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Signal Detection Theory and Generalized Linear Models 

Lawrence T. DeCarlo 
Fordham University 

Generalized linear models are a general class of regressionlike models for continu- 
ous and categorical response variables. Signal detection models can be formulated 
as a subclass of generalized linear models, and the result is a rich class of signal 
detection models based on different underlying distributions. An example is a 
signal detection model based on the extreme value distribution. The extreme value 
model is shown to yield unit slope receiver operating characteristic (ROC) curves 
for several classic data sets that are commonly given as examples of normal or 
logistic ROC curves with slopes that differ from unity. The result is an additive 
model with a simple interpretation in terms of a shift in the location of an under- 
lying distribution. The models can also be extended in several ways, such as to 
recognize response dependencies, to include random coefficients, or to allow for 
more general underlying probability distributions. 

Signal detection theory (SDT) arose as an applica- 
tion of  statistical decision theory to engineering prob- 
lems, in particular, the detection of  a signal embedded 
in noise. The relevance of  the theory to psychophysi- 
cal studies of  detection, recognition, and discrimina- 
tion was recognized early on by Tanner and Swets 
(1954) and others (see Green & Swets, 1966). SDT 
has in recent years been applied to a wide variety of  
research in psychology (see Gescheider, 1997; Mac- 
Millan & Creelman, 1991; McNicol, 1972; Swets, 
1986) and in other areas, such as medical research, 
weather forecasting, survey research (see Swets, 
1996), and marketing research (Singh & Churchill, 
1986). 

This article shows that generalized linear models 
(GLMs), which are a general class of  regressionlike 
models for continuous and categorical response vari- 
ables, provide a useful framework for signal detection 
theory. In particular, signal detection models can be 
formulated as a subclass of GLMs, and the result is a 
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rich class of  signal detection models based on differ- 
ent underlying distributions. An example is a signal 
detection model based on the extreme value distribu- 
tion. The extreme value model is shown to yield unit 
slope receiver operating characteristic (ROC) curves 
for several classic data sets that are commonly given 
as examples of normal or logistic ROC curves with 
slopes that differ from unity. This has implications for 
research and theory in several areas, such as for cur- 
rent memory research. 

GLMs also offer a flexible regressionlike approach 
to signal detection data, and the basic model can be 
extended in several ways. For example, additional 
variables can be included, such as covariates one 
wishes to control for. The possibility of  dependence 
among responses can be examined through the use of  
time series and longitudinal extensions of  GLMs. In 
the last section I comment on these and other exten- 
sions and note directions for future research. 

S D T  and Logis t ic  Regress ion  

In this section I show that SDT with logistic un- 
derlying distributions leads directly to a logistic re- 
gression model, which provides a convenient starting 
point for the generalization to GLMs below. Logistic 
regression provides a simple way to estimate and test 
the signal detection parameters and can be used for 
both binary and rating response data. 

SDT 

Figure 1 shows the basic ideas and parameters of 
SDT. One idea is that the effect of the presentation of  
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Figure 1. Signal detection theory with logistic underlying 
distributions and a binary response. 

an event, such as a signal or noise, can be represented 
by an underlying probability distribution, such as the 
logistic distributions shown in the figure. It is as- 
sumed that the distributions associated with signal and 
noise differ only with respect to location. Note that 
the underlying distributions can be conceptualized in 
more than one way, depending on the area of appli- 
cation. For example, they are often thought of in psy- 
chophysics as distributions of perception, whereas in 
memory research they can be viewed as being distri- 
butions of familiarity. 

A second idea of SDT is that, on each trial, a par- 
ticipant decides whether an event has occurred by 
using a response criterion. In particular, the partici- 
pant responds "yes"  (reports a signal) if the subjec- 
tive event (e.g., sensation) falls above the criterion; 
otherwise he or she responds "no ."  

As shown in Figure 1, the basic parameters of SDT 
are c and d. The parameter c is the distance of the 
response criterion from the mode of the noise distri- 
bution (MacMillan & Creelman, 1991, discussed 
other criterion measures; also see Appendix A of the 
present article), and the parameter d is a measure of 
the distance between the two underlying distributions, 

d - -  - - ,  
T 

where ~s and t~ are, respectively, the modes of the 
signal and noise distributions, and "r is a scale param- 
eter. For logistic distributions, d is simply two times 
the logarithm of the choice theory parameter a, d = 
2 log(a) (see MacMillan & Creelman, 1991; Mc- 
Nicol, 1972), and "r is related to the standard deviation 
tr by tr = r~rl~/3. Multiplying d by ~/3/~r gives the 
distance in standard deviations, which is the effect 
size measure 8 used in meta-analysis (see Hasselblad 
& Hedges, 1995). For normal distributions, tr = • and 
d is the traditional measure d'. SDT models based on 
these and other distributions are considered here, so I 

simplified the notation by using d throughout for the 
distance measure and c for the response criterion, both 
of which are scaled with respect to ,r. 

An important aspect of SDT is that the parameters 
d and c separate sensory (memory, etc.) factors from 
decision factors, respectively. 

The area to the right of the criterion under the sig- 
nal distribution shown in Figure 1 gives the probabil- 
ity of a response of "yes"  when a signal is presented, 
that is, the probability of a hit, which for the logistic 
distribution is 

1 
p(Y= llS)= 1 + exp[ (c -  Os)/'r]' 

where p(Y = lIS) is the conditional probability that 
the participant responds " y e s "  (reports a signal) 
given that a signal was presented, and (c - ~s)/'r is the 
scaled distance of the criterion from the mode of the 
signal distribution. The right side of the above is the 
survival function for the logistic distribution; it gives 
the area to the right of the criterion and is simply 1 
minus the cumulative distribution function. 

Similarly, the probability that the participant says 
"yes"  given that noise was presented, p(Y = lIN), 
which is the probability of a false alarm, is given by 
the area to the right of the criterion under the noise 
distribution, which is 

1 
P(Y= IlN) = 1 + exp [(c - t~n)/~ ]" 

Next, consider the log odds or logit transform, 
which is 

logit(p) = log ( 1P-~_ p ) ,  

where log is the natural logarithm. Applying the logit 
transform to the hit and false alarm probabilities 
shown above gives 

Ills --  C 
logit p(Y = IlS)= ,.g 

~ n  --  C 
logitp(Y= IlN)= (1) 

T 

The above logits represent, respectively, the log odds 
that the participant says "yes"  to a signal and the log 
odds that he or she says "yes"  to noise. Equation 1 
shows that the logit transformed probabilities have a 
simple relationship to the theoretical parameters. For 
example, one can easily solve for the parameters d 
and c: the difference between the logit hits and logit 



188 DECARLO 

false alarms gives d, and -1 times the logit false 
alarms gives c; substituting observed proportions for 
the probabilities gives estimates of the parameters 
(see Appendix A; also, -1/2 times the sum of the two 
logits gives another criterion measure, c'). 

The next section shows that the above two logits 
are brought together in a logistic regression model. 

Logist ic  Regress ion  

Logistic regression is a generalization of ordinary 
linear regression to situations where the dependent 
variable is binary or polytomous. Textbook introduc- 
tions have been provided by Hosmer and Lemeshow 
(1989) and Kleinbaum (1994); Strauss (1992) pro- 
vided an informative article. 

The two components of Equation 1 can be com- 
bined in a logistic regression model as 

I~ln--C drls-dtl n 
logitp(Y= IlX)= + X, 

T T 

where X is coded as 1 for signal and 0 for noise 
(dummy coding). The reader can verify that when X 
= 1, the above gives the log odds (logit) of a hit, as 
shown in Equation 1, and when X = 0, it gives the log 
odds of a false alarm. Given the definition of d shown 
above, and setting ~,  = 0 and -r = 1, the model can 
be written more simply as 

logitp(Y = IlX) = - c  + dX. (2) 

Equation 2 shows that the slope and intercept of the 
logistic regression model have a simple yet important 
relation to the signal detection parameters: The coef- 
ficient of X (the slope) gives the distance measure d, 
and the intercept gives -c. Logistic regression, there- 
fore, can be used to estimate and test the signal de- 
tection parameters; it brings the utility of regression 
and analysis of variance (ANOVA) to signal detection 
research. 

Rat ing  Responses  

Equation 2 can be extended to rating response ex- 
periments by modeling cumulative probabilities; Mc- 
Cullagh (1980) noted advantages of this approach, 
whereas Agresti (1989) provided a tutorial on this and 
other approaches to modeling ordinal categorical data. 

Participants in rating response signal detection ex- 
periments are typically asked to use a rating scale to 
indicate how confident they are that a signal has been 
presented. Figure 2 shows the underlying theory for 
four response categories, say from 1 = sure noise to 
4 = sure signal. It is assumed that participants choose 
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Signal detection theory with a rating response. 

among the response categories by using several crite- 
ria, one fewer than the number of response categories. 
As before, SDT focuses on the area to the right of 
each criterion, which for the logistic distribution is 

1 

P(Y > jlS) = 1 + exp[(cj - t~s)l'r ] 

1 
P(Y > jlN) = 1 + exp[(cj - t~n)/'r ]' (3) 

where 1 ~< j ~< k - 1, k is the number of response 
categories, cj are the multiple criteria, and the function 
on the right is the survival function for the logistic 
distribution. 

An ordinal regression model. Using the logit 
transform, Equation 3 can be written as an ordinal 
regression model, 

logitp(Y > jlX) = -cj  + dX, 

where t~ n = 0, -r = 1, and cj are the distances of the 
criteria from the mode of the noise distribution. Note 
that the above simply replaces p(Y  = 1 IX) of Equation 
2 with p(Y  > jlX); when k = 2, the model reduces to 
Equation 2 with responses of " n o "  and "yes "  indi- 
cated by " 1 "  and "2 , "  respectively. 

With respect to fitting the model, although the ap- 
proach in SDT (and survival analysis) is to model the 
area to the right of the criterion, which is given by the 
survival function, the approach for GLMs is to model 
the area to the left of the criterion, which is given by 
the cumulative distribution function (CDF). Using the 
relation logit(p) = -logit(1 - p), the model written in 
terms of cumulative probabilities is 

logit p(Y  <<- jIX) = cj - dX, (4) 

where the above logits are cumulative logits. Note that 
the signs of the parameters are simply reversed (this is 
not the case, however, for asymmetric distributions). 
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Equation 4 is a logistic signal detection model for 
rating response experiments; it shows that the coeffi- 
cient of X, multiplied by -1,  gives an estimate of the 
distance measure d, and the intercepts give the mul- 
tiple criteria cj. The use of cumulative logits is one 
way to take the ordinal nature of the response into 
account in the analysis. 

Logistic ROC curves and proportional odds. An 
appealing aspect of rating response experiments is 
that an ROC curve can be obtained for data from a 
single session (for binary response experiments, mul- 
tiple sessions or conditions are needed to obtain an 
ROC curve). ROC curves show the relation between 
the hit and false alarm probabilities for varying crite- 
ria. ROC curves are of interest in SDT because, when 
linearized, a slope of unity implies that the variances 
of the underlying distributions are equal. Thus, ROC 
curves are often used in signal detection research to 
assess the equal variance assumption. 

The equation for the linearized ROC curve can be 
derived from the two components of Equation 3 by 
taking logits, subtracting, and rearranging terms, 
which gives 

logit p (Y  > flS) = d + logit p ( Y  > flN). 

The above shows that the intercept of the linearized 
ROC curve is d and the slope is unity. A plot of the 
logit transformed proportions of hits versus false 
alarms gives an empirical ROC curve. 

Subtracting logit p ( Y  > fiN) from each side of the 
above shows that the difference between the cumula- 
tive logits is simply d. Exponentiating the difference 
gives 

p ( Y  > jlS)/[1 - p (Y  > jlS)] 

p(Y  > jlN)/[1 - p ( Y  > fiN)] 

odds p(Y  > jlS) 

odds p(Y  > fiN) = exp(d). 

pares the fit of two models, one with a single value 
of d, 

logitp(Y ~<jlX) = cj - dX, 

against one where d is allowed to vary across the 
response categories (denoted dj), 

logit p (Y  <~ jlX) = cj - djX, 

with 1 ~< j ~< k - 1. A comparison of the fit of the two 
models provides a test of the null hypothesis of equal 
slopes, Ho:d I = d 2 = . . .  = dk_ r Specifically, one 
can perform a likelihood ratio (LR) test (see Appen- 
dix A) by subtracting -2  times the maximized log 
likelihood for the second model (with different d)  
from that for the first model (with constant d). The 
degrees of freedom are the difference in the number of 
parameters across the two models, which is df  = k - 
2. The examples in Appendixes A and B illustrate the 
analysis for binary and rating response experiments 
with SAS (SAS Institute, 1989) and SPSS (SPSS, 
1994) programs. 

In sum, the approach to signal detection through 
logistic regression offers advantages: It offers a 
model-based approach to SDT that can be used to 
estimate and test the parameters, to test hypotheses 
about the ROC curve, and to answer basic questions 
of interest in research, such as whether the parameters 
differ across conditions or groups, for example. It also 
helps to show that a basic goal is to find a simple 
model that provides a quantitative summary of the 
data. 

In the next section I show that GLMs generalize the 
above approach and offer a more general class of 
signal detection models. GLMs maintain the advan- 
tages of logistic regression yet offer increased flex- 
ibility. 

SDT and G L M s  

The above shows that, if the ROC curve has a slope of 
unity, then the odds are proportional by a factor of 
exp(d), independent of the criteria; a test of this pro- 
portional odds assumption is frequently included in 
software for logistic regression. With respect to SDT, 
the test of proportional odds is equivalent to a test of 
the assumption that the ROC curve has a slope of 
unity; the test provides a useful supplement to visual 
inspection of the ROC curve. 

With respect to Equation 4, the test of proportional 
odds is a test of whether d (the log odds ratio) is 
constant across the response categories. The test com- 

A general introduction to GLMs is beyond the 
scope of this article; Agresti (1996), Dobson (1990), 
and Liao (1994) provided introductions, McCullagh 
and Nelder (1989) offered an in-depth presentation, 
and Hilbe (1994) provided a review of software for 
GLMs. Rather, the focus here is on aspects of GLMs 
that are particularly relevant to SDT. In particular, it 
is shown that signal detection models based on dif- 
ferent underlying distributions can easily be consid- 
ered by using GLMs with different " l ink"  functions. 

To begin, note that, among other things, it is as- 
sumed in classical regression that the mean response 
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is linearly related to the predictors and also that the 
response variable is normally distributed (for confi- 
dence intervals and hypothesis tests). GLMs, as intro- 
duced by Nelder and Wedderburn (1972), generalize 
classical regression models with respect to both of 
these aspects. For example, GLMs require only that a 
transformation of the mean response be linearly re- 
lated to the predictors, and they offer a more general 
class of probability distributions for the response vari- 
able (both continuous and discrete, so GLMs unify 
methods for continuous and categorical data). GLMs 
also relax the assumption of constant variance for the 
response and require only that the variance be a 
known function of the mean (possibly with an addi- 
tional dispersion parameter). 

The above generalizations are achieved by viewing 
the model as consisting of several components: a ran- 
dom component, a systematic component, and a link 
function (McCullagh & Nelder, 1989). The random 
component is concerned with the probability distribu- 
tion for the response variable. As noted above, GLMs 
are flexible in this regard, in that they allow one to 
choose distributions from the exponential family, 
which includes continuous and discrete distributions, 
such as the normal, gamma, binomial, and Poisson 
distributions (quasi-likelihood offers a further exten- 
sion; see McCullagh & Nelder, 1989). For example, 
the binomial distribution is used for the binary re- 
sponse models discussed above. The systematic com- 
ponent is a linear predictor "q = E[3X, as is used in 
ordinary regression models. For signal detection mod- 
els, the basic linear predictor is 

r l = c j - d X ,  

where X indicates signal or noise, cj are one or more 
criteria, and d is the scaled distance measure. 

The focus here is on the link function, which speci- 
fies how the random and systematic components are 
related. In particular, the link function is a monotonic 
differentiable function g(.) that " l inks" the mean re- 
sponse, which for SDT is the response probability p, 
to the linear predictor -q, 

g(p) = -q. 

logit link g(p) is logit p, and the For example, for the 
model is 

From the perspective of SDT, an important aspect of 
the link function is that its inverse, g-l, corresponds to 

a cumulative distribution function for the underlying 
distributions. For example, the inverse of the model 
with logit link is 

1 

P = l + exp(--q)' 

and the term on the right is the CDF for the logistic 
distribution. Combined with linear predictor "q = cj - 
dX, the above gives a signal detection model based on 
the logistic distribution. 

It follows that signal detection models based on dif- 
ferent underlying distributions can be obtained by us- 
ing different link functions. For example, the inverse 
normal (probit) link gives the traditional signal detec- 
tion model based on the normal distribution, in that 
the inverse of the link function gives the CDF for the 
standard normal. In this case, d is the traditional dis- 
tance measure d'. Note that a fit of the normal theory 
signal detection model generally gives results similar 
to those obtained with the logistic model, with the 
exception that the parameters are scaled differently. 
For example, Agresti (1990) noted (pp. 103-i94) that 
estimates for logistic models tend to be about 1.6-1.8 
times larger than those for probit (normal) models 
(partly because of the different scaling, that is, the 
standard deviation for the normal is tr = -r but is tr -- 
"r'rrA/3 = 1.8"r for the logistic). Similarly, 1.7 is used 
as a scale factor in item response theory because it 
minimizes the maximum difference between the lo- 
gistic and normal distributions (see Camilli, 1994). 
When comparing logistic and normal models, there- 
fore, the arbitrary scaling of the parameters should be 
kept in mind. 

Another widely used link for GLMs is the comple- 
mentary log-log link 

log[-log(1 - p)] = "q, 

the inverse of which is 

p = 1 - exp[-exp('q)], 

and the term on the right in this case is the CDF for an 
extreme value distribution. This model has important 
implications for SDT and is discussed in the next 
section. 

It should be apparent that the above models all have 
a similar structure, in that a transformation of the 
response probability has a linear relationship to the 
signal detection parameters. A general signal detec- 
tion model is 

p ( Y  <~ j l x )  = r ( c j  - , iX),  
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where F is a CDF for the underlying distribution. The 
inverse of the above gives a generalized linear model 
for SDT, which is 

g[p(Y <<- jlX)] = cy - dX. 

Signal detection models, in other words, are a sub- 
class of GLMs where the inverse link function g-1 
corresponds to a cumulative distribution function F 
for the underlying variable. Because X is (usually) 
simply dichotomous (signal or noise), signal detection 
models are a form of generalized ANOVA models. 

The above generalization encompasses a variety of 
signal detection models. For example, in addition to 
the logistic, normal, and extreme value models con- 
sidered here, signal detection models based on expo- 
nential, uniform (the identity link), Weibull, Ray- 
leigh, Cauchy, Laplace, Pareto, and other distributions 
can be formulated. Thus, GLMs provide a unified 
framework for signal detection models, some of 
which have previously been considered by Egan 
(1975), Green and Swets (1966), Morgan (1976), and 
Swets (1986). 

It follows that different links can be used to see if 
an alternative distribution gives a unit slope ROC 
curve. If it does, then the link offers a monotonic 
transformation to additivity, in which case the model, 
analysis, and interpretation of the results are simpli- 
fied; it is analogous to finding simple main effects 
with no interaction in ANOVA. In the next section I 
illustrate the approach with a signal detection model 
based on the extreme value distribution. 

S D T  With Extreme Value Distributions 

Extreme value distributions differ from logistic and 
normal distributions in that they are asymmetric. They 
are widely used in statistics for GLMs (see Agresti, 
1990; Dobson, 1990; Liao, 1994; McCullagh & 
Nelder, 1989) and in survival and reliability analysis 
(e.g., Klein & Moeschberger, 1997; Lawless, 1982); 
Johnson, Kotz, and Balakrishnan (1995) provided 
background and extensive references. The extreme 
value distribution considered here is the distribution 
of smallest extremes, which is negatively skewed; it 
arises as the limiting distribution of smallest values of 
independent and identically distributed random vari- 
ables and in general is useful for describing the be- 
havior of a system made up of a large number of 
components operating in parallel. The normal distri- 
bution is often motivated by the central limit theorem 
and the averaging of events, whereas the extreme 
value distribution can be motivated by parallel pro- 

cessing and extreme (minima or maxima) events (cf. 
Wandell & Luce, 1978). 

Figure 3 shows the theory for binary responses and 
extreme value distributions. As before, SDT is con- 
cerned with the probabilities of hits and false alarms, 
which are given by the area to the right of the criterion 
under the signal and noise distributions, 

where ~, and ~n are the modes of the signal and noise 
distributions, as shown in Figure 3; 'r is a scale pa- 
rameter related to the standard deviation by ~ = 
"r~r/~6; and the term on the right is the survival func- 
tion for the distribution of smallest extremes. Taking 
one minus the survival function gives the cumulative 
distribution function, shown above as the inverse of 
the complementary log-log link. 

Extreme value ROC curves. The linearizing trans- 
form in this case is the l og - log  t ransform,  
-log[-log(p)l, which applied to the above gives 

-log[-log(p[Y = IlS])]-  

-log[-log(p[Y= IlN])]-  

IlJs - -  C 

,.g 

I l ln  - -  C 

Subtracting and rearranging terms gives a linearized 
ROC curve, which is 

-log[-log(p[Y = IlS])] = 
d + [-log(-log[p(Y = IlN)])], 

where d is the distance between the modes of the two 
distributions (and the means, which are at @ - 
0.5772"r; 0.5772 is Euler's constant ~/). The equation 

~-- cl----~ 

c 

Figure 3. Signal detection theory with extreme value un- 
derlying distributions and a binary response. 
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for the linearized ROC curve shows that the equal 
variance assumption can be assessed for the extreme 
value model by using an ROC plot with log-log co- 
ordinates; the result should be a straight line with a 
slope of unity. For rating response experiments, 
p(Y = IlX) is replaced by p(Y > jlX). 

Subtracting the log-log transformed false alarm 
probability from each side of the above and exponen- 
tiating shows that the ratio of the log hit and log false 
alarm probabilities is a constant, exp(-d), that de- 
pends only on the distance between the two underly- 
ing distributions and not on cj. This property, known 
as proportional hazards (because the cumulative haz- 
ard functions are proportional), is similar to the pro- 
portional odds property discussed earlier and is 
equivalent to an extreme value ROC curve with a 
slope of unity, or equal dj in terms of the extreme 
value model. 

Because normal ROC plots have been widely used 
in signal detection research, it is of interest to see 
what extreme value ROC curves look like when plot- 
ted on inverse normal coordinates. The upper panel of 
Figure 4 shows three ROC curves (and a diagonal) 
corresponding to an extreme value SDT model with 
equal variances; the three curves are for different val- 
ues of d (2, 4, and 6). The panel shows that, if the 
underlying distributions are extreme value distribu- 
tions with equal variances, as shown in Figure 3, then 
the ROC curves on log-log coordinates are linear with 
slopes of unity. The lower panel shows the curves on 
inverse normal coordinates. In this case, the ROC 
curves are bowed, but near linear, with slopes less 
than unity (and a pattern of decreasing slopes for in- 
creasing d; a similar pattern has been noted for expo- 
nential and other distributions by, e.g., Swets, 1973). 
The figure shows that nonunit slope normal ROC 
curves might arise because the underlying distribu- 
tions are skewed. 

To illustrate, Figure 5 shows the results for an in- 
fluential recognition memory experiment of Egan 
(1958). Sixteen participants used a 7-category rating 
response to indicate their confidence that a word had 
been presented earlier in the experiment. The top 
panel is similar to Figure 19 of Egan (1958; the data 
in Figure 5 were estimated from Egan's figure) and 
shows data averaged over four sets of 4 participants 
(the quartiles in terms of d'). The three ROC curves 
all have slopes less than unity (and the slopes decrease 
as d increases, which is the same pattern shown in 
Figure 4). This has been interpreted as showing that 
the variance of the old word distribution is larger than 
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Figure 4. Extreme value receiver operating characteristic 
curves on log-log coordinates (upper panel) and inverse 
normal coordinates (lower panel). 

the variance of the new word distribution, which in 
turn has influenced theories of recognition memory. 

The lower panel of Figure 5 shows the data on 
log-log coordinates. In this case, the three ROC 
curves all have slopes close to unity. Thus, the ex- 
treme value model offers an important simplification, 
in that it is consistent with the equal variance assump- 
tion and results in a simple model. It also has impli- 
cations about the interpretation of the data. For ex- 
ample, Swets's (1986) question of "Or  why do data 
show 'old' words to be more variable than 'new' 
words (slopes near 0.70)?" (p. 195) becomes a ques- 
tion about why the underlying distributions are 
skewed. 

A second example is a widely analyzed binary re- 
sponse light detection experiment of Swets, Tanner, 
and Birdsall (1961). Figure 6 shows the results for 4 
participants who took part in 12-13 sessions (some 
sessions are not shown because of zero proportions); 
the data (proportions) are presented in Dorfman and 
Alf (1968; also in Table 6.2 of Coombs, Dawes, & 
Tversky, 1970). When plotted on inverse normal co- 
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Figure 5. ROC plots for a rating response word recogni- 
tion experiment of Egan (1958). Q1-Q4 represent the first 
to fourth quartiles; p(YIN) is the probability of reporting a 
signal (Y) given that noise (N) was presented (a false 
alarm); p(YIS) is the probability of reporting a signal given 
that a signal (S) was presented (a hit). The upper panel is 
from Egan's Figure 19 and shows the average results for 
four sets of 4 participants each. The lower panel shows the 
same data on log-log coordinates. 

ordinates, the ROC curves are linear with slopes less 
than unity, as shown by Swets et al. (1961, Figure 14) 
and others (Dorfman & Alf, 1968, Figure 1). This has 
been interpreted as showing that the underlying dis- 
tributions have unequal variances. Figure 6, on the 
other hand, shows that on log-log coordinates the 
ROC curves are linear with slopes close to unity for 
all 4 participants, which implies that the underlying 
distributions are extreme value distributions with 
equal variances. Again, this has implications for the 
interpretation of  the results. 

It is interesting to note that a recent textbook ex- 
ample of  nonunit slope ROC curves (MacMillan & 
Creelman, 1991, Table 3.5, p. 65) is also a "text-  
book"  example of  unit slope extreme value ROC 
curves. 

An extreme value signal detection model. The 
transformed hit and false alarm probabilities shown 
above can be combined in a regression model as 

- log[ - log(p[Y = llX])] = - c  + dX, 

where c is the distance of the criterion from the mode 
of the noise distribution, and d is the distance between 
the two underlying distributions. Note that the above 
is simply Equation 2 with a log-log link. 

With respect to fitting the model, it should be kept 
in mind that the approach for GLMs is to model the 
CDFs. In this case, this can be done by using the 
complementary log-log link, log[-log(1 - p ) ] ,  which 
is a standard link in software for GLMs, and by mod- 
eling the conditional probability of a response of " n o "  

log[-log(1 - p [ Y  = 0IX])] = c - dX, 

where p(Y  -- 0IX) is the probability that the partici- 
pant responds " n o "  to signal or noise. The model can 
be applied to rating response experiments by replac- 
ing the above probabilities with cumulative probabili- 
ties, which gives 

log[-log(1 - p[Y  <~ jlX])] = cj - dX, (5) 
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Figure 6. Extreme value receiver operating characteristic 
plots for 4 participants from a binary response light detec- 
tion experiment of Swets et al. (1961); p(YIN) is the prob- 
ability of reporting a signal (Y) given that noise (N) was 
presented (a false alarm); p(YIS) is the probability of re- 
porting a signal given that a signal (S) was presented (a hit). 
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where 1 ~< j ~< k - 1, k is the number of response 
categories, and the responses are numbered from left 
to right (sure noise to sure signal) as 1, 2, 3, and so on. 
Note that Equation 5 differs from Equation 4 only 
with respect to the link function. Equation 5 is a pro- 
portional hazards model (McCullagh, 1980), because 
the ratio of the hazard functions is constant, just as the 
ratio of odds is constant for the logistic (proportional 
odds) model. 

An example of fitting and testing the extreme value 
signal detection model follows. The results are com- 
pared with those obtained for the logistic signal de- 
tection model. 

L o g i s t i c  a n d  E x t r e m e  V a l u e  S D T  

M o d e l s  C o m p a r e d  

Green and Swets (1966, p. 102) provided the raw 
data for a participant from a widely analyzed rating 
response light detection experiment of Swets et al. 
(1961; Subject 1, who was also in the binary response 
experiment of Figure 6). Appendix B provides the 
data and a SAS program. 

Figure 7 shows ROC curves for both the logistic 
and extreme value models. With logit coordinates, the 
ROC curve has a slope less than unity (like the curve 
on inverse normal coordinates, not shown), which has 
been interpreted as showing that the variance of the 
signal distribution is larger than that of the noise dis- 
tribution. On the other hand, with log-log coordi- 
nates, the ROC curve has a slope close to unity, which 
implies that the (extreme value) distributions have 
equal variance. 

Table 1 shows, for fits of the logistic and extreme 
value signal detection models, the estimated values of 
d, a score test of equal dj (proportional odds or haz- 
ards), and goodness-of-fit statistics. The maximum 
likelihood estimate of d is 2.15 for the logistic model 
and 1.39 for the extreme value model; the larger value 
for the logistic distribution occurs because of the dif- 
ferent scaling (the standard deviations differ by a fac- 
tor of ~2) and shape of the two distributions. 

The assumption of a unit slope ROC curve can be 
formally assessed in a manner similar to that used to 
test for proportional odds. In particular, a likelihood 
ratio test of equal dj c a n  be performed (using the -2  log 
likelihood) by comparing, for a given link, the fit of 

g[p (Y  ~ jIX)] = c i - dX  

to the fit of 

g [ p ( Y  <~ fiX)] = cj - djX, 
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Figure 7. Logistic (upper panel) and extreme value (lower 
panel) receiver operating characteristic plots for participant 
1 from a rating response light detection experiment of Swets 
et al. (1961); p(YIN) is the probability of reporting a signal 
(Y) given that noise (N) was presented (a false alarm); 
p(YIS) is the probability of reporting a signal given that a 
signal (S) was presented (a hit). 

to test Ho:d 1 = d 2 = . . . = dk_ 1 with k - 2 df. From 
the perspective of SDT, the test of equal d i can be 
used to test for unit slope ROC curves for logistic, 
normal, extreme value, and other models. 

Table 1 shows that the null hypothesis of equal dj is 
rejected for the logistic model (using the score statis- 
tic that SAS provides by default; SAS Institute, 1989) 
but is not rejected for the extreme value model. Simi- 
larly, the goodness-of-fit statistics are close to their d f  

for the extreme value model (indicating good fit) but 
not for the logistic model. Note that the tests of good- 
ness of fit and equal dj are equivalent in this case, 
because both tests assess the fit of the model with unit 
slope ROC curve against a saturated model. 

Figure 7 and Table 1 show that the assumption of a 
unit slope ROC curve is tenable for the extreme value 
model, so the results can be summarized by the simple 
distance measure d. The logistic model, on the other 
hand, gives an ROC curve with a slope less than unity. 

To summarize, a basic aspect of GLMs is that they 
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Table 1 
Results for  Swets et al. 's (1961) Rating Response Light Detection 
Experiment: Participant I 

Logistic model Extreme value model 

Parameter Estimate SE Estimate SE 
d 2.147 .118 1.388 .072 
c 1 -0.783 .085 - 1.071 .069 
c 2 0.366 .081 -0.166 .051 
c 3 1.108 .088 0.342 .047 
c 4 2.002 .101 0.907 .049 
c 5 3.147 .121 1.583 .061 

-2  log L = 3872.743 -2  log L = 3845.613 

Equal-slopes test 
Score X 2 29.42 5.36 
p value .000 .252 
df  4 4 

Goodness-of-fit tests 
L R  X 2 32.26 5.12 
p value .000 .275 
df  4 4 
Pearson X 2 29.49 5.57 
p value .000 .233 
df  4 4 

Note. SE = standard error; -2 log L = -2 log likelihood. 

offer a choice of  link functions. With respect to SDT, 
the inverse of  the link function corresponds to a CDF 
for an underlying random variable. Thus, the ap- 
proach via GLMs allows one to consider SDT models 
based on different underlying distributions by using 
different links. 

The above examples show that finding an ROC 
curve with a slope other than unity on given coordi- 
nates has more than one possible interpretation. A 
common conclusion has been that the variances are 
not equal across the normal or logistic signal and 
noise distributions. However, another possibility is 
that the variances are equal but that the underlying 
distributions are not normal or logistic. 

It should be recognized that finding a unit slope 
ROC curve on alternative coordinates is equivalent to 
finding a transformation to additivity, and this in turn 
simplifies the model, its estimation, and the interpre- 
tation of  the results. The unit slopes shown in Figures 
5, 6, and 7, for example, can be interpreted as showing 
that presentation of  a signal results in a simple shift in 
the location of  an underlying extreme value distribu- 
tion. This may also have theoretical implications: As 
noted above, the extreme value distribution arises 
from parallel processing and extreme events (minima 
or maxima), and this could suggest something about 

underlying processes in word recognition (Figure 5) 
or light detection (Figure 6). 

The approach is also similar to that of  Box and Cox 
(1964), with the difference being that the Box-Cox 
approach is used in regression analysis, for example, 
to transform the data (to obtain additivity, constant 
variance, or normality), whereas the data are not 
transformed in GLMs; GLMs accomplish the trans- 
formation (statistically) through the link function 
(GLMs transform the fitted values, not the data). Mc- 
Cullagh and Nelder (1989) noted that an advantage of  
GLMs is that the link can be used to obtain additivity, 
separately from considerations about the random 
component of  the model, such as constant variance or 
normality of  the response variable (and GLMs offer a 
wider class of  probability distributions for the re- 
sponse variable). 

Although there are clearly situations in which al- 
ternative coordinates give unit-slope ROC curves, as 
shown above, this may not be so in some cases. One 
response is to consider generalizations of  the basic 
theory. For example, SDT has been generalized to 
allow the variances to differ, as shown below. The 
resulting model, however, is more complex (e.g., it is 
nonlinear in the parameters), as is its estimation and 
interpretation. In addition, there is more than one way 
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to generalize the theory (see generalized probability 
distributions below), and different generalizations can 
lead to different conclusions. This point is relevant to 
current research and theory on global memory mod- 
els, for example, because ROC curves have been used 
to evaluate predictions about the relative variances 
made by different models (see Ratcliff, Sheu, & Gron- 
lund, 1992). Conclusions about the relative variances, 
however, depend on the assumed form of the under- 
lying distributions. 

Consider, for example, Egan's (1958) rating re- 
sponse experiment on recognition memory for words 
discussed above. Egan presented a widely reproduced 
figure (his Figure 20) that shows an ROC curve for 
the average ratings of 8 participants (the 2nd and 3rd 
quartiles of Figure 5 of the present article) who saw 
the word list once before a recognition test, and a 
second ROC curve for a different group of 8 partici- 
pants who saw the list twice before the test. The top 
panel of Figure 8 shows the proportions of hits and 
false alarms on logit coordinates (the proportions were 
estimated from Figure 20 of Egan, 1958), and the bot- 
tom panel shows the proportions on log-log coordinates. 

First note that, irrespective of the form of the un- 
derlying distribution, d is larger after two repetitions 
of the list (the open symbols are farther from the 
diagonal). Thus, the plots show that repetition of the 
list increases memory strength, and this result appears 
to be robust with respect to the assumed form of the 
underlying distributions. 

Next, consider the slopes of the ROC curves. The 
top panel of Figure 8 shows that, on logit coordinates, 
the curves have slopes less than unity, as is also the 
case for inverse normal coordinates (as shown by 
Egan, 1958); note that the curves are also approxi- 
mately parallel. This has been interpreted as showing 
that the variance of the old word distribution is larger 
than that of the new word distribution and that repetition 
of the list increases memory strength but does not affect 
the relative variances. Ratcliff et al. (1992) discussed 
implications of this result for current memory theories. 

The lower panel of the figure shows that, on log-  
log coordinates, the ROC curves have slopes either 
close to unity (for one repetition) or slightly greater 
than unity (for two repetitions). This can be inter- 
preted as showing that the extreme value signal and 
noise distributions have equal variances and that rep- 
etition of the list increases memory strength, with the 
signal variance possibly becoming relatively smaller 
(another possibility is that the signal distribution is 
relatively less skewed after two repetitions; see gen- 
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Figure 8. Logistic (upper panel) and extreme value (lower 
panel) receiver operating characteristic plots for a rating 
response word recognition experiment of Egan (1958, Fig- 
ure 20). The filled circles are the average proportions for 8 
participants who saw the study list once before being tested; 
the open circles are for a different group of 8 participants, 
who saw the study list twice before being tested; p(YIN) is 
the probability of reporting a signal (Y) given that noise (N) 
was presented (a false alarm); p(YIS) is the probability of 
reporting a signal given that a signal (S) was presented (a 
hit). rep = repetition. 

eralized probability distributions on p. 198). Thus, 
conclusions about the relative variances can differ, 
depending on the assumed form of the underlying 
distributions. Researchers should keep this in mind 
when formulating or revising theories. 

On Some Extended Signal Detect ion Models  

An advantage of a model-based approach to SDT is 
that it offers the power and flexibility of a regression- 
like framework. Just as regression models have been 
extended in various ways, such as to allow for richer 
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covariance structures in time series and longitudinal 
models, GLMs have been similarly generalized, and 
so the SDT models discussed above can be extended. 
In this section I comment on some extended models 
and suggest avenues for future research. 

Dynamic Signal Detection Models 

All of the traditional signal detection models as- 
sume independent responses. However, the data are 
often repeated responses from participants, and so the 
responses might be correlated. There are several ways 
to approach possible dependencies among the re- 
sponses; the choice depends in part on the goals of the 
research, the type of data available (e.g., time series or 
longitudinal data), and on whether the response cor- 
relation is of theoretical interest or is regarded as a 
nuisance. For example, in signal detection research, 
one often obtains many responses from each partici- 
pant, so the data are time series, and conditional mod- 
els might be useful for exploring the correlation struc- 
ture. In other situations, as in applied research, only a 
small number of responses may be obtained from each 
participant, but there are possibly many participants, 
so the data are longitudinal, and mixed or marginal 
models might be useful. 

Conditional models. In some situations, the cor- 
relation of responses is of theoretical interest, because 
it might provide information about underlying psy- 
chological processes (e.g., DeCarlo, 1994). Several 
researchers have suggested, for example, that the re- 
sponse criterion in signal detection systematically var- 
ies over trials (e.g., Treisman & Williams, 1984), be- 
ing driven by the previous response (or feedback). 
This notion can be used to motivate a signal detection 
model that includes the previous response as a regres- 
sor. This type of model is known variously as a con- 
ditional transitional, or Markov model, because the 
response is modeled conditional on values of the pre- 
vious response. Cox and Snell (1989) discussed con- 
ditional models for logistic regression, and Fahrmeir 
and Tutz (1994) discussed them for GLMs. The mod- 
els remain to be explored in signal detection research; 
they might also be useful for research on random 
response generation. 

Mixed models. Mixed models (called mixed be- 
cause they include both fixed and random effects) 
allow one, among other things, to specify a covariance 
structure for the repeated measures. Mixed models 
have been extended to GLMs, resulting in generalized 
linear mixed models (e.g., Breslow & Clayton, 1995; 
Littell, Milliken, Stroup, & Wolfinger, 1996), and 

they can also be used for signal detection models. For 
example, a binary response signal detection model 
with a correlation structure for the responses, such as 
first-order autoregressive, can be fit by using the SAS 
GLIMMIX macro (SAS Institute, 1989). Other soft- 
ware for mixed or hierarchical GLMs also is available 
(Hedeker & Gibbons, 1996; Kreft, de Leeuw, & van 
der Leeden, 1994), and it can be used for SDT. 

Mixed models also allow one to consider models 
with random coefficients, which are also known as 
hierarchical or multilevel models. Swets (1992, p. 
530) gave an example in SDT where an approach via 
hierarchical models might be useful. Technicians 
made binary decisions as to the presence or absence of 
metal fatigue; the 254 technicians were from 17 Air 
Force bases. The hierarchical structure of the design 
(technicians nested within bases) can be recognized 
by a signal detection model where d (and possibly c) 
is a random coefficient across the bases (and variation 
within and across bases can be examined). 

Marginal models. In some situations, interest cen- 
ters on the signal detection parameters, usually d, and 
any correlation of the responses is regarded as a nui- 
sance. A concern in this case is that ignoring the cor- 
relation can affect, for example, standard errors and 
confidence intervals for the parameter estimates. Mar- 
ginal models, which separately model the (marginal) 
response probabilities and the association among the 
repeated responses, might be useful in this situation 
(for longitudinal data). For example, Liang and Zeger 
(1986) introduced generalized estimating equations 
(GEEs) to take the response correlation into account 
(Dunlop, 1994, provided an introduction). The ap- 
proach yields consistent estimates of the (population 
average) parameters and their standard errors with 
only mild assumptions about the correlation structure. 
Marginal models have been discussed by, among oth- 
ers, Fahrmeir and Tutz (1994) and Diggle, Liang, and 
Zeger (1994); SAS and SPSS macros for GEEs also 
are available. Again, the utility of marginal models for 
signal detection research remains to be investigated. 

In the next two sections I examine extensions of the 
basic signal detection model. The first involves intro- 
ducing a parameter to allow the variances of the un- 
derlying distributions to differ; the second introduces 
a parameter to allow the shape of the underlying dis- 
tributions to vary. 

Unequal Variance SDT Models 

A traditional approach to nonunit slope ROC 
curves has been to introduce a parameter to allow the 
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variances of the signal and noise distributions to differ 
(see Green & Swets, 1966). For example, for a logis- 
tic model, the scale parameter "r is replaced by T s for 
the signal distribution and by % for the noise distri- 
bution, and the model is 

c j - d ,  rX 
l°git p( Y <~ jlX) - ~s ' 

where d~ is the distance measure scaled with respect 
to "r,, referred to as Am in the normal theory version 
of SDT (Green & Swets, 1966), and it is assumed 
without loss of generality that O n  = 0 and "1" n = 1. 
Replacing the logit link with a general link gives a 
flexible class of unequal variance signal detection 
models (see Tosteson & Begg, 1988). The models are 
not GLMs because they are nonlinear in the param- 
eters, but they can be fit by alternating between two 
submodels, one for the numerator of the above, and 
one for the denominator (nonlinear procedures can 
also be used). 

The linearized ROC curve for the unequal variance 
model is 

q'n 
logit p(Y >jlS)  = d s + - -  logit p (Y >fiN), 

'l" s 

where the intercept ds is the distance measure scaled 
with respect to x~ and the slope is "rn/'r s = trfftr~. 
Thus, from the perspective of the unequal variance 
model, ROC curves with slopes less than unity indi- 
cate that tr n < crs. 

General ized Probabil i ty  Distributions 

Another approach to nonunit slope ROC curves is 
to allow the shape (e.g., skew or kurtosis) of the un- 
derlying distributions to vary. For example, one ap- 
proach is to use the log of a random variable distrib- 
uted as Burr Type XII (see Johnson, Kotz, & 
Balakrishnan, 1994), which includes the logistic and 
extreme value distributions as special cases. The log 
Burr has been used in bioassay (see Morgan, 1992) 
and in SDT (DeCarlo, 1997). 

More specifically, a signal detection model based 
on the log Burr distribution is 

p(Y ~<jlX) = 1 - (1 + Xexp(cj - dX)) -I/x, 

where the term on the right is the CDF for the log 
Burr, and h is a shape parameter (h > 1 gives positive 
skew, and h < 1 gives negative skew). The inverse of 
the above gives the model written as a GLM, 

(1 _p)-X _ 1 
log h = cj - dX. 

The above shows that the underlying probability dis- 
tribution is generalized by including a parameter in 
the link function of the GLM. The logit link is ob- 
tained for k = 1, and h = 0 gives the complementary 
log-log link, so the logistic and extreme value SDT 
models are special cases. Note that the link is similar 
to the log of a Box-Cox (1964) power transformation, 
again keeping in mind that GLMs accomplish the 
transformation through the link function. 

The log Burr SDT model can be fit by using soft- 
ware for GLMs that allow for a user-defined link 
function; maximum likelihood estimates of the pa- 
rameters can be obtained by performing a search over 
h. For example, the GENMOD procedure of SAS 
(SAS Institute, 1989) can be used (DeCarlo, 1997). 
The standard errors, however, are incorrect because h 
is assumed to be known; Morgan (1992, Appendix C) 
showed how to obtain adjusted (asymptotic) standard 
errors. 

In sum, the regressionlike approach offered by 
GLMs can be extended in a variety of ways, each of 
which offers interesting possibilities for SDT. The 
models also have implications for other research ar- 
eas; they suggest, for example, similar generalizations 
for item response theory models (cf. Mellenbergh, 
1994) and also suggest that it might be worthwhile to 
consider alternatives to the multivariate probit models 
used in structural equation modeling (e.g., Muth6n, 
1984). 

Conclusions 

GLMs offer a unified framework for signal detec- 
tion models, from the simplest to the most complex. 
The approach allows researchers with a good working 
knowledge of regression analysis to examine a variety 
of signal detection models. One can consider, for ex- 
ample, models based on different underlying distribu- 
tions, models that allow for response dependencies, 
and models with random coefficients, to name a few 
possibilities. Recent advances in statistics can also be 
used, such as, in addition to those noted above, soft- 
ware for exact logistic regression (Mehta & Patel, 
1996), which might be useful for small sample sizes, 
and power analysis, bootstrapping, and jacknifing for 
GLMs, all of which can be brought to bear on signal 
detection research. 

I hope that the present article will encourage re- 
searchers to use the above models in their research. 
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The result will be a deeper and more informative 
analysis of  signal detection data. 
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The Log  Odds Ratio 

The distance measure d for the logistic SDT model 
is also a log odds ratio (OR), an important measure of 
association widely used in biostatistics (see Agresti, 
1990). The log OR is obtained by taking the differ- 
ence between the two logits shown in Equation 1, 
from which it follows that the log OR = d. Thus, the 
estimate of d 1 = 1.60 for the not-hypnotized partici- 
pant, discussed below, shows that the odds of saying 
"yes "  to an old word were exp(1.60) = 4.95 times 
larger than the odds of saying "yes "  to a new word. 

A Choice Theory  Parameterizat ion 

An alternative parameteflzation of the model uses 
effect coding, in which a signal is coded as 1 and noise 
is coded as -1.  This gives a choice theory version of 
the model (e.g., Noreen, 1977). In particular, Equation 
2 can be written as 

c-(~Js  +~n) 12 * , - * ,  
Iogit p(Y = 1 IX) = + ~ X. 

"r 

Note that, when X = 1, the above gives the log odds 
of a hit, as shown in Equation 1, and when X --- -1 it 
gives the log odds of a false alarm. The intersection 
point of the two symmetrical distributions is at (~s + 
t~n)/2; setting 0 at the intersection point and T = 1 
gives 

logitp(Y = IlX) = - c '  + (d/2)X. 

The coefficient of X in this case is d/2, which is sim- 
ply the logarithm of the choice theory parameter a,  
and the intercept times -1 is the distance of the cfl- 
teflon from the intersection point, say c', and is the 
logarithm of the choice theory bias parameter b; note 
that c' = c -(1/2)d. For example, for the hypnotized 
participant discussed below, the obtained estimates 
are d/2 = log(a) = 0.86 and c' = log(b) = -1.23, 
which match those shown in the lower panel of Figure 
2.3 of MacMillan and Creelman (1991, p. 36). 

Classification and Identification 

Equation 4 can be used for binary or rating re- 
sponse experiments in which several stimuli are pre- 
sented, as in classification or identification experi- 
ments, by using dummy variables for the multiple 

stimuli. Appendix B presents a sample SAS program 
(SAS Institute, 1989) for a rating response intensity 
identification experiment presented in MacMillan and 
Creelman (1991) in Table 9.3 on p. 222. In this case, 
using the normit link, -1 times the coefficients of X 
(stim2, stim3, and stim4) gives estimates of d12, d13, 
and d 1 4  (Stimulus 1 is used as the reference), which 
are 1.19, 1.57, and 2.38, respectively. It follows that 
estimates of d12, d23, and d34 a r e  1.19, 0.38, and 0.81, 
which match MacMillan and Creelman's (1991) re- 
ported estimates (from fits by eye!) of 1.2, 0.4, and 
0.8 (p. 222). 

A Binary Response Example  

The example is from Chapter 2 of MacMillan and 
Creelman (Example 2a, p. 31). The data consist of 
two 2 x 2 tables from a (hypothetical) face recognition 
experiment with two conditions: a not-hypnotized 
participant and a hypnotized participant (the tables are 
treated as independent). The two participants are 
shown faces, and the task is to determine during a test 
whether the face has been shown before in the experi- 
ment. The parameter d in this case is a measure of 
recognition memory strength. Appendix B presents 
the data and sample SAS (SAS Institute, 1989) and 
SPSS (SPSS, 1994) programs. 

The basic approach is to fit Equation 2 to the data 
(hits and false alarms) and to use dummy variables to 
allow the signal detection parameters to differ across 
the participants. As for ANOVA and regression mod- 
els, the model can be parameterized in more than one 
way. One approach is to use the not-hypnotized par- 
ticipant as a reference and to use a dummy variable to 
allow the parameters to differ for the hypnotized par- 
ticipant. More specifically, a variable (X1) indicating 
the condition (0 = not hypnotized, 1 = hypnotized) 
allows c to differ for the hypnosis condition, and a 
product term (condition x signal, X1 x X2) allows d 
to differ (see the program in Appendix B), and the 
model is 

logit p (Y  > jlX) = - c  1 - -  (C 2 -- cl)X1 + dlX2 + 
( d  E - dl)X1 x X2. 

Using this approach, the coefficient of the signal 
regressor X2 is an estimate of d 1 for the reference 
participant, which is 1.60, and -1 times the intercept 
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is an estimate of  ¢1, which is 0.80. The coefficient of  
the product term X1 x X2 is an estimate of  d 2 - d 1, 
which is 0.13, and the coefficient of  the condition 
variable X1 is an estimate of  - ( c  2 - Cl), which is 1.16. 
Thus, d 2 for the hypnotized participant is 1.6 + 0.13 
= 1.73, and c 2 is 0.80 + (-1.16) = -0.36. 

The Wald statistic for each regression coefficient 
tests the null hypothesis that the coefficient is 0. It is 
computed as the square of  the ratio of  the estimated 
coefficient to its standard error and is asymptotically 
distributed under the null hypothesis as a chi-square 
with 1 df; it is analogous to the t statistic used to test 
coefficients in ordinary regression (Hauck & Donner, 
1977, noted limitations of  the Wald test). In this ex- 
ample, the test for the signal x condition product vari- 
able tests the null hypothesis of  equal detection pa- 
rameters across the two conditions, Ho:d 2 - d l  = 0, 
which is not rejected (df = 1, p = .7949). 

A likelihood ratio (LR) test of  the null hypothesis 
n o : d  2 - d I - -  0 can be performed by fitting two 
models: a full model that includes the condition, sig- 
nal, and product term as regressors, and a reduced 
model that does not include the product term, so that 
d 2 = d 1 (note that c is allowed to vary across the two 
conditions). The LR test is based on the difference 
between - 2  times the maximized log likelihoods ( -2  
log L) obtained for a fit of the reduced and full mod- 
els, respectively, with degrees of  freedom equal to the 
difference in the number of  parameters across the two 
models. For this example, the LR statistic is 0.068 
with 1 df and p = .794, so the null hypothesis Ho:d 2 
-- d 1 = 0 is not rejected. A further reduced model with 
both d 1 = d 2 and c 1 = c 2 gives an LR statistic of  
28.455 with 1 df and p = .000. Thus, recognition 
memory does not differ across the two conditions, but 
the response criterion does. 

One can also code dummy variables so that direct 
estimates of  the signal detection parameters and their 
standard errors are obtained; this is shown in Appen- 
dix B with the GENMOD procedure of  SAS. The 
model is fit without an intercept, and the program 
shows how to use contrast statements to test hypoth- 
eses about the parameters. Yet another option is to use 
effect coding, which gives a choice theory parameter- 
ization of  the model, as shown by the program in 
Appendix B. 

A Rat ing  Response  E xa m pl e  

Ogilvie and Creelman (1968) provided the raw data 
for a single participant in a rating response experiment 

on two-point touch sensitivity (the two-point separa- 
tion was 0.5 in., and testing was done on the forearm). 
Appendix B provides the data and a SAS Program. 

The first step is to examine the ROC plot, from 
which it appears that the data lie on an ROC curve 
with a slope of  unity. The maximum likelihood esti- 
mate of  d i s  1.62 with a standard error of  0.17. An LR 
test of  the null hypothesis of  proportional odds, Ho:d 1 
= d 2 = d 3 = d 4 = d 5, gives a likelihood ratio 
statistic of  2.66 with 4 dfand p = .617, which is not 
significant. SAS also provides a score test (Rao, 
1948), known in econometrics as the Lagrange mul- 
tiplier test, of  the proportional odds assumption. The 
score test is asymptotically equivalent to the LR test 
under the null hypothesis but requires only a fit of  the 
restricted model, whereas the LR test requires a fit of 
both the restricted and unrestricted models. Both the 
LR and score tests show that the proportional odds 
assumption is not rejected, which suggests that the 
data lie on an ROC curve with a slope of  unity, as 
expected in light of  the ROC plot. 

Note that rejection of  the null hypothesis of  pro- 
portional odds could occur for several reasons, be- 
cause the alternative hypothesis is simply that the 
odds are not proportional. One possibility, for ex- 
ample, is that the data lie on the same ROC curve, but 
the curve has a slope other than unity; another possi- 
bility is that the data do not lie on the same ROC 
curve. Visual inspection of  the empirical ROC curve 
is useful for assessing these alternatives. In addition, 
a test of  a unit slope ROC curve against a nonunit 
slope alternative can be performed by fitting an un- 
equal variance signal detection model and comparing 
the - 2  log likelihood to that of  the equal variance 
model. 

The programs also provide goodness-of-fit staffs- 
tics: an LR statistic and a Pearson chi-square statistic 
(Ogilvie & Creelman, 1968, reported the Pearson chi- 
square). Goodness-of-fit statistics indicate how close 
the predicted values are to the observed values; they 
provide a rough assessment of  how well the model fits 
the data. It should be kept in mind that goodness-of-fit 
statistics are affected by sample size and that compo- 
nents of  fit, such as residuals and other diagnostics, 
should also be examined. 

The LR goodness-of-fit statistic, as for the LR test 
discussed above, involves a comparison of  two mod- 
els: a reduced model and a saturated model, 

LR X 2 = (-21ogL R) - (-21ogLs), 

where L s is the likelihood for the saturated model. 
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The saturated model  has as many parameters as ob- 
servations, so it fits perfectly and exactly reproduces 
the observations (it provides a baseline for compari-  
son). A comparison of  the reduced model  to the satu- 
rated model  assesses how close the predicted values 
are to the observed values, which reflects the good- 
ness of  fit. 

For  the rating response example,  the goodness-of- 
fit statistics are close to their degrees of  freedom, 
indicating an acceptable fit. Note that the test of  pro- 
portional odds is equivalent in this example (but not in 
general) to the tests of  goodness of  fit, because both 
tests assess the fit of  the model  with constant d rela- 
tive to a saturated model. 

A p p e n d i x  B 

P r o g r a m s  for  S igna l  D e t e c t i o n  E x a m p l e s  

S A S  P r o g r a m s  

options ls = 80; options formdlim = ' - ' ;  
title"Example 2a from MacMillan & Creelman, 1991, p. 31"; 
*(Note--the events/trials syntax is used for the response. 

See the SAS/STATS user's guide for details); 
data temp; 

input cond $ hypno signal pyes trials; 
sighypno = signal*hypno; 
cards; 

normal 0 0 31 100 
normal 0 1 69 100 
hypnot 1 0 59 100 
hypnot 1 1 89 100 

tifle2"Fit of the saturated model with normal as reference"; 
proc logistic data = temp; 

model pyes/trials = hypno signal sighypno; 
run; 
title2"Reduced model with d equal across the two conditions"; 
proc logistic data = temp; 

model pyes/trials = hypno signal / scale = none; 
run; 
title2"An example of PROC PROBIT"; 
proc probit data = temp; 

model pyes/trials = hypno signal/d = logistic lackfit; 
run; 
title2"An example of PROC GENMOD and contrast statements"; 
*(Note--the model is fit without an intercept, and the 

coefficients give direct estimates of dj and -cj); 
proc genmod data = temp order = data; 

class cond; 
model pyes/trials = cond cond*signal/noint dist = bin link = logit; 
contrast'dl =d2 '  cond*signal 1 -1; 

run; 
title2"A fit of the choice theory version of the model"; 
* the results match those shown by MacMillan & Creelman, p.36; 
data choice; 

input cnorm chypno dnorm dhypno pyes trials; 
cards; 
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1 0 - 1  0 31 100 
1 0 1 0 6 9  100 

0 1 0 - 1  59 100 
0 1 0 1 89 100 

proc logistic data = choice; 
model pyes/trials = cnorm chypno dnorm dhypno/noint; 

run; 
• * * * * * * * * * * * * * * * * *  ~ * * : ~ * * * * * * * * * * *  ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * ~ * .  

t i t le"Rating exp. - Ogilvie & Creelman, J. Math. Psy, 1968";  
• responses are coded 1 = sure noise to 6 = sure signal; 
data rate; 

input stim resp freq @ @; 
cards; 

0 6 15 0 5 17 0 4 40 0 3 83 0 2 29 0 1 66 
1 6 68 1 5 37 1 4 68 1 3 46  1 2 10 1 1 21 

t i t le2"Fit  of the logistic model using PROC LOGISTIC";  
proc logistic da t a=  rate; 

weight freq; 
model resp = stim / aggregate scale = none; 

r u n ;  

t i t le"Intensity identification - MacMillan & Creelman, p .222";  
• (Note-- the  reference distribution corresponds to stimulus 1); 
data ident; 

input stim2 stim3 stim4 resp freq @ @; 
cards 

0 0 0 1 3 9 0 0 0 2  7 0 0 0 3  3 0 0 0 4  1 
1 0 0 1 17 1 0 0 2  12 1 0 0 3  10 1 0 0 4  11 
0 1 0 1 11 0 1 0 2  10 0 1 0 3  1 2 0  1 0 4  17 
0 0 1  1 3 0 0 1 2  5 0 0 1 3  9 0 0 1 4 3 3  

proc logistic data = ident; 
weight freq; 
model resp = stim2 stim3 stim4/link = normit; 

r u n ;  

t i t le"Obs 1, rating response, Swets, Tanner, & Birdsall 1961";  
• (Note--responses are coded 1 = sure noise to 6 = sure signal); 
data temp; 

input signal resp freq @ @; 
cards; 

0 1 174 0 2 172 0 3 104 0 4 92 0 5 41 0 6 8 
1 1 46 1 2 57 1 3 66 1 4 101 1 5 154 1 6 173 

t i t le2"Fit  of the logistic model" ;  
proc logistic data = temp; 

weight freq; 
model resp = signal/link = logit aggregate scale = none; 

run; 
t i t le2"Fit  of the extreme value model" ;  
proc logistic data = temp; 

weight freq; 
model resp = signal/link = cloglog aggregate scale = none; 

r u n ;  
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A n  S P S S  P r o g r a m  

set width = 80 length = none. 
title "Example 2a from MacMillan & Creelman, 1991, p.31". 
*(Note--responses are coded yes = 1 and no = 0). 
data list l ist/hypno signal yes count *. 
begin data 
0 0 0 6 9  
0 0 1 3 1  
0 1 0 3 1  
0 1 1 6 9  
1 0 0 4 1  
1 0 1 5 9  
1 1 0 1 1  
1 1 1 8 9  
end data. 
compute sighypno = signal*hypno. 
weight by count. 
logistic regression yes with hypno signal sighypno 

/criteria Icon(0). 
* Next is the restricted model without the interaction term. 
* The - 2  log L can be used to test for constant dj. 
logistic regression yes with hypno signal 

/criteria Icon(0). 
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