
Compiler Optimization and Ordering Effects on
VLIW Code Compression

Montserrat Ros, Peter Sutton
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane Australia 4072

{ros, p.sutton}@itee.uq.edu.au

ABSTRACT
Code size has always been an important issue for all embedded
applications as well as larger systems. Code compression
techniques have been devised as a way of battling bloated code;
however, the impact of VLIW compiler methods and outputs on
these compression schemes has not been thoroughly investigated.

This paper describes the application of single- and multiple-
instruction dictionary methods for code compression to decrease
overall code size for the TI TMS320C6xxx DSP family. The
compression scheme is applied to benchmarks taken from the
Mediabench benchmark suite built with differing compiler
optimization parameters.

In the single instruction encoding scheme, it was found that
compression ratios were not a useful indicator of the best overall
code size – the best results (smallest overall code size) were
obtained when the compression scheme was applied to size-
optimized code. In the multiple instruction encoding scheme,
changing parallel instruction order was found to only slightly
improve compression in unoptimized code and does not affect the
code compression when it is applied to builds already optimized
for size.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,
Compilers, Optimization.

General Terms
Performance.

Keywords
Code Compression, compiler optimizations, VLIW.

1. INTRODUCTION
The main goal of any compression algorithm is to reduce
redundancy and increase the information content in a given block

of information. However, code compression varies from normal
text or data compression in many ways. The majority of text
compression techniques view the information to be compressed as
a block of data (such as a file) that needs to be compressed in size.
When compressing a series of instructions, however, certain
information needs to be retrieved at will. For example, branching
and function entry points must be able to be decompressed on
demand.

Code compression can be used as a method of reducing overall
code size in embedded applications to reduce the amount of on- or
off-chip memory required, or to increase the amount of code than
can be used in those areas of memory.

Code compression efficiency is widely defined [5, 12, 13, 16, 18]
by the compression ratio given by the following formula:

 sizeprogram original
 sizeprogram compressedrationcompressio =

RISC processors have been the main focus for code compression
techniques but VLIW (Very Long Instruction Word) processors
are now being considered in this area as a result of their increased
appeal to not only larger applications, but also the embedded
field.

Their attraction stems from their powerful parallel architecture
and their simple execution-unit design. Executing multiple
instructions in parallel brings with it the obvious speedup of
instruction processing, while introducing scheduling issues and
resource constraints. Unlike superscalar implementations, VLIW
architectures give the compiler responsibility for scheduling
instructions and recognizing dependencies instead of the hardware
doing so at runtime. As a result, code size can be largely
dependant on compiler optimizations and efficiency.

Compilers for VLIW processors are required to package multiple
instructions into packet-sized blocks for simultaneous execution.
The way in which this is done can greatly increase or decrease the
efficiency in compressing this generated code, and can have a
large effect on overall code size. As the full responsibility for
scheduling and packaging instructions in a VLIW program is
given to the compiler, it is necessary to investigate the effects of
that compiler’s output on the compression ratios achieved as well
as the overall code size after compression.

In this paper, we present a dictionary method compression scheme
and investigate its performance when applied to various compiler
optimizations and parallel instruction orderings. Section 2
presents related work in this field while Section 3 describes the
dictionary-method compression scheme used. Section 4 outlines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES ’03, Oct. 30 – Nov. 2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010…$5.00.

results from applying the compression scheme to varied compiler
output and Section 5 concludes with a discussion and comparison
of results.

2. RELATED WORK
The idea of using code compression as a tool for chip size
reduction in microprocessors has mostly incited interest in the
area of single instruction issue (usually RISC) processors. These
compression schemes can be categorized as dictionary methods
such as CodePack™ in [8] or SADC in [19], or as statistical such
as Arithmetic Coding [9, 23] or Markov models [18]. Some work
has been done on the comparison of program optimization and
compression for a RISC processor [6], however this is not
extensive and there is no published work targeting VLIW
compiler optimizations.

2.1 Code Compression on RISC processors
Code compression for RISC processors first emerged in a paper
by Wolfe and Channin [22]. This paper proposed a new RISC
system architecture based on existing architectures called a CCRP
(compressed Code RISC Processor). Due to RISC programs
tending to be larger, a CCRP was suggested to compress the code
and use a ‘code-expanding instruction cache’, such that the
decompression could be transparent to the processor. Various
Huffman-based encoding schemes were used. By using a
compression technique that did not give consideration to branch
targets and function beginnings, extra hardware was required to
fetch addresses.

Further developments in RISC code compression developed code
compression methods that looked at compiler techniques [6, 7],
expression trees and operand factorization [3, 4], enhanced
dictionary schemes and statistical schemes based on Markov
models and arithmetic coding.

Dictionary compression schemes have been investigated by
Lefurgy et al [12] with fixed and variable length codewords. The
dictionary compression is used to determine what portion of a
program’s object code is made up of its most frequent instructions
and encode the more frequent instructions with a ‘codeword’
whose size is much smaller than the original instruction. This
codeword references the dictionary where all original instructions
are stored. Their study finds that on average more than 80% of
the instructions in CINT95 have instruction words which are used
multiple times, and one in-depth case showed that 10% of the
most frequent instructions accounted for 66% of the overall code
size of that program [12]. Investigation is also undertaken into
compression based on multiple instruction dictionary entries.

The CodePack encoding algorithm[8] encompasses a similar idea,
as the most common instructions are replaced by the indexes to
the smallest dictionary, the next set of instructions (in order of
frequency) are replaced by an index into the second-smallest
dictionary, etc. This introduces some overhead to determine
which dictionary is used to decompress the instruction, but
ensures that very few bits are required for the most common
instructions. CodePack is said to achieve compression ratios of
35-40%, not including the dictionaries themselves.

2.2 Code Compression on VLIW processors
The code compression techniques applied to date on multiple-
issue processors (particularly the more original rigid VLIW

processors, but also recently targeting variable execution set
architectures) are limited to the works of Nam et al [21], Ishiura
and Yamaguchi [10], Prakash et al [20], Xie et al [23-25] and
Larin and Conte [11]. This is only a subset of the techniques
available for both data compression and single-issue code
compression.

Nam et al[21] achieved average compression ratios of 63%-71%
on SPEC95 benchmarks for varying VLIW architectures using a
dictionary compression method and compared the difference in
performance of "identical" and "isomorphic" instruction word
encoding schemes. Nam[21] uses the separation into opcodes and
operands across the entire fetch-packet, hence for an x-issue
processor, there will be x opcodes and x operand streams. Two
dictionaries are required, one to hold the opcode entries and the
other to hold operand entries. Two methods of investigating
common instruction words are compared (identical – whole
instructions words; and isomorphic – split into opcode/operand
fields) in varying VLIW architectures. Their results show that
using the isomorphic instruction words method out-performed the
identical instruction words method by a compression ratio
difference of at least 17%.

Ishiura and Yamaguchi [10] also investigate code compression for
VLIW processors, this time based on a statistical method called
Automatic Field Partitioning. Their paper reduces the problem of
compressing code to the problem of finding the field partitioning
that yields the smallest compression ratio. Each field partition is
then encoded with a dictionary scheme. Ishiura and Yamaguchi
[10] achieve compression ratios of 46-60%.

Prakash et al [20] present a dictionary based encoding scheme
that divides instructions into 2 16-bit halves. For each half, a
dictionary is constructed that contains a choice set of vectors such
that a majority of the vectors used throughout the program in that
half of the instruction differ by one of the dictionary vectors by a
small Hamming Distance (the Hamming Distance between two
vectors is the number of bits that are different). Each compressed
instruction is then replaced by two codewords representing each
half-instruction. These codewords are a combination of the
indexes into the relevant dictionaries as well as information about
which bits are toggled. This method means that two vectors that
are different at only one bit will not require both vectors to be
stored in the dictionary. Compression ratios of 80% are recorded.

Xie et al.[23, 25] are the first works to really target a VLES
(various length execution set) such as the TMS320C6x where bit0
of each instruction tells the architecture whether the next
instruction may be executed with the current set of instructions or
not. Xie uses a reduced-precision arithmetic coding technique
combined with a Markov model (statistical method) and applies it
to similar systems with different sized sub-blocks. Increasing the
block size decreases the compression ratio, but also increases the
time taken to decompress. The 16-byte sub-block scheme yields
the best compression rates at 67.3% – 69.7% but processing 11.2
– 11.5 bits per clock cycle; whilst the 4-byte sub-block scheme
although processing 47.01 – 47.42 bits per clock cycle has a
compression ratio of 76.7% – 80.6%.

Xie et al. [24] also present a Tunstall-based memory-less
variable-to-fixed encoding scheme as well as an improved
Markov variable-to-fixed algorithm with varying model depths
and widths. It is reported that 4-bit encoding produces the best

results. Compression ratio was found to improve with larger
codeword sizes until after 4 bits. This was mainly due to the fact
that less padding was required in 4-bit codeword compression.
The use of variable-to-fixed encoding means that codewords are
arbitrarily assigned and this assignment can be used to an
advantage to reduce the number of bit toggles on the instruction
bus.

Finally, the related work by Larin and Conte [11] conducts a
comparison between code compression methods and a tailored
encoding of the Instruction Set Architecture. In the tailored ISA
method, instructions were compacted into the smallest number of
bits required to still represent the same information. This method
produced new code at 64% of the original code size, though at a
much smaller cost to decoding hardware than standard
compression. This was compared to a Huffman encoding with the
code treated as bytes (72%), operations separated into streams
(75%), and operations as a whole (30%). The Huffman
compression applied to instructions as a whole was found to
produce These compression ratios did not include the Address
Translation Table required to maintain branch target information.
This added approximately 15.5% to the compressed code size.

3. ENCODING SCHEMES
In order to analyze the effects of compiler outputs on the
compressibility of a program, single and multiple dictionary
encoding schemes were used to illustrate the frequencies of
instructions associated with VLIW code.

3.1 Single Instruction Encoding Scheme
The single instruction encoding scheme used in this paper is a
dictionary compression method that analyses the instructions in a
program, builds a dictionary with the most frequent instructions
and compresses the original program by replacing common
instructions with a reference to the dictionary. This is a technique
similar to [13], except that instructions appearing only once are
not compressed.

The initial pass of the encoding scheme reads in a compiled object
file and gathers statistics of the frequencies of unique instructions.
This information is used to decide which instructions will be
included in the dictionary. The second pass through the program
takes each instruction and either leaves it as it is, or compresses it
if it is found in the dictionary. Figure 1 demonstrates this.

This dictionary method has been implemented using dictionaries
of 4- and 12- bits which correspond to 8- and 16-bit codewords as
a result of the compression overhead required (described in
Section 3.5).

3.2 Multiple Instruction Encoding Scheme
The multiple instruction encoding scheme adopted is very similar
to the single instruction scheme, except that sequences of 2- to 8-
instructions are considered as ‘dictionary words’ instead of lone
instructions. In a way, the scheme in Section 3.1 is a version of
this encoding scheme, where sequences of 1-instruction are
considered.

Although both encoding schemes are similar, the method is very
different. Because sequences of 2 or more instructions are being
considered in this scheme, the sequences in a given program can
‘overlap’. This means that when a particular instruction sequence

is chosen for addition to the dictionary (and replacement
throughout the code), this affects the statistics for the remaining
sets of sequences. As a result, new statistics must be gathered
upon every iteration of the dictionary-filling process.

This brings into question the algorithm to be used for dictionary
word selection. In this paper, we present results for a greedy
method of dictionary word choice, choosing the most frequent
sequence of instructions at all times. It is possible that a better
compression ratio could be achieved through an alternative
algorithm for the choice of dictionary words; however, as the aim
of this paper is to measure compiler optimization effects on code
compression, the greedy approach is an appropriate one.

3.3 Parallel Instruction Ordering
Another property of VLIW code investigated in this paper, is the
effect of parallel instruction ordering on code compression. As
mentioned earlier, for VLIW processors, the compiler assumes
responsibility for scheduling and ordering instructions. This
includes detecting when instructions can be executed in parallel
and adding this information to the code itself. In the TI
TMS320C6x Family, this is done by using the last bit of the
instruction to signify whether it can be executed in parallel with
the following instruction or not. Fetch packets are 8 instructions
long, so the longest possible sequence of parallel instructions is 8
in a row. These groups of parallel instructions, in the
TMS320C6x series, can be ordered by the compiler in any way,
as the instructions themselves contain information as to which
execution unit they will be run on. This means that the compiler
can arbitrarily choose the order of this sequence, with the end
result being the same – they all get executed in parallel and on
their respective execution units. To investigate the effect of
parallel instruction ordering on compressibility, a canonical sort
order1 was applied to groups of parallel instructions before
compression.

Thus, the multiple instruction encoding scheme described in
Section 3.2 was applied to benchmark builds before and after the
parallel instruction ordering took place. Results were produced

1 The sort order used was one based on the bitwise comparison of

instructions

Figure 1 – Dictionary Encoding Scheme Example

for benchmarks compiled for the 67xx floating point target
without libraries using a byte-aligned best-fit codeword size to
encode the dictionary entries.

3.4 Branch Target Patching
One of the major differences between standard data compression
and code compression is that function entry points and branch
targets must be preserved in some way. This is so that references
to memory locations do not return invalid code. The method of
branch target patching is a way of manipulating (changing) the
code so as to reflect the changes in code size, and was introduced
in [12].

As a result, instructions that branch forward x instructions
(where y of those are compressed and yx − are maintained)
need to be patched. Instead of branching forward to

ninstructioperbytesx __× ,

the branch needs to be changed to

ninstructioperbytesyxcodewordsinbytesy __)(__ ×−+×

bytes.

This ensures that all requests from the CPU for memory locations
are already correct and the hardware does not have to be altered to
recalculate the correct locations of the instructions wanted.

This method of ‘patching’ instructions introduces a dilemma for
relative branching instructions. What if the relative branch
instruction itself is required to be compressed? This would mean
that the instruction would be stored in the dictionary, and an index
into the dictionary would be stored in place of the original
branching instruction. Then the number of bytes to branch would
be changed, making the instruction in the dictionary incorrect.

This sort of problem is akin to the problem found in [12] where
compressing relative branches is NP-complete. To avoid this
problem, relative branches are not compressed.

3.5 Compression Overhead
Overhead is included in all compression schemes albeit in many
different ways. In the case of this encoding scheme, overhead is
introduced by having to add information that allows an instruction
to be decoded as either a codeword or an original instruction. A
prefix bit could have been added to determine whether an
instruction is compressed or not, however that would result in
code not being byte aligned which can cause difficulty in
designing a hardware engine to decompress the instructions. The
method used in this paper expands the instruction set architecture
to make use of the unused opcode-space available. In particular,
the TI TMS320C6x series has various classes/types of instructions
that are each categorized by the values of bits 2-6 as shown in
Figure 2.

The set of 4 bits 1100 does not correspond to any ‘normal’
instruction, and can be used to flag that the codeword is not an
original instruction. The codewords inserted instead of the
original instructions will need to include these extra 4 bits which
will essentially be the overhead in this encoding scheme. As a
result, the codeword size turns out to be 4 bits larger than the

index into the dictionary and so 8- and 16-bit codewords result in
162 48 =− and 40962 416 =− entry dictionaries.

The encoding scheme takes care not to compress any instruction
that only occurs once, because doing so would increase the
number of bytes required to represent the instruction. This may
mean that the dictionary is not filled. Dictionary sizes can thus
vary from program to program depending on the density of
instructions that exist more than once.

3.6 Decompression Hardware and Runtime
Overhead
Like most code compression schemes, hardware would be
required to analyze instructions as they are fetched from memory
and decide whether to allow the instruction to pass on to the CPU
unaltered, or whether to decompress the recognized codeword by
looking up a dictionary and passing-on the dictionary word
instead. This introduces a delay when processing compressed
instructions that may affect the performance of the processor.
Figure 3 shows a block diagram of the required hardware.

The size of the decompression hardware required to process the
compressed instructions also needs to be taken into account.
Huge reductions in code size at the cost of a large increase in die
size on the processor (as a result of a large dictionary) would not
be advisable. As the dictionary is the largest component of the
decompression hardware, dictionary sizes need to be taken into
account when considering compression techniques. The
compression ratios in our study take into account the compression

Figure 2 – TI TMS320C6x Opcode Space

Figure 3 –Block Diagram for Decoder Hardware

Mux

Dictionary

(size D)

32

32
log2(D)

32

Instructions

from

memory
To

CPU

Selector

(original or dictionary instruction/s)

overhead associated with instruction patching and the dictionary.

The performance and run-time overhead of this sort of
decompression scheme has been investigated in other papers [7,
14, 15, 17, 22, 25] and is beyond the scope of this paper.
Although code compression generally results in reduced
performance as a result of the hardware required, some studies
have shown that applying code compression to post-cache
architectures produces a benefit to performance through reduced
cache-misses and fewer instruction fetches [19].

4. APPLICATION
The aim of this paper is to investigate the impact of various
compiler optimizations on the compressibility of compiled object
code. In particular, the TI TMS320C6x DSP processor fam-ily
[2] has been chosen as the target VLIW processor family, and the
Mediabench benchmark programs [1] have been chosen as
appropriate benchmarks for this sort of processor. The TI Code
Composer Studio IDE was used to generate various builds for
each benchmark, each build using a different set of optimization
options. The study presented in this paper is limited to this
particular processor and compiler, but as there is no other
published work of the effect of compiler optimizations and
ordering on VLIW code compression, it serves as an indication of
an area that needs to be further examined.

4.1 Mediabench Benchmarks
Mediabench [1] was chosen as an appropriate set of benchmark
programs to investigate. These programs were compiled for both
fixed point and floating point targets. The benchmarks used
included:

• adpcm (rawc- and rawd-audio)
• g721 (encode and decode)
• epic (and unepic)
• mpeg (mpeg2enc and mpeg2dec)
• jpeg (cjpeg and djpeg)

4.2 Compiler optimizations
The TI compiler offered two sets of optimization control through
argument flags. The first and most common optimization option
is that of the numerical level associated with optimization flags ‘-
o0’ to ‘-o3’. This gives 5 levels of numeric optimization:

• No optimization
• ‘-o0’ (register-level optimization)

Performs control-flow-graph simplification, loop rotation,
allocates variables to registers, eliminates unused code,
simplifies expressions and statements, expands inline
functions.

• ‘-o1’ (local optimization)
Performs all –o0 optimizations and: Performs local
copy/constant propagation, removes unused assignments,
eliminates local common expressions

• ‘-o2’ (global optimization)
Performs all –o1 optimizations and: software optimizing,
loop optimizations and unrolling, eliminates global
common subexpressions and unused assignments,
converts array references in loops to increment pointer
form.

• ‘-o3’ (file-level optimization)
Performs all –o2 optimizations and: removes uncalled
functions, simplifies functions with unused return values,
makes functions inline, reorders function declarations,
propagates arguments into function bodies when the same
value is always passed

Also, the TI compiler offers a separate 5 levels of optimization for
code size versus speed (performance).

• (no flag) Speed Most Critical
• ‘ ms0’ Speed More Critical
• ‘-ms1’ Speed Critical
• ‘-ms2’ Size Critical
• ‘-ms3’ Size Most Critical

These levels were found to increase or reduce how many of the
instructions in a given program were scheduled for execution on
their own, or in parallel. For example, with the ‘-ms3’ option,
where size is considered most critical, it was found that more than
99% of the instructions were scheduled to be executed alone.

The two sets of 5-option optimization parameters effectively give
25 levels of optimization, including optimizing for speed or size.
The compiler documentation suggests high values of the –o
parameter, combined with high values of the –ms parameter to
achieve the smallest code size. This was found to be generally
true of the benchmarks built, although the smallest code size was
not always achieved with the ‘–ms3 –o3’ combination.

5. RESULTS
The heading of a section should be in Times New Roman 12-
point bold in all-capitals flush left with an additional 6-points of
white space above the section head. Sections and subsequent sub-
sections should be numbered and flush left. For a section head and
a subsection head together (such as Section 3 and subsection 3.1),
use no additional space above the subsection head.

5.1 Single Instruction Encoding Scheme
The built benchmarks were passed through a compression
program that applied the encoding scheme defined in Section 3.1.
Information was retrieved from this program, including the
benchmark build size pre- and post- compression, dictionary size
and compression ratios. (All compressed program sizes and
compression ratios in this paper make mention of code size with
the dictionary to give a truer indication of the compression
achieved).

The compression ratios varied from 69.2% to 94.6% with
dictionaries. Some of the higher (worse) compression ratios
resulted from using codewords that were not of suitable length
(i.e. using 1-byte codewords for large benchmarks and 2-byte
codewords for smaller benchmarks). When the ‘best-fit’
codeword size was used for each benchmark, the compression
ratio range became 69.2% to 88.5%.

In general, the larger benchmarks compressed best under 16-bit
codeword compression, while the smaller benchmarks produced
more favorable results with the 8-bit codeword compression.
However, this is highly dependant on the portion of repeated
instructions in the code. Figure 4 shows the average sizes (pre-
and post- compression) and compression ratios for each
benchmark (averaged across all builds of the benchmark). The

average compression ratios for fixed- and floating- point targets
across all benchmarks were very similar. The floating-point
builds started smaller and had slightly better (lower) compression
ratios.

Analysis of the parameter options in the compiler drew some
interesting results. As the benchmarks varied greatly in size, the
sizes were ‘normalized’ before comparing absolute sizes of builds
for varying optimization parameters. Normalization was done by
comparing each parameter build to the build with no parameters
[expressed as ‘-ms(none)’ and ‘-o(none)’] in the same group.
Figures 5 and 6 show the average of the normalized sizes, across
all benchmarks used, for original and compressed programs.

As expected, the ‘–ms3’ (Size Most Critical) option produced the
smallest original object code out of the ‘–ms’ options. This

option corresponds to the (darkest) bars at the forefront of Figure
5. However, when the encoding scheme was applied, the average
compression ratio of programs built with the ‘–ms3’ option was
worse (higher) than all but one of the other ‘–ms’ options. This
reflects the measures already taken to optimize the code for size.
Even with this higher (worse) average compression ratio,
compressed ‘–ms3’ code was still the smallest of the ‘–ms’
options overall. Figure 6 shows the same combinations of
parameters as Figure 5, but after the encoding scheme is applied.
Builds with the ‘–ms3’ option were still the smallest overall.
Comparison of Figures 5 and 6 shows that the relative sizes of
code compiled for each optimization parameter pair are similar
before and after code compression is applied and compression
does not affect the relative sizes.

The higher levels of optimization (‘–o2’ and ‘–o3’) seemed to
generate larger original code than the ‘–o0’ and ‘–o1’ parameters.
This is likely to be as a result of the optimization techniques
involved. For example, the act of loop unrolling or propagating
arguments into function bodies may optimize the performance of
the program, but may also increase the size of the program.

Object code built with no ‘–o’ parameter was by far the largest
(rightmost columns in Figure 5). This lack of optimization (and
presumed redundancy) resulted in the best (lowest) average
compression ratio and this is evident by the lower bars for this
category in Figure 7 (left-most bar in each group of 5 bars).
Although the compression ratios were better than that of other
parameters, this did not reduce the code size enough. The overall
code size was still the largest after compression. The
compression ratios in Figure 7 are averaged across all benchmarks
and highest/lowest values are depicted by error bars, for each
parameter combination.

The jpeg compression/decompression utilities (cjpeg/djpeg)
seemed to compress well in all situations. Table 1 outlines the
performance of cjpeg builds with no library, under 16-bit
codeword compression for the floating-point target. In this table,
compression ratio is defined - as in previous examples – to be the
ratio of compressed code to uncompressed code for each build.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

rawda
udio

rawca
ud

io

g7
21

(enc
ode

)

g7
21

(dec
ode

)

un
ep

ic
ep

ic

mpe
g2d

ec

mpe
g2e

nc
djp

eg
cjp

eg

Pr
og

ra
m

 S
iz

e
(b

yt
es

)

70%

75%

80%

85%

90%

Co
m

pr
es

si
on

 R
at

io
OriginalSize CompressedSize CompressionRatio

Figure 4 – Relative Sizes and Compression Ratios of

Benchmarks

o(none)
o0

o1
o2

o3

ms(none)

ms0

ms1

ms2

ms3

0.750

0.800

0.850

0.900

0.950

1.000

o(none)
o0

o1
o2

o3

ms(none)

ms0

ms1

ms2

ms3

0.750

0.800

0.850

0.900

0.950

1.000

Figure 5 – Normalized Average Original Benchmark Sizes Figure 6 – Normalized Average Compressed Benchmark Sizes

This means that the code it is being compared with is optimized
already (with the use of different parameters in each build case).
The other two columns compare the optimized and compressed
program sizes with the original un-optimized, uncompressed

program size (shaded in dark grey in Table 1).

We see that the smallest original code is generated by the ‘–ms3 –
o1’ parameters and that this results in the smallest compressed
code size. Note, however, that this is not the build that exhibits
the best compression ratio. That “honor” goes to the ‘-ms3 –
o(none)’ build (69.5%) but results in code that is 10% larger than
for the ‘-ms3 –o1’ build (with a compression ratio of 77.1%).

The results in Table 1 show that although compression ratio
adequately measures the relationship of uncompressed code to
compressed code, it is not a useful indicator of final code size
unless compiler optimization is taken into account.

5.2 Multiple Instruction Encoding Scheme
The same benchmarks were compressed with the multiple
instruction encoding scheme described in Section 3.2. Sets of
sequences from 2 to 8 instructions long were used and
compression schemes using smaller sequences resulted in lower
(better) compression ratios. This shows that the reduction in code
size attributed to the high frequencies of smaller instruction
sequences outweighs the code size reduction attributed to
replacing a larger instruction sequence with one codeword.
Figure 8 shows the average compression ratios attained across all
benchmarks for the sets of 2 to 8 sequences of instructions.

† Un-optimized code size refers to the size of code built with no

optimization parameters (167264 bytes)

Table 1 – Sizes and Ratios for the cjpeg Benchmark under 16-bit compression

Optimized Code Compressed Code (including dictionary) Optimization
Parameters Size

(bytes)
Fraction of

Un-optimized Code† (%)
Size

(bytes) Compression Ratio Fraction of
Un-optimized Code† (%)

-ms(none) -o(none) † 167264 100.0% 117878 70.5% 70.5%
-ms(none) -o0 146720 87.7% 114772 78.2% 68.6%
-ms(none) -o1 140640 84.1% 110662 78.7% 66.2%
-ms(none) -o2 152000 90.9% 120356 79.2% 72.0%
-ms(none) -o3 153088 91.5% 121166 79.1% 72.4%
-ms0 -o(none) 161920 96.8% 113912 70.4% 68.1%
-ms0 -o0 139488 83.4% 108348 77.7% 64.8%
-ms0 -o1 134368 80.3% 105144 78.3% 62.9%
-ms0 -o2 144288 86.3% 113874 78.9% 68.1%
-ms0 -o3 145280 86.9% 114628 78.9% 68.5%
-ms1 -o(none) 161920 96.8% 113912 70.4% 68.1%
-ms1 -o0 139488 83.4% 108348 77.7% 64.8%
-ms1 -o1 133600 79.9% 104808 78.4% 62.7%
-ms1 -o2 142624 85.3% 112674 79.0% 67.4%
-ms1 -o3 142656 85.3% 112712 79.0% 67.4%
-ms2 -o(none) 161920 96.8% 113912 70.4% 68.1%
-ms2 -o0 139488 83.4% 108348 77.7% 64.8%
-ms2 -o1 133600 79.9% 104808 78.4% 62.7%
-ms2 -o2 135552 81.0% 106898 78.9% 63.9%
-ms2 -o3 135712 81.1% 107000 78.8% 64.0%
-ms3 -o(none) 158560 94.8% 110226 69.5% 65.9%
-ms3 -o0 135872 81.2% 103698 76.3% 62.0%
-ms3 -o1 129792 77.6% 100008 77.1% 59.8%
-ms3 -o2 131232 78.5% 101958 77.7% 61.0%
-ms3 -o3 131200 78.4% 101918 77.7% 60.9%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

ms(none) ms0 ms1 ms2 ms3

Optimisation Parameters

C
om

pr
es

si
on

 R
at

io
(h

ig
he

st
/lo

w
es

t v
al

ue
s

in
di

ca
te

d
by

 e
rr

or
 b

ar
s)

o(none)

o0

o1

o2

o3

Figure 7 – Average Compression Ratios (including dictionary,

all benchmarks)

To investigate the effect of parallel instruction ordering on the
benchmarks, the multiple instruction encoding scheme was
applied before and after parallel instructions were sorted. This
gave some insignificant results in the unoptimized code, however
made no difference whatsoever to the highly optimized code.
Tables 2 and 3 show the compression results for the cjpeg
example benchmark before and after instruction ordering.

In general, the results after ordering were generally better, but
only by at most 0.4%. However, the differences only occurred in
builds that were less than fully optimized. Fully optimized builds
(especially those with the ‘-ms3’ parameter) displayed no
evidence of a change in the compression ratio before and after
parallel instructions were reordered. Further investigation found
that this was because these optimization levels resulted in very
few instructions being executed in parallel, e.g., for the cjpeg
builds with the ‘–ms3’ option, over 99.9% of the instructions were

executed alone, so reordering the remaining less than 0.1% of
instructions will certainly have no effect on code compression.

6. CONCLUSIONS
The investigation presented in this paper has looked at the effect
of compiler optimizations and parallel instruction ordering on
code compression for VLIW code. In particular, code produced
by the TI Code Composer Studio IDE for the TI TMS320C6x
DSP processor family was examined. It has been found that code
compression, and in particular compression ratios, must always be
considered in the context of compiler optimization parameters.
Compression ratios do differ from one parameter combination to
another and unoptimized code seemed to generate higher
compression ratios. However, the best compression ratio is not
always an indication of best overall size. In general, to obtain the
smallest overall size after compression, a compression scheme
should be applied to already size-optimized code.

With multiple instruction compression, reordering of parallel
instructions was found to have, at best, a small influence on code
compressibility. With size-optimized code, there was no effect.
This was found to be because the compiler produced code with
very few instructions to be executed in parallel.

Further investigation will look at other VLIW processors and
compilers in order to be able to formulate a generalization of the
impact of VLIW compilers and compilation options on code
compressibility.

7. REFERENCES
[1] Mediabench Benchmarks, accessed 2003,

http://www.cs.ucla.edu/~leec/mediabench/
[2] TMS320C6000 CPU and Instruction Set Reference Guide:

Texas-Instruments, 2000.
[3] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain,

"Expression-tree-based algorithms for code compression on
embedded RISC architectures," in IEEE Transactions on
Very Large Scale Integration VLSI Systems. Oct. 2000; 8(5):
IEEE, 2000, pp. 530-3.

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

2 3 4 5 6 7 8

Sequence Size

A
ve

ra
ge

 C
om

pr
es

si
on

 R
at

io

Figure 8 – Average Compression Ratios for Sets of Sequences

Table 2 – Compression Results Before Instruction Ordering

 -ms(none) -ms0 -ms1 -ms2 -ms3
 orig comp ratio orig comp ratio orig comp ratio orig comp ratio orig comp ratio
-o(none) 167264 134480 80.4% 161920 130308 80.5% 161920 130308 80.5% 161920 130308 80.5% 158560 127840 80.6%
-o0 146720 126046 85.9% 139488 119692 85.8% 139488 119692 85.8% 139488 119692 85.8% 135872 116188 85.5%
-o1 140640 120782 85.9% 134368 115282 85.8% 133600 114886 86.0% 133600 114886 86.0% 129792 111322 85.8%
-o2 152000 132600 87.2% 144288 126046 87.4% 142624 124802 87.5% 135552 118188 87.2% 131232 114536 87.3%
-o3 153088 133382 87.1% 145280 126778 87.3% 142656 124822 87.5% 135712 118210 87.1% 131200 114428 87.2%

Table 3 – Compression Results After Instruction Ordering
 -ms(none) -ms0 -ms1 -ms2 -ms3
 orig comp ratio orig comp ratio orig comp ratio orig comp ratio orig comp ratio
-o(none) 167264 134258 80.3% 161920 130154 80.4% 161920 130154 80.4% 161920 130154 80.4% 158560 127840 80.6%
-o0 146720 125692 85.7% 139488 119416 85.6% 139488 119416 85.6% 139488 119416 85.6% 135872 116184 85.5%
-o1 140640 120644 85.8% 134368 115194 85.7% 133600 114674 85.8% 133600 114674 85.8% 129792 111318 85.8%
-o2 152000 131860 86.8% 144288 125322 86.9% 142624 124188 87.1% 135552 117906 87.0% 131232 114532 87.3%
-o3 153088 132676 86.7% 145280 126128 86.8% 142656 124250 87.1% 135712 117984 86.9% 131200 114428 87.2%

[4] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain,
"Code compression based on operand factorization," in
Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture. 1998: IEEE Comput. Soc,
Los Alamitos, CA, USA, 1998, pp. 194-201.

[5] P. Centoducatte, G. Araujo, and R. Pannain, "Compressed
code execution on DSP architectures," in Proceedings 12th
International Symposium on System Synthesis. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 56-61.

[6] K. D. Cooper and N. McIntosh, "Enhanced code
compression for embedded RISC processors," in SIGPLAN
Notices. May 1999; 34(5): ACM, 1999, pp. 139-49.

[7] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting, "Code compression," in SIGPLAN Notices. May
1997; 32(5): ACM, 1997, pp. 358-65.

[8] M. B. Game, A, "CodePack: Code Compression for
PowerPC processors (version 1.0)," PowerPC Embedded
Processor Solutions, IBM, North Carolina 2000.

[9] P. G. Howard and J. S. Vitter, "Practical implementations of
arithmetic coding," in Image and text compression. 1992, J.
A. Storer, Ed.: Kluwer Academic Publishers, Dordrecht,
Netherlands, 1992, pp. 85-112.

[10] N. Ishiura and M. Yamaguchi, "Instruction Code
Compression for Application Specific VLIW Processors
BAsed on utomatic Field Partitioning," 1997.

[11] S. Y. Larin and T. M. Conte, "Compiler-driven cached code
compression schemes for embedded ILP processors," in
MICRO 32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 82-92.

[12] C. Lefurgy, P. Bird, I. C. Chen, and T. Mudge, "Improving
code density using compression techniques," in Proceedings.
Thirtieth Annual IEEE/ACM International Symposium on
Microarchitecture Cat. No.97TB100184. 1997: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1997, pp. 194-203.

[13] C. Lefurgy and T. Mudge, "Code Compression for DSP,"
presented at Compiler and Architecture Support for
Embedded Computing Systems, George Washington
University, Washington DC, 1998.

[14] C. Lefurgy, E. Piccininni, and T. Mudge, "Evaluation of a
high performance code compression method," in MICRO 32.
Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture. 1999: IEEE Comput. Soc,
Los Alamitos, CA, USA, 1999, pp. 93-102.

[15] C. Lefurgy, E. Piccininni, and T. Mudge, "Reducing code
size with run-time decompression," in Proceedings Sixth
International Symposium on High Performance Computer
Architecture. HPCA 6 Cat. No.PR00550. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 218-28.

[16] C. R. Lefurgy, "Efficient execution of compressed
programs," University of Michigan, 2000, pp. 201.

[17] H. Lekatsas, J. Henkel, and W. Wolf, "Code compression for
low power embedded system design," in Proceedings 2000.
Design Automation Conference. IEEE Cat. No.00CH37106.
2000: ACM, New York, NY, USA, 2000, pp. 294-9.

[18] H. Lekatsas and W. Wolf, "SAMC: a code compression
algorithm for embedded processors," IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems,
vol. 18, pp. 1689-701, 1999.

[19] H. A. Lekatsas, "Code compression for embedded systems,"
Princeton University, 2000, pp. 171.

[20] J. S. Prakash, C.; Shankar, P.; Srikant, Y.N., "A Simple and
Fast Scheme for Code Compression for VLIW processors,"
presented at Data Compression Conference, 2003.

[21] Sang Joon Nam, In Cheol Park, and Chong Min Kyung,
"Improving dictionary-based code compression in VLIW
architectures," IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol.
E82-A, pp. 2318-24, 1999.

[22] A. Wolfe and A. Chanin, "Executing compressed programs
on an embedded RISC architecture," in SIGMICRO
Newsletter. Dec. 1992; 23(1 2), 1992, pp. 81-91.

[23] Yuan Xie, H. Lekatsas, and W. Wolf, "Code compression for
VLIW processors," in Proceedings DCC 2001. Data
Compression Conference. 2001, J. A. Storer and M. Cohn,
Eds.: IEEE Comput. Soc, Los Alamitos, CA, USA, 2001, pp.
525.

[24] Yuan Xie, W. Wolf, and H. Lekatsas, "Code compression for
VLIW processors using variable-to-fixed coding," in 15th
International Symposium on System Synthesis IEEE Cat.
No.02EX631. 2002: ACM, New York, NY, USA, 2002, pp.
138-43.

[25] Yuan Xie, W. Wolf, and H. Lekatsas, "A code
decompression architecture for VLIW processors," in
Proceedings 34th ACM/IEEE International Symposium on
Microarchitecture. 2001: IEEE Comput. Soc, Los Alamitos,
CA, USA, 2001, pp. 66-75.

