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Abstract

In this paper we give a brief, elementary introduction to various aspects of financial
engineering. Specific topics discussed include the determination of a fair price for an
option or other derivative instrument, hedging strategies, etc. We also discuss what
role, if any, financial engineering has played in the current financial crisis.
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1 Introduction

Buying and selling assets as a human activity has been going on since the dawn of civilization.

Buying and selling (and thus speculating in) derivative instruments based on these assets

is almost as old an activity. While banking as a formal, regulated activity is just a few

hundred years old, there can be no doubt even ancient societies had their version of money

lenders. Borrowing against assets, or “leveraged buying” is neither new nor disreputable. A

home-owner who buys a house with only part down payment and borrows the rest to be paid

in monthly instalments is in effect speculating that his future earnings will be adequate to

cover the payments; simultaneously, he may also be betting that the value of his home will

go up before the mortage matures. At the same time, the lender (holder of the mortgage) is

also betting on the same thing.

For the past several decades, the financial world has become more and more mathemat-

ical. By now practically everyone has heard of the Black-Scholes formula, even if he might

not actually know what is (or even what is for). The objective of this article is to give a very

brief, and very elementary, tutorial-level introduction to various topics in financial engineer-

ing. In all the problems discussed here, the emphasis is on giving the flavour of the problem,

rather than on stating theorems with the strongest possible conclusions in the most general

setting possible. The bibliography at the end of the article contains several authoritative

books that could be consulted by readers interested in pursuing the topic further.

The article is aimed at both mathematical as well as non-mathematical readers. A non-

mathematical reader can read only Sections 5, 8, 9 and 10, which do not have a single

equation in them. A person who knows a little bit of mathematics can also read Sections 2

and 6, except for Subsection 6.4. Section 2 discusses an extremely simplified problem that

nevertheless brings out many of the salient aspects, while Section 6 discusses slightly more

general situations. Mathematically inclined readers, of course, can read the entire article.

2 One-Period Model

We begin with a very simple model that illustrates many of the important ideas, known

popularly as the “one-period model.” Suppose there are two assets in which we can invest,

referred to respectively as a “bond” and as a “stock.” The bond offers an absolutely guaran-

teed rate of return, whereas the stock price can go up or down. Specifically, let B(0) denote

the value of one unit of the bond at the present time T = 0. Then at the next period (say
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after one month), the value of one unit of the bond is

B(1) = (1 + r)B(0),

where r is the rate of return over one period. Under normal circumstances r > 0. The

behaviour of the stock’s value, in contrast, is assumed to be stochastic. Let S(0) denote the

value of unit of the stock at the present time, and let S(1) denote the value of one unit of

the stock at the next time instant. Then the stochastic model describing the stock price is

S(1) =

{
S(0)u with probability p,
S(0)d with probability 1− p.

Here the symbols u and d are meant to suggest “up” and “down.” Also, for reasons of

convenience, u and d represent the rate of return on the stock price, as opposed to the

absolute change in the stock price. Clearly, both u and d are positive, and d < u. But it is

possible that d < 1; that is, it is possible for the stock price to decline in absolute terms. In

any case, it is assumed that

d < 1 + r < u.

In other words, the guaranteed rate of return 1 + r is bracketed by the best and worst rates

of return on the risky investment. Clearly this is a reasonable assumption. If 1+ r < d, then

no one would have any reason to buy bonds, whereas if u < 1 + r, then no one would have

any reason to buy stocks.

An “option” on a stock is an instrument that gives the buyer the right, but not the

obligation, to buy the stock at a prespecified price known as the “strike price.” Suppose the

strike price is K. The option gives the buyer the right (but not the obligation) to buy one

unit of the stock at the price K at time T = 1, irrespective of what the prevailing market

price might be. So if S(1) > K, then the buyer of the option will exercise the option and

make an instant profit of S(1) −K (because the market value of the stock is S(1) whereas

the option buyer pays only K). On the other hand, if S(1) < K then the buyer does not

exercise the option, and its value is zero. So if X(1) denotes the value of the option at time

T = 1, then

X(1) = max{S(1)−K, 0} = [S(1)−K]+.

One can think of X(1) as the outgo of the person selling the option, at time T = 1. Since

S(1) is a random variable, so is X. Moreover, since the value of X(1) is derived from that

of S(1), the option is called a “derivative” instrument, or simply a “derivative.”
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The theory of option pricing deals with the following question: Suppose we are provided

with the stochastic model of the stock price and the strike price K. What is the “correct”

price at time T = 0 for the option X? In other words, what price should a buyer be prepared

to pay for the option, and what price should the seller of the option be prepared to accept

for the option? Most interesting perhaps, are the two prices the same?

One’s first impulse might be to just compute the discounted expected value of the option

at time T = 1. Clearly the option makes sense only if

S(0)d < K < S(0)u,

that is, only if the strike price is bracketed by the maximum and minimum stock prices at

time T = 1; so let us assume this. Therefore it follows that

X(1) =

{
S(0)u−K with probability p
0 with probability 1− p.

So the expected value of X(1) with the distribution (p, 1−p), discounted by the factor 1+r,

is

(1 + r)−1p[S(0)u−K].

One may think that this number is the correct price for the option at time T = 0.

The reasoning behind this suggestion is as follows: Suppose the seller of the option

receives an amount v (as yet unspecified) at time T = 0, for an option at time T = 1 with

the strike price K. Suppose the seller were to invest all of this amount v in the “safe” asset,

namely the bond. Then at time T = 1 his investment would be worth (1 + r)v. If the stock

price goes up so that S(1) = S(0)u > K then the seller of the option would receive K, but

would then have to procure the stock by paying the prevailing price of S(0)u to deliver to

the buyer. So in this case the seller of the option would incur a loss, and his payout (out of

pocket expense) would be

S(0)u−K − v(1 + r).

This happens with probability p. If the stock price goes down, then the option is not

exercised, and the seller of the option does not incur any additional expenditure. This

happens with probability 1− p. So to be neutral, the value v would have to satisfy

[v(1 + r) +K − S(0)u]p+ v(1 + r)(1− p) = 0,

which leads to

v = (1 + r)−1[S(0)u−K].
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But this intuition is wrong. The reason why it is wrong is that the seller of the option can

hedge against future changes in the price of the stock. Specifically, the seller of the option

need not put all of the money received into the safe investment. Instead, he can invest some

of it in the stock itself. Suppose he were to buy a units of the stock and b units of the

bond at time T = 0. Let us treat the quantum of investments in both the bond and the

stock as being infinitely divisible, so that a and b be treated as real numbers. Note that we

explicitly permit both a and b to be negative. Negative a corresponds to short-selling the

stock, whereas negative b corresponds to borrowing money at the fixed rate of interest r.

Now at time T = 1, suppose the stock price goes up so that the option is exercised by the

buyer. Then the seller is obliged to deliver one unit of stock. But he is already in possession

of a units of the stock; so he has to procure only 1− a units of stock at the prevailing (high)

market price. This is the logic behind hedging. Now let us see how the seller of the option

should split his initial investment between the stock and the bond.

Let us return to the stock price S(1), which is a random variable. Let us define

u′ =
u

1 + r
, d′ =

d

1 + r
.

Then u′, d′ are respectively the discounted returns of the stock price. Note that

d′ < 1 < u′

by assumption. Now suppose Y is a random variable representing the return on the stock

investment. In the “real world” Y = u′ with probability p and Y = d′ with probability 1−p.
Let us disregard this, and instead choose an “artificial” probability q such that Y = u′ with

probability q, Y = d′ with probability 1 − q, and most important, Y is risk-neutral under

this probability distribution. In other words, we would like the expected value of Y to equal

one, so that the expected value of the share price S(1) under this artificial distribution is

equal S(0)(1 + r). Since Y has only two possible values, there is a unique choice of q that

achieves this property, namely the solution of

qu′ + (1− q)d′ = 1,

which is

q =
1− d′

u′ − d′
, 1− q =

u′ − 1

u′ − d′
. (2.1)

What is the significance of this number q? Suppose a random variable S(1) equals S(0)u

with probability q (not p), and equals S(0)d with probability 1 − q. Thus S(1) assumes
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the same values as the original random variable S(1), but not necessarily with the same

probabilities. Then

E[S(1)] = (1 + r)S(0). (2.2)

This is our first encounter with what is known as a “martingale measure”. We shall meet it

again.

Now it is claimed that the “correct” value for the option at time T = 0 is the discounted

expected value of the payoff function X(1) = max{S(1)−K} under the distribution (q, 1−q).
In other words, we claim that the “correct” price for the option with strike price K is

c = (1 + r)−1[S(0)u−K]q = (1 + r)−1[S(0)u−K]
(1 + r)− d
u− d

. (2.3)

Up to now we have discussed very simple “options.” However, the theory goes through

readily to the case where the payout need not simply equal max{S(0)u−K, 0}. Suppose an

individual is selling a “contingent claim” as follows: At time T = 1, if the stock price S(1)

equals S(0)u, then he will pay an amount of Xu to the buyer of the claim, whereas if the

stock price S(1) equals S(0)d, then he will pay an amount of Xd to the buyer. Since the

amount paid out is “contingent” on the price of the stock, this kind of instrument is called

a “contingent claim.” In the case of a simple option, we have Xu = S(0)u−K and Xd = 0.

In the general case, we will show that the “correct” price for the contingent claim is

c = (1 + r)−1[Xuq +Xd(1− q)], (2.4)

where q = (u′ − 1)/(u′ − d′) as defined earlier. Thus the correct price is the expected value

of the contingent claim X under the distribution (q, 1− q), which is then discounted by the

factor 1 + r. The reason for the discounting is that the expected value is in some sense

computed at time T = 1, whereas the seller of the option is receiving the money at time

T = 0.

Why is this the “correct” price? We show next that if the price is some other number,

then there exists an opportunity for “arbitrage.” In the present setting, “arbitrage” refers

to a trading strategy that results in profit without risk. Specifically, arbitrage refers to a

trading strategy wherein the profit to the investor is a random variable that (i) assumes

only nonnegative values, and (ii) has a positive expected value. Since the profit assumes

only nonnegative values, the investor can never make a loss, and since the expected value is

positive, he will make a profit with positive probability. This situation is unsustainable in

an “efficient” market, where it is assumed that everyone has access to the same amount of
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information. Hence the price of any trading instrument will settle at a value where no one,

neither buyer nor seller, has an opportunity for arbitrage.

To justify why the above value is the only one that results in no arbitrage, we introduce

the notion of a “replicating strategy.” The idea is that the seller of the contingent claim will

take a certain amount of money at time T = 0 and split it between stocks and bonds in such

a way that, irrespective of whether the stock goes up or down, the value of his portfolio at

time T = 1 exactly equals the value of the contingent claim. Let a, b denote our holdings in

stocks and bonds at time T = 0. The idea is to choose these numbers in such a way that

aS(0)u+ bB(0)(1 + r) = Xu, aS(0)d+ bB(0)(1 + r) = Xd.

This is a simple set of simultaneous equations that can be written as

[a b]

[
S(0)u S(0)d
B(0)(1 + r) B(0)(1 + r)

]
= [Xu Xd].

Clearly the unique solution of these equations is

[a b] = [Xu Xd]

[
S(0)u S(0)d
B(0)(1 + r) B(0)(1 + r)

]−1

. (2.5)

Let us make the formula in (2.5) a little more explicit. Note that[
S(0)u S(0)d
B(0)(1 + r) B(0)(1 + r)

]
= (1 + r)

[
S(0) 0

0 B(0)

] [
u′ d′

1 1

]
.

Hence

[a b] =
1

(1 + r)(u′ − d′)
[Xu Xd]

[
1 −d′
−1 u′

] [
1/S(0) 0

0 1/B(0)

]
=

1

(1 + r)(u′ − d′)

[
Xu −Xd

S(0)

u′Xd − d′Xu

B(0)

]
. (2.6)

Note that, depending on the relative values of Xu, Xd, u
′, d′, the initial investment in bonds

could be negative. In the specific case of options, we have Xd = 0, so that the value of b is

always negative. This means that the seller of the claim has to borrow money at the interest

rate of r to finance the purchase of the replicating portfolio.

So how much money is needed at time T = 0 to implement this replicating strategy?

The answer is

c = [a b]

[
S(0)
B(0)

]
= [Xu Xd]

[
S(0)u S(0)d
B(0)(1 + r) B(0)(1 + r)

]−1 [
S(0)
B(0)

]
= (1 + r)−1[Xu Xd]

[
qu
qd

]
, (2.7)
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where [
qu
qd

]
=

[
u′ d′

1 1

]−1 [
1
1

]
. (2.8)

Now it is easy to see that (qu, qd) = (q, 1 − q), which is the probability distribution defined

earlier. Thus we have established two facts relatively painlessly. First, there exists an

investment strategy that perfectly replicates the contingent claim at time T = 1. Second,

the initial investment c needed to implement this replicating strategy equals the discounted

expected value of the contingent claim under a very special probability distribution. A

corollary of the second statement is that the initial investment c depends only on the two

(discounted) returns u′ and d′, and does not at all depend on the probability with which

these two events occur. This counter-intuitive result can be explained by noting that since

the replicating strategy perfectly replicates the contingent claim in each of the two possible

outcomes, the probability with which each outcome occurs is of no importance.

Now let us return to the “correctness” of c as the price for the contingent claim. Suppose

that at time T = 0, a buyer is willing to pay a price c′ > c for the contingent claim. Then

the seller of the contingent claim can collect c′, use c of that to implement the replicating

strategy, and pocket the difference c′ − c. At time T = 1, the replicating strategy will

enable the seller of the option to settle the claim by using the current value of the portfolio,

irrespective of whether the stock price goes up or down. So the seller of the option can make

a risk-free profit of c′ − c. In other words, if the price is greater than c, then the seller of

the contingent claim can make a risk-free profit, and thus has an arbitrage opportunity. By

reversing signs, it is clear that if the contingent claim is offered at a price c′ < c, then the

buyer of the claim has an arbitrage opportunity.

Thus the conclusions of the analysis of the one-period model can be summarized as

follows: The seller of a contingent claim with payouts Xu, Xd at time T = 1 collects an

amount equal to c in (2.7) at time T = 0. He then invests this amount in stocks and bonds

in the ratio indicated by (2.5). Since this portfolio is replicating, the value of the portfolio

exactly equals the value of the claim, irrespective of whether the stock price goes up or goes

down. In this way, the seller of the claim has perfectly “hedged” the claim.

3 Multiple Time Periods: The Binomial Model

In this section, we build upon the analysis of Section 2 to study a somewhat more realistic

model of stock price movement, known as the “binomial model.” For this model, we can
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once again compute the “correct” price for a class of contingent claims known as “Euro-

pean” claims. By taking the limit as the time interval between successive price movements

approaches zero, it is possible to obtain the celebrated Black-Scholes formula for option

pricing. That is done in Section 4.

As before, we consider two assets: A “bond” whose price movement is deterministic, and

a “stock” whose value is stochastic. We study these assets over N time instants, after the

initial time 0. Initially the bond is worth B0 and the stock is worth S0. At the n-time

instant, the bond gets an assured return of rn, so that

Bn+1 = (1 + rn)Bn.

As for the stock, if its price is Sn at time n, then at time n + 1 its price can have one of

two possible values, namely Snun and Sndn. Therefore un and dn represent respectively the

higher and lower returns on the stock during the n-th time interval. We could in principle

associate “probabilities” with these two movements, but as in the single period case, it is

only the values Snun and Sndn that matter, and not any associated probabilities. We could

of course assume that the return rn and the returns un, dn are the same for all time, but this

does not significantly simplify the analysis.

From this description, it is clear that at time N there are 2N possible sample paths. These

sample paths can be identified in an obvious way with the 2N strings in the set {u, d}N . For

instance, if N = 5 and we choose the string uudud, then

S1 = S0u0, S2 = S1u1 = S0u0u1, . . . , S5 = S0u0u1d2u3d4.

Thus there are 2N possible values SN that the stock can have at time N . Depending on the

values of un and dn, these 2N values may not be distinct. For instance, if un = u, dn = d for

all n, then there are only N + 1 possible values for SN , namely S0u
kdN−k as k varies from

0 to N . Let h ∈ {u, d}N denote some string of length N over {u, d}, and let Xh denote

the payout at time N if the stock price movement follows the sequence in h. This implies

in particular that the payout can be “path-dependent.” For instance, we explicitly permit

that the payout in the case of a sequence du can be different from that for the sequence ud

even if the final price of the stock may be the same in both cases. Thus the seller of the

contingent claim needs to pay Xh to the buyer of the claim at time N if the stock price

movement follows the sequence h.

In option pricing theory, a “European Contingent Claim (ECC)” is an instrument that

can be exercised only at the end of a fixed duration N . In contrast, an “American Contingent
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Claim” is an instrument that can be exercised at any time during the fixed durationN . Hence

the pricing and hedging of ACCs is much more difficult than for ECCs. For this reason, the

discussion in the present section is restricted to ECCs.

Now we adapt the reasoning of Section 2 to compute the “correct” or arbitrage-free price

of a ECC with a payout of Xh corresponding to a trajectory h ∈ {u, d}N . For this purpose we

again introduce an artificial probability distribution, under the very reasonable assumption

that

dn < 1 + rn < un ∀n, or d′n < 1 < u′n ∀n,

where d′n = dn/(1 + rn), u′n = un/(1 + rn). We define

qu,n =
1− d′n
u′n − d′n

, qd,n =
u′n − 1

u′n − d′n;
. (3.1)

Now we define a stochastic process Sn as follows: S0 = S0 is determininstic, and for n =

0, . . . , N − 1, we have

Sn+1 =

{
Snu

′
n with probability qu,n,

Snd
′
n with probability qd,n.

(3.2)

Thus the process {Sn} assumes the same values as the original stock price {Sn}, but with

possibly different probabilities. Because of the way in which the quantities qu,n, qd,n are

defined, the process {Sn} has the very special property that

E{Sn+1|Sn, Sn−1, . . . , S0} = (1 + rn)Sn, for n = 0, . . . , N − 1. (3.3)

In other words, the discounted process{
n−1∏
i=0

(1 + ri)
−1Sn

}

where the empty product is taken as one, is a martingale. The distribution defined by the

q’s is the martingale measure. When there are only two possible transitions at each time

step, it is easy to see that the above choice of the q’s is unique; in other words, this is the

only way to choose the q’s to satisfy (3.3). If there are more than two possible values at any

stage, then the choice of the martingale measure is not unique. This situation is discussed

in Section 6.4.

Next, we show that the “replicating” strategy introduced in Section 2 for a one-period

model can be extended to the binomial model. Some good notation makes the task simpler.
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For each N -tuple h ∈ {u, d}N , the probability qh is defined as

qh =
N−1∏
n=0

qh,n, (3.4)

where

qh,n =

{
qu,n if hn = u,
qd,n if hn = d.

Then it is easy to see that {qh} defines a probability distribution on {u, d}N . Let Xh denote

the payout if the stock price follows the set of transitions corresponding to h. Now define

c0 :=

[
N−1∏
n=0

(1 + rn)

]−1 ∑
h∈{u,d}N

Xhqh. (3.5)

Thus c0 is the expected value of the random payout X with the distribution

Pr{X = Xh} = qh, ∀h ∈ {u, d}N ,

which is then discounted by the factor
[∏N−1

n=0 (1 + rn)
]−1

to make it comparable to the

risk-free return on the bond. We now show that c0 is the only arbitrage-free price for the

contingent claim by showing that there exists a replicating strategy.

For this purpose, suppose 1 ≤ n < N and that j ∈ {u, d}n is a string of length n. Then

we define

cj :=

[
N−1∏
i=n

(1 + ri)

]−1 ∑
k∈{u,d}N−n

Xjkqjk. (3.6)

The quantity cj is a kind of intermediate discounted expected value, after the transitions

corresponding to j have already taken place. Then it is easy to see that cj satisfies the

following recursive relationship:

cj = (1 + rn−1)−1 (cjuqu,n + cjdqd,n) . (3.7)

The above recursive relationship follows readily from the product nature of the distribution

qh and the definition (3.6). Finally, we can interpret c0 as c∅, corresponding to the empty

string and n = 0.

The replicating strategy is now easily described. As time 0, the seller of the claim receives

an amount of money equal to c0. He then invests this in a0 stocks and b0 bonds as per the

formula

[a0 b0] = [cu cd]

[
S0u0 S0d0

B0(1 + r0) B0(1 + r0)

]−1

.
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This formula is analogous to (2.5) with cu interpreted as the payout if the stock price goes

up at time 0, and cd interpreted as the payout if the stock price goes down at time 0. Since

this is a one-period replicating strategy, the cost of this investment is precisely c0 = c∅.

Moreover, the value of the portfolio is cu if the stock price goes up at time 0 and is cd if the

stock price goes down at time 0. This can be expressed as: The value of the portfolio at time

1 equals ci0 irrespective of whether i0 = u or i0 = d. Now at time 1, we again implement a

one-period replicating strategy as per the formula

[a1 b1] = [ci0u ci0d]

[
S1u1 S1d1

B1(1 + r1) B1(1 + r1)

]−1

,

where S1 is the actual price of the stock at time 1, that is, after the transition i0 = u or d at

time 0. Then, irrespective of whether the stock price goes up or down at time 1, it follows

that the value of the portfolio equals ci0i1 , where i1 = u or d. This argument can be repeated

all way until n = N − 1, to show that the strategy completely replicates the payout Xh for

all 2N possible sample paths. Moreover, this strategy is self-financing in the sense that, once

the seller receives the initial price of c at time 0, all subsequent investments can be financed

with the value of the current portfolio. Note that there is no analog of “self-financing” in

the one-period model.

Now it is not difficult to see that c0 is the only price that can be charged in such a way that

neither the buyer of the claim nor the seller of the claim can have an arbitrage opportunity.

As in the one-period case, if a buyer is willing to pay a price c′ > c0 for the contingent claim,

the seller of the claim can use c0 of that to implement a replicating strategy, and thus make

a risk-free profit of c′ − c0, leading to arbitrage. Similarly, if a contingent claim is available

for less than c0, then the buyer can make a risk-free profit.

In order to keep implementing the self-financing and fully replicating strategy, the seller

of the claim has to adjust his portfolio at every time instant. After n time instants, suppose

the set of price movements that have occured is given by i ∈ {u, d}n. Then the holding at

time n is adjusted in accordance with the formula

[an bn] = [ciu cid]

[
Snun Sndn
Bn(1 + rn) Bn(1 + rn)

]−1

, (3.8)

where Sn is the actual price of the stock at time n. Thus the implementation of the repli-

cating strategy assumes that there are no transaction costs. If stock is bought or sold, the

transaction does not attract any commission. Similarly, at some times the bond holding

Bn may be negative, which corresponds to borrowing money from the bank at the rate of
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interest rn. If on the other hand the bond holding Bn is positive, then it attracts interest at

the same rate rn. In other words, there is no difference between the rates of interest when

borrowing money and saving money (in the form of bonds). Both of these assumptions (no

transaction costs and no difference in rates of interest for borrowing versus saving money)

are clearly unrealistic. Nevertheless, they allow quite a deep analysis of the problem of sell-

ing and hedging options. In addition, we have also assumed that both bonds and stocks are

infinitely divisible. Markets that satisfy these conditions are said to be “frictionless.”

There is another, more serious, issue to ponder. Suppose an agent sells a contingent

claim at time 0 and collects the arbitrage-free price c0. Then at each time instant starting

at time 0, he keeps on adjusting his portfolio in accordance with (3.8). Since the investment

strategy is replicating and self-financing, at time N his portfolio is worth precisely Xh where

h is the set of transitions that actually occurs. The seller then settles his claim by paying

out the amount Xh and is thus left with . . . precisely nothing. On the other hand another

agent who has not bothered to “play the game” at all is also left with nothing at time N .

So why should anyone bother to sell an option at all? This question is revisited in Section

5, after we have presented the Black-Scholes theory.

Finally, it should be obvious that there is nothing special about having just one stock.

The above theory applies equally well, with obvious changes in notation, to the case where

there are finitely many stocks, but each stock can just move up or down by a fixed amount

at each time instant. In such a case too, it is possible to construct a replicating strategy, and

thus prove that the correct price for a contingent claim is the expected value of the claim

under the martingale measure, discounted to time T = 0.

4 Black-Scholes Theory

In this section we present the famous Black-Scholes formula for the pricing of options when

the underlying stock price follows a stochastic model known as the “geometric Brownian

motion” model. This section is quite abstract and may be difficult to follow. Then in the

next section we discuss the implications of the model, how it is actually used, and so on.

This discussion is not mathematical at all, and is far easier to follow.

4.1 Review of the Basics of Probability and Random Variables

The objective of this subsection is to present a formal definition of Brownian motion. To set

the stage for that, we first define a random variable in a very formal setting. The discussion
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below is a summary of the basic definitions and facts needed to define Brownian motion, but

is not a substitute for a proper study of probability theory. The reader is referred to any

standard text for further details on this topic.

Suppose Z is some set, and Ω is a collection of subsets of Z. Then Ω is said to be a

σ-algebra if it satisfies the following properties:

1. Both the complete set Z and the empty set ∅ belong to Ω.

2. If A ⊆ Z belongs to Ω, so does its complement Ac.

3. If Ai, i = 1, 2, . . . is a countable collection of sets such that Ai belongs to Ω for each i,

then the union ∪iAi also belongs to Ω.

The pair (Z,Ω) is often referred to as a measurable space.

A probability measure P on the measurable space (Z,Ω) is a map from Ω into the

interval [0, 1] such that the following axioms hold:

1. P (Z) = 1, P (∅) = 0.

2. If If Ai, i = 1, 2, . . . is a countable collection of pairwise disjoint sets such that Ai

belongs to Ω for each i, then

P

(
∞⋃
i

Ai

)
=
∞∑
i=1

P (Ai).

The triple (Z,Ω, P ) is called a probability space. The probability space is said to be

complete if, for every set A ∈ Ω such that P (A) = 0, it is true that every subset B ⊆ A

is also measurable (and of course P (B) = 0). Any probability space can be “completed”

using a standard procedure, and dealing with complete probability spaces often avoids a lot

of technicalities.

Given two probability measures P,Q on a common measurable space (Z,Ω), the total

variation metric between them is defined as

ρ(P,Q) = sup
A∈Ω
|P (A)−Q(A)|.

In the common case where Z is a finite set, say Z = {z1, . . . , zn}, and (p1, . . . , pn), (q1, . . . , qn)

are two probability distributions on Z, it is easy to show that

ρ(P,Q) =
1

2

n∑
i=1

|pi − qi|.
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Given any collection of subsets C of Z, the smallest σ-algebra that contains every set in

C is referred to as the σ-algebra generated by C. In particular, if Z = R, the set of real

numbers, then the σ-algebra generated by the collection of all closed sets is referred to as the

Borel σ-algebra and is denoted by B. A random variable X defined on a measurable space

(Z,Ω) is a function X : Z → R such that whenever A ⊆ R belongs to the Borel σ-algebra,

the preimage X−1(A) belongs to Ω. In other words, X is a measurable function from Z

into R where Z is equipped with the σ-algebra Ω and the real set R is equipped with the

Borel σ-algebra. Quite often, we take Z = R and Ω = B, the Borel σ-algebra. This is known

as the “canonical representation” of a random variable. For such a random variable, the

function Ψ : R→ R defined by

Ψ(c) := P{X−1(−∞, c]} = Pr{X ≤ c}

is called the cumulative distribution function of the random variable X. It is always

well-defined since the semi-infinite interval (−∞, c] belongs to the Borel σ-algebra B. Clearly,

it is also a non-decreasing function. Moreover, the function Ψ(·) is continuous from the right,

and has limits from the left. In other words,

lim
c→c+0

Ψ(c) = Ψ(c0), lim
c→c−0

Ψ(c) exists and is ≤ Ψ(c0).

Among the most useful distribution functions is the normal distribution defined by

Φ(c) =
1√
2π

∫ c

−∞
e−u

2/2du. (4.1)

Hereafter we use Φ exclusively to denote the normal distribution.

Given a probability space (Z,Ω, P ), two sets A,B ∈ Ω are said to be independent

if P (A ∩ B) = P (A)P (B). Two random variables X, Y defined on a common probability

space (Z,Ω, P ) are said to be independent if the sets X−1(A), Y −1(B) are independent for

each pair of sets A,B in B. If we use the canonical representation, the above definition is

equivalent to

Pr{X ≤ c&Y ≤ d} = Pr{X ≤ c} · Pr{Y ≤ d}.

Suppose {Xl} is a sequence of random variables defined on a common probability space

(Z,Ω, P ), and that X∗ is another random variable defined on (Z,Ω, P ). Then the sequence

{Xl} is said to converge in probability to X∗ if, for every ε > 0, it is the case that

P{ω ∈ Z : |Xl(ω)−X∗(ω)| > ε} → 0 as l→∞.

15



Now suppose {Xt}t≥0 is a set of random variables indexed by the quantity t ≥ 0. One can

think of the index t as “time” but strictly speaking this is not necessary. We can equip

the set [0,∞) with the Borel σ-algebra and define any reasonable probability measure on

the half-line. Then the indexed family {Xt} is said to be a stochastic process if Xt is

right-continuous with respect to t and has left-limits with respect to t, where convergence is

with respect to probability. What this means is that (i) limt→t+0
Xt = Xt0 for almost all t0,

where the convergence of Xt to Xt0 is in probability, as defined above, and (ii) limt→t−0
Xt

exists, but may not necessarily equal Xt0 .

A stochastic process {Wt}t≥0 is called a Brownian motion if the following properties

hold:

1. Each Wt is a random variable defined on a common measurable space (R,B).

2. W0(ω) = 0 almost surely with respect to ω. In other words, W0(ω) = 0 except for

possibly on a set of measure zero.

3. The process has “independent increments.” Thus, whenever s < t ≤ u < v, the

random variables Wt −Ws and Wv −Wu are independent.

4. The process has “stationary increments.” Thus the distribution of Wt−Ws is a function

only of the difference t− s and not of t and s separately.

5. The process has “normal increments.” Thus, for s < t, the random variable Wt −Ws

has the normal distribution with mean zero and variance t− s. Thus

ΨWt−Ws(c) = Φ[c/(t− s)].

4.2 The Black-Scholes Formula and Partial Differential Equation

Now we are in a position to state the Black-Scholes formula and the Black-Scholes partial

differential equation.

In the Black-Scholes formalism, the price of the stock St is a continuous-time stochastic

process described by

St = S0 exp

[(
µ− 1

2
σ2

)
t+ σWt

]
, t ∈ [0, T ], (4.2)

where Wt is a Brownian motion. In the above formula, the mean µ is often called the “drift

term” of the geometric Brownian motion, whereas σ is called the “volatility.” Since we can
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also write (4.2) as

log
St
S0

=

(
µ− 1

2
σ2

)
t+ σWt, t ∈ [0, T ],

the formula (4.2) is often referred to as the “log-normal” or “geometric Brownian motion”

model for the stock price. The bond price Bt is a deterministic function of time, determined

by

Bt = B0e
rt, (4.3)

where r is the risk-free rate of return. Note that, to simplify notation, we have assumed that

all the three terms µ, σ, r are all constant with respect to time. However, this assumption

can be dispensed with, at the expense of more cumbersome notation.

We can think of the geometric Brownian motion model as a limiting case of the binomial

model described in Section 3. The phrase “limiting case” should be taken with a pinch of

salt, since a rigorous analysis of continuous stochastic processes requires far more machinery

than that of discrete-time stochastic processes. Thus in the present section we only motivate

the results and give plausibility arguments, whereas in the previous section the proofs are

completely rigorous.

Let us think of the binomial model where the up and down returns are equal and uniform

with time, and also equally probable. In other words,

Sn+1 =

{
Sne

λ with probability 0.5,
Sne

−λ with probability 0.5.

Suppose that the time interval between successive increments is ∆, and that we wish the

variance of the quantity log(Sn+1/Sn) to equal ∆. Then it is easy to verify that the quantum

of the jump λ has to equal ∆1/2. Thus the “slope” or “rate” of the jump equals ∆−1/2, which

approaches infinity as ∆→ 0. Now one can think of Brownian motion as the limiting case of a

random walk with equal probabilities of moving left or right, where the time interval between

successive movements approaches zero; moreover, the successive jumps are independent, and

the variance of the total movement over a time interval of width T is equal to T . Because of

the variance requirement, the slope of the individual jumps approaches infinity as ∆ → 0,

which is why the sample paths of Brownian motion are nowhere differentiable, and have

unbounded variation over any nonzero interval. These are the features of Brownian motion

that require the use of very advanced mathematics. The stock price itself can be thought of

as the exponential of Brownian motion with a drift term.

Now suppose the stock price follows the formula (4.2), the bond price follows (4.3), and

that a person wishes to sell a European option on the stock with the strike price K. Thus,
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after time T , the buyer of the claim has the right, but not the obligation, to pay an amount

of K to receive one unit of the stock. What is the arbitrage-free or correct price for such an

option?

The famous paper of Black and Scholes shows that the correct price is given by a formula

that involves the following parameters: The final time T , the discounted strike price K∗ =

Ke−rT , and the volatility σ. Interestingly, the drift parameter µ does not affect the price.

The formula is

C0 = S0Φ

(
log(S0/K

∗)

σ
√
T

+
1

2
σ
√
T

)
−K∗Φ

(
log(S0/K

∗)

σ
√
T

− 1

2
σ
√
T

)
, (4.4)

where Φ(·) is the cumulative distribution function of a standard normal variable defined in

(4.1).

Equation (4.4) is the Black-Scholes formula for the price of an option with strike price

K at time T . More generally, suppose the seller of the European contingent claim is obliged

to pay an amount of erTψ(e−rTx) to the buyer if ST = x, where ψ : R+ → R+. The various

exponentials in the definition of the payout function are meant to discount both the payout

as well as the price at time T to their values at time T = 0, using the risk-free rate of return.

In the case of an option with strike price of K, we can simply take ψ(x) = (x−K∗)+. The

Black-Scholes partial differential equation states that the arbitrage-free price for the

contingent claim is given in terms of the solution to the partial differential equation

∂f

∂t
+

1

2
σ2x2∂

2f

∂x2
= 0, ∀(t, x) ∈ (0, T )× (0,∞), (4.5)

with the boundary condition

f(T, x) = ψ(x). (4.6)

The arbitrage-free price of the claim is

C0 = f(0, S0). (4.7)

Thus the Black-Scholes theory gives an “explicit” expression for the arbitrage-free price of

a European contingent claim in terms of the solution of a fixed partial differential equation,

which is a diffusion equation. Only the boundary condition changes, depending on the

payout function ψ(·). The Black-Scholes partial differential equation does not always have

a closed-form solution. In the important case of option-pricing, where ψ(x) = (x − K∗)+

where K is the strike price of the option, there is indeed a closed-form solution, and this

leads to the expression (4.4) for the arbitrage-free price C0. In a general situation however,
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no closed-form solution may be available and one would have to solve the partial differential

equation numerically.

It is also possible to define a fully replicating self-financing strategy in terms of the

solution f(t, x) of the Black-Scholes partial differential equation (whether or not a closed-

form formula is available for f). Define

C∗t = C0 +

∫ t

0

fx(s, S
∗
s )dS

∗
s , t ∈ (0, T ), (4.8)

where S∗t = e−rtSt is the discounted stock price, fx denotes the partial derivative of f with

respect to x, and the integral is a stochastic integral (since S∗t is a stochastic process). At

each time t, the seller of the contingent claim should hold αt units of stock and βt units of

the bond, where

αt = fx(t, S
∗
t ), βt = C∗t − αtS∗t . (4.9)

Thus far we have studied the case where there is just one stock. However, Black-Scholes

theory can be readily extended to the case where there are multiple stocks S
(i)
t , i = 1, . . . , d

of the form

S
(i)
t = S

(i)
0 exp

[(
µ(i) − 1

2
[σ(i)]2

)
t+ σW

(i)
t

]
, t ∈ [0, T ], (4.10)

where W
(i)
t , i = 1, . . . , d are Brownian motions that are possibly correlated. In this case,

there is analog of the Black-Scholes partial differential equation (4.5). However, the p.d.e.

does not always have a nice closed form solution.

5 Implications and Usage of the Black-Scholes Formula

While the mathematics in the previous section may be very difficult to follow for the unini-

tiated, there are a few points that emerge, which can be stated in purely non-mathematical

terms.

1. For the case where the stock price follows a geometric Brownian motion model, there

is only one arbitrage-free price, and it is given in terms of the solution of a partial

differential equation. A closed-form formula is available for this arbitrage-free price for

some situations, such as when the contingent claim is an option. This formula involves

only the strike price of the option, the final time, and the volatility of the stock, but not

the drift term of the Brownian motion. In general, if the payout is some complicated

function of the final price, then no closed-form solution may be available, and one
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has to solve the Black-Scholes partial differential equation numerically to obtain the

arbitrage-free price.

2. When the seller of a contingent claims receives this arbitrage-free price, he can then

implement a fully replicating, self-financing trading strategy whereby, irrespective of

the movement of the stock price, he will be in a position to meet the claim at the final

time T .

3. This fully replicating, self-financing strategy requires continuous trading. This is not

surprising because, in the binomial model, the holding of stocks and bonds is adjusted

at each time instant. As a consequence, in the limiting case where the time interval

goes to zero, the trading has to be continuous.

4. The implementation of the trading strategy assumes that the seller does not incur any

transaction costs. Similarly, when his bond holdings go negative, meaning that he has

to follow money to buy bonds, he is able to borrow money at the same rate of return as

the bond itself. Thus there is no differential between the interest rates for borrowing

and saving. Moreover, it is assumed that both bonds and stocks are available as real

numbers (and not as multiples of some integer), in unlimited quantities, and also as

both positive as well as negative numbers. All of these assumptions are captured by

saying that the market is “frictionless.”

The geometric Brownian motion model is unrealistic in practice. Data from several

decades around the world shows that actual asset prices have “fat tails.” In other words,

the likelihood of stock prices straying beyond ±3σ from the mean value are well in excess

of that predicted by the normal (Gaussian) distribution. Moreover, there is a definite skew

in the probability distribution, in that the tail on the high side is noticeably fatter than on

the low side. In other words, the likelihood of a stock price straying far from the mean is

higher than that predicted by the normal distribution; but this effect is more prorounced

when the stock price rises than when it falls (though even a steep fall is also more likely

than the normal distribution predicts). To do a better job of capturing the non-normality of

asset price returns, researchers have introduced more general models of asset prices known as

geometric Lévy processes. A Lévy process is more general than a Wiener process and can thus

model fatter tails than the normal distribution. In subsequent sections we briefly discuss the

problem of pricing claims when the asset price follows a geometric Lévy process model. Note

that a Lévy process is the most general process with independent increments. This brings us
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squarely face to face with the notion of “independent increments.” The assumption implies

that whether today’s return on a stock is positive or negative is completely independent

of what happened yesterday or the day before. This is clearly not true! In the geometric

Brownian motion model, the returns on the stock over nonoverlapping intervals are assumed

to be independent random variables. Unfortunately, thus far the research community has

not come up with any tractable models of asset price movement that do away with the

assumption of independent increments in the returns. Hence this is clearly an important

area for future research.

Let us now take up a different issue, namely the actual application of the Black-Scholes

theory “in practice.” Suppose we wish to sell a contingent claim on a particular stock,

for which historical data is available for many years if not many decades. Ignoring for the

moment the fact that historical data rarely follows a geometrical Brownian motion model, we

need to confront another important point, namely: historical data is rarely a good guide to

the future! One could use the variation in the price of a stock to compute its volatility over a

period of, day, thirty days. However, experience has shown that the volatility over the past

thirty days (say) is rarely matched by the volatility over the next thirty days (say). Instead,

the practitioners of Black-Scholes theory use a quantity called “implied volatility.” In other

words, they assume that “the market is always right.” Since the actual players in the options

market define the price of various options on popular and widely traded stocks, the analysts

simply retrofit the option price on the stock to the formula (4.4), and from the formula

compute σ. The quantity so computed is the “implied volatility” of the stock, because the

marketplace is pricing options on the stock assuming that this is the volatility. Since option

prices reflect what the market thinks will happen in future, the implied volatility is believed

to be a better guide to the future volatility of the stock than any quantity computed on the

basis of historical prices.

The computation of the implied volatility throws up a few practical issues. First, on

every major stock there are options sold at a variety of strike prices and at a variety of

maturity dates, known as “terms.” Thus, if a stock trades at $ 100, there may be options

with strike prices ranging from $ 80 to $ 120, in intervals of $10. Similarly, there may be

options with terms of thirty, sixty, or ninety days into the future. (Normally options are not

sold with terms longer than ninety days.) Taking all of these into account, there may be

dozens of options on any one stock! Now, for each option that is sold in the marketplace,

it is possible to compute an associated implied volatility of the stock. Unfortunately, these

implied volatilities do not always match. An option is said to be “at the money” if its strike
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price is (more or less) equal to the current price. If the current price is less than the strike

price, then it is said to be “out of the money,” whereas if the current price is more than the

strike price, then the option is said to be “in the money.” Data and analysis of thousands

of options on hundreds of stocks shows that, as a rule, the volatility implied by the “at

the money” options is less than the volatility implied by the “in the money” or “out of the

money” stocks. This phenomenon is usually referred to as the volatility smile, because a plot

of the implied volatility against the strike price shows a minimum at the current price and

turns up both above and below the current price. Thus the plot resembles a parabola or a

smile. Similarly, for the same strike price, as the maturity period is farther in the future, the

implied volatility becomes higher. Thus a three-dimensional plot of the implied volatility

against the strike price and the term resembles a sloping gutter pipe (or what the Americans

would call an eavestrough), with the cross section for a fixed term resembling a smile, and

the cross section for a fixed strike price showing an increasing function of the term length.

Now let us return to an issue first raised in Section 3, namely that the replicating strategy

essentially enables the seller of the claim to settle the outstanding claim at the end of the

term and be left with precisely nothing. Moreover, this ideal outcome takes place only under

two unrealistic assumptions, namely: (i) no transaction costs, and (ii) interest on borrowings

and savings being equal. So what is the benefit of selling a claim and then hedging it?

There are in effect two kinds of traders in the marketplace. First, there are those who

hold a definite view about whether a stock will go up or go down. If a person believes that

a stock is undervalued and will go up, he can either buy the stock itself, or buy an option

on the stock. Buying an option gives “leverage,” in the sense that for the same quantum of

investment, the investor can increase his potential profit significantly. To illustrate, suppose

an investor has $ 10,000 to invest, and believes that a stock currently priced at $ 50 will

rise to $ 60 in the next sixty days. If he were to buy 200 units of the stock, and if the stock

does indeed go up to $ 60, then he would make a profit of $ 2,000. On other hand, suppose

an option with a strike price of $ 60 and a term of sixty days is selling for $ 2.50. Then the

investor would be able to purchase 4,000 options. Suppose the stock price after sixty days is

$ 60. When the option matures, its value would become equal to $ 10, which is the difference

between the actual price and the strike price. Thus the investor would be able to sell the

options at $ 10, realize $ 40,000, and make a profit of $ 30,000. Thus by buying options

instead of the underlying stock, the investor can make significantly more profit. On the other

hand, the world is always uncertain, and buying options also carries greater downside risk.

Suppose that the stock price drops to $ 40 after sixty days. Then the strategy of buying 200
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units of stock would leave the investor with a loss of $ 2,000, while the strategy of buying

options would entail a loss of the entire amount invested (because the options would be

worthless at maturity). So an investor who sincerely believes that the stock will go up would

buy the underlying stock, but limit his downside risk by simultaneously buying a put at a

strike lower price than the current stock price.1 Alternatively, the investor could buy a call

option at a strike price higher than the current stock price, and simultaneously a put option

at a strike price lower than the current stock price.

The second kind of investor usually holds no opinion on whether a stock will go up or

down, but is only looking for situations where some option is priced differently from the

trend. The underlying premise of such investors is that any deviations from trends will

reverse themselves and align with the trend. Suppose that on some stock, there are a variety

of options offered, each of which carries its own implied volatility. Now suppose that most

of these implied volatilities follow the trend of the volatility smile, but one option deviates

significantly from the trend. Then the investor would bet that the implied volatility would

shortly revert to trend. If the implied volatility is lower than it should be, compared to other

options, then the investor would bet that the implied volatility would increase, assuming all

other factors remain the same. Since greater volatility implies greater option price, the

investor would buy the option. If the implied volatility is higher than it should be, the

investor would sell the option, or (more or less) equivalently, buy a put option. This is a

highly simplified summary. In the “real world,” investors use very sophisticated regression

(or other statistical) methods to make their investment decisions.

All of the preceding discussion can be briefly summarized as follows: The Black-Scholes

theory should not be viewed as a valid mathematical model of how “real” markets work, in

the same way that the Navier-Stokes equation accurately models aerodynamics. Because the

Navier-Stokes equation is indeed a highly accurate model of aerodynamics, one can carry

out very detailed and very deep analysis of the equation, comfortable in the knowledge

that any predictions made by the theory would be borne out in practice. For instance, one

can optimize the shape of an aircraft wing purely using computational fluid dynamics, and

use wind tunnel tests solely as a verification of the theoretical predictions (as opposed to

a design methodology as in decades past). Clearly, the Black-Scholes theory, or the more

general theories to be advanced in subsequent sections, do not and cannot aspire to this level

of realism or accuracy. Instead, the Black-Scholes theory gives a kind of gross approximation

1A put option is the reverse of the call option, and gives the buyer the right, but not the obligation, to
sell the stock at a prespecified price at (or before) the maturity date.
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to the behavior of option prices, which individual investors can use to calibrate their own

behavior, or to determine their own investment strategies.

6 Incomplete Markets

Until now, the analysis has been facilitated by the fact that there exists a replicating strategy.

In other words, there exists an investment strategy with the property that, whatever sample

path the stock price follows, at the final time the value of the portfolio equals the payout.

Moreover, the replicating strategy is also self-financing, in the sense that once the seller

of the European contingent claim receives a certain amount at time T = 0, the value of

the portfolio at any future time is sufficient to finance all subsequent adjustments in the

portfolio. Finally, the replicating strategy offers a perfect hedge of the contingent claim

because the final value of the portfolio equals the value of the claim. Such a market is said

to be complete, and if there does not exist a replicating strategy, then the market is said

to be incomplete.

The binomial model discussed in Section 3 is an example of a complete market. One need

not look very hard to find an example of an incomplete market. The simplest example that

was studied in Section 2, namely the one-period model, becomes incomplete if the number

of possible stock prices is merely increased from two to three! To reformulate the problem,

suppose there is a stock S and a bond B. At time 0, the bond has price B(0), which increases

in a deterministic fashion to (1 + r)B(0) at time T = 1. The stock price is S(0) at time 0,

and can assume one of three values, as follows:

S(1) =


S(0)u with probability pu,
S(0)m with probability pm,
S(0)d with probability pd,

where the numbers are arranged such that d < m < u (and the notation is intended to suggest

down, median, and up respectively). Of course pu+pm+pd = 1. Suppose there is a contingent

claim whose payout value equals Xu, Xm, Xd according as S(1) equals S(0)u, S(0)m,S(0)d

respectively. Suppose we wish to find a pair of numbers (a, b) that replicate the movement

of the stock price, and ensure that the value of the portfolio at time T = 1 exactly equals

the payout. Thus we wish the pair of numbers (a, b) to satisfy

[a b]

[
S(0)u S(0)m S(0)d
(1 + r)B(0) (1 + r)B(0) (1 + r)B(0)

]
= [Xu Xm Xd].
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Note that there are only two parameters that can be adjusted, namely a and b, while there

are three equations to be satisfied. Thus in general these equations do not have a solution.

As a result, no replicating strategy exists in general, and the market is incomplete.

The incompleteness of the market also has implications on the martingale measure defined

in (2.1). Suppose that, as before, we wish to replace the original random variable S(1)

with another random variable S(1) that assumes the same three values os S(1), but with

probabilities qu, qm, qd respectively. Moreover, these three probabilities should be chosen in

such a way that (2.2) is satisfied. This requires that two equations be satisfied simultaneously,

namely

1 + r = quu+ qmm+ qdd, qu + qm + qd = 1.

Clearly these equations do not have a unique solution because there are more parameters

than equations. In contrast, if there are only two possible values as in Section 2 (meaning

that there is no middle price), then these equations have a unique solution given by

qu =
1− d′

u′ − d′
, qd =

u′ − 1

u′ − d′
,

which we have already seen. And finally, unless d ≤ 1 + r ≤ u, the above equations do not

have a nonnegative solution for the q’s, irrespective of whether the number of stock prices

at time T = 1 is two or three. Thus the solution of the above equations would not be a

probability measure unless d ≤ 1 + r ≤ u. The violation of the condition d ≤ 1 + r ≤ u

leads to arbitrage in an obvious fashion. If 1 + r < d, then one borrows money at the rate

of interest r and invests it in stocks, whereas if u < 1 + r, then one short-sells the stock

and invests the proceeds at the guaranteed rate of return r. What this means is that unless

the guaranteed rate of return on the bond is bracketed by the best and worst returns on the

stock, no martingale measure exists.

One can now ask: How general are these conclusions? There are two tentative conclusions

here. First, if it is possible to have arbitrage, then no martingale measure exists. Second,

unless there is a replicating strategy, the martingale measure is not unique. It turns out that

the first conclusion is perfectly general. There exists at least one martingale measure if and

only if it is not possible to have arbitrage. As for the second, a slightly modified version of

the conclusion is true. There is a replicating strategy if and only if the expected value of

the payoff random variable is exactly the same under all martingale measures. In the next

few paragraphs, we will make these two statements precise. Note that, in order to make the

exposition simple, we do not always study the most general possible situation.
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6.1 Existence of a Martingale Measure

Suppose the marketplace offers a bond with a risk-free rate of return, as well as d different

stocks whose prices are random variables. To make the notation simple, it is assumed that

the price of the bond at time T = 0 is 1. Also, future prices of the stocks are discounted by

the guaranteed rate of return on the bond, so that (in constant currency), the bond price

is equal to 1 at all times n. At the beginning of the investment period, each stock S(i)

has a deterministic price denoted by S
(i)
0 . At the end of day n, the price of the i-th stock

changes from S
(i)
n to S

(i)
n+1. The investor, at the beginning of day n, chooses a set of weights

θ
(i)
n , i = 0, . . . , d, where θ0 is the quantum of investment in the bond.2 Thus at the start of

day n, the total wealth of the investor is θ̄n · S̄n, where

S̄n = [1 S(1)
n . . . S(d)

n ], θ̄n = [θ(0)
n θ(1)

n . . . θ(d)
n ].

At the end of day n, the price of the i-th stock moves from S
(i)
n to S

(i)
n+1, and the investor’s

portfolio is worth θ̄n · S̄n+1. He then chooses the weights θ
(i)
n+1 for the next day. To ensure

that the portfolio is self-financing, the constraint

θ̄n+1 · S̄n+1 = θ̄n · S̄n+1

must be satisfied. Moreover, the vector θ̄n must be a measurable function of S̄0, . . . , S̄n. The

final set of weights to be chosen is θ̄N−1, and at the end of the period, the portfolio is worth

θ̄N−1 · S̄N .

In this setting, we say that there exists an arbitrage opportunity if there exists a

way of choosing the θ’s such that

θ̄N−1 · S̄N ≥ 0 P̃ -a.s., and P̃{θ̄N−1 · S̄N > 0} > 0,

where P̃ is the joint probability law of the d stock prices over N time periods. Note that

we make no assumptions whatsoever about the nature of the stock price random variables,

such as independent increments, Markovian transitions, etc. Thus an arbitrage opportunity

is just a way of choosing the portfolio in such a way that one never incurs a loss, and can

make a profit with positive probability. In this very general setting, the following theorem

holds (see the paper by Rogers [14]):

Theorem: The following statements are equivalent:

2Note that our notation differs from that of Rogers [14]; our θn is his θn+1.
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1. There exists a probability measure Q̃ on RdN that is equivalent to P̃ such that, under

Q̃, the process {Sn}Nn=0 is a martingale.

2. There does not exist an arbitrage opportunity.

Moreover, if either of these equivalent conditions holds, then it is possible to choose the

measure Q̃ in such a way that the Radon-Nikodym derivative (dQ̃/dP̃ ) is bounded.

In the above theorem, the measure Q̃ is said to be equivalent to P̃ if Q̃(A) = 0 if and only

if P̃ (A) = 0. In the case of the one-period, three-value model, the distribution (qd, qm, qu)

is equivalent to the original distribution (pd, pm, pu) if and only if every component of q is

positive.

The above theorem is popularly known in the literature as the Dalang-Morton-Willinger

theorem [2]. However, the DMW theorem builds on a long list of earlier results due to various

persons such as Harrison, Pliska and others, which are mentioned in the paper by Rogers

[14]. Leaving aside all the technicalities, one can say roughly that there exists an equivalent

martingale measure if and only if there is no opportunity for arbitrage.

6.2 Existence of a Replicating Strategy

Now let us get back to the one-period, three-price model. Then a distribution (qd, qm, qu) is

a martingale measure if and only if it satisfies the two conditions stated earlier, namely

1 + r = quu+ qmm+ qdd, qu + qm + qd = 1.

The distribution (qd, qm, qu) is an equivalent martingale measure if and only if, in addition,

each component of q is positive. LetM denote the set of all martingale measures. Then it is

easy to show thatM is a convex and closed subset of the set of all probability measures (in

the topology induced by the total variation metric). Moreover, in many problems of interest

M is a polyhedral set, and is thus the convex hull of a finite number of extremal measures.

However, the set of equivalent martingale measures is the interior of the set M, and is thus

not a closed set (though it is convex).

What is so important about the set of martingale measures? If we replace the original

probability distribution P̃ by any martingale measure Q̃, then under the modified distribution

Q̃ the stock prices form a risk-neutral process. Thus, for a Europen contingent claim whose

payout function X depends only on the final stock price vector S̄N , it could be argued that

a “fair” price for the claim at time T = 0 is the expected value

c0 = E[X, Q̃], (6.1)

27



where E denotes the expected value. In the above formula, we are using “constant currency”

so that there is no discount factor of the form (1 + r)−N . Now the potential difficulty with

the above formula is that the martingale measure Q̃ is not unique. In the binomial model,

there is only one martingale measure, so the formula (6.1) gives an unambiguous fair price

for the contingent claim. In general, however, one would have to define two quantities

V−(X) := min
Q̃∈M

E[X, Q̃], V+(X) := max
Q̃∈M

E[X, Q̃]. (6.2)

Any and all numbers in the interval [V−(X), V+(X)] are “fair prices.” The seller of the claim

could, quite reasonably, insist on being paid the amount V+(X), since that is the maximum

he can expect under the condition that the stock price movements are risk-neutral. Moreover,

it is also the minimum price under which he would be able to super-hedge against all possible

stock price movements. On the other hand, the buyer of the claim could, equally reasonably,

be prepared to pay only V−(X). This is also the maximum price that he would be ready

to pay and still be able to make a profit under all outcomes using sub-hedges of his own.

In this context, the following theorem assumes significance. See the book by Williams [17],

Corollary 3.5.2:

Theorem: A European contingent claim with the payout function X is replicable if and

only if V−(X) = V+(X).

In other words, a European contingent claim is replicable if and only if there is a unique

fair price. In principle there could be more than one martingale measure, but all martingale

measures must lead to the same fair price. Under a few technical conditions, it can be shown

that a European contingent claim is replicable if and only if there is a unique martingale

measure.

From the above discussion, it is clear that any price for the claim that lies outside the

interval [V−(X), V+(X)] leads to arbitrage. If the seller of a claim were to receive an amount

greater than V+(X), then he could use V+(X) of the amount to achieve a replication of the

claim, and pocket the difference; this leads to arbitrage. A similar argument holds in the

case where the claim is priced below V(X). On the other hand, every price in the interval

[V−(X), V+(X)] is a fair price, since there exists some martingale measure that leads to this

expected value for the contingent claim. At this point, it is up to the buyer and seller of the

claim to negotiate a mutually acceptable price.
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6.3 A Dual Problem Formulation

We conclude this section by demonstrating a pair of interesting convex optimization prob-

lems. In this subsection, we directly tackle the problem of finding the maximum and mini-

mum “hedgable” prices for a contingent claim, and show that the dual problem formulation

leads very naturally to martingale measures. In the next subsection, we address incomplete

markets and ask: Out of all possible martingale measures, which one should we choose?

A popular answer is to choose one that has minimum relative entropy with respect to the

original probability distribution followed by the stock. It is shown that this is a fairly

straight-forward convex optimization problem that can be solved iteratively. The message of

this subsection is that convex optimization problems arise naturally in finance problems. To

keep the exposition simple, in both cases we address only one-period problems with a single

“uncertain asset”. But the theory itself can be extended without difficulty to multi-period

problems with multiple uncertain assets, with more cumbersome notation.

Let us begin by studying the problem of sub-hedging and super-hedging a random stock

price over one time-period. Thus there is a bond whose value at time T = 0 is B(0), and

whose value at time T = 1 is (1 + r)B(0), where r is the risk-free return. There is also a

stock whose price at time T = 0 is a deterministic quantity S(0), and which assumes values

u1, . . . , un with probabilities p1, . . . , pn respectively. Finally, suppose there is a contingent

claim X whose value equals xi if the stock price equals ui. As we have already seen, if n ≥ 3,

then the market is incomplete, and there is no replicating strategy. So the seller of the claim

wishes to protect himself against all possible outcomes in the stock price. Thus he wishes to

choose numbers a, b such that

aui + b(1 + r)B(0) ≥ xi, i = 1, . . . , n,

or in matrix form

[a b]

[
u1 . . . un

(1 + r)B(0) . . . (1 + r)B(0)

]
≥ [x1 . . . xn].

The inequalities can be written in obvious vectorial notation as

[a b]M ≥ x, where M =

[
u1 . . . un

(1 + r)B(0) . . . (1 + r)B(0)

]
.

Any choice of the pair (a, b) by the seller of the claim that satisfies the above inequalities

can be referred to as a “super-hedging strategy” since the choice will enable him to meet the

value of the contingent claim irrespective of the outcome of the stock price at time T = 1.
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Now let us ask the question: What is the lowest price that the seller of the claim would

be willing to accept that would still permit him to super-hedge? The answer is

V+(X) = min
a,b

[a b]

[
S(0)
B(0)

]
s.t. [a b]M ≥ x.

Since this is a linear (and thus convex) optimization problem, we can compute the value of

the minimum via the dual problem formulation. Let φ′ ∈ Rn denote the variables in the

dual problem. This leads to the formulation

V+(X) = max
φ′

xφ′ s.t. Mφ′ =

[
S(0)
B(0)

]
,φ′ ≥ 0.

Now define φ = (1 + r)φ′. Then the dual problem formulation can be rewritten as

V+(X) = max
φ

(1 + r)−1xφ s.t. (1 + r)−1Mφ =

[
S(0)
B(0)

]
,φ ≥ 0.

Let us now examine the constraints on φ. In expanded form, this can be written as[
u∗1 . . . u∗n
B(0) . . . B(0)

]
φ =

[
S(0)
B(0)

]
,φ ≥ 0,

where u∗i = (1 + r)−1ui denotes the discounted i-th outcome of the stock price at time

T = 1. The second row, together with the constraint φ ≥ 0, shows that φ is a probability

distribution, because its components are nonnegative and add up to one. The first row works

out to

E[S(1),φ] = S(0),

which is to say: Under the measure φ, the stock price S(1) is a martingale. Now the quantity

to be maximized is

(1 + r)−1xφ =
n∑
i=1

x∗iφi = E[X∗,φ],

which is the discounted expected value of the payout with respect to the martingale measure

φ. Hence the minimum price that the seller of a contingent claim can accept while still being

able to hedge all possible outcomes is given by

V+(X) = max
φ∈Sn

E[X∗,φ] s.t. E[S(1),φ] = S(0)

= max
φ∈M

E[X∗,φ], (6.3)
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where X∗ = (1 + r)−1X is the discounted claim function, M denotes the set of martingale

measures, and Sn denotes the set of all probability distributions with n components. Thus

by using the dual formulation, we readily obtain the formulas in (6.2) for the highest and

lowest fair prices, as being the maximum and minimum discounted expected values of the

payout function over the set of martingale measures.

In many books on mathematical finance, the optimization is carried out over the set of

equivalent martingale measures, rather than the set of all martingale measures. Note that

a distribution φ is equivalent to the original distribution p = (p1, . . . , pn) if and only if

φi > 0 for all i. Thus the set of all equivalent martingale measures is the interior of the

set M. Moreover, while M is a polyhedral set, being the convex hull of a finite number of

extremal distributions, the set of all equivalent martingale measures does not have any such

nice structure. Finally, if one wishes to restrict to equivalent martingale measures, then the

optimization problem does not attain its extremal value. For all these reasons, the present

author prefers to speak of just martingale measures than equivalent martingale measures.

The above discussion can be extended readily, albeit with more notation, to multi-period

models where the number of outcomes is finite at each period. The problem of finding the

lowest acceptable price that would still allow the seller of the claim to hedge all possible

outcomes at time t = 1 can once again be formulated as a linear programming problem. The

dual problem formulation once again leads to the maximization of the expected value of the

discounted payoff over the set of martingale measures. There are just a couple of additional

technical issues to watch out for. First, the hedging strategy must be self-financing, and

second, the hedging strategy must be non-anticipative, in that the investment adjustments

at time n can depend only on the stock prices until time n. Neither of these features arises

in the one-period case.

6.4 Minimum Relative Entropy Martingale Measures

As we have seen, in an incomplete market the set of martingale measures consists of more

than one measure. It is obvious that the set of martingale measures is convex, because if

a stochastic process is a martingale under two measures φ,ψ, then it is also a martingale

under their convex combination αφ+ (1−α)ψ for each α ∈ (0, 1). Thus in reality the set of

martingale measures is either a singleton set (which can happen only in a complete market),

or else is an infinite set. This raises the question: What is the “right” martingale measure

to use? This topic has been discussed by various authors, and in this subsection we present

one such choice, known as the MREMM (Minimum Relative Entropy Martingale Measure).
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To make the discussion simple, we once again consider a one-period problem. As before,

there is a bond whose value at time T = 0 is B(0), and whose value at time T = 1 is

(1 + r)B(0), where r is the risk-free return. There is also a stock whose price at time

T = 0 is a deterministic quantity S(0), and which assumes values u1, . . . , un at time T = 1

with probabilities p1, . . . , pn respectively. Let P denote the distribution (p1, . . . , pn), and let

Q = (q1, . . . , qn) be any other distribution over the same set of n outcomes of the stock price

at time T = 1. The quantity

H(Q ‖ P ) =
n∑
i=1

qi ln

(
qi
pi

)
is called the relative entropy, or the Kullback-Leibler divergence between Q and P .

Therefore, given that the set of martingale measures is not a singleton (and is thus infinite),

one way to choose the “right” martingale measure is to choose Q as the solution of the

problem.

min
Q∈M

H(Q ‖ P ),

where as before M is the set of martingale measures. Naturally, such a Q is called the

MREMM (minimum relative entropy martingale measure). We first show that this

problem is easily solved through an iterative technique. Then we reproduce, very briefly, the

arguments from Frittelli [5] on the interpretation of the MREMM.

Let us begin by reformulating the problem. Since the stock can assume values u1, . . . , un,

the no-arbitrage condition, which is equivalent to the condition that Q should be a martingale

measure, can be written as
n∑
i=1

qiui = (1 + r).

Thus the optimization problem at hand is

min
q

n∑
i=1

qi ln

(
qi
pi

)
s.t. q ≥ 0,qten = 1,qtu = (1 + r),

where q = (q1, . . . , qn), en denotes a column vector with n one’s, and u = [u1 . . . un]t. To

solve the problem, we use Lagrange multipliers. Form the augmented objective function

J =
n∑
i=1

qi ln

(
qi
pi

)
+ λ

[
1−

n∑
i=1

qi

]
+ γ

[
1 + r −

n∑
i=1

qiui

]
.

Then
∂J

∂qi
= ln

qi
pi

+ 1− λ− γui.
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Setting this quantity equal to zero for all i shows that

ln
qi
pi
− γui = λ− 1

is independent of i. Thus ln(qi/pi) − γui is a constant, independent of i. This shows that

qi/pi is proportional to exp(γui), or qi is proportional to pi exp(γui). We can determine the

constant of proportionality by using qten = 1. Thus

qi =
pie

γui∑n
j=1 pje

γuj
=

pie
γui

E[eγS(1), P ]
, (6.4)

where S(1) is the stock price at time T = 1 and has the distribution P .

This still leaves the unknown constant γ. This constant can be determined from the no

arbitrage condition qtu = 1 + r. Substituting for qi from (6.4) leads to∑n
i=1 piuie

γui

E[eγS(1), P ]
= 1 + r,

or
E[ueγu, P ]

E[eγu, P ]
= 1 + r.

This equation is of the form g(γ) = 1 + r, where

g(γ) :=
E[ueγu, P ]

E[eγu, P ]
. (6.5)

Now it is shown that

g′(γ) > 0 ∀γ, unless all ui’s are equal.

To show this, note that

g′(γ) =
E[eγu, P ]E[u2eγu, P ]− {E[ueγu, P ]}2

{E[ueγu, P ]}2
.

Now the denominator in the above equation is always positive, while the numerator is positive

provided that

{E[ueγu]}2 < E[eγu]E[u2eγu].

This last inequality follows readily from Schwarz’ inequality. Factor

ueγu = eγu/2 · ueγu/2.

Then Schwarz’ inequality implies that

{E[ueγu]}2 ≤ E[eγu]E[u2eγu].
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with equality if and only if eγu/2 and ueγu/2 are proportional, i.e., if and only if all components

of u are the same. It is routine to show that

g(γ)→ min
i
ui as γ → −∞, g(γ)→ max

i
ui as γ →∞.

Hence, provided

min
i
ui < 1 + r < max

i
ui, (6.6)

there is a unique γ such that g(γ) = 1 + r. Clearly (6.6) is a necessary condition to have a

meaningful problem.

Thus, to solve the equation g(γ) = 1 + r, we can use a simple bisection search method.

In view of (6.6), we can first find numbers γ−, γ+ such that

g(γ−) < 1 + r < g(γ+).

Then we bifurcate the interval [γ−, γ+] and compute g(·) at the midpoint. If g exceeds 1 + r

at the midpoint, we bisect the left half-interval, whereas if g is less than 1+r at the midpoint,

then we bisect the right half-interval.

We conclude this subsection by discussing the significance of the MREMM. As shown in

(6.4), the weight qi of the MREMM is proportional to the exponential of the stock price ui.

Thus the weights of the MREMM can be viewed as being proportional to the marginal utility

of terminal wealth when we use exponential utility functions. See the paper of Frittelli [5]

for an elaboration of this argument, as well as a treatment of the multi-period case.

7 Alternate Models for Asset Prices and Options

7.1 Alternate Models for Asset Prices

Until now the discussion has been focused on two distinct situations: discrete-time, discrete-

valued processes, and continuous-time, continuous-valued processes. In the latter case, the

price of the stock has been modeled in terms of geometric Brownian motion, namely (4.2),

whereas the price of the bond has been modeled as an exponential function with a constant

exponent, as in (4.3). However, this model has a number of drawbacks.

1. Analysis of historical data of thousands of stock prices over decades shows that the

actual price distribution is in fact not log-normal. As mentioned earlier, the actual

price distributions tend to have fatter tails than the normal distribution would suggest.
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Moreover, there is a further skew towards the higher side, meaning that the tails are

fatter on the side of increasing stock prices than on the side of decreasing stock prices.

Thus alternative (and presumably more realistic) distributions would be needed.

2. Even if one were to accept the models (4.2) for stock prices and (4.3) for bond prices,

there is no reason to accept that the volatility σ and the interest rate r are both fixed

and constant. Anyone reading the newspaper everyday would observe that the interest

rates on even the safest government bonds tend to fluctuate daily due to a variety of

external factors, none of which can be predicted ahead of time. Thus it would be far

more realistic to treat both the risk-free interest rate and the volatility of the stock as

being themselves stochastic processes.

In either of these situations, the analysis given in Section 4 based on Black-Scholes theory

would not apply.

To address the first shortcoming, the research community has been studying the use of

geometric Lévy processes, as an alternative to geometric Wiener processes. (Recall that a

Wiener process is another name for Brownian motion.) To introduce Lévy processes, we first

talk about Poisson processes.

A Poisson process (also called a “jump process,” which explains the notation) is a

continuous-time, integer-valued process {Jt}t≥0 with the following properties:

1. J0 = 0 almost surely.

2. For t > s ≥ 0, the distribution of Jt − Js depends only on the difference t− s and not

on t and s individually.

3. For ∆ approaching zero, we have that Pr{Js+∆ − Js = 1} = λ∆, where λ is called the

rate of the process. Along the same vein, we have that Pr{Js+∆ − Js ≥ 2} = o(∆).

Thus, in an interval of width ∆, the integer-valued process {Jt} increases by one with

probability roughly equal to λ∆, while the probability that two or more jumps occur

in a small interval is essentially equal to zero.

With these assumptions, it can be shown that, over an interval [0, T ], the number of jumps

has the following distribution:

Pr{JT = k} =
(λT )k

k!
exp(−λT ), k = 0, 1, . . . .
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If we ignore for a moment the fact that k is an integer and maximize the right side with

respect to k viewed as a real variable, it is easy to see that the maximum is attained at λT .

Thus the most likely number of jumps in an interval of length T is λT , which is why λ is

called the rate of the Poisson process.

Now we come to a Lévy process. We can define a Lévy process using the same set

of axioms as a Wiener process, except that we say nothing about the distribution of the

differences. Specifically, a process {Lt}t≥0 is a Lévy process if

1. Each Lt is a random variable defined on a common measurable space (R,B).

2. L0(ω) = 0 almost surely with respect to ω. In other words, L0(ω) = 0 except for

possibly on a set of measure zero.

3. The process has “independent increments.” Thus, whenever s < t ≤ u < v, the

random variables Lt − Ls and Lv − Lu are independent.

4. The process has “stationary increments.” Thus the distribution of Lt−Ls is a function

only of the difference t− s and not of t and s separately.

Thus a Lévy process is the most general process with stationary increments, starting

from L0 = 0 almost surely. As it turns out, the seemingly simple requirement of stationary

increments tremendously constrains what a Lévy process can look like. In a tutorial intro-

duction like this one, we wish to avoid getting into too many technicalities. So to put it a bit

sloppily, every Lévy process can be expressed as the sum of three processes: (i) A Wiener

process with drift term, (ii) a Poisson process, and (iii) a “pure jump” martingale that can

have a countable number of jumps in every finite interval. This decomposition corresponds

to the fact that every measure can be expressed as the sum of three types of measures: an

absolutely continuous (with respect to the Lebesgue measure) component, a purely atomic

component, and a singular component that is supported on a set of Lebesgue measure zero.

A reader interested in a proper elaboration of the representation of Lévy processes is referred

to Section 1.4 of the book by Protter [13].

Once we have (more or less) understood the notion of a Lévy process, we can replace the

geometric Brownian motion model of (4.2) with the more general representation

St = S0 exp(Lt),

where {Lt} is a Lévy process. Thus, instead of modeling the stock price as a geometric

Wiener process in (4.2), we now model it as a geometric Lévy process.
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The geometric Lévy process has greater expressive power than the geometric Brownian

motion model. In particular, by choosing the Lévy process appropriately, one can achieve

fatter tails than the normal distribution. On the other side, the key negative factor is that

the only complete market where the stock price follows a geometric Lévy process model is

one with a geometric Brownian motion model. Thus, the greater realism achieved by using a

non-normal distribution is partially negated by the fact that there is not a unique martingale

measure. Instead, one has to cope with the fact that there are infinitely many martingale

measures, and then try to choose some hedging strategy.

Among the more tractable versions of geometric Lévy processes are a class known as

“variance gamma” processes. These are discussed in the book by Fu et al. [6].

7.2 Alternate Types of Options

Until now the emphasis has been on so-called European contingent claims, whose defining

feature is that they can be exercised only at a fixed point in time, which we have been

denoting by T , and been referring to as the “term.” However, there are other, indeed more

popular, types of options. Among the most popular is the so-called American contingent

claim, which can be exercised at any time up to and including some fixed point in time. To

highlight the difference, suppose there is a stock whose price at time t is denoted by St, and

suppose a trader sells an option with a strike price of K and maturity term of T (taking

the present as time 0). If the option is European, the buyer of the option has to hope that

the price of the stock will be in excess of the strike price at time T . In other words, he has

to hope that ST ≥ K. In contrast, if the option is American, then the buyer of the option

has to hope that the price of the stock will exceed the strike price K at some time during

the interval [0, T ]. If there exists some intermediate time t ∈ (0, T ) such that St ≥ K, then

the buyer of the option is “in the money” at that point in time. So he could exercise the

option and acquire the stock by paying the strike price of K, immediately sell it for St, and

make a profit of (St−K)+. But then he faces a (potentially agonizing) choice of determining

whether to exercise the option at once (that is to say, “take the money and run”), or to wait

in the hope that the stock price will climb still higher before time T . He could also turn

around and sell his own option on the stock at a strike price higher than K.

For the seller of the option, the hedging strategies against a American claim will be

different than the hedging strategies against an European claim. In the case of a European

claim, the seller will implement a strategy that will ensure that, at the end of the term,

the value of his hedging portfolio will equal or exceed that of the claim. But in the case of
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an American claim, the seller will have to implement a strategy to ensure that the strike

price is covered at all times up to and including time T . This kind of strategy is called a

“super-hedging” strategy.

In general the pricing theory for American contingent claims is more complicated, and

more “incomplete” than for European contingent claims. In the special case where the stock

price follows the geometric Brownian motion model of (4.2) and the payout is (St−K)+ (in

other words, the contingent claim is just an option), it can be shown that the correct price

is the same as with the European option, namely (4.4). Not much is known about other

situations however.

There are yet more claims besides European and American. In the case of the Bermudan

option, a term T is specified, along with various intermediate times T1, . . . , Tk = T ; the option

can be exercised only the discrete time instants Ti, i = 1, . . . , k, but not at intermediate times.

Needless to say, the analysis of Bermudan options is extremely complex. Finally there is the

Russian option, in which the term T equals infinity, and the right to exercise the option is

triggered by some other considerations. It turns out that the analysis of Russian options is

simpler than that of Bermudan options. The book by Kallianpur and Karandikar [7] is one

of the few to discuss Russian options.

7.3 Sensitivities and the “Greeks”

We conclude this section with a very brief discussion of the sensitivities of the value of

a contingent claim with respect to various parameters, popularly known in the literature

(or perhaps more accurately, amongst the trading community as opposed to the theorem-

proving community) as “the greeks.” A very thorough discussion of the greeks is found in

the wikipedia article on the topic; see [16].

To make the discussion simpler, let us stick to the Black-Scholes framework as set out in

Section 4.2. In this case, there is a function f(t, x) that satisfies the Black-Scholes partial

differential equation (4.5) with the associated boundary condition (4.6), where ψ(·) is the

payout function. Then the arbitrage-free value of a European contingent claim at time

T = 0 is given by C0 = f(0, S0), as stated in (4.7). With this background, some of the greek

symbols are defined as follows:

∆ =
∂C0

∂S0

,Γ =
∂∆

∂S0

=
∂2C0

∂S2
0

,Vega = ν =
∂C0

∂σ
, θ = −∂f(t,Xt)

∂t
, ρ =

∂f(t,Xt)

∂r
.

The greeks are used to devise fairly elaborate hedging strategies that are insensitive to

various assumptions. For instance, a “delta-hedging” strategy is one whose sensitivity to S0
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is zero. Thus, to a first-order approximation, the return is insensitive to the initial stock

price. A “delta-gamma-hedging strategy” is one that insensitive to the initial stock price to

a second-order approximation. And so on.

In case the contingent claim is a simple option, then we have an explicit formula for

C0 = f(0, S0) in (4.4). In this case it is possible to write down explicit formulas for the

various greeks; this is done in [16]. However, the definition of the greeks is not restricted

to the case where the contingent claim is an option. So the question arises: In case we are

not able to compute the solution to the Black-Scholes partial differential equation in closed

form, how can we compute the greeks? More generally, suppose we abandon the geometric

Brownian motion model for a geometric Lévy process model. In this case we do not even

have a unique martingale measure, nor a replicating strategy. How then can we compute the

greeks corresponding to whatever claim-pricing strategy we may adopt?

When no closed-form solutions are available for the price of the claim, we can resort to

Monte Carlo type of simulations. The book by Seydel [15] discusses many of these issues.

In such a case, the price of the claim is itself determined through simulation, and if we

wish to compute the sensitivity of the price to various parameters, we would have to resort

to numerical differentiation, which is likely to be highly susceptible to numerical errors.

In this connection, Malliavin calculus is an excellent tool. By using Malliavin calculus,

it is possible to express all of the greeks as stochastic integrals. When no closed-form

solution is avaiable for the price of a claim, the stochastic integral representing a greek (i.e.,

a sensitivity) would still have to be estimated via Monte Carlo simulation. But at least

one can avoid multiple simulations and numerical differentiation of the resulting values.

Originally Malliavin calculus was developed for an entirely different problem, in the 1970s,

and its applicability to problems of mathematical finance, especially to the computation of

the greeks, was discovered in the 1990s. In the original form, Malliavin calculus is applicable

only to geometric Brownian motion; see the book by Malliavin and Thalmaier [11] for an

exposition. However, the theory has been extended to more general processes in stages, and

finally, the theory has been extended to arbitrary geometric Lévy processes in the Ph.D.

thesis of Petrou [12].

8 What Went Wrong?

Any discussion of financial engineering would be sterile if it did not take into account the

current economic climate. Therefore I will use this section to discuss the burning question
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“What went wrong?”3 At the time of this writing, the world economy is in a tail spin,

caused primarily by various financial institutions losing enormous sums of money. The U.S.

government has had to inject a stimulus of more than one trillion dollars into its economy,

as well as hand out what amount to blank cheques to various banks and financial institutions

that are deemed to be “too big to fail.” By some estimates, the accumulated losses of the

financial institutions around the world during the past eighteen months are more than their

total profits in all of recorded history! Thus, in one stroke, banking as an activity has become

“net negative.” It is therefore pertinent to ask what role if any financial engineering has had

in this meltdown.

There is no denying the fact that financial engineering as it is currently practiced makes

heavy use of the models and results briefly reviewed in the present article. There cannot also

be any doubt that several practioners of financial engineering were blindly applying various

formulas, neither knowing nor caring what assumptions led to these formulas, and whether

these assumptions held in their specific situation. Finally, existing option pricing theory

is based (like much of economics) on assumptions of rationality, enlightened self-interest,

equilibrium dynamics, etc. Attempts to incorporate behavioural factors such as the herd

mentality, greed, nonequilibrium dynamics etc. into option pricing are still in their infancy.

So one can legitimately ask: Was the current financial crisis caused by various statisticians

seriously underestimating the risks involved?

In my view, the current financial debacle owes very little to poor modeling of risks. Far

more significant factors were a lax to nonexistent regulatory environment, which encour-

aged reckless risk-taking by financial institutions; a “one-way” reward system for individual

traders; the phenomenon of “capitalism for the masses, socialism for the rich,” etc. In

subsequent paragraphs, I explain each of these factors briefly.

One of the consequences of the great depression in the U.S.A. was the passage of the

Glass-Steagalls Act, which clearly separated banking from investment. As a result, there

was a clear dividing line between “investment” banks which speculated with the money

given to them by investors for that very purpose, and “traditional” banks which were en-

trusted by the public at large with its money for safe-keeping, not speculation. As a part of

this separation, traditional banks were obliged to maintain certain minimal levels of reserves,

and deposits in the bank were insured by the government (up to some limit per individual).

In contrast, investment banks were both exempt from many regulations that governed tra-

3Since this section contains only my personal opinions, I have chosen to write it in the first person, instead
of using the usual impersonal style appropriate for a scientific paper.
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ditional banks, and at the same time, the depositors were not protected by government

insurance. The underlying premise was that customers of investment banks were wealthy

individuals who could afford the risks taken by such banks, whereas customers of traditional

banks were mostly interested in safety first. The Glass-Steagalls act was repealed in the

1990’s, thus permitting traditional banks also to speculate with the money given to them for

safekeeping. Moreover, in the absence of proper regulations, banks and other financial in-

stitutions were allowed to create various “special purpose vehicles,” resulting in “off-balance

sheet transactions.” These off-balance sheet transactions effectively meant that the so-called

balance sheets of banks did not reflect their true financial (ill-)health.

At the level of individual traders employed by financial institutions, the reward system

was “one-way” in the following sense: The traders were rewarded by way of huge bonuses

when the value of their portfolios went up, but were not penalized when the value went

down. In this kind of “Heads I win, tails the shareholders/depositors lose” scenario, it is not

surprising that individual traders took enormous risks. The situation of one-way rewards

to traders was exacerbated by another factor that may be called “real bonuses on virtual

profits.” When a trader is said to have “made money” during a particular period, all it

meant was that the paper value of his portfolio went up; but since the portfolio was not

actually liquidated at that point, the profits were virtual. Nevertheless, the bonuses paid

out to the traders were quite real in the form of hard cash or shares in the parent company.

When the portfolios were finally liquidated, often years after the bonuses were paid out, the

virtual profits had disappeared in many cases, along with the traders themselves and their

very real bonuses.

When the financial institutions got into really deep trouble due to their reckless invest-

ments, they retreated behind the argument that they were “too big to fail” and thus had to

be bailed out by the taxpayers. Thus the U.S.A. now epitomizes the credo of “capitalism

for the masses, and socialism for the rich.”

There is one aspect of the financial crisis that can legitimately be blamed on the modelers,

in my view. In reality, a financial instrument (either a stock or a derivative written on

that stock) does not have any “intrisic” value, and its value is whatever the marketplace

collectively thinks it is. In the case of traditional options of the kind studied here, there

are “exchanges” where these are freely traded, thus allowing the marketplace as a whole

to determine their price. The quest for profits spurred the trading community to come

up with ever more exotic (i.e., non-standard) derivative instruments, many of which were

traded “over the counter,” and not on an exchange. Thus there was no price discovery
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process, and the price for each transaction was negotiated between the two parties. In such

a scenario, at least a first-cut approximation of the price was generated by the statisticians

(the so-called “quants”). In such a situation, the statisticians had an obligation to highlight

their lack of certitude about the quality of their analysis, and of the various outcomes of the

analysis (such as the fair price, value at risk, probability of failure/default etc.). I do not

see sufficient evidence that this actually happened. Having said that, however, I am firmly

of the view that, even if extremely precise methods had been available for determining the

true values, and/or assessing the risk levels of these instruments had been available, there

was simply no incentive for the investment houses to pay any attention to the statisticians,

and all incentives for them to ignore the statisticians. Thus in my view the community of

statisticians has had a very marginal role in the financial collapse.

9 Conclusions

In this paper we have seen rather elementary versions of some interesting approaches to

finance, which is often referred to as “financial engineering.” While there is no doubt that

the underlying mathematics is very beautiful, that does not address the issue of whether

financial engineering really is “engineering” in the same sense as designing VLSI chips, or

optimizing aircraft wing shapes.

The answer is a clear “no.” In a very readable article, Emanuel Derman [4] says:

“In finance we study how to manage funds . . . Physics, because of its astonishing

success at predicting the future behavior of material objects from their present

state, has inspired most financial modeling. . . . The method works. The laws of

atomic physics are accurate to more than ten decimal places. . . . Financial theory

has tried hard to emulate the style and elegance of physics in order to discover

its own laws. But markets are made of people, who are influenced by events, by

their ephemeral feelings about events and by their expectations of other people’s

feelings. The truth is that there are no fundamental laws in finance.”

So what should financial engineers be doing? It may not be inappropriate again to quote

Derman [4], specifically the “Modeler’s Hippocratic Oath”:

• I will remember that I didn’t make the world, and it doesn’t satisfy my

equations.
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• Though I will use models boldly to estimate value, I will not be overly

impressed by mathematics.

• I will never sacrifice reality for elegance without explaining why I have done

so.

• Nor will I give the people who use my model false comfort about its accuracy.

Instead, I will make explicit its assumptions and oversights.

• I understand that my work may have enormous effects on society and the

economy, many of them beyond my comprehension.

This is an excellent philosophy to keep in mind while studying the subject called financial

engineering.

10 Suggested Reading

Since this article is a tutorial introduction and not a survey, the bibliography is rather short,

and is not in any way meant to be exhaustive (nor exhausting).

For a general reader who is comfortable with the formalism of mathematics, the book

by Williams [17] is an excellent introduction to mathematical finance. One of the nice

features about her book is that, even while discussing the case of discrete-time, finite-valued

stock prices, she uses the notation of continuous-time, real-valued stock prices, so that the

transition to the latter case becomes easy.

For quite authoritative treatments that are “for adults only” in terms of the level of

mathematical background required, the reader is directed to the books by Kallianpur and

Karandikar [7], and by Karatzas and Shreve [9].

The books by Benth [1] and Seydel [15] fall somewhere between that of Williams and

those of Kallianpur-Karandikar and Karatzas-Shreve. Benth discusses the fact that real asset

prices do not follow a log-normal distribution, and discusses alternative models. The book

edited by Fu et al. [6] contains a series of articles that include, among others, a description

of the variance gamma processes that are an alternative to geometric Brownian motion.

Seydel [15] has quite extensive discussion about issues such as simulation, Monte Carlo

approximation, etc. that are not too common in mathematical finance texts.

All the books cited above concentrate on the mathematical aspects of pricing derivatives,

and do not go very deeply into how “real” financial markets actually work. In partial contrast,

the book by Lin [10] attempts to give more details about actual financial markets.
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When it comes to the use of mathematical finance methods in the “real world,” Paul

Wilmott has developed a very high reputation, and has written several books. Only one

three-volume set by Wilmott [18] is included here as an illustration.

One of the problems besetting the use of Black-Scholes theory in practice is that many

of the quantities used in the theory (such as the volatility for example), are not intrinsic,

but are inferred. Thus the user community is very concerned about the sensitivity of various

quantities to these parameters. These sensitivities are known in the literature as “the greeks,”

and are just partial derivatives of the quantities with respect to the parameters. When

the Black-Scholes theory leads to closed-form formulas, it is relatively straight-forward to

compute “the greeks.” However, depending on the nature of the payout function, there might

not exist a closed-form formula for the price of the claim. In such a case, the price of the claim

is often computed via numerical methods. When this is done, the greeks themselves need to

be computed via numerical differentiation. Trying to compute the sensitivity of quantities

that are themselves computed numerically is fraught with the risk of numerical instability.

Malliavin calculus [11] alleviates this difficulty by expressing the sensitivities as stochastic

integrals. There are situations when even the stochastic integrals of Malliavin calculus have

to be estimated via simulation; but at the very least one avoids numerical differentiation and

uses the more stable process of numerical integration. It may be mentioned that Malliavin

calculus was invented in the 1970s for entirely different purposes, and its applicability to

mathematical finance was discovered during the 1990s.

In its original form, Malliavin calculus is applicable only to geometric Brownian motion.

Since then, the research community has been busy trying to extend the theory to arbitrary

geometric Lévy processes, which are the most general processes with independent increments.

Among the most comprehensive results in this direction is the Ph.D. thesis of Petrou [12],

which claims to have extended the Malliavin calculus to arbitrary geometric Lévy processes.

However, the present author must confess that he has not independently verified this claim.

One of the serious limitations of Black-Scholes theory is the assumption that there are

no transaction costs. Attempts to remove this limitation have not been very successful.

Amongst the very few successful theories is the paper by Davis et al. [3], which treats the

case where the cost of a transaction is linearly proportional to the value of the transaction.

Finally, the paper by Rogers [14] presents a very general result on the equivalence between

the existence of a martingale measure and the absence of arbitrage, and in the process

generalizes the well-known theorem of Dalang, Morton and Willinger [2].
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[12] E. Petrou, Malliavin Calculus in Lévy Processes and Applications in Finance, Ph.D.

Thesis, Imperial College, UK, 2006.

[13] P. E. Protter, Stochastic Integration and Differential Equations, (Second Edition),

Springer-Verlag, Berlin, 2005.

45



[14] L. C. G. Rogers, “Equivalent martingale measures and no arbitrage,” Stochastics and

Stochastics Reports, 51, 41-49, 1994.

[15] R. U. Seydel, Tools for Computational Finance, (Third Edition), Springer-Verlag,

Berlin, 2006.

[16] http://en.wikipedia.org/wiki/Greeks (finance)

[17] R. J. Williams, Introduction to the Mathematics of Finance, Amer. Math. Soc., Provi-

dence, RI, 2006.

[18] P. Wilmott, Paul Wilmott on Quantitative Finance, (three volumes), Wiley, Chichister,

UK, 2006.

46


