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Abstract

A new algorithm has been proposed to locate the global minimum of the alias matrix for a biased response function defined
in a set of distinct support points. The search begins by classifying all the support points in the experimental region of
interest into groups. Then starting from an arbitrary set of N support points, the algorithm obtains an N-point optimal
design by systematically adding and dropping support points from the various groups in such a way as to continuously
reduce the determinant of the alias matrix of the design at each step of the sequence. Numerical demonstrations confirm
the effectiveness of this algorithm.
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1. Introduction

Very often in design of experiments, experimenters are faced with the problem of choosing among a number of good
competing designs based on certain criteria (Cook, R. D. 1980). Most of the criterion functions are functional form of the
information matrix. For biased models, the optimality criterion will not be suitable because of its dependability on the
model. One criterion for making this choice is by determining the determinant of the square of the bias or AL optimal
designs from the class of all possible designs with the same characteristics. Hence given the triplet {,, ?x}, where is the
space of all possible trials of an experiment, FX is the space of finite dimensional continuous function defined on and is
the space of non negative continuous random observation error defined on Allan, J. (1969), the problem is to obtain AL
design measure ξN from for a given n-variate of a biased model such that the determinant of AT A of the associated design
measure is minimized, where A = (XT

1 X1)XT
1 X2, X1 is an N x n design matrix with the column space spanned by the vector

x1 and X2 is an N x n matrix with column space spanned by vector x2. We hereby introduce a sequential approach on the
combinatorics of the possible design available for a given problem.

2. Methodology

For a given biased function f(x) and support point {x1, x2, . . . , xN} εX̃ where N̄ represents the number of support points in
a finite space of trials or the number of grid of points in an infinite space of trials, the support points are arranged into H
concentric balls g1, g2, . . . , gn. (Notz, W. T. 1989) The jth ball contains nj support points and ? nj = j=1, 2,. . . , H. the
support points in the jth ball are of equal distance dj each, from the center of and the distances of the support points in the
H balls are such that d1>d2>. . .>dH. By some selection techniques, the non-promising designs are eliminated and the
method moves along a steepest decent path to reach the required design. (Federov, V. V. 1972)

The search begins with an initial distribution of N support points amongst the balls such that g1 has N11 support points,
g2 has N12 support points and so on. (Atkinson, A. C. 1988) By this distribution a baseline class has been defined where
its determinant value is obtained. Starting from ball one in an increasing or decreasing order the direction of the search is
defined by altering the number of support points in the other H-1 balls. For each alteration a determinant value is obtained.
The system has converged when the determinant value is no longer decreasing.

3. The Algorithm

The N̄support points in X̃ = {X1, X2, X3, ..., XN̄} are arranged into H concentric balls g1, g2, g3, . . . , gH such that

Published by Canadian Center of Science and Education 125



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

g j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x j1
x j2
...
x jn j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
; x′ jk = (x1 jk x2 jk · · · xn jk)

where

N̄ =
∑

n j and

{
x′ jk x jk

} 1
2
= s j , k = 1, 2, · · · , n j

i.e. s1 > s2 >, . . . , > sH

(a) For H = 2, the algorithm can be described in the following ways:

(1) Select n11 support points from g1 and n12 support points from g2 and thus define the 2-tuple U0 = (n11 n12), and note
that there are a0 available designs; where

a0 =

(
n1
n11

) (
n2
n12

)
= a10a20,

n1 > n11, n2 > n12 and n11 + n12 = N; n11, n12 ≥ 0;

if n1 < n11, n2 < n12 and n11 + n12 = N; n11, n12 ≥ 0.

Define bii = n11 − αn1, bi2 = n12 − αn2 where b11, b12 are the residues and α is an integer such that bii < n1, bi2 < n2, then

a0 =

(
n1
b11

) (
n2
b12

)
(2) Define T

(
ξuv

N

)
= A′

(
ξuv

N

)
A

(
ξuv

N

)
,T

(
ξuv

N

)
∈ S

p×p
w ;

where S
p×p
w is the set of all non-singular matrices; u = 1, 2, ..., a10, v = 1, 2, ..., a20 and w = 1, 2, ..., a0.

A
(
ξuv

N

)
= ξ11

N , ξ
21
N , · · · , ξa101

N
, ξ12

N , ξ
22
N , · · · , ξa102

N
, ξ13

N , ξ
23
N , · · · , ξa103

N
, · · · ξa10

N
ξa20

N

where ξ11
N =

(
ξ(1)

n11

ξ(1)
n12

)
, ξ21

N =

(
ξ(2)

n11

ξ(1)
n12

)
, · · · , ξ101

N
=

(
ξ(a10)

n11

ξ1n12

)
, · · ·

(3) Compute det T
(
ξuv

N

)
= dw,w = 1, 2, · · · , a0 and define d0 = min{dw}.

(4) Refer to Table 1 for the rest of the steps leading to d1, d2, ..., dt+1;

where m = k+t+2 and

d1 ≥ d2 ≥ · · · ≥ dk < dk+1; dk+2 ≥ dk+3 ≥ · · · ≥ dt < dt+1... (1)

(5) Define dc = min{d0, dk, dt} and ξ(c)
N

; where dc is the value of the determinant when the algorithm converges and ξ(c)
N

is
the corresponding optimum design measure when H = 2.

The above sequence shall be referred to as S 2 sequence.

(b) For H = 3

(1) Select n11 support from points g1, n12 support points from g2 and n13 support points from g3 and define the 3-tuple
U0 = (n11 n12 n13).

(2) Holding n13 fixed in g3, conduct an S 2 search with g1 and g2 and obtain

d0(n13+0) = min{dw}, w = 1, 2, ..., a0.

where a0 =

(
n1
n11

) (
n2
n12

) (
n3
n13

)
,

n1 > n11, n2 > n12, n3 > n13 and n11 + n12 + n13 = N; n11, n12, n13 ≥ 0.

if n1 < n11, n2 < n12, n3 < n13 and n11 + n12 + n13 = N; n11, n12, n13 ≥ 0,
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Define bi1 = n11 − αn1, bi2 = n12 − αn2, bi3 = n13 − αn3 where b11, b12, b13 are the residues and α is an integer such that

bii < n1, bi2 < n2 and bi3 < n3 then a0 =

(
n1
b11

) (
n2
b12

) (
n3
b13

)
.

(3) Set n13 = n13 + 1 and conduct an S 2 search to obtain d(1/n13+1).

(4) Repeat the process in step 3 above for r = 2, 3, ..., k, k + 1, ..., t, t + 1, obtain d(k/n13+k) and d(t/n13+t); where d(k/n13+k)
is the minimum determinant value of the alias matrix in increasing order of r, and d(t/n13+t) is the minimum determinant
value of the alias matrix in decreasing order of r.

(5) Define dc = min
{
d(0/n13+0), d(k/n13+k), d(t/n13+t)

}
and ξ(c)

N

where dc is the value of minimum determinant when the sequence converges and ξ(c)
N

is the corresponding optimum design
measure.

(c) For any H

(1) Select n11 support points from g1, n12 support points from g2, ..., n1(H−1) support points from g1(H−1) and n1H support
points from gH and define the H-tuple U0 = (n11 n12 · · · n1H).

(2) Holding n1H fixed in gH , conduct an S (H−1) search with the remaining (H-1) balls and obtain

d0 = min{dw}, w = 1, 2, ..., a0.

where a0 =

(
n1
n11

) (
n2
n12

)
· · ·

(
nH

n1H

)
,

n1 > n11, n2 > n12, · · · , nH > n1H and n11 + n12 + . . . + n1H = N; n11, n12, . . . , n1H ≥ 0.

if n1 < n11, n2 < n12, n3 < n13 · · · , nH < n1H and

n11 + n12 + n13 + · · · + n1H = N; n11, n12, n13 · · · , n1H ≥ 0,

Define bi1 = n11 − αn1, bi2 = n12 − αn2, ..., b1H = n1H − αnH where b11, b12, ..., b1H are the residues and α is an integer

such that bii < n1, bi2 < n2, ..., biH < nH then a0 =

(
n1
b11

) (
n2
b12

)
· · ·

(
nH

b1H

)
.

(3) Set n1H = n1H + 1 and conduct an S (H−1) search to obtain d(1/n1H+1).

(4) Repeat the process in step 3 above for r = 2, 3, ..., k, k+1, ..., t, t+1, obtain d(k/n1H+k) and d(t/n1H+t); where d(k/n1H+k)
is the minimum determinant value of the alias matrix in increasing order of r, and d(t/n1H+t) is the minimum determinant
value of the alias matrix in decreasing order of r.

(5) Define dc = min
{
d(0/n1H+0), d(k/n1H+k), d(t/n1H+t)

}
and ξ(c)

N

where dc is the value of minimum determinant when the sequence converges and ξ(c)
N

is the corresponding optimum design
measure.

Properties of S H Sequence

Any search algorithm is made up of a starting point, the direction in which the sequence moves, the step-length in that
direction, and where it terminates. Here are the properties of the SH search:

(1) Starting Point: The sequence starts at an arbitrary point U0 = (n11 n12 · · · n1H), n11, n12 > 0, n11 + n12 + ... + n1H =

N, n1i = 0, 1, ..., N, (i = 1),

(2) Direction of search: The sequence moves in the direction of decreasing value of the determinant of the alias matrix.

(3) Step length: The step length at which the sequence goes is

U
r
= (n11 ± r, n12 ± r, . . . , n1H ± r), r = 0, 1, ....

This is one step at a time both increasing and decreasing value of (n11 n12, ..., n1H).

(4) The stopping rule: The sequence stops at the minimum value of the determinant of the alias matrix, i.e. where r = t+1

(5) The set
{
U

r

}
is completely exhaustive of all possible steps; where r = 1, 2, .... This means that the total number of

steps required for the sequence
{
U

r

}
to converge to minimum will take m = k+t+2 steps. For instance, if a fresh sequence

is started at

U∗
0 =

(
n∗11n∗12

)
; where n∗11 = n11 + s and n∗12 = n12 − s, s > 0
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then at r = 1, U∗
1 = (n11 + s + 1 n12 − s − 1)

This implies that it will take k+1 steps to get dk, where dk is the minimum determinant value of the alias matrix in the
increasing direction of r.

Similarly, it will take t+1 steps to get dt, where dt is the minimum determinant value of the alias matrix in the decreasing
direction of r. Hence the total number of steps required for the sequence

{
U∗

r

}
to converge at minimum will be m =

k+1+s+t-s+1 = k+t+2, i.e., regardless of any starting point, the 2-tuple will traverse in the same direction.

4. Illustration Using Biased First-Order Models with X̃ at Specified Values

REGULAR GEOMETRY: Here interest is in finding an N-point optimal design measure where N will be varied.

Given the response model,

f (x1, x2) = a00 + a01x1 + a02x2 + a12x1x2 + {b1x3
1 + b2x3

2} + ε
defined in a regular geometric area shown below

In the above model, we have four linear/interactive terms and two biasing terms, so the total number of terms in the model
are six. In the experimental region there are nine support points, Ñ = 9 and these are arranged into ball according to their
distances from the centre. The balls formed are

g1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 −1
−1 1
1 −1
1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; g2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0
0 −1
1 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; g3 =
(

0 0
)
.

The combinatorics table is given in table 2 below.

The optimal vector U1 = (4, 2, 0,; 1.296 x 103), the best ball combination is (g1, g3) and this is used for the next line of
search.

r* in stage one is + 2, the same principle is applied in stage two and is presented below.

Stage Two

Step
(r)

Balls Available
designs (ao)

Minimum De-
terminant Value
(dr)

Local AL Op-
timum

g1 g2 g3
1
2
3
4

4
5
3
3

2
1
3
2

0
0
0
1

6
16
16
24

1.296 x 103
9.934 x 102
1.2960e + 003
1.2960e + 003

9.934 x 102

The optimal vector in stage two is

U2 = (5, 1, 0; 9.934 × 102)

The best ball combination is (g1, g2) with minimum determinant value of 9.934 × 102 and r* = + 1.

In this search, the sequence has converged in stage two because subsequent analysis brought values higher than 9.934×102.
The optimal design measure is

ξ6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1
1 −1
−1 1
1 1
−1 1
−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5. Conclusion

A new method for constructing optimal biased designs is proposed. This method gives an optimal combination of balls
and an optimal number of support points r* to be taken or added to each ball at each search sequence. This method is
certain to converge to an AL design measure for a variety of experimental conditions. Numerical demonstrations indicate
a good measure of success in the performance of the algorithm.

128 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

References

Allan, J. (1969). Mathematics for Engineers and Scientists. Great Britain: Thomas Nelson and Sons Ltd., Chap. 6,
146-198

Allen, T., Yu, L. and Schmitz, J. (2003). An Experimental Design Criterion for minimizing Meta-Model Prediction Errors
Applied to die casting process Design. J. Roy. Statist. Soc. C., 52, 103 – 117.

Anderson, V. L. and McLean, R. A. (1974). Design of Experiments: A Realistic Approach, Marcel Dekker, Chap. 3,
96-104

Atkinson, A. C. (1982). Development in the Design of Experiments. International Statistical Review, 50, 2, 161 – 177.

Atkinson, A. C. (1988). Recent Developments in the Methods of Optimum and related Experimental Designs. Interna-

tional Statistical Review, 56, 2, 99 – 115.

Atkinson, A. C. and Donew, A. N. (1992). Optimum Experimental Design. Oxford Science Publications, Chap. 9,
334-371

Box, S. E. P. and Draper, N. R. (1959). A Basis for the Selection of a Response Surface Design. J. Amer. Statist. Ass., 54,
622 – 654.

Cook, R. D. and Nachtsheim, C. J. (1980). A Comparison of Algorithms for Constructing Exact D-Optimal Designs.
Technometrics, 22, 315 – 324.

Ellerton,R.R. and Tsai, W.Y. (1979). Minimum bias estimation and the selection of polynomial terms for response sur-
faces. Biometrics, 35, 631-635 .

Federov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York, Chap. 11, 416-428

Notz, W. T. (1989). Optimal Designs for Regression Models with Possible Bias. J. Statist. Plann. Inf., 22, 43 – 54.

Table 1. Combinatorics for Obtaining Global Minimum When H = 2

Step
(r)

g1
(n1)

g2
(n2)

Minimum
Determinant
(dr)

0 N11 N12 do*
1 N11 + 1 N12 – 1 d1
2 N11 + 2 N12 – 2 d2

...
...

...
... N11 + k N12 – k dk

N11 + k +
1

N12 – k + 1 dk+1

... N11 – 1 N12 + 1 dk+2
N11 – 2 N12 +2 dk+3
...

...
...

N11 – t N12 + t dt
m N11 – t – 1 N12 + t + 1 dt+1

Table 2. Combinatorics for Selection of 6 Support Points from 3 balls

Step (r) Balls Available
designs (a0)

Minimum De-
terminant Value
(dr)

Local AL Op-
timum

g1 g2 g3
0
1
2
3
4

2
4
4
0
0

2
0
2
4
2

2
2
0
2
4

36
1
6
1
6

1.2960e + 003
1.2960e + 003
1.296 x 103
Singular
Singular

1.296 x 103
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