract costs, further reduc-
ing the risk of contract establishment. An execution engine

schedules both conventional and multimedia tasks using a
resource allocation scheme, prioritising tasks based on cost
and on compliance with their accounting policies. Finally,
a testing framework and network simulation model were in-
troduced, to quantify the effectiveness of our contract archi-
tecture.

Distributed computational services are becoming in-
creasing important for the Grid and for web services. The
contract architecture presented here uses accounting poli-
cies as a significant step towards this goal; it allows a dis-
tributed network of participants to reason introspectively
about resources and trust, in order to negotiate rational con-
tracts.

Acknowledgment

We gratefully acknowledge ICL, now part of Fujitsu,
for supporting Brian Shand’s PhD research through the
Computer Laboratory’s ICL studentship.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in vir-
tual communities. In Hawaii International Conference on
System Sciences 33, pp. 1769-1777, Jan. 2000.

J. Bacon, K. Moody, and W. Yao. Access control and trust
in the use of widely distributed services. In Proceedings
Middleware 2001, Lecture Notes in Computer Science 2218,
pp. 295-310, 2001.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings 1996 IEEE Symposium on Se-
curity and Privacy, pp. 164—173, May 1996.

S. Brainov and T. Sandholm. Contracting with an uncertain
level of trust. In Proceedings of the first ACM conference
on Electronic commerce, pp. 15-21, Denver, CO USA, Nov.
1999.

A. Daskalopulu, T. Dimitrakos, and T. Maibaum. E-
contract fulfilment and agents’ attitudes. In ERCIM WG
E-Commerce Workshop on The Role of Trust in e-Business,
Zurich, Oct. 2001.

H. de Soto. The Mystery of Capital: Why Capitalism Tri-
umphs in the West and Fails Everywhere Else. Bantam Press,
London, 2000.

C. Dellarocas. Immunizing online reputation reporting sys-
tems against unfair ratings and discriminatory behavior.
In Proceedings of the 2nd ACM Conference on Electronic
Commerce, pp. 150-157, Minneapolis, MN, Oct. 2000.

C. Ellison and B. Schneier. Ten risks of PKI: What you’re
not being told about public key infrastructure. Computer
Security Journal, 16(1):1-7, 2000.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM 1999,
pp- 251-262, 1999.

P. Gevros, J. Crowcroft, P. Kirstein, and S. Bhatt. Conges-
tion control mechanisms and the best effort service model.
IEEE Network, 15(3):16-26, 2001.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

12

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

M. Gisler, H. Hauschen, Y. Johri, A. Meier, O. Miiller,
B. Schopp, and K. Stanoevska. Requirements on secure
electronic contracts. Technical Report MCM-institute-1999-
01, University of St Gallen, 1999.

L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In USENIX
Symposium on Internet Technologies and Systems, pp. 103—
112, 1997.

P. Grim. The greater generosity of the spatialized prisoners-
dilemma. Journal of Theoretical Biology, 173(4):353-359,
Apr. 1995.

R. Jagannathan. Dataflow models. In E. Zomaya, editor,
Parallel and Distributed Computing Handbook, chapter 8.
McGrawHill, 1996.

A. Jgsang. A logic for uncertain probabilities. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 9(3):279-311, June 2001.

M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Bricefio,
R. Hunt, D. Mazieres, T. Pinckney, R. Grimm, J. Janotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems. In Symposium on Operating Systems
Principles, pp. 52-65, 1997.

S. T. Kuhn. Prisoner’s dilemma. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Stanford University,
Stanford, CA, summer 2001 edition, 2001. [Online]. Avail-
able: http://plato.stanford.edu/archives/
sum2001/entries/prisoner—-dilemma/.

P. F. Linington, Z. Milosevic, and K. Raymond. Policies in
communities: Extending the ODP enterprise viewpoint. In
2nd International Enterprise Distributed Object Computing
Workshop, pp. 11-22, Nov. 1998.

PPARC. Internet to SuperNet — the DATAGRID project,
Jan. 2001. [Online]. Available: http://www.pparc.
ac.uk/nw/supernet.asp.

D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: accountable execution of untrusted code. In
IEEE Hot Topics in Operating Systems (HotOS) VII, pp.
136-141, Mar. 1999.

T. Sandholm and V. Lesser. Issues in automated negotia-
tion and electronic commerce: Extending the contract net
framework. In First International Conference on Multiagent
Systems (ICMAS-95), pp. 328-335, San Fransisco, 1995.

A. Silberschatz and P. B. Galvin. Operating System Con-
cepts. Addison-Wesley, Reading, MA, USA, 1998.

N. Szabo. Formalizing and securing relationships on public
networks. First Monday, 2(9), 1997. [Online]. Available:
http://www.firstmonday.dk/.

G. van Rossum. Python library reference, July 2001.
[Online]. Available: http://www.python.org/doc/
ref/.

C. A. Waldspurger and W. E. Weihl. Stride scheduling: De-
terministic proportional- share resource management. Tech-
nical Report MIT/LCS/TM-528, Massachusetts Institute of
Technology, June 1995.

E. W. Zegura, K. L. Calvert, and M. J. Donahoo. A quanti-
tative comparison of graph-based models for Internet topol-
ogy. IEEE/ACM Transactions on Networking, 5(6):770—
783, 1997.

