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THE EFFECT OF CAUSTICS IN ACOUSTIC

INVERSE SCATTERING EXPERIMENTS

CHERYL BOSMAN PERCELL

ABSTRACT

Most inversion techniques described in the literature rely on the validity of ray
tracing, which breaks down in the presence of caustics. The linearized acoustic
inverse problem with constant reference velocity is analyzed in order to quantify
the effects of a caustic in a probing wavefront on the scattered signal.

When the sound velocity is perturbed by a localized, unidirectional, high fre-
quency inhomogeneity, the surprising result obtained is that the energy in the scat-
tered field is spread out if the perturbation is located on the caustic. This spreading
of energy allows the construction of an oscillatory integral representation of the scat-
tered field, which has the same form, whether or not an incident caustic is present.
On the other hand, a sequence of localized high frequency sound velocity pertur-
bations is constructed such that the size of the scattered signal relative to the size
of the inhomogeneity becomes arbitrarily large as the support of the perturbation

approaches the caustic.



In regions where there are no caustics, a general inverse operator is found for
smoothly varying reference velocities. This operator is shown to be equivalent to

an inverse operator constructed by Beylkin (1985).
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CHAPTER 1

Introduction

Inverse scattering problems are central in many data-processing technologies,
including tomography, radar tracking, seismology, and ultra-sonic testing. In any
inverse scattering problem, if the medium is inhomogeneous, then wavefronts gen-
erally will become singular. The variation in wave velocity causes the wavefronts to
fold over on themselves, as in Figure 1.1. This produces an imperfect focusing effect
called a caustic. In this case, the relationship between the data and the scatterer
is not well understood at present. In order to begin an investigation of this rela-
tionship, we will concentrate our efforts on the linearized acoustic inverse problem,

which is directly related to many of the problems listed above.

The acoustic wave equation, or forward problem is:

1

o ___ 2 — : ' 1
c2(x)utt Vu=0 iR (1)

with some initial-boundary data. The inverse problem can be stated as follows:

Let S[c] = u on (some hypersurface in ") x [0,7T]. Then

given Speasureds

find ¢(x) such that S[¢] = S

measured °
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(a)

(b)

Figure 1.1.  (a) An inhomogeneous medium causes a wavefront to fold
over on itself. (b) The caustic is the envelope of the singular
wavefronts.



Linearization of the inverse problem is accomplished by a perturbation technique
called the Born approximation. The wavespeed ¢(x) is assumed to be a small
perturbation about a smooth background velocity, which implies a perturbation of

the acoustic wave field u about a reference field

c = ¢+ dc
u = ug+ou.

Then the forward perturbational problem can be expressed as

1 2
Eﬁ'uon -V Ug = 0
0
(2)
1 2 _ 26c
g&utt - Véu = EUO" .

The linearized inverse problem is stated as follows:

Given cg, let 65 = DS|coléc = du on (some hypersurface in ™) x
[O,T]. Then given 65 easureds find dc(x) such that DS[coléc =

68

measured-

Most inversion techniques in practice today are based on the method of geomet-
rical optics. The behavior of a wavefront spreading into an undisturbed region is
obtained by propagating discontinuities along characteristics, or rays. The theory is
valid only if the rays fill the entire region of interest and do not cross. As in Figure
1.2, a caustic is formed by the envelope of crossing rays, making the geometrical

optics method, and hence the inversion technique, invalid.



initial wavefront

caustic

Figure1.2. A cusped caustic formed by a convex wavefront in a
homogeneous medium.



Even though a caustic is defined by the invalidity of the geometrical optics
method, it is a real physical phenomenon where the amplitude becomes very large.
In fact, Kulkarney and White [2] have shown that in a medium with small random
perturbations of a constant wavespeed, every ray passes through a caustic with
probability one in a propagation length scale of order (’)(o’g), where the standard

deviation of propagation speed fluctuations is O(c).

It makes sense that caustics should hold some information about the medium
and perhaps even “illuminate” it. What has not been done is to quantify this
information and take it into account when solving the inverse problem. Perhaps
Morawetz [3, p. 331] said it best. “There is as much information about the sound
speed carried in a caustic as in a smooth ray pattern. The problem is to extract
it.”

Since all methods available today for solving the linearized inverse problem ig-
nore the presence of caustics, it is natural to ask what effect a caustic in a probing
wavefront has on the scattered signal, dulq, face- Even further, we want to know if
it is possible to represent the scattered field with methods that are available today.

Ultimately the goal is to find an inverse operator for that representation.

These issues are addressed in the following manner: In Chapter 2, we review
the available literature, including a modification to the geometrical optics method

to allow solutions near caustics. In Chapter 3, we analyze the problem of a convex



initial wavefront moving into a region with constant background velocity. The
initial wavefront forms a caustic and the perturbation in wavespeed is taken to be
localized, high frequency and unidirectional in order to isolate the results. The
surprising result obtained is that if the perturbation is located on the caustic in
the background field, the scattered signal is not amplified; it is in fact spread out.
The problem with this result arises in taking the perturbation to be more general
than unidirectional. In Chapter 4 a sequence of perturbations is constructed so that
when there is a caustic present in the incident field, the size of the scattered signal,
duy, relative to that of the scatterer, éc,, becomes infinite as dc, approaches the

caustic. That is

|6
S 00 as n—00.
[[6call
. 3 . 2 .
It is also shown that if there are no caustics present, then JI'I%_I[IL’_ remains bounded.
n

In Chapter 5 we derive an inverse operator for the representation of the scattered

signal obtained in Chapter 3, and in Chapter 6 this inverse is shown to be related

to the inverse operator constructed by Beylkin in [13].



CHAPTER 2

Background

2.1 Geometrical Optics

Geometrical optics is a method for obtaining the behavior of a wavefront spread-
ing into an undisturbed region by propagating discontinuities along rays. For an

excellent discussion of this method, see Whitham [1].

The wave equation is solved asymptotically near the wavefront by means of an

ansatz of the form
NZaJ X, ) fi(#(x,1))
71=1
where fl = f;_;.

The wavefront is given by ¢(x,t) = 0, and it is assumed that u is identically

zero in ¢(x,t) < 0. For us, f; has either the form

pm I
et > >0

fJ(¢) m+1(¢)
0, ¢ <0

for a wavefront expansion, where Hy(¢) is the Heaviside function, or f;(4) = (e::;

for a high frequency approximation.



Substitution of the ansatz into the wave equation (1) and setting the coefficients

of the f; equal to zero gives equations for the phase ¢ and the amplitudes a;:

|IV¢|? = glgqﬁf (eikonal equation)
fggbtalt —2V¢-Va, + (cizﬁbtt — V2¢)a; =0 (1°* transport equation)
0

The eikonal equation is solved using Hamilton-Jacobi theory, which is a method
of characteristics for nonlinear equations. The solution is obtained by solving the

following system of O.D.E.s:

p=V¢ X=p P = —4Ve(x)
_ dt __ T dr __
T=¢ =2 =0

i —

In this case ¢ is constant along rays. The amplitude a;(x,t) is also given by the

solution of an O.D.E. along the rays:

da,y dt dz
o - YTV 4%
da1

1
— = |5éu—V?*¢)a,.
do (0(2) ¢tt ¢) 1
These equations can always be solved as long as the rays cover the entire region
of interest and do not cross. If the rays tend to focus, then the geometrical optics

approximation incorrectly predicts that as the ray density becomes infinite, so does

the amplitude. The envelope of these rays is called a caustic (see Figure 1.2).
To see this, multiply the transport equation by a;:

2 1
ay c—2¢ta1t —2V¢-Va, + (c—2¢tt — vz<15)‘11 =0 (3)
0 0



This gives the space-time divergence

0,1
5ilgtad) + V- (~aiVe) =0

Consider a slim tube formed by rays emanating from the initial wavefront in
some disk Dy centered at a point X and going to the wavefront at some later time
t. Let D; be the slice of rays at time t. (See Figure 2.1.) Integrating (3) over the
volume R; formed by the rays bounded by Dy and D; and using the divergence

theorem, we get

a? 5
/8 ('_2¢ta "alv¢) -nds =0.

R CO
On Dy the normal is n = (-1,0); on D;, n = (1,0); and on the sides n is perpen-
dicular to the rays, which are parallel to the vector (¢:, —V¢). Thus
0

2

a2 a
/D. 3 9ds - /D Y peds =0 . (4)

Co
Suppose x(X,t) maps a point on the initial wavefront to a point x at time ¢. Let

J(X,t) = |Vx| be the Jacobian of this map. Then

a(x(X,1),1) a3(X,0) .
/Do [ (X, 1)) XX DIX) = =557 6dX,0)| ds = 0.

Since this holds for any disk Dg on the initial wavefront, then as long as the integrand

is continuous,

co(x(X,t)) ,_1

a(x(X;1),8) = (X, 0) = 5y 77 (X, 1) (5)



t A

10

Figure 2.1.

R, is the slim tube of rays going from the initial wavefront in
the disk Dg to the wavefront at some later time ¢.
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When x(X,t) becomes singular, J approaches zero and (5) is no longer valid.

But expanding (4) to first order about X,, we get

a2(xo) _a}(Xo)
Axo) P =A%)

where AD; and ADy are the infinitesimal areas of the disks D; and D,. This is
actually a statement that energy flux along the ray tube is constant. It is clear that

when AD; approaches zero, af(x) approaches infinity. The ray tube collapses, and

the theory is no longer valid.

2.2 Caustics

Although geometrical optics fails at a caustic, it can be altered to produce valid
results. Expanding on the example of Keller [4], Ludwig [5] has constructed uniform
asymptotic expansions for solutions of linear hyperbolic equations at a caustic. For

the simple case of a smooth caustic and the reduced wave equation
VZiu 4 wiu =0,

the ansatz is changed to a linear combination of the Airy function and its derivative.
The structure is such that on one side of the caustic the original oscillatory expansion
is given by geometrical optics (illuminated side), and on the other side the solution is
exponentially decaying (dark side). The transition between the two sides is smooth

with asymptotically larger amplitude along the caustic.
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We show here the motivation for the construction since it will also motivate
some of our own analysis. An appropriate ansatz for the leading order asymptotic

solution of the reduced wave equation is

u(x) = a(x)e™*™ |

where w is large.
The eikonal and transport equations are respectively
IVg|* =1
2V¢-Va+aVig =0
But at a caustic, the local ray density goes to zero, the amplitude goes to infinity,
and the geometrical optics solution becomes invalid.

If, however, the initial wavefront were decomposed into plane waves, each plane
wave could propagate into the region without forming a caustic since the wavespeed

is identically one. This suggests an ansatz of the form
u(x) = / a(x, §)e* =D dp, (6)
where ¢(x,0) = constant describes a plane.

Ordinarily, the method of stationary phase can be used to get an asymptotic

representation for u. If the stationary points defined by

9¢

a—a(x, 0) =0
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are given by 6;, then

[V

2 . o
ue) ~ ;(w'lqsoo(i‘,'oj)I) a0 et

= 0(w?)
as long as ¢eo(x,0;) # 0. If Be(x,0;) = des(x,0;) = 0 and dgge(x,06;) # 0, then
similar analysis yields u(x) ~ O(w'% ). If two stationary points coalesce, then ¢gg
approaches zero, and in the region between ¢g = 0 and ¢g # 0, the method
of stationary phase breaks down. This transition zone corresponds to the region
near a caustic. Notice in Figure 2.2 that each stationary point corresponds to a
contribution from a ray. Each point to the right of the caustic is the intersection
of two rays. Along the caustic, each point corresponds to only one ray. No rays

penetrate to the left of the caustic. This region is called a shadow zone.

The simplest function modelling this phenomenon is given by Chester, Friedman,

and Ursell [6]. They showed that £(x,8), v(x), and p(x) can be found so that

1
¢(x,9)=7+p€—§£3,

provided that ¢ is analytic. With this change of variables, the integral (6) becomes

u(x) = ¢ [ a(x,o@))%e"”“’f‘““)ds .

The stationary points are given by

d 1
%( 5—553)=P—§2=0-



caustic

one ray

Figure 2.2.

initial wavefront

Each stationary point corresponds to a contribution from a ray.

14
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As +.,/p — 0, the second derivative also goes to zero, but the third derivative is

constant.

By expanding a(x, 0({))5—2 in a Taylor series

do

a(x,a)az = ao+ ai{ + (£ — p)Q(¢)

and integrating by parts one can show that

u(x) = 2me ™ [ﬂA (~w? px)) + 20 i (—t p(x))}

1
w3 W3

Twy
(7))
w

Ai(—t) 1 /oo ei(tﬁ—%ﬁs)dg

T 21 Jwo

where

is an Airy function. This provides a new ansatz

[

u(x) = ™) [ao(x)Ai (—w% p(x)) + al(x)Ai' <w§ p(x))] : (7)

Substituting (7) into V?u + w?u = 0 and collecting like powers of w gives equations
for v(x), p(x), ao(x), and a;(x) corresponding to eikonal and transport equations. It
can be shown that depending on the sign of p(x), the eikonal equation is hyperbolic
(illuminated region), elliptic (shadow region), and parabolic (caustic). (See Figure

2.3.)

In the illuminated region, the original geometrical optics approximation is still

valid. Near the caustic, the new Airy function representation is appropriate. If the



<0

elliptic

shadow

initial wavefront
>0
hyperbolic
p=0 .
parabolic illuminated
caustic

Figure2.3. Depending on the sign of p(x), the eikonal equation is
hyperbolic, elliptic, or parabolic.

16
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caustic is analytic and a; is analytic on the caustic, then ~, ap, a; and p can be
continued into the shadow region, and the solution can be interpreted in terms of

complex rays.

There are similar results for cusped caustics, linear systems, and progressing
wave expansions using generalized Airy functions or solutions to the Tricomi equa-
tion

9z*f(z,y) = z0y*f(z,y) .

Kravstov [7,8] has also developed uniform asymptotic solutions of hyperbolic equa-
tions, in particular, Maxwell’s equations. Stickler et al. [9] have applied Ludwig’s

progressing wave ansatz to a point source problem.

2.3 Inverse Problems

There are many methods available for solving linearized inverse problems. Clayton
and Stolt [10] use the WKBJ method to asymptotically obtain the Green’s operators
for the reference field. Then a comparison of the Green’s operators to the kernel of a
Fourier transform facilitates the relation of the data field to the medium parameters.
Of course, the WKBJ method is invalid in the vicinity of turning points, which

correspond to points on a caustic. Cohen and Bleistein [11] use a family of specific
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reference fields, that they call probes, to solve an integral equation of the form
/uova(r)dV =0

for the medium parameter a(r). Stacking and migration methods are also based
on ray theory. An illuminating exposition on the connection between geometrical

optics and migration methods is found in a paper by Lailly [12].

Beylkin {13] gives a rigorous derivation of migration which he defines as a dis-
continuity imaging technique. He linearizes the inverse problem for the Helmholtz

equation with a point source. That is,

[V2+ B} (x)v = &(x—17)

n}(x) = ni(x)+ f(x)

gives

[VZ+ E*ndlv'™ = é6(x—1)
[V + k2o = —k2f(x)v™".
Geometrical optics is used to find the Green’s function for v** and for v*°:

o™~ alk)A™ (x, 7)€l

vout ~ a(k)AOUt(X,€)eik¢o“t(xv5) '
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Then the scattered field is represented as

vk, &,m) = WA (k,&m) = (=ik)™ [ ™ =6a(x, ¢,n) f(x)dx,

where ¢ = ¢ + ¢°“, a = A™A°™ and 7 and £ represent source and receiver

positions.

The solution is shown to be related to the Fourier transform of a generalized

Radon transform (GRT)

o(k,&,n) = (—ik)" ' Rf(k,€,7)

where

Bf(t&m) = [ J(x)a(e,6,mo(t— d(x,€,m)dx, for >0

Rf(t,¢,m) = 0, for t<0.

This is a generalized Radon transform since {¢ = 0} can be any hypersurface, not

just a plane.

The inverse is constructed from the dual to the GRT, which is called a generalized

backprojection operator. The operator

Ff) = RFWIY) = oo [0 [ [ e amy, )

x f(x)dxdéek™* dk

is shown to be asymptotic to the identity operator. The operator

tn—l

FHolt) = e /0  o(k)e~*dk




20

is applied since v* is needed in the time domain. Also,

(I)(X,}’afﬂ?) = ¢(X,§a77) - ¢(y7€377) .

Since the Taylor series for ® is

®=V,d(y,6n) - (x—y)+O(x —y|?),

the following change of variables makes F'f(y) look almost like the identity operating

on f(y):
P = kVyé(y,&n)
dp = k"h(y,E)dédk .
Then
FIw) ~ Tog ) = 5z [ e®¥f(p)d
Yy 81',7 y)= (27‘_)” an(y) p)ap ,

where Q,(y) is the part of the region where no caustics are present. Of course, it is

critical to this method that

¢y1 ¢y2 st ¢yn
h(y,f) — det ¢y1£1 ¢y2£1 s ¢yn$1 (8)
| ¢y1£n-—1 ¢y2€n—1 cee ¢yn5n-—1 ]

be non-zero. This is equivalent to the condition that there be no caustics present.

In fact, Beylkin uses a cutoff function to ensure that k(y,¢) # 0. This is why Q,(y)
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is not the whole region. The migration scheme is then given by

fm,‘g ~ Re Iazof .

Only the discontinuities of f are recovered since Re I50 f is just the leading order

asymptotic behavior.



CHAPTER 3

Plane Wave Velocity Perturbation

The first step in solving an inverse problem is making sure we can solve the
forward problem associated with it. A potential problem is that in the right hand
side of the perturbational equation is the product of éc and ug,,. One might expect
that a perturbation located on a caustic in the reference field would be illuminated.
That is, it would have an effect on the scattered field. It is not clear that the trace
of the scattered field can be represented using geometric optics or the methods of

Ludwig.

In this chapter we analyze an appropriate problem in order to investigate the
effect on the scattered signal of having a caustic in the reference wavefield. We
decompose initial data into plane waves as is suggested by Ludwig’s construction.
Then geometrical optics is used to propagate each plane wave through the pertur-
bation. The plane waves are put back together again, and caustics are located by
the failure of a stationary phase calculation to reduce the number of integration

variables.

22
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3.1 An Appropriate Problem

To begin this investigation, we analyze the simplified problem of a strictly convex
wavefront moving into a two-dimensional region where the reference wavespeed is
constant, ¢o = 1. Since the wavefront is convex, a cusped caustic will develop even
though the region is homogeneous. We take éc to be a localized high frequency

perturbation in some direction k,

c = x(x)ek*

where x(x) is an envelope function. We will later discuss what happens when

solutions are summed over k. See Figure 3.1 for an illustration.

Next, we choose the form of the singularity in the initial data. The fundamental

solution of the wave equation in 2-D with U =0fort<0and c=11is

U(x,t) = = =

—_ H(t—
21 \/12 — 22 (¢ =),

which suggests using the following initial data:

Uo(x,0) = a(x)

where 1(x) = 0 describes the initial wavefront, and a(x) is smooth, with compact
support. The initial value %[{—(X,O) is determined by specifying that it be a single

progressing wave, to leading order.

To be assured that a simple caustic will occur, we assume that the incident



signal recorded here

24

.2'2=0

Figure 3.1. The problem to be analyzed.

$(x) =0
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wavefront is strictly convex. To simplify calculations, we also assume that 1(x) can

be described by its graph, ¥(x) = 22 — I'(z;).

3.2 Decompose Initial Data into Plane Waves

Since the geometrical optics representation breaks down near a caustic, we decom-
pose the initial data into plane wave components, each of which can be propagated

through the region containing the perturbation éc without forming a caustic:

U(x,0) = Up(x,0) = / dbuo(x,0; 6) .

|9]=1
Then

§U(x,t) = / dosu(x, t; )

|9|=1

where
Suy — V23%6u = 2x(x)eik’xu0tt
(9)
bu=06u; =0, for t<0.

To accomplish the decomposition we write the initial data as the inverse of its

Fourier transform:

U(x,0) = /

|8j=1

do /0 ” dw we X F(U(x, 0)) (10)

where

FUG,0) = [ dy e a(y)
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is the Fourier transform of U(x,0). Making the change of variables n = (y1, —%(y)) =

(y1,[(y1) — y2) and evaluating H(7,) gives

00 () . 1 v, _
F(U(x,0)) = /_oo d’?l/o dnzie(m, I'(m) _772)\/_%6 6-tm D(m)=n2)

By writing a1, T{(m) — 72) = a(n, T(n)) + ny @mLla=ml=almlm) and invoking

the assumption that o and g% have compact support in 9, F(U(x,0)) can be

approximated by

F(U(X, 0)) =

o0 . 1 1
/ diie™ 0 () [a(m,F(m)) / dipp—=¢™"™ 1 0(~)| .
—o0 0 /12

W

The 7 integral is evaluated by using Cauchy’s integral theorem to write it as

oo 1 . sgnbzico 1 .
/0 d,,]2 ____ezw927n — /0 d772 __ezweznz’

V2 v

then rotating the contour of integration from the real 7, axis to the positive or

negative imaginary 7, axis depending on the sign, sgn 6. Then

T 1
oo 0

F(U(x, O)) — /°° dmie_iwa-(m,f‘(m))a(m’F(m))esgnhi%

The 7, integral is then evaluated asymptotically using the method of stationary

phase. Letting 5} represent the stationary point defined by IV(n}) = —%;, we have

N * * T 2 —twl-(n* *
F(U(x,0) ~ e, D)) S [frce ™ 000D,
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Notice that to each point on the initial wavefront 1(n) = 0 is associated a direction

6, which is the unit normal to ¢)(n) = 0 at that point. That is,

Vi

= 1ol

(n1) (11)

since the stationary point is given by 8 - (1,I'(n7)) = 0 and ¥(n) = 92 — I'(m).

Substituting the asymptotic evaluation of F(U(x,0)) into the expression (10)

for U(x,0) gives

1 * * 7r twh- 1Ly
UGx,0) ~ [ dbie(,T0ri)) g F,, eyl dw D)

The limits of integration of the w integral can be extended to include the negative

w axis by changing the sign of both w and §. Then
[ dw O = 500~ (27, T(17)) - 0)

and the initial data is decomposed into plane wavefronts with a é-function singu-

larity,

Ux,0)~ [ _ dbia(s;,T(r})) = (3, T(0})) - 0).
lol=1 |0 |,/21“"(n

Let 7(8) = —(97,T'(n7)) - 6. This is the distance from the line x - § = 0 to the
tangent to the curve ¥(x) = 0 at (5;,I'(n7)) and can be considered as a time delay
when solving (9). (See Figure 3.2.) To keep the notation simple we will drop 7(6)

until we obtain du(x,1?;8), at which point we will shift t — ¢t — 7(0).
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v

(n7,T(n}))

7(9) initial wavefront

Figure 3.2. The time delay 7(8) is the distance from the line x-6 = 0 to the
tangent to the curve ¥(x) = 0 at (n7,T(n7)).
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3.3 Geometrical Optics Approximation

We can now solve each plane wave problem. Clearly, the reference field ug is of the
form ug(z,t;0) = a(6)6(t — z - 0). Then a progressing plane wave representation can

be derived for the perturbational field u, where

o 2 ik-x 9
32 V= du = 2x(x)e Ft0 (12)

This representation will be valid up to the time that caustics form in the perturba-

tional field.

The calculation of éu is very similar to a calculation done by Symes and Santosa

in [13]. We guess that §u has the expansion

du(x,t;0) =

by (3, 1)8'( — $(x)) + ba(x, )5(t — $(x)) + ba(3, Y H (¢ — $((x)),

where ¢(z) is the incident phase #(x) = x - 6.

Substitution of this expression into (12) with |[V¢|? = |0]?> = 1 gives

(2b1¢ + 2Vby - Vo + b V24 — 2x(2)e®*a)8"(t — ¢)
4+ (2b3 +2Vby - Vé + bV + byyy — V25,)8'(t — é)
+ (263 + 2Vb3 - V¢ + b3V + by — V2b2)5(t — @)

+ (b3tt — V2b3)H(t et ¢) == 0
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or f16"(t — @) + f26'(t — &) + f36(t — ¢) + faH(t — ) = 0. For this to hold, the

following conditions on the coeflicients f; — f4 must be satisfied:

fi=0

2fiu—fa=0 font=¢
(13)

frw —2fo+ f3=0 |
fai=0int>¢.
The first condition in (13) gives an equation for b;(x,#) on the incident wavefront,
t = ¢(x):

2by; + 2Vby - Vo + 5, V29 = 2x(z)e*%a. (14)

Since the high frequency perturbation, §c = x(z)e’®*, causes energy to be reflected,

we assume that b;(x,t) has an asymptotic expansion of the form

o pn )
by(x,1) ~ Z l_l(cx_)ezkzﬁr(x,t), (15)

n=1 Z )n
where ¢, is the reflected phase. Upon substituting (15) into (14) and matching

powers of k™!, the 0(1) term obtained is

Qbigﬁn + 2biv¢r : V¢ = 2Xa6i(k'x_k¢')

on t= ¢(x). (16)

This implies that

kg, (x,6(x)) = k-x (17)
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Vé, - Vé+¢,|[Ve]? = k-Vg. (18)

Note that the initial condition together with the eikonal equation implies Snell’s

equal angle law of reflection. From (17),

k Ve,
— = +Vé.
¢Tt ¢1‘t
That is, the vector s the sum of two unit vectors since Vér? = ¢? and
e e
|V¢|%2 = 1. The physical ray ‘i—f = —Z?’ is given by the Hamilton-Jacobi equations.
Then
k dz
~= =2 v,
¢ di

which is precisely Snell’s law, as can easily be seen from Figure 3.3.

Using (18) in (16) and ¢(x) = x - 8 gives

b1: XG, — XCL )
YT kVe k-6

The second condition in (13) gives the following differential equation for b,(x, t)

on the incident wavefront:
2by, +2Vby - Vg + bV3¢ =

3b1, +4Vb V29 + Vi ont=dé(z). (19)

Assuming that by(x,t) can be represented by

ba(o,0) o 3 B i)



Figure 3.3.
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K3

. v

dx
dt

Snell’s equal angle law of reflection.
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and substituting this expression into (19) yields
2626r + 265V, - V4 = 3614}, +4b14,V$, - Vo + b} |V 4,

as the highest order term, O(k). We use the eikonal equation for the reflected phase,
¢2,| = |V¢?2|, which comes out of the fourth condition in (13) and will be derived

later in this section. Then
o 1 2xa
b2 = 2b1¢"‘t(x’ ¢'(x)) = m¢rt(xa ¢(X))
The third condition in (13) gives an equation for b3(x,t) on t = $(x):

2b3, +2Vbs - Vo + b3V2p = —by,, — 2Vby,, - Ve — by, V¢ — Vb,

+bs,, + 2Vby, - Ve + b, V2 + Vb,

Substituting the expansion
>, bg(x,t)
ba(x,t) = > —%e kr(xX,t) (21)
n=-—1

into (20) yields the following as the highest order, O(k?), term:

265 ¢y, + 205V, - Vo = —big — 20142V, - Vo — b}V, |?

>
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Again using ¢2, = |Vé,|* we get

byt = bl + B4, ont=g(x)
_ X
= 254 (x,6(0). (22)

Finally, the fourth condition in (13) is the wave equation for bs(x,t) in the light

cone t > ¢(x):

bs,, — Vb3 =0 . (23)
Using the above expansion for bs(x, t) in (23), we get from the 0(k3) and 0(k?) terms
the eikonal and first transport equations:

¢r. — IV, |" =0 (24)

26:.53," = 2V3 -V, + (¢r, — V2h,)b31 =0, 1> g(x). (25)
The solution to the eikonal equation (24) with the initial condition k¢, (x, $(x)) =

k - x, where ¢(x) = x - 0, is easily found to be

. 0 1
r(X,1) = k,— < - X+ ——t.
#:(%,1) ( 2k-0) 2k -0

Then the transport equation (25) reduces to
brb5t — Vb5 - Vg, = 0.

-1
Since d—zﬁd— = bg}j—; + Vb3t %, b3' is constant along rays described by

dz . 0

do 2%k - 6
dt 1

do ~ T Tok.g

I
<
S
5

I
-

I

Il
-
3

l
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or%z&——?f{-ﬂf{.

On the incident wavefront, b3" is given by (22) so that

b3l(x,t) = XR(XO) a(f) on x=x0— (2k- 0k —0)(t—0-x0).

Then, shifting the time variable ¢ to incorporate the time delay 7(8) from the plane

wave decomposition, the perturbational field can be represented as follows:

ik[(k— —=f—)-x4+—1—(t—1
du(x,t;0) ~ ek[(k ko) X i O

+"((l§‘?‘;§f)a(t —7(0) —x-8)
+ Xi’z‘l’{)“g?k H(t—r(8) —x 0)}

where x = xo — (2k - 0k — 0)(t — 7(0) — X0 - 0) (or o = (I + (2k - Ok — 0) ® 6) "} (x +

(2k - 0k — 9)1)).

3.4 Sum the Plane Waves

After summing over the contributions from each plane wave, the perturbational

field at the surface z, = 0 is

§U|,,_o = /|0|=1 do6u |, _o ~

ik .
df— Xo)a(f)e*erxt-rO) |
/|o|=1 4(k-9)3X( o)el?) 0
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since the incident wavefront moves away from z, = 0.

In order to evaluate the integral it is convenient to change variables. There is a
natural change of variables given by the correlation (11) between a direction § and
a point on the initial wavefront. We let z(21) = (z1,I'(21)), where 1(z) = 0. Then

0(z1) = 4B = (1+T%(21))"3(=T"(z1), 1) and

7(0(1)) = —2(21) - 0(z2) = (1 + T%(21)) 7 2(=T(z1) + 21T (=1))-

The curve (z) = 0 is strictly convex so that the map 6 +— 2z, is invertible. This

gives
6U |pmo ~ =ik [ dzx(xo(0(=1)))
a(6) (1) ikdo(arion i)
_ 1 r{21:21,%, 26
4k - |1-2=0 1 +F'2(21)e ( )
where

¢T(21;$1,t,27) = ¢r(xvt_’r(0(zl)))lm2=0
= Sk~ bT(2) [+ ()

+T(21) — 21T (21) + 21(T(21) + 2(k2 — k1 T)ky)]
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3.5 Locate Caustics

Caustics occur where the stationary phase expansion of (26) is invalid, which is

where the phase é,(z;) has degenerate stationary points. Using

dé, I . _ .
= |2k, + (L + )"Vt — 2y + 2,(1 — 2k2
dzy 2(k2—k11“')[ 19+ ( ) 1+ o 1)

=0

gives

d2 ¢r Iw l Iw
(

= — = t—1].
dzf  2ky — kyI) [(14+T72)%/2 l

Thus the caustic locus of the perturbational field on the line z, = 0 is

t

_ 1 12(, 1)3/2
- F"(zl)(l +T ( 1)) . (27)

Note that it is independent of the perturbation direction k and the receiver
location z;. Also notice that the right hand side is the radius of curvature of
¥(z) = 0. This leads one to think that (27) should also represent the caustic locus
of the incident wavefront. This is verified by studying the map (z1,t) — (Z1, Z2) by

which points on the initial wavefront are mapped along rays to the wavefront at a

later time t. That is,

(21, %) = (21,0(=21)) + (1 + T%(=21)) V*(-T'(21), 1)
A caustic is found by looking for where this map is singular. The Jacobian is

det v(zl,t)(él, 22) = (F,Z(Zl) + 1)—1 [(P,2(Zl) + ].)3/2 - tF”(Zl)],
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which is zero precisely when

t= (it T72(z,))*2.

Thus, if there is a caustic in the perturbational field at the surface z3 = 0, then
the distance along a ray from the incident wavefront to the incident caustic must
equal the distance along a ray from the incident wavefront to the perturbation plus
the distance along the corresponding reflected ray to the perturbational caustic.
This can only happen when the perturbation éc = X(x)eik'x is located above the
incident caustic. (See Figure 3.4.) In that case, it is possible to represent the

scattered field at the surface using the methods of Ludwig.

If the perturbation is located near the incident caustic, the only caustic present
in the perturbational field is that piece of the incident caustic. Instead of amplifying
the perturbational field, the caustic causes the reflected rays to be spread out. (See
Figure 3.5.) If the perturbation is below the incident caustic, there will be no caustic
at all in the perturbational field. In fact, the incident wavefront is concave there,
so that the reflected wavefront is also concave. (See Figure 3.6.) For the cases
above, the scattered field at the surface can be represented by a geometrical optics
expansion. In any case, 6U can be represented using known methods, even if the

perturbation sits on a caustic.



1'2=0

initial wavefront

caustic

Figure 3.4. The perturbation is located above the caustic in the reference
field.
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<)

I3

initial wavefront
bc

caustic

Figure3.5. The perturbation is located on the caustic in the reference field.



.‘L‘z=0

Figure 3.6.

Sc initial wavefront

wavefront\

caustic

The perturbation is located below the caustic in the reference
field.

41
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3.6 Integral Operator Representation for the

Scattered Signal

If there are no caustics in the perturbational field, then the method of stationary
phase can be used to asymptotically represent the integral in 6U (26). Without loss
of generality, we can assume that there is only one stationary point. We then get

the following form for the scattered signal:
8Uaym0 ~ Ak, 1, t)etoort) |

where

Ak, zq,t) = (zk)% X(XO(G(ZT))):‘k(oi(;(;Z)B) 1 _{ljnl'(‘lz;()zf)

ro=0

and ¢,(k, z1,t) = ke, (2], 21,1, k).
To generalize this formulation to general perturbations, éc, we can take
Sc = x(x)bc(k)e**

to be one localized Fourier component of a general velocity perturbation dc(x).

Then the previous analysis will still be valid.

Since éc¢ occurs only in the right hand side of the first transport equation,
2by, + 2Vb, - Vb + b, V24 = 2x(x)dc(k)e¥*a

we can make a simple modification to account for more general perturbations. We
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need only change the ansatz for b; to account for a factor of EZ(k):

® b7(x)be(k) ;
b, )~ 52 B e

n=1

The leading order term in b, is

B = XL Fak) .
1 ik-0 c()

Similar expressions can be obtained for b, and bs. The expression for the scattered

field will change only by a factor of dc(k):

8U|,,_o ~ Ak, 21, t)e®o105(k) .

Summing over k gives the trace of the perturbational field §W due to a localized

velocity perturbation é¢(z),
5me0~/qukm¢p%¢mﬁ$my
We can write 8c(k) as a Fourier integral,
ﬂVbFOAz/dkAGgwhﬂdWm“”{/dz&i@e”kz.

Then the scattered signal can be represented by the following Fourier integral op-

erator acting on the velocity perturbation 8¢(z):

SW|

x

=0 ~ [Péc(z1,t) =

//dkdzA(k,xl,t)e"[d"(k”“’t)'k'z]5c(z) .



CHAPTER 4

An Example of Anomalous Scattering Strength from a Caustic

In the previous chapter it was determined that if a high frequency, unidirectional
perturbation were located near a caustic in the incident field, the energy would be
spread out instead of focused. This result does not extend to general perturbations,
dc. It was expected that the product of ¢ and ug,, in the right hand side of the

perturbational problem

Suy — V236u = 26¢ Uoy,

would cause the scattered signal to be illuminated if §c were located near a caustic
in the reference field ug. This is, in fact, the case. Caustics in a probing wavefield
do cause velocity perturbations to scatter signals more strongly than a smooth ray

pattern would.

In order to quantify this statement, we find a sequence of general perturbations
dc that generate O(1) scattered signals in a smooth reference field and increasingly
larger signals in the presence of a caustic. That is, %]l — oo as ¢ moves closer

and closer to the caustic. This example illustrates the fact that even if there is no

caustic in the perturbational field, the scattered signal can be anomalously large.

44
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The construction of this example is best described by the pictures in Figure 4.1.
A perturbation éc is constructed so that the incident wavefront will be reflected as
a plane wave. The perturbation is localized to lie within a ray tube in the incident
field. As éc moves closer to the caustic, the reflected ray tube gets smaller. That

is, the same amount of energy is reflected into a decreasing area.

We first construct the scattered field due to a velocity perturbation of the form
bc = x(z,z)e*=)
The incident field at ¢ = 0 is taken to be
uo(e, 2,0) = (2, 2) H(—9(z, 2)) ,
which gives the reference field
uo(z, z,t) ~ a(z, z,t)H(t — ¢(z, 2)) .

The phase ¢ satisfies the eikonal equation |V¢|* = 1, and the amplitude a(z, z,t)

is given by the transport equation
2Va-Vé+aVig=0.

The Heaviside singularity H(—1) is chosen rather than the point source singularity

ﬁH (—%) because the construction is simpler. In fact, it parallels the construction

in Chapter 3.



perturbational wavefront

Figure 4.1.

(2)

caustic

initial wavefront

wavefront

As the perturbation is placed closer and closer to the caustic,
the reflected ray tube gets smaller and smaller.
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perturbational wavefront

(b)

caustic

initial wavefront

wavefront

Figure4.1.  As the perturbation is placed closer and closer to the caustic,
the reflected ray tube gets smaller and smaller.



perturbational wavefront

Figure4.1.

caustic

initial wavefront

wavefront

As the perturbation is placed closer and closer to the caustic,
the reflected ray tube gets smaller and smaller.
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The scattered field has the form
du(z, z,t) = bi(z, 2,t)8(t — @(z, 2)) + by(z, 2, 1) H(t — é(z, 2))

where

© bz, z
) = EHED
j

by(z,z,t) = E 2((“0)] ehdr(@at)

[

.

Q“

The phase must satisfy the initial condition

¢r(z,2,8(2,2)) = 7(, 2) (28)
and the eikonal equation

|V<é"'|2 = ¢3, *

We want to construct the perturbations éc = x(z, 2)e**(®2) in such a way that
the reflected phase ¢, is a plane wave that moves in the —z direction. That is, we

want
bz 2,t) =t + 2.

This automatically satisfies the eikonal equation. In order to satisfy the initial

condition (28), we must take

v(z,2) = ¢(z,2) + 2.

The coeflicient b} satisfies the transport equation

201 ., + 203V, - Vo = 2xae*0#) (29)
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Taking the gradient of the initial condition (28) with v(z,z) = ¢(z, z) + z gives

V. (2,2, ¢(z,2)) + ¢ (2,2, ¢(2,2))Vé(z,2) = Vé(z,2) + (0,1)
and
Vo, Vé+ ¢V = [Vo[* + 4. .
But |[V¢|? = 1 so that
Vér Vot =1+¢.. (30)

Using (30) in (29), we obtain

Similarly,

bg:?bi@,(x,z,(ﬁ(:r,z)):12—5; on ¢(z,2)=1t.

The coefficient b, satisfies the wave equation in the light cone
by, — Vo =0 in t> é(z,2). (31)

Substituting the above expansion for b, in (31) gives the eikonal equation for the

reflected phase and the following transport equation for 59:
¢ by, — VB - Vo, =0 in t>¢(z,z).

Then b3 is constant along the rays described by

dx
= = V4.=(0,1)
dt - g =1

do
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or ¥ = (0,-1), where x = (z,2). Then the reflected field at the surface can be

written as

5u($ 0 t) ~ X(.’IJ(),ZQ)G(IL'(),Z()) eik(t+z)
7 1 + ¢,(o, 20)

z=0

where the rays are given by

(CL', Z) = ((I?o, ¢($03 ZO) - t) )

and (o, 20) is on the incident wavefront ¢(zg, 20) = c. Notice that the amplitude
of the reflected field is constant along reflected rays. This construction is valid only

above the incident caustic, but this is sufficient for present purposes.

To form the sequence, let each element of {éc,} be a localized high frequency

perturbation of the form

bc, = Xn(ac,z)eik'Y(z’z) ,
where
1(2,2) = $(2,2) + 2 .

In order to describe the characteristic function x,(z,z), let 7 be a slim ray tube
enclosed by two incident rays. The cross sectional area of the ray tube goes to zero
as the rays approach the caustic (see Figure 4.2). Let r be the length of the bisector
of the two bounding rays between the initial wavefront and the crossing of the rays,
as in Figure 4.3. Then let x,(z,z) be equal to one on a disk D, that is centered

at a point on the bisector a distance r — = from the incident wavefront. This disk



caustic

Figure4.2. 7 is a slim ray tube enclosed by two incident rays.

Figure 4.3. The length of the bisector of the two bounding rays between the
initial wavefront and the crossing of the rays is r.
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Figure 4.4.

The envelope function xn(x) is one on the disk D,.
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should be contained strictly within the ray tube, and x,(z) should be zero outside

T (see Figure 4.4). As n gets larger, D, moves closer to the caustic.

The relative size of the scattered signal to the perturbation is given in terms of

the L? norms:
e = [ [ doadsala(oos ) = el

//dmdt

The time that it takes to get from the initial wavefront to the reflector then to the

Sl n a(z0, %)
6t Xalzo,20) g P (32)

fl

2=0

surface is ¢(zo, 20) + 20 so that points (2o, z0) are mapped to (z,t) by
(z,t) = (zo, #(zo,20) + 20) at 2=0.

This is illustrated in Figure 4.5. Making this change of variables in (32) changes

the amplitude only by the Jacobian factor J = (1 + ¢,). Then

/ / dzodze

2=l

Since ¢ satisfies the eikonal equation |V#|? = 1 and ¢, > 0, the factor (1+q§z)“%

2
(1’.07 ZO)

1 + ¢z(x0a zO)

”(Su"“2 Xn Zo, ZO)

is O(1). But as the incident rays get closer to the caustic, the amplitude a(zo, zo)
approaches infinity. This was shown in Chapter 2 by integrating the transport

equation over the ray tube, which collapses. Thus

[ unl®
1écxl®

— 00 as n—oo.



Figure 4.5.

(z',t) = (0, 9(0, 20) + 20) z2=0

reflected ray — ;

20

incident ray

v ¢(10a Zo)

caustic
(an Zo)

Points (o, z0) are mapped along reflected rays to (z’,t) at z = 0.
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If there is no caustic in the incident wavefield then lﬂé—j}g is always bounded since

the amplitude remains bounded.
An incident point source field ﬁH (—%) could have been used instead of the

Heaviside field, H(—). Under these circumstances, the conclusion would be that

”k"f‘» Sul|
[|6cl|

remains bounded (33)

as long as the support of éc stays away from the incident caustic, but approaches

infinity if the support of §c approaches the caustic.

This is verified by a result of Rakesh [16], which states that if there are no

caustics present, then

H Su|

< constant||éc||; . (34)

Tn=0

s—(n-1)/2

The s-norm, || - ||, is the Sobolev norm defined by

1
2

o= ([ a1+ ey1700r)
171 = ([, dic(1 + )71 fi)]
In two dimensions, (34) can be written as

|| Su|

z2=0||3_% < constant||é¢||, ,

which says that the s — % th derivative of 6u is the same size as the s derivative

of 6c. Since the factor of k=% in (33) acts like a (—3 )™ derivative, the results (33)

and (34) are consistent.



CHAPTER 5

The Inverse Operator

5.1 The Construction of the Inverse

In Chapter 3 we found the following Fourier integral operator representation for the

scattered signal due to a general perturbation éc(z):

SW|. _, ~ [P6d(z1,1)

x2=0

(35)
- / / dkdz A(k, z,, t)elrerd-Kkalg ;)

This representation is valid away from any caustics in the perturbational field. It
is, in fact, valid even if there are caustics in the incident field. The goal of this
chapter is to find an inverse operator for this representation. That is, we will find

an inverse of the forward map

DS[co)bc = 6W|

z2=0 *
Let P, be the operator defined by
Préc(zy,t) = //dkldzAl(kl,azl,t)e'w'(k"xl’t)_kl'zl&(z) .
The operators P and P; are the same; the subscript 1 is used only for clarification.
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We intend to find an operator P, that is close to an inverse operator. To define
what close means, we must introduce a parameter 7 that describes the roughness
of 6c. Recall that we assumed in the geometrical optics calculations that éc acted
as a reflector. This is a statement that éc is rough. One way of viewing this is if

the velocity perturbation can be written in the form
6c(z) = a(z)e' @ |

As 7 — 00, éc oscillates more and more rapidly and thus becomes very rough.
Assuming that éc(z) can be represented in this way and a(z) has compact support

in z, we will look for an operator P, such that
PP éc(z) ~ T6c(z) as T —> 0.
Define P, as
Pof(y) = [ [ dicadxAy(ler, x)e e Kb ) (36)

P, is similar to the adjoint operator to P;. Then, letting X represent (z1,1),

PPbc(y) = / / / / dk; dlc; dz dze k)T 5- (ks ) +kay]

X Al(kl, i)Az(kQ, i)(SC(Z) .
Since dc(y) can be written as the inverse of its Fourier transform,

Scly) = / / dkdze™V-D§¢(z) | (37)
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the idea is to make P;P6c(y) look like (37). In order to accomplish this, two of
the integrals in P, P,6c(y) must be eliminated. But a large parameter in the phase
function is necessary to perform a stationary phase calculation. Therefore, we make
the change of variables

k,'—>Tk,', i=1,2.

The amplitude in A; was shown in Chapter 3 to be homogeneous of order % . Then

assuming that A, is homogeneous of order ¢, we have
PRécly) = [ [ [ [dkidiodndart+tsemotaksy
X Al(kl, i)Az(kz, i)&C(Z) ;

where (D(kl,k2,§(,y, Z) = ¢(k1,§() - k1 Z — ¢(k2,i) + k2 -y

We intend to do a stationary phase calculation on the (kj,%) variables. There-
fore, the error term will be expressed as an integral over the (k;,z) variables of a
function that is O(7~"). In order to ensure that the entire integral is O(7!) and
can be considered asymptotically of lower order than the leading term, we do the

following calculation. The integral P, P éc(y) can be rewritten as
P Piée(y) = //dkldzr‘H%+£a(k1,z)eiTkl'za(z)eiTW(z)
where

a(ky,z) = / / dkpd% As (i, %) Ag(ky, %)ei k18 =602 X Hla y]
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Then, letting b(k:,2) = a(z)a(ky,z) and g =4+ 1 + 4,
P2P1 5C(y) = //dkleTqb(kl, z)ei'rkl-zei‘r'y(z)
= / / dkleTQb(kl, Z)ei'rkl -Zeir'y(z)
klsl
+ [ [ dkidartblia, merarene).
k1

The amplitude b(k;,z) has compact support in z since a(z) does. Therefore, the

integral over the region k; <1 is bounded by something that is O(79),
// dkldzrqb(kl,z)e”kl'zei”(z) < constant O(r?) .
k<1

For the infinite integral, we write

K

iTK,-2 itk 2
e‘l‘l‘ 1 = - 5 . Vzet‘r 1 ,
1Tk}

then do an integration by parts in z:

i K |
[ [ dkdaronia,myemo K g ks
k1 >1

1Tk?

ks . -
= = I—- - iry(z) itk 2
/] Azt (V@) 2) + Vbl a)| €Ok

Thus, one integration by parts pulls in a factor of k7! without changing the order in
7. Two more applications of integration by parts provides a factor of k2 ensuring

the absolute convergence of the integral, again without changing the order in 7.
It is possible now to estimate the integral P, Péc(y) as

P,Péc(y < TQ//dkldzlb(kl’z)ei‘rkl.zeir’y(z)

= O(r7).
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Now stationary phase can be performed on the (kj, X) variables. The stationary

points are given by

Vi,k® = y—Vidéks,X)=0 (38)

Vi@ = Vig(ky,X) — Vid(ke, %) =0. (39)

The second equation (39) is satisfied by ko = ky. The first equation (38) specifies
some stationary points (kj,X}). As long as k, = k; is the only solution of (39) then
the following calculation of the approximate inverse can be done. It doesn’t matter
how many points X} there are. For simplicity of notation we will assume that there

is only one; call it X*. In any case, the implicit function theorem ensures that the

stationary points will be locally unique as long as
det |V, Vzd(ky,X*)| #0 .

This mixed Hessian

¢tk1 ¢tk2
¢131 k1 ¢$1 k2

is singular precisely at a caustic and corresponds to the singularity of Beylkin’s ma-

trix (8). If H is non-singular, the order in k of the amplitude A;(k;, x’,) determines

the size of the operator P, [15].

Notice that condition (39) concerns the ray direction vector

99 09 99\ _ (des dwp di
Oz, 0z, Ot) \do’do’do)
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Thus, the assumption that the solution of (39) is globally unique is a statement that
the direction of the rays at the surface change when the direction of the perturbation

changes. For an illustration when the background velocity is constant, see Figure

a.1.

At the point (k;, %) = (kq,%*), the second derivatives of ® are given by

Vk2Vk2¢](kl X*) = _Vk2Vk2¢(k1, i*)
VeVl x) = ViVid(ki, X") — VaVad(ky, X*) =0

vai@l(khi.) = =V, Vid(ks,X").
Therefore det[V(klyi)V(kl,i)(I)(kl,)”(*)] = —det[Vi, Vzé(ky, X*)], and

PPiécly) = / / diy dzr?F +4(2m)2 A, (ky, %) Ag (i, X°)6c(2)
e—i%ngnA]’

X ez’v-(y—z)-kl
\/det Vi, Vag(ky, x*)

+ //dkldzeiT(y_z)'kl(’)(T“%+€—1) ;

where the \; are eigenvalues of Viks,#)V (ks,5) B (K1, X).

Lettingl As(ks, %) = iy [A1(ks, %)) € X2 [det V, Vad(ko, %) and

{ =

1
—5 , we have

PPsy) = [ [diadarse(z)ero -2

ir(y—z)-ky
+ //dkldz bc(z)e O(r) .
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Changing variables again

Tk,'—)k,'

gives
P, Pibe(y) = //dkldz bc(z)e'V-2ki 4 //dkldz bc(z)e VD O(r71) |
As we saw above, the error term is O(771); therefore

P2P16C(y) ~ I(SC(Y) .

5.2 An Extension for 3-D Varying Background Velocity

Note that the representation of the trace of the perturbational field §U found in
Section 5.1 (35) is general enough to include the case of a general initial wavefront
moving into a medium with a smoothly varying background velocity ¢o = ¢o(x). In

this case the reference field has the form

o = a(x, 16(t — $(x)) -
Then the reflected phase ¢,(k,x,t) satisfies the eikonal equation
2~ IV, P =0,
¢T($a ¢($)) = R X,
and the amplitude A solves the transport equation

2r Ar — OVA -V, + (¢r — V24, )A=0, > $(x)
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A= BB Se (k)g2 (x,t) on t=¢(x).

A3 (x)k-ve¢

To extend the calculation to three dimensions, note that the vector x can be

n-dimensional

X = (z1,Z2,...,2y), n>1.

Let x" = (z1,22,...,Zn-1). Then the forward map can be expressed as
§W|, _o ~ Pibec(x',t) = / / dkydz Ay (ky, X', t)eltdr XDk zlge ()

The amplitude A, is homogeneous of order m, where m depends on the dimension
n and the initial singularity. Furthermore, the inverse operator P, can be defined

as
P, f(y) — //dkzdi/b(k%i)e—i[¢(k2,i)—k2-y]f()”() ,

where A, 1s defined as in Section 5.1.



CHAPTER 6

The Relationship to Beylkin’s Inverse

Although the inverse operator (36) derived in Chapter 5 appears to be different
from Beylkin’s inverse (8) described in Chapter 2, they should be related if the
initial wavefronts are the same. The differential equation that Beylkin treats is the
reduced wave equation, which is related to the time dependent wave equation by
the Fourier transform. In this chapter we show that the two forward operators are

equivalent up to amplitude. It then follows that the inverses are also equivalent.

The integral operator representation for the scattered signal generalized to n

dimensions is
[Péc|(x',) = / / dk, dz A (ky, X', )l x-kizlg 5y (40)

The scattered field solves the perturbational wave equation

1 26
——2-5uu - Viu = ——;-uon
Co Co

bu = buy=0 for t<O0,

where the incident wave field ug satisfies

1
2

—2"(10tt -V Ug = 0

%
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uo(x,0) = g((x)),

and g(v(x)) is singular at ¥(x) = 0.

The Fourier transform of the integral operator representation for the scattered

signal found in Beylkin [13] is

For(6,0) = [ [ dxdor (Rax,e oo (o)

The scattered signal v*¢ solves the reduced wave equation

c‘)27,L(2_)v.‘3c + V2vsc — _w2f(x),uin

v*=0, =z large,

where v™ satisfies

winvi® 4 Viyin = 6(z —n)

v =0, =z large.

The scattered field v*¢ is solved by the use of the Green’s function

windv®™ + V3o = §(x — ¢) .

If the initial wavefront uo(x,0) were due to a point source, then the integral
operator representations of the scattered field, (40) and (41), should be very closely

related. In order to exhibit this relationship, we first analyze the representation
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(40) shown in Chapter 5. We can split the integral over k; into an integral over the

unit vector k; and an integral over the length k,. Then
Pbe(x',t) = / / dkdz A (ki, X', 1)6¢(z) / dky k1 gihalen Gk )k 2]

if Ay(kq,x’,¢) is homogeneous of order m.

Since the Fourier transform of the j** derivative of §(z) is —(—ik),

Piée(x',t) =

- / / dkydz Ay (ky, X', )8c(z)(—i) =™ "6+ (g (k% 1) — ki - 2)

where §(™*"~1) is the (m + n — 1)* derivative of §(x).

This representation of the scattered signal is an integral of the form

I= / dx a(x)6™ D (g(x)) .
Changing variables to
Y= sYn) = (@1, .-, Tn-1, $(X))
gives the Jacobian factor

J =

oz, (yla sy yn—l)a xn(Y))

The solution of

Yn — ¢(y17"' 7yn—17$n) =0
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gives T, = Tun(Yn ; Y1, .-, Yn-1) since % is never zero. Therefore

a(yh s 7yn—1,mn(Y)) -1
1 =/dy 6(m+n ) Yn
%(yh"'ayn—l,xn(y)) ( )

which is reduced to

AN alyr, - Ynet, Tn
[ = / dy (a_) 84}(3/1 Yn-1 (Y))
Yn=0 Yn m(yla-"’yn—hx"(y))

= Jio dx w(x) .

Thus the scattered signal can be written as

Pi6e(x',t) = / / oot .zdfcldz w(ky, X', t,2) .

The reflected phase ¢T(R1, X, 1) is constant along rays, and if there are no caustics
present, then the rays do not cross. Thus, given (lA(I,x' ,t), there is a unique point

z for which
(ﬁr(l;],xl,t) = lA(l *Z

holds. The z that satisfies this is specified by the initial condition for the reflected

phase

~

¢T(f{11za ¢(Z)) = kl 'z

and is the reflection point of the ray which passes through (x',t) (see Figure 6.1).
Since this is an equation in k; and z only, it specifies k; as a function of z. Thus

(42) is an integral over the normal vectors k;, which parameterize the constant



. (1)

Figure6.1.

¢, = constant

The point z is the reflection point of the ray which passes
through (x,1).
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travel time ellipse ¢; + t; = constant (see Figure 6.2). If the reference velocity is

constant, then the curve ¢; + t; = constant is an ellipse, otherwise it is ellipse-like.

Beylkin’s representation for the scattered field can similarly be written as an

integral over a constant phase surface,

v*(€,t) = dx w(x,€,n) .

/45(x,n)+¢(x,£)=t

The phase ¢ satisfies the eikonal equation
IV[* =ng

which is solved by the Hamilton-Jacobi equations

Then

¢= rays &2
where the rays are given by x = p. Thus ¢(x,7n) is the geodesic distance along
the incident ray from the source point 7 on the surface to the interior point x,
and ¢(x,€) is the geodesic distance along the reflected ray from the point x to the
receiver position ¢ (see Figure 6.3). Therefore, v*° is an integral over the same
constant travel time ellipse as du. That is, up to amplitudes, the solutions to the

forward problems éu and v*® are equivalent. It is expected that the amplitudes will

also prove to be equivalent.



Z, («',t)

3

Figure 6.2.

ty + t3 = constant

The vectors k; parameterize the constant travel time ellipse
t; + t3 = constant.



Figure 6.3.

¢(1‘,7]) + ¢(zs£) =t

The phases ¢(x,n) and ¢(x,§) are the geodesic distances along
the incident and reflected rays, respectively.
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Since the inverse operators for both éu and vy, are closely related to the adjoint
operators, the equivalence relation found for the forward maps extends to the in-
verses. The inverse operators for both éu and v*¢ are also integrals over constant
phase surfaces. In this case, they are constant depth hyperbolas with integration

over arrival times (see Figure 6.4).



Ts (z’(z),t(Z))

incident ray

Figure 6.4.

The inverse operators are integrals over constant depth surfaces
parameterized by arrival times.
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