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Abstract
In this paper we explore the idea of using high-level se-

mantic concepts, also called attributes, to represent human
actions from videos and argue that attributes enable the
construction of more descriptive models for human action
recognition. We propose a unified framework wherein man-
ually specified attributes are: i) selected in a discriminative
fashion so as to account for intra-class variability; ii) co-
herently integrated with data-driven attributes to make the
attribute set more descriptive. Data-driven attributes are
automatically inferred from the training data using an in-
formation theoretic approach. Our framework is built upon
a latent SVM formulation where latent variables capture
the degree of importance of each attribute for each action
class. We also demonstrate that our attribute-based action
representation can be effectively used to design a recogni-
tion procedure for classifying novel action classes for which
no training samples are available. We test our approach on
several publicly available datasets and obtain promising re-
sults that quantitatively demonstrate our theoretical claims.

1. Introduction
In most of the traditional approaches for human action

recognition, action models are typically constructed from
patterns of low-level features and directly associated with
class labels (say, walking or golf-swinging in Fig.1). It is
clear, however, that this process is fundamentally reduc-
tive: rich visual temporal-spatial structures (such as those
associated with the golf-swinging) can be hardly charac-
terized by one single class label and would be better rep-
resented by considering multiple high-level semantic con-
cepts describing the action. Inspired by recent formulations
on object categorization [3, 8, 14, 32, 28], we call these
high-level concepts “action attributes”. Fig. 1 shows ex-
amples illustrating this intuition. For instance, the action
golf-swinging may be effectively represented by introduc-
ing a number of attributes that can be directly associated
with either the visual characteristics describing the spatial-
temporal evolution of the actor (e.g., single leg motion, arm
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Figure 1. We propose to represent human actions by a set of attributes
which can be directly associated with the visual characteristics describing
the spatial-temporal evolution of the action in a video (e.g., single leg mo-
tion, arm over shoulder motion, torso up-down motion). We argue that an
action attribute-based representation is more descriptive and discriminative
for action recognition than traditional methods.

over shoulder motion, torso up-down motion) or with the
contextual description of the scene wherein the action takes
place (e.g., outdoor, sport). In this work we focus on the
former types of attributes (extensions including the latter
ones are straightforward) and argue that an action attribute-
based representation enables a classification framework for
human action recognition that is more descriptive and dis-
criminative than traditional methods.

As also discussed in [8, 14] for object categorization, the
ability to characterize actions by attributes is not only help-
ful for recognizing familiar actions, but it is also a pow-
erful tool for recognizing action categories that have never
been seen before (e.g., for which no training samples are
available). This problem is also referred as zero-shot learn-
ing [17, 25] and it is based on the idea of transferring knowl-
edge from known classes to unknown classes via attributes
as a bridge. Clearly, for these methods the success of a zero-
shot learning process heavily depends on the possibility of
sharing attributes across classes.

While promising for the reasons discussed above, it is
clear that an attribute-based representation has the draw-
back of being sensitive to the process of selecting attributes
and associating them with relevant action classes. A con-
ventional way for doing so is to: i) manually identify a list
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of possible high-level concepts that can be reasonably used
to characterize the set of action classes one wishes to clas-
sify (see Fig.1); ii) select which of these attributes occur in
each class of interest. There are, however, two major open
problems related to this selection/assignment process.

The first problem concerns the issue of selecting a set
of attributes that are capable of representing the complete
pool of action classes. If one selects attributes manually,
it is clear that this process is subjective and arbitrary, and
it does not guarantee that all of the critical visual spatial-
temporal patterns characterizing an action class are success-
fully associated with attribute labels. To address this issue,
we propose to integrate manually specified attributes with
attributes that are automatically discovered from the data
themselves using information theoretic methods. We call
these attributes data-driven attributes. This procedure is in-
spired by previous methods that seek to discover semantic
visual words [20] or intermediate concepts [19, 31] for ac-
tion classification.

The second problem concerns the issue of selecting ac-
tion attributes that are discriminative and yet able to capture
the inherent intra-class variably of each action class. For
instance, consider the action class walking and the attribute
two arms perform pendulum-like motion. Some examples
of walking may contain the attribute two arms perform
pendulum-like motion; some others may not. So how does
one associate the action class walking to the attribute two
arms perform pendulum-like motion? To address this prob-
lem, we treat attributes as latent variables, and formulate the
classification problem using a latent linear SVM framework
akin to [11] for selecting the most discriminative and rep-
resentative attributes for each action class. Our method has
the key advantage of integrating in one unique optimization
problem the process of forming the data-driven attributes
and selecting the most discriminative attributes among the
pool of (data-driven and manually selected) attributes.

1.1. Related work
The problem of action recognition has been widely

explored in the computer vision community. Early ac-
tion recognition frameworks focused on tracking, motion
capture and the analysis of tracks [2]. More recently,
great progress has been made by introducing more de-
scriptive action representations such as space-time pattern
templates[1, 21], 2D shape matching [33, 7], optical flow
patterns [6, 33], trajectory-based representation [27], and
bag-of-video-words [24, 19, 20]. Some approaches have at-
tempted to integrate contextual information, such as space-
time neighborhood features[13], object-scene-action mix-
ture models[12], and spatial and temporal relations[22].

To our knowledge, few attempts have been made to uti-
lize high-level concepts for the recognition of human ac-
tions. Some researchers have proposed to represent action
by intermediate semantic features [19, 20, 9], which are

conceptually similar to our data-driven attributes. These in-
termediate features are learned from a training dataset by
(soft or hard) clustering low-level features based on their
co-occurrence in training videos. The assumption is that
frequently co-occurring low-level features are correlated at
some conceptual level giving raising to intermediate rep-
resentations (topics). Similarly, Wang et al. [31] use the
hidden Conditional Random Fields for action recognition.
The authors model an action class as a root template and
a constellation of several hidden “parts”, where the hid-
den “part” is a group of local patches that are implicitly
correlated with some intermediate representation. In both
methods the association between the intermediate features
(or hidden “parts”) and action class labels is not immedi-
ately known - given a set of discovered intermediate se-
mantic features, one is unable to assign an action class to
the observation unless the class has previously been learned
from a labelled training dataset. This prevents these meth-
ods from being used when no training examples are avail-
able (zero-shot learning). Ramanan et al. [26] proposed to
annotate videos by manually label the training videos with
some movements, which seems similar to the attributes in
our work.

Rather than discovering attributes from videos, works
by [28, 3] have proposed to mine semantic object attributes
from either web data [3, 28] or WordNet [28]. We believe,
however, this strategy may not work well for human actions,
since mining the semantic relationships of verbs (actions)
from WordNet or web data is much more difficult than dis-
covering the relationships between nouns (objects). This is
because verbs do not have the same well-built ontological
relationships found with nouns.

The idea of using an attribute-based representation as a
guiding tool for object recognition is explored in [32, 14,
28, 3, 8]. These methods follow the intuition that manually
specified attributes can be used to explicitly represent a vi-
sual class, thus helping the recognition [32, 8] or enabling
the recognition of novel classes even when no prior training
examples are available [14, 28]. To the best of our knowl-
edge, however, our work is the first to apply zero-shot learn-
ing for action recognition using attributes. Moreover, the
integration of manually specified and data-driven attributes
makes our work unique among the existing work.

1.2. Our Contributions
Our goal is to investigate how action attributes can be

used to improve human action recognition. The contribu-
tions of this work are three-fold. First, manually-specified
attributes enable our approach to recognize novel action
classes when no training examples are available. Second,
we address intra-class variability by considering the at-
tributes to be latent variables. We use latent SVM to search
for the best configuration of attributes for each action. Fi-
nally, our approach integrates manually-specified and data-
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driven attributes, making the attributes imply much more
complete high-level human knowledge on actions. We test
our approach on various publicly available action datasets.
Experiments are conducted on the Olympic Sports dataset
[23], the UIUC dataset[30], and the combination of three
datasets: the UIUC dataset, the KTH dataset [29] , and the
Weizmman dataset [21] (for a total of 21 action classes).
Experimental results show that our attribute-based action
representation is useful for recognizing novel action classes
without training examples and can also significantly boost
traditional action classification.

2. Attribute-Based Action Representation
Most previous works represent actions with low-level

features x ∈ Xd, and solve the classification problem by
defining a classifier f : Xd → Y, that maps the feature vec-
tor to a class label Y. But we believe that human actions
are better described by action attributes. In this section, we
briefly describe how we represent actions with a set of ac-
tion attributes.

Follow the description of [25], we define an action at-
tribute space Am as an m dimensional semantic metric
space in which each dimension encodes the value of a se-
mantic property. This semantic space is spanned by a basis
consisting of m attributes, {ai}m1 . In this space, each action
class, as well as each action instance, is represented by one
point as shown in Fig.2. As an example, suppose we have
five attributes forming the basis: “translation of torso”, “up-
down torso motion”, “arm motion”, “arm over shoulder mo-
tion”, “leg motion”. Then the action class “walking” might
be represented by a binary vector {1, 0, 1, 0, 1} ∈ A5, with
each dimension indicating the presence or absence of the
corresponding attribute. We use binary values for clarity,
but continuous values are equally valid. Ideally, the posi-
tions of action instances in the space Am should be super-
imposed to the position of each action class. In practice,
however, if the absence or presence of each attribute is ap-
proximated by a confidence value (from 0 to 1), action in-
stances from one action class will form a point cloud around
the class. This is illustrated in Fig.2.

By introducing the attribute layer between the low-level
features and action class labels, the classifier f which maps
x to a class label, is decomposed into:

H = L(S(x)) (1)
S : Xd → Am and L : Am → Y

where S consists of m individual attribute classifiers
{fai(x)}mi=1, and each classifier maps x to the correspond-
ing i-th axis (attribute) of Am, L maps a point a ∈ Am to a
class label y ∈ Y. The attribute classifiers are learned from
a training dataset. Specifically, classifier fai(x) is trained by
labeling the examples of all action classes whose attribute
value ai = 1 as positive examples and the rest as negative.
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Figure 2. A set of action attributes form a semantic space Am, in which
every action class or action instance is represented by a point. A “circle”
represents an action instance; a “star” represents a known class y hav-
ing training examples (the surrounding points), and “triangle” represents a
novel class z for which no training examples are available but it is charac-
terized by a manually specified attribute vector. In this space, an unknown
action ax that belongs to one of the unknown classes (say z1) can be rec-
ognized by associating its closest class to it (see Sec 5 for details).

The mapping L can be defined manually or learned from a
training dataset. The fact that action classes and action in-
stances share the same semantic space and the capability to
manually define L make it possible to recognize a novel ac-
tion class (e.g., z1 and z2 in Fig.2) with no training samples
available, which is addressed in Sec 5.

3. Attributes as Latent Variables
Given a training set, D = {(xi, yi)}ni=1, yi ∈ {−1, 1},

we want to learn a classification model for recognizing
an unknown action x. Although the attribute values of
each training example are already known (they are inher-
ited from their corresponding classes), intra-class variability
may cause the attribute values to be inaccurate for specific
members of the training class. Consequently, some action
instances may be associated with subtly different sets of at-
tributes even if they belong to the same action class. For ex-
ample, the “jumping forward” actions from the UIUC action
dataset have the “big pendulum-like arm motion” attribute,
while the instances from the Weizmman dataset do not. This
is a consequence of the inherent intra-class variability and
the fact that associating attribute labels is a subjective pro-
cess. We address this difficulty by treating attributes as la-
tent variables.

Inspired by Felzenszwalb’s deformable part model [11],
which can handle the variability in part positions by treating
them as latent variables, as well as the work by Wang et al.
for object recognition [32], we consider each attribute as an
abstract “part” of an action. In this way the location of an
attribute in the space Am is interpreted as a latent variable,
ai ∈ [0, 1]. Larger values of ai indicate a higher probability
that a video possesses this attribute.

Our goal is to learn a classifier fw : Xd × Y → R where
w is the parameter vector. In testing, fw is used to predict
a new video x, namely y∗ = argmaxy∈Y fw(x, y). This
prediction is not completely characterized by the pair (x, y)
alone, but also depends on its associated attribute values a ∈
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Am. Specifically, fw(x, y) = maxa wTΦ(x, y, a), where
Φ(x, y, a) is a feature vector depending on raw feature x,
its class label y and its associated attributes a, and w is a
parameter vector providing a weight for each feature. The
linear model is defined as,

wTΦ(x, y, a) = wxφ1(x) +
∑
j∈A

wT
aj
φ2(x, aj)

+
∑

j,k∈A

wT
aj ,ak

φ3(ai, aj), (2)

where w = {wx;waj ;waj ,ak
}, and A is an attribute set.

The potential function wxφ1(x) provides the score mea-
suring how well the raw feature φ1(x) of a video matches
the action class template wx which is a set of coefficients
learned from the raw features x. If other potential functions
in Eq. (2) are ignored, we can learn wx using a binary lin-
ear SVM. In our implementation, we use this observation
to make the computation more efficient. Specifically, in-
stead of keeping φ(x) as a high-dimensional feature vector,
we represent it as the score output of the pre-trained linear
SVM. So wx is a scalar value used to weigh the SVM score.
This strategy was used in [5, 32].

The potential function wT
aj
φ2(x, aj) provides the score

of an individual attribute, and is used to indicate the pres-
ence of an attribute in the video x. The initial value of
aj is inherited from its class label in the training phase,
and is given by a pre-trained attribute classifier when test-
ing (see Sec 2). The edge potential wT

aj ,ak
φ3(aj , ak) cap-

tures the co-occurrence of pair of attributes aj and ak. If
each attribute ai has A statuses (e.g., {0,1}), then each edge
has A × A configurations. As a result, the feature vector
φ3(aj , ak) of an edge is a A × A dimensional indicator
for edge configurations. The associated wT

aj ,ak
contains the

weights for all configurations.
The parameter vector w is learned from a training dataset

D by solving the following objective function:

min
w

λ ∥ w ∥2 +
n∑

i=1

max(0, 1− yi · fw(xi)), (3)

where the second term implements a soft-margin. The ob-
jective function 3 is semi-convex due to the inner max in fw.
A local optimum can be obtained by the coordinate descent
[11], as follows:
• Holding w fixed, find the best attribute configuration

a′ such that w · Φ(x, y, a) is maximized.
• Holding a′ fixed, search the best parameters w such

that the objective Eq. 3 is minimized.
In our current implementation, the attribute graph is

learned from the training data. For computational ef-
ficiency, each attribute has two statuses ({0} and {1}).
To find the best attribute configuration a for fw(x, y) =
maxa wTΦ(x, y, a), we use belief propagation [10].

4. Learning Data-Driven Attributes
As aforementioned, we argue that manually-specified at-

tributes can assist recognition because they provide high-
level semantic information that can be used to improve the
characterization of actions. However, the manual specifica-
tion of attributes is subjective, and potentially useful (dis-
criminative) attributes may be ignored. This may signif-
icantly affect the performance of classifiers. One way to
overcome this weakness is to automatically learn attributes.
We call these data-driven attributes, and argue that they have
a complementary role in providing a more complete charac-
terization of human actions. We propose to discover data-
driven attributes by clustering low-level features while max-
imizing the system information gain. The intuition is that
attributes may be characterized by a collection of low-level
features that tend to co-occur in the training data.

Given two random variables X ∈ X = {x1, x2, ..., xn}
and Y ∈ Y = {y1, y2, ..., ym}, where X represents a set
of visual-words, and Y is a set of action videos. The Mu-
tual Information (MI) [4] MI(X;Y ) between X and Y ex-
presses how much information from variable visual-words
is contained in action videos, which provides a good mea-
surement to evaluate the quality of low-level features group-
ing. It is clear that if two features xi and xj are semantically
similar, then merging them will not cause significant loss of
the information that X and Y share. Given a set of features
X = {xi}n1 , we wish to obtain a set of clusters X̂ = {x̂t}T1 .
The quality of clustering is measured by the loss of MI,

Linf (D,Π) = MI(X;Y )−MI(X̂;Y ), (4)
where D is the training data set and Π = {p(x̂t|xi)} is the
partition of X to X̂ . After some mathematical derivation,
we have [18],

Linf (D,Π) =

T∑
t=1

∑
xi∈x̂t

p(xi) ·KL(p(Y |xi), P (Y |x̂t)),

(5)
where KL(a, b) is the KL-divergence between two distribu-
tions. If we treat the distribution p(Y |x̂t) as the cluster pro-
totype (e.g., the centroid), and the prior p(xi) is uniformly
distributed, then the loss of MI is the distance from the dis-
tribution p(Y |xi) to the cluster prototype.

We integrate the discovery of data-driven attributes into
the framework of latent SVM. Suppose h ∈ Hl (where Hl is
the data-driven attribute space, with the basis X̂ , l = |X̂|) is
the data-driven attribute vector associated with x, then our
model is extended as follows,

wTΦ(x, y, a,h) = wxφ1(x) +
∑
i∈A

wT
ai
φ2(x, ai) (6)

+
∑

j,k∈A

wT
aj ,ak

φ3(aj , ak)

+
∑
s∈H

wT
hs
φ4(x, hs) +

∑
s,t∈H

wT
hs,ht

φ5(hs, ht),
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where wT
hs
φ4(x, hs) provides prediction of a class label by

a data-driven attribute hs, and wT
hs,ht

φ5(hs, ht) measure
the dependency between pairwise data-driven attributes,
H is a set of data-driven attributes. If we consider both
human-specified attributes and data-driven attributes to be
latent variables, then for each example x, we search for
the best configuration of a and h such that fw(x, y) =
maxa,h (w)TΦ(x, y, a,h). The extended objective is,

argmin
w,Π

λ ∥ w ∥2 +ηLinf +
n∑

i=1

max(0, 1− yi · fw(xi)), (7)

where λ and η are tradeoff parameters. The rationale behind
this model is that by minimizing the integrated objective
function, we can find a set of latent data-driven attributes
and the classification model w which i) predicts the data
correctly with a large margin and ii) minimizes the loss of
mutual information caused by feature merging.

Discovering data-driven attributes while treating both
human-specified and data-driven action attributes as latent
variables makes the objective function intractable. To sim-
plify this process, we use two separate steps. We first find
the best partition Π of X by minimizing the loss of MI Linf .
This process produces the data-driven attributes. Once we
have the data-driven attributes we only need to solve the la-
tent SVM problem. Gradient descent methods can be used
to minimize the loss of MI [18].

5. Knowledge Transfer Across Classes
Representing actions with a set of human-specified ac-

tion attributes makes it possible to recognize a novel action
class even when training examples are not available. This
is accomplished by transferring knowledge from known
classes (with training examples) to a novel class (without
training examples), and using this knowledge to recognize
instances of the novel class. To formulate the problem,
let T = {(xi, li)}ni=1 ⊂ Xd × Y be a training set where
Y = {yk}Kk=1 consists of K training action classes. Given
a set of novel classes Z = {zj}Lj=1 that is disjoint from
Y, we seek to obtain a classifier f : Xd → Z. Traditional
classification fails to solve this problem since there are no
training examples for Z.

As Fig. 2 demonstrates, with human-specified attributes
any action class is an m dimensional vector, say ay =
(ay1, ..., a

y
m) ∈ Am for a training class y and az =

(az1, ..., a
z
m) ∈ Am for a novel class z. An action instance is

also represented by a point in Am. Ideally, the positions of
action instances will be close to the positions of their cor-
responding action classes. The attribute vector of an action
class is specified manually, while the attribute vector of an
action instance is provided by m attribute classifiers. These
attribute classifiers, namely the mapping S : Xd → Am ,
are learned from training dataset T (see section 2). Given
an unknown action x belonging to one of the action classes

Z, we first encode it into the attribute space by S(x) ∈ Am.
We can then measure its Euclidean distances to all novel
classes Z, and assign it to the nearest class (in these experi-
ments, the K-Nearest Neighbors (KNN) technique was used
for classification). Notice that this assignment is possible
because we know the mappings Am → Z (manually spec-
ified) and Xd → Am (learned from the training data), even
if no training samples are available for the novel classes Z.

6. Experiments and Discussion
6.1. Low­level feature extraction

We adopt the 1D-Gabor detector proposed in [24] to de-
tect 3D interest points from videos of action. In our ex-
periments, we set two parameters σ and τ of the Gabor
filter to 2 and 1.5 respectively. The ST volumes around
the points are extracted and gradient-based descriptors are
learned by PCA. All descriptors are quantized to d (e.g., d
= 1000 in our experiments) visual-words using the k-means
algorithm. With the quantized vocabulary, each action is
represented by a histogram vector x ∈ Xd of visual-words.

6.2. Datasets and Action Attributes
We tested our framework on three publicly available

datasets. First, experiments were performed on the UIUC
action Dataset [30], which contains about 532 videos of 14
actions, such as walk, hand-clap, jump-forward, and jump-
jack. The action classes in this dataset are very diverse,
which is useful for our study. We manually defined 22 ac-
tion attributes such as “standing with arm motion”, “torso
translation with arm motion”, “leg fold and unfold motion”
[18]. Second, experiments were conducted on a new dataset
obtained by combining existing datasets into a larger one.
The sources include the KTH dataset [15] (six classes and
about 2,300 videos), the Weizmann dataset [21] (10 classes
and about 100 videos), and the UIUC dataset (14 classes
and about 500 videos), resulting in a combined dataset with
21 actions and 2910 videos in total. The three datasets are
combined in order to: 1) produce sufficient number of ac-
tion classes, which implies that more attributes can be intro-
duced to characterize such classes, 2) add more variability
across video sources. We defined 34 action attributes for the
combined 21 actions [18]. Finally, experiments were also
conducted on the Olympic Sports dataset, which is newly
published by Niebles et al. [23]. As it is collected from
YouTube, it contains realistic human actions.

6.3. Experimental Results
A. Recognizing novel action classes
As aforementioned, human-specified attributes can help
recognize novel action classes. We use the leave-two-
classes-out-cross-validation strategy [25, 17] in experi-
ments on the UIUC dataset. Specifically, for each run we
leave two classes out as novel classes (|Z| = 2). The re-
maining classes are used for training. All 91 possible con-
figurations of training and testing classes are used. Fig 3
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Figure 3. The average accuracy of leave-two-classes-out-cross-validation
on the UIUC dataset for recognizing novel action classes.

shows the average accuracy of each action over all runs. We
see that the majority of classes are recognized with a suc-
cess rate of over 70%, and 8 of the classes approach 90%.

For the next experiment, we divide the UIUC dataset
into two disjoint sets to make the problem more challeng-
ing. One set, Y, contains 10 action classes, and is used for
training. The other set, Z, contains four classes and is used
for testing. This strategy is similar to that of [14, 28]. The
underlying rationale for knowledge transfer across action
classes is that the testing and training classes share some
common attributes. We follow this criteria to form our test
cases. Fig. 4 (a)-(h) list the confusion tables for eight rep-
resentative cases with varied performance. Some interest-
ing observations can be made from the confusion tables.
For example, in (a) some “crawl” actions are misclassified
as “clap” since both classes share “alternate arm motion”
while “crawl” does not have strong attributes to differen-
tiate itself from “clap”. Similarly, both “jump-forward”
and “crawl” have “translation motion”, so some “jump-
forward” examples are misclassified into “crawl”. Because
no results under zero-shot learning are reported in the lit-
erature of the human action classification, we compare our
results with one-shot learning, which occurs when each test-
ing class has a single training example. We use KNN as a
classifier, and tested on actions represented by raw features
without attribute features. Fig.4 (I) compares average ac-
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(%) (a) (b) (c) (d) (e) (f) (g) (h)

zero-shot learning 84.11 90.38 82.69 86.22 93.59 76.28 66.67 62.18

one-shot learning 74.00 77.69 75.58 64.99 80.06 78.04 59.08 67.56

(g)

(I)

Figure 4. Confusion table for four novel test classes. (a)-(h) correspond
to eight different cases. The average accuracies for (a)-(h) are listed in the
first row of table (I), and for comparison the second of (I) lists the average
accuracies of the eight cases for “one-shot learning” (best viewed in PDF).

0-shot 1-shot 10-shots 20-shots Schuldet Liu Niebles 

Box 56.7 61.5 80.9 83.4 97.9 96.0 99.2

Clap 84.3 36.9 46.7 55.2 59.7 92.9 96.5

Jog 9.0 13.4 39.3 50.1 60.4 87.0 78.2

Run 64.1 12.0 48.0 59.2 54.9 82.0 79.5

Walk 75.6 13.1 43.8 54.7 83.8 98.0 94.4

Wave 82.9 53.7 83.7 87.4 73.6 92.0 99.9

Ave. Acc. 62.1 31.8 57.1 65.0 71.7 91.3 91.3

Figure 5. The performance comparison on KTH dataset between our ap-
proach (column “0-shot”) with “x-shots” learning (i.e., using x examples
from each class as training) and other state-of-the-art training based ap-
proaches: Schuldet et al.[29], Liu et al. [19], and Niebles et al. [23].

curacies for zero-shot and one-shot learning. For 6 out of
the 8 cases, our approach performs about 7% to 22% better
than one-shot learning. This supports our claim that knowl-
edge transfer from known classes to novel classes by action
attributes can improve recognition.

Using our combined datasest, we conduct a more chal-
lenging experiment, using all six action classes from the
KTH dataset as testing classes Z, and action classes that are
from the UIUC and Weizmman datasets but not included in
Z as training classes Y. The classification results are shown
in Fig.5. For comparison, experiments are conducted with
1, 10 and 20 training examples from each action classes.
Again, a KNN classifier is used for classification and ac-
tions are represented without using attributes. The results
are shown in Fig.5. We see that “0-shot” generally per-
forms much better than “1-shot” and “10-shot”, and is com-
petitive with “20-shot”. The poorest performance is from
the “jog” class. Confusion tables indicate that the majority
of “jog” examples are misclassified as “run”, which is un-
derstandable, as there are no attributes that are capable of
distinguishing between the two classes in this experiment.
Fig.5 also shows some results with the state-of-the-art bag-
of-words approaches on KTH. They typically use very large
training sets (e.g., [19] used more than 90% data for train-
ing), more discriminative classifiers like SVM, or tempo-
ral information [23]. Our results compare well to these ap-
proaches, and although our overall performance is slightly
weaker, it is important to remember that our results come
without any training examples in six of the action classes.
B. Attributes boosting traditional action recognition.
In this section, we present a series of experiments on the
MIXED-Action dataset using our proposed framework in
sections 3 and 4 to prove that action attributes do improve
performance of traditional action recognition. Our results
demonstrate that a significant improvement occurs with the
use of manually-specified attributes.

We split the dataset into three parts: 40% for training at-
tribute classifiers, 40% for training latent SVM, and 20%
for testing. We treat the attributes associated with x as a

Ours Dollar's Niebles' Liu's Wang's Laptev's Raptis'

91.59 80.66 91.3 91.31 92.1 91.8 94.5

Figure 7. Performance of some state-of-the-art approaches (most of them
are based on bag of words) on the KTH dataset. The first column is our
result, the following columns correspond to Dollar et al. [24], Niebles
et al.[23], Liu et al.[19] (without spatial structure information), Laptev et
al.[16], Raptis et al.[27] (use tracklets features).
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(%) Average bend box clap crawl jack jog jump-f jump-s pjump push up raise-h run side sit-2-s skip stand-2-s Stretch turn walk wave1 wave2

raw-feature 53.1 0.0 98.7 93.1 77.8 18.2 67.5 54.5 66.7 0.0 100.0 11.1 80.0 0.0 75.0 0.0 100.0 11.1 66.7 97.8 0.0 97.6

specified a"ributes 72.1 33.3 94.9 94.3 100.0 63.6 93.8 81.8 100.0 50.0 83.3 100.0 66.7 0.0 75.0 0.0 100.0 22.2 100.0 92.3 70.0 92.7

raw-feature + specified a"ributes 78.7 100.0 100.0 95.4 100.0 81.8 87.5 81.8 100.0 0.0 83.3 77.8 77.8 0.0 87.5 0.0 100.0 100.0 100.0 94.5 90.0 95.1

data-driven a"ributes 47.4 0.0 94.9 93.1 22.2 0.0 61.3 45.5 66.7 0.0 100.0 0.0 78.9 0.0 62.5 0.0 100.0 0.0 77.8 97.8 0.0 95.1

raw-featrue + all a"ributes 83.1 100.0 92.4 94.3 100.0 90.9 70.0 81.8 100.0 50.0 66.7 100.0 82.2 50.0 87.5 0.0 100.0 100.0 100.0 83.5 100.0 96.3

Figure 6. The performance comparison among raw features human-specified attributes, data-driven attributes and various combination.

feature vector. We trained a binary classifier for each action
class, and used a simple voting strategy to obtain multi-class
recognition results (the binary classifier giving highest con-
fidence value wins the vote). Fig. 6 shows the performance
comparison between varied combinations of different types
of features. Each row corresponds to a diagonal entry of
a 21 by 21 confusion table. It can be seen that using raw-
features alone, our system obtained 53.1% average recogni-
tion accuracy, while with human-specified attributes alone,
the average accuracy is increased to 72.1%. Clearly, cor-
rectly specified attributes help traditional recognition sig-
nificantly. This can be seen especially well for the action
classes that do not have enough training examples (e.g.,
“bend”, “jack”, and “wave1”). This is because the attributes
transfer knowledge from other classes to compensate for
fewer available training examples. Combining both raw
features and human-specified attributes, the performance
is improved to 78.1%. By adding data-driven attributes
with the human-specified attributes, the performance can
be further improved by about 4.5%. We conclude that the
data-driven attributes provide cues that are complementary
to the human-specified attributes. It is worth noting that
actions with few training examples (e.g., “side”, “pjump”
and “skip” those actions from the Weizmann action dataset)
generally perform poorly even with the introducing attribute
features. For example, “skip” is misclassified to other jump-
like actions.

In order to relate our results with those of other methods,
we conducted an experiment where we trained classifier on
the MIXED dataset (both attribute classifiers and binary ac-
tion classifiers), and tested on videos from the KTH dataset.
Note that a classifier trained on 21 classes may be weaker
than the one trained on 6 classes only, and we can not train
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Figure 8. (a) Dissimilarity between 100 data-driven attributes (rows) and
34 manually-specified attributes (columns). Colder color has lower value.
(b) The effect of removing a set of human-specified attributes. “Specified
attributes” means only using this type of attributes for recognition. “B”
indicates the performance before attributes removal, while “A” indicates
the performance after removing the attributes. “Mixed Attributes” means
using both manually-specified and data-driven attributes for recognition
(best viewed in PDF).

on the KTH dataset as it does not have sufficient classes
to learn robust attribute classifiers. We obtain average ac-
curacies of {96.0%, 95.0%, 83.8%, 85.4%, 90.7%, 98.7%}
for “box”, “clap”, “jog”, “run”, “walk” and “wave” respec-
tively. Fig.7 lists the performance of some state-of-the-
art approaches based on bag of features. Notice that even
though our binary classifiers are trained on the more com-
plicated MIXED dataset, our result is still competitive.

To further demonstrate the correlation between
manually-specified attributes and data-driven attributes,
we show a dissimilarity map in Fig.8, where colder colors
indicate less dissimilarity, namely stronger correlation.
This map is constructed from the training data (i.e., the
action-to-data-driven-attribute matrix and the action-to-
specified-attribute matrix). The dissimilarity between two
attributes is computed as the Euclidean distance between
their corresponding column vectors. From this map, we
see that some specified attributes (e.g., the human-specified
attribute set ā = {1, 8, 9, 10, 11}, columns of Fig.8 (a))
are more correlated with data-driven attributes. The
effect of this correlation can be seen in the following
experiments. As Fig. 8 (b) shows, for recognition using
manually-specified attributes only, removing ā decreases
the performance from 72% (i.e., “specified attribute B” in
(b)) to 64%. However, for recognition using both manually-
specified and data-driven attributes, removing ā doesn’t
cause an obvious performance decrease (i.e., “Mixed
Attributes B” vs. “Mixed Attributes A” in (b)). This shows
that data-driven attributes can make up the information loss
caused by removing some human-specified attributes.

6.4. Experiments on Olympic Sports Dataset
We validated our approach using the Olympic Sports

dataset, which contains 16 action classes and about 781
videos, for recognizing novel action classes and traditional
training based recognition. This dataset is more challeng-
ing because some of the videos contains camera motion
and are taken from varied views. Moreover, many action
classes have similar sub-actions, such as “Discus-throw”,
“Hammer-throw ” and “Shot-put ”. We defined 39 attributes
on this dataset [18] and created a codebook with size of
2,000 for all experiments on this dataset.

A set of experiments for testing the ability to recog-

Clean-jerk 75.8 Diving-10m 52.6 Diving-3m 63.0 Clean-jerk 84.8 bowl 0.0

Diving-10m 61.4 Hammer-th 87.0 Javelin-th 32.0 Diving-3m 37.0 Hammer-th 91.3

High-jump 73.8 snatch 83.7 Pole-vault 72.5 Hammer-th 91.3 Javelin-th 88.0

Shot-put 68.3 Long-jump 87.0 Shot-put 71.4 Triple-jump 57.1 snatch 85.7

Ave. Acc. 69.8 Ave. Acc. 77.6 Ave. Acc. 59.7 Ave. Acc. 67.6 Ave. Acc. 66.3

Case 1 Case 2 Case 3 Case 4 Case 5

Figure 9. The performance of recognizing novel testing classes. Five
cases are listed. For each case, four classes are used for testing and the
other 12 classes used for training.
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(a) (b)

raw-features 51.83

specified attributes 60.48

raw-features + specified attributes 63.60

Data-driven attributes 45.31

raw-feature+ all attributes 65.09

Our approach 74.38

Raw features 66.93

Niebles et al. 72.10

Laptev et al. 62.00

Figure 10. (a) Recognition performance on the Olympic Sports dataset
using different features and attributes. (b) Performance comparison with
some state-of-the-art approaches in terms of mean average precision. Both
results corresponding to “Niebles et al.” and “Laptev et al.” are from [23].

nize novel action classes using manually specified attributes
were performed. Four classes are selected as novel testing
classes and the rest are used as training classes. Fig.9 shows
results for five representative cases. Overall, the results are
reasonable, although a few classes perform poorly. With 10-
shot learning, the average accuracies for each of five cases
is 47.7%, 60.1%, 52.8%, 58.3%, and 60.0% respectively,
which are significantly inferior to the average accuracies of
our approach (see Fig.9).

In addition, we follow the experimental setup in Sec
6.3 B to see if both manually-specified and data-driven
attributes can improve recognition. The average accu-
racy (for multi-class classification) is shown in Fig.10 (a).
Again, the manually-specified attributes boost the perfor-
mance. Due to the noise dataset, the attribute classifiers are
not well trained. It causes the improvement of performance
for this dataset to be somewhat less significant than that of
the combined dataset. For comparison with state-of-the-art
approaches, we also compute the average precision (which
differs from the average accuracy) for each class. Fig.10 (b)
shows a comparison of mean average precision for different
approaches.

7. Conclusion
In this paper, we have proposed to represent human ac-

tions by a set of intermediate concepts called action at-
tributes which are either manually specified or learnt from
the training data. We have introduced a unified framework
wherein the action attributes can be effectively selected in
a discriminative fashion. Extensive experiments have been
carried to validate our claims and have confirmed our intu-
ition that an attribute-based representation is a critical build-
ing block for modeling complex activities from videos.
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