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Abstract. Algorithms for computing Craig interpolants have several
applications in program verification. Though different algorithms exist,
the relationship between them and the properties of the interpolants they
generate are not well understood. This paper is a study of interpolation
algorithms for propositional resolution proofs. We show that existing in-
terpolation algorithms are abstractions of a more general, parametrised
algorithm. Further, existing algorithms reside in the coarsest abstrac-
tion that admits correct interpolation algorithms. The strength of inter-
polants constructed by existing interpolation algorithms and the vari-
ables they eliminate are analysed. The algorithms and their properties
are formulated and analysed using abstract interpretation.

1 Introduction

Interpolation theorems provide insights about what can be expressed in a logic
or derived in a proof system. An interpolation theorem states that if A and B are
logical formulae such that A implies B, there is a formula I defined only over the
symbols occurring in both A and B such that A implies I and I implies B. This
statement was proved by Craig [8] for first order logic and has since been shown
to hold for several other logics and logical theories. Consult [18] for a survey of
the history and consequences of this theorem in mathematical logic. This paper
is concerned with constructing interpolants from propositional resolution proofs.

An interpolation system is an algorithm for computing interpolants from
proofs. We briefly review the use of interpolation systems for propositional res-
olution proofs in verification. Consider the formulae S(x) encoding a set of
states S, T (x, x′) encoding a transition relation T and ϕ(x′) encoding a correct-
ness property ϕ. The image of S under the relation T is given by the formula
∃x.S(x) ∧ T (x, x′). The standard approach to determine if the states reachable
from S satisfy the property ϕ is to iteratively compute images until a fixed point
is reached. However, image computation and fixed point detection both involve
quantifier elimination and are computationally expensive.

Consider the formula S(x) ∧ T (x, x′) ⇒ ϕ(x′). If this formula is valid, the
states reachable from S by a transition in T satisfy ϕ. Let A be the formula
S(x) ∧ T (x, x′) and let B be the formula ϕ(x′) and I be an interpolant for
? Supported by Microsoft Research’s European PhD Scholarship Programme.
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A ⇒ B. The formula I represents a set of states that contains the image of S
and satisfies the property ϕ. Thus, as shown by McMillan [19], one can imple-
ment a property-preserving, approximate image operator with an interpolation
system. Contemporary SAT solvers are capable of generating resolution proofs,
so an interpolation system for such proofs yields a verification algorithm for
finite-state systems that uses only a SAT solver. The efficiency and precision
of such a verification algorithm is contingent on the size and logical strength
of the interpolants used. Hence, it is important to understand the properties of
interpolants generated by different interpolation systems.

We are aware of three interpolation systems for propositional resolution
proofs. The first, which we call the HKP-system, was discovered independently
by Huang [14], Kraj́ıček [16] and Pudlák [21]. Another was proposed by McMil-
lan [19] and a third parametrised system was proposed by the author and his
collaborators [10] as a generalisation of the other systems. One may however
ask if the HKP-algorithm and McMillan’s algorithm have properties that distin-
guish them from other instances of the parametrised algorithm. We answer this
question in this paper and study other properties of these systems.

Contents and Organisation. In this paper, we study the family of proposi-
tional interpolation systems proposed in [10]. We ask two questions about these
systems: (1) What is the structure of this space of interpolation systems and
how does it relate to the HKP-system and McMillan’s system? (2) How are
the strength and size of interpolants generated by these systems related? Our
contributions to answering these questions are the following results.

– The set of interpolation systems forms a lattice. Interpolation systems that
partition variables are abstractions of this lattice. The HKP-system and
McMillan’s system are two of three systems in the coarsest abstraction that
admits correct interpolation systems.

– The set of clauses equipped with interpolants (called extended clauses or e-
clauses) is a complete lattice. An interpolation system Int defines a concrete
interpretation on this lattice. The lattice of CNF formulae is an abstraction
of the lattice of e-clauses and the resolution proof system is a complete
abstract interpretation of Int.

– Interpolation systems and e-clauses are ordered by logical strength of inter-
polants giving rise to a precision order on the lattice of interpolation systems
and the lattice of e-clauses. Interpolation systems that eliminate the largest
and smallest set of variables from a formula are identified and shown to be
different from the most abstract interpolation systems.

The paper is organised as follows: The background on propositional logic and
resolution is covered in § 2. Existing interpolation systems are formalised and
illustrated with examples in § 3. Some background on abstract interpretation is
introduced in § 4 and applied to study the space of interpolation systems and
its abstractions in § 4.1 and § 4.2. The logical strength of interpolants and the
variables they contain are analysed in § 5. We discuss related work in § 6 and
conclude in § 7.
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2 Propositional Logic and Interpolation

Propositional logic, resolution and interpolation are introduced in this section.

Sets and functions. Let ℘(X) denote the powerset of X, X → Y be the set of
functions from X to Y and f ◦g denote functional composition. Given f : X → Y
and S ⊆ X, we write f(S) for the set {f(x) ∈ Y |x ∈ S}.

Propositional Logic. Fix a finite set Prop of variables (propositions) for this
paper. Let T and F denote true and false, respectively. The set of propositional
formulae, B, is defined as usual over the basis {¬,∧,∨,⇒}. The set of variables
occurring in a formula F ∈ B is denoted Var(F ). An assignment σ : Prop →
{T,F} is a function that maps variables to truth values. Let F be a formula. The
evaluation of F under an assignment σ, written eval(F, σ), is defined as usual.
F is a tautology if eval(F, σ) = T for every assignment σ and F is unsatisfiable
if eval(F, σ) = F for every assignment σ.

Resolution. A literal is a variable x ∈ Prop or its negation, denoted ¬x or
x. For a literal t being x or x, we write var(t) for x. A clause is a disjunction
of literals t1 ∨ · · · tk represented as a set {t1, . . . , tk}. Let C be the set of all
clauses. The disjunction of two clauses is denoted C ∨ D, further simplified to
C ∨ t if D is the singleton {t}. The restriction of a clause C by a formula F ,
C|F

def= C ∩ {x, x|x ∈ Var(F )} is the set of literals in C over variables in F .
A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses, also
represented as a set of clauses. A clause containing t and t is a tautology as is
the empty formula ∅. The empty clause, denoted �, is unsatisfiable.

The resolution principle states that an assignment satisfying the clauses C∨x
and D ∨ x also satisfies C ∨D. It is given by the inference rule below.

C ∨ x D ∨ x
C ∨D [Res]

The clauses C ∨x and D∨x are the antecedents, x is the pivot, and C ∨D is
the resolvent. A clause C is derived from a CNF formula F by resolution if it is
the resolvent of two clauses that either occur in F or have been derived from F
by resolution. The resolvent of C and D with a pivot x is denoted Res(x,C,D).
A proof is a sequence of resolution deductions. A refutation is a proof of �.

Interpolation. Consider two formulae A and B such that A implies B. Take
for example x∧ y ⇒ y∨ z. Since B does not involve x, whatever A asserts about
y should be enough to imply B. Theorem 1 codifies this intuition and the proof
(from [1]) gives a simple but infeasible method for interpolant construction.

Theorem 1. For propositional formulae A and B, if A ⇒ B is a tautology,
there exists a propositional formula I, called an interpolant, such that (a) A⇒ I
and (b) I ⇒ B and (c) Var(I) ⊆ Var(A) ∩Var(B).
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Proof. We proceed in two steps. We first construct a formula I from A and then
show that I has the requisite properties. For any set X ⊆ Prop and assignment
σ, let Pos(X,σ) = {x ∈ X|σ(x) = T} be the set of variables in X assigned T
and let Neg(X,σ) be X \ Pos(X,σ). Let Y be Var(A) ∩Var(B). Define:

I
def=

∨
σ∈Mod(A)

 ∧
x∈Pos(Y,σ)

x ∧
∧

z∈Neg(Y,σ)

¬z


We show that I is an interpolant.
(a) By construction, if σ |= A, then σ |= I, so A⇒ I is a tautology.
(b) If σ |= I, there exists an assignment σ′ such that σ′ |= A and for all
x ∈ Var(B), σ(x) = σ′(x). As σ and σ′ agree on Var(B), eval(B, σ) = T iff
eval(B, σ′) = T. From the assumption that A ⇒ B, we have that σ |= B. It
follows that I ⇒ B.
(c) Var(I) ⊆ Var(A) ∩Var(B) by construction.

The interpolant in the proof above is constructed by existentially eliminating
some variables in A. Another possibility is to universally eliminate some vari-
ables in B. A tautology A ⇒ B can have several interpolants and the set of all
interpolants forms a complete lattice [11]. The construction above examines the
models of A, hence it requires time exponential in |Y | and can produce exponen-
tially large interpolants. Complexity issues aside, the design of an interpolation
algorithm follows the same steps. One must provide a procedure for constructing
a formula and then prove that the formula is an interpolant. In this paper, we
generalise these two steps in the context of resolution.

3 Interpolation Systems

Interpolation systems are introduced in this section. No new results are presented
but existing systems are formally defined and explained with examples.

A CNF pair 〈A,B〉 is a pair of disjoint CNF formulae (that is, A ∩ B =
∅). A CNF pair 〈A,B〉 is unsatisfiable if A ∧ B is unsatisfiable. Given 〈A,B〉,
let VA denote Var(A) \ Var(B), VB denote Var(B) \ Var(A) and V〈A,B〉 denote
Var(A)∩Var(B). An interpolant for an unsatisfiable CNF pair is defined below.

Definition 1 (Interpolant). An interpolant for an unsatisfiable CNF pair 〈A,B〉,
is a formula I such that A⇒ I, I ⇒ ¬B, and Var(I) ⊆ Var(A) ∩Var(B).

An interpolant is not necessarily symmetric with respect to 〈A,B〉. If I is
an interpolant for 〈A,B〉, then, ¬I is an interpolant for 〈B,A〉. Interpolants are
constructed inductively over the structure of a refutation. Figure 1 illustrates
interpolant construction for the CNF pair 〈A,B〉, where A = (a1 ∨ a2) ∧ (a1 ∨
a3)∧a2 and B = (a2∨a3)∧ (a2∨a4)∧a4. McMillan’s construction [19] is shown
on the left and that of Huang [14], Kraj́ıček [16] and Pudlák [21] is on the right.
The formula labelling the empty clause is the interpolant for 〈A,B〉. Observe
that the two methods produce different interpolants.
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a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 ∨ a3]

a3 [a3 ∧ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

� [a3 ∧ a2]

(a) McMillan [19]

a1a2 [⊥] a1a3 [⊥]

a2 [⊥]a2a3 [⊥]

a3 [⊥]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

� [a3]

(b) Huang [14], Kraj́ıček [16] and
Pudlák [21]

Fig. 1. Interpolant construction using systems in the literature.

We formalise these constructions as interpolation systems. Recall that B is
the set of all formulae and C is the set of all clauses. Let S def= ℘({a,b}) be a set
of symbols. To reduce notation, we write a for {a}, b for {b} and ab for {a,b}.
A distinction function is an element of D def= Prop → S. An extended clause
(e-clause) is an element of C × D × B. In an e-clause E = 〈C,∆, I〉, cl(E) = C
is a clause, df (E) = ∆ is a distinction function and int(E) = I is a partial
interpolant. An interpolation system extends resolution to e-clauses.

Definition 2 (Interpolation System). Let E = C×D×B be a set of extended
clauses. An interpolation system for E is a tuple Int = 〈T,ERes〉, where T :
℘(C) × ℘(C) → ℘(E) is a translation function and ERes is an inference rule.
The function T satisfies that for all disjoint A,B ∈ ℘(C), a clause C ∈ A ∪ B
iff there exists a unique ∆ ∈ D and I ∈ B such that 〈C,∆, I〉 ∈ T (A,B). The
inference rule is of the form:

〈C1 ∨ x,∆1, I1〉 〈C2 ∨ x,∆2, I1〉
〈C1 ∨ C2, ∆, I〉

[ERes]

The variable x is called the pivot.

An e-clause derived from E1 and E2 by applying ERes with a pivot x is
an e-resolvent and is denoted ERes(x,E1, E2). For C derived from 〈A,B〉 by
resolution, the corresponding e-clause E is defined as:

– If C ∈ A∪B, then E is the unique e-clause in T (A,B) such that cl(E) = C.
– If C = Res(x,C1, C2), then E = ERes(x,E1, E2), where E1 and E2 are the

corresponding e-clauses for C1 and C2 respectively.

Given a derivation of a clause C, the corresponding e-clause is uniquely defined.
In general, there may be multiple derivations of C, and consequently, multiple
e-clauses E with cl(E) = C. An interpolation system Int is correct if for every
derivation of the empty clause �, the corresponding e-clause E� satisfies that
int(E�) is an interpolant for 〈A,B〉. We introduce existing interpolation systems
next. The first two systems do not modify the inference rule but the parametrised
system does. This difference leads to the abstraction we identify in § 4.2.
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Definition 3 (HKP System [14, 16, 21]). The Huang-Kraj́ıček-Pudlák inter-
polation system IntHKP = 〈THKP ,HKPRes〉 is defined below.

THKP (A,B) def= {〈C,∆,F〉|C ∈ A} ∪ {〈C,∆,T〉|C ∈ B}

〈C ∨ x,∆, I1〉 〈D ∨ x,∆, I2〉
〈C ∨D,∆, I〉 [HKPRes]

∆(x) def=
a if x ∈ VA
ab if x ∈ V〈A,B〉
b if x ∈ VB

and I
def=

I1 ∨ I2 if ∆(x) = a
(x ∨ I1) ∧ (x ∨ I2) if ∆(x) = ab

I1 ∧ I2 if ∆(x) = b

The system above distinguishes between variables appearing only in A, vari-
ables appearing in A and B and variables appearing only in B. McMillan’s
system, defined below, has a different translation function and ERes rule.

Definition 4 (McMillan’s System [19]). McMillan’s interpolation system
IntM = 〈TM ,MRes〉 is defined below with ∆ as in Definition 3.

TM (A,B) def= {〈C,∆,C|B〉|C ∈ A} ∪ {〈C,∆,T〉|C ∈ B}

〈C ∨ x,∆, I1〉 〈D ∨ x,∆, I2〉
〈C ∨D,∆, I〉 [MRes]

I
def=

I1 ∨ I2 if ∆(x) = a
I1 ∧ I2 if ∆(x) = ab
I1 ∧ I2 if ∆(x) = b

Note that the ab and b cases above are identical. Example 1 below shows that
the two systems produce different interpolants and that different interpolants
can be obtained by interchanging A and B. Example 2 shows that there are
interpolants not obtained in either system.

Example 1. Let A be (a1∨a2)∧ (a1∨a3)∧a2 and B be (a2∨a3)∧ (a2∨a4)∧a4.
The e-clauses in McMillan’s system are shown on the left of Figure 1 and those
in the other system are on the right. The partial interpolants in both systems
are shown in square brackets. The interpolants are different. The interpolant
for 〈B,A〉 in McMillan’s system is a2 ∧ a3. By negating it, we obtain a2 ∨ a3,
which is also an interpolant for 〈A,B〉 but is not the interpolant obtained from
McMillan’s system. In contrast, the interpolant for 〈B,A〉 in the HKP system is
a3, which when negated yields the same interpolant as before. C
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Example 2. Let A be the formula a1∧(a1∨a2) and B be the formula (a1∨a2)∧a1.
A refutation for A ∧ B is shown alongside. The interpolant
obtained in both systems is a1 ∧ a2. The interpolant for
〈B,A〉 obtained from IntHKP is a1 ∨ a2 and that obtained
from IntM is a1 ∧ a2. By negating these, we get the addi-
tional interpolant a1 ∨ a2. The pair 〈A,B〉 has two more
interpolants, namely a1 and a2. These interpolants can be

a1

a1a2 a1a2 a1

a2

a1

�
obtained with IntHKP and IntM from different proofs. C

A third, parametrised interpolation system that generalises the other two sys-
tems was defined in [10]. Unlike IntHKP and IntM , this system manipulates dis-
tinction functions. A parameter to this system associates a distinction function
with each clause in a pair 〈A,B〉. Formally, a parameter is a function D : C→ D.
For simplicity, we write D(C)(t) for D(C)(var(t)), where C is a clause and t ∈ C.
The resolution of two distinction functions ∆1, ∆2 ∈ D with respect to a pivot
x is the distinction function ∆, denoted DRes(x,∆1, ∆2), defined as follows:
for y ∈ Prop, ∆(y) def= ∅ if y = x and ∆(y) def= ∆1(y) ∪ ∆2(y), if y 6= x. The
parametrised interpolation system is defined below.

Definition 5 (Parametrised Interpolation System [10]). Let D be a pa-
rameter. The interpolation system IntD

def= 〈TD,PRes〉 is defined below.

TD(A,B) def= {〈C,D(C), I〉|C ∈ A ∪B},
where I is defined below.

For C ∈ A For C ∈ B
I

def= {t ∈ C|D(C)(t) = b} I
def= ¬{t ∈ C|D(C)(t) = a}

〈C ∨ x,∆1, I1〉 〈D ∨ x,∆2, I2〉
〈C ∨D,DRes(x,∆1, ∆2), I〉 [PRes]

The partial interpolant I in the e-resolvent is defined below.

I
def=

I1 ∨ I2 if ∆1(x) ∪∆2(x) = a
(x ∨ I1) ∧ (x ∨ I2) if ∆1(x) ∪∆2(x) = ab

I1 ∧ I2 if ∆1(x) ∪∆2(x) = b

Example 3. Recall the CNF pair 〈A,B〉 from Example 2. Written as sets, A
is {{a1}, {a1, a2}} and B is {{a1, a2}, {a1}}. Define two distinction functions
∆a

def= {a1 7→ a, a2 7→ a} and ∆b
def= {a1 7→ b, a2 7→ b}. Three parameters are

defined below (all mappings not shown go to the empty set):

– D1(C) def= ∆a for all C ∈ A ∪B.
– D2(C) def= ∆a for all C ∈ A and is ∆b for C ∈ B.
– D3(C) def= ∆b for all C ∈ A ∪B.
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We apply the parametrised interpolation system to the refutation in Example 2.
From the systems IntD1 , IntD2 and IntD3 , we obtain the interpolants a1 ∨ a2, a2

and a1 ∧ a2, respectively. Recall that the interpolant a2 could not be obtained
from IntM and IntHKP for the given refutation. The pair 〈A,B〉 has one more
interpolant a1. We show in § 5 that this interpolant cannot be obtained from
the parametrised system. C

The set of parameters defines a set of interpolation systems. However, not
all of these interpolation systems are correct. An interpolant I for 〈A,B〉 must
satisfy that Var(I) ⊆ V〈A,B〉. Specifically, if x /∈ V〈A,B〉, x must not be added to
the interpolant by TD or the PRes rule. Observe that if for every clause C ∈ A
and literal t ∈ C with var(t) ∈ VA, it holds that D(C)(t) = a, then t will not
appear in the interpolant. The same applies for C ∈ B and var(t) ∈ VB . Locality
preserving parameters make this intuition precise and yield correct interpolation
systems. Let Λ〈A,B〉 be the set of locality preserving parameters for 〈A,B〉.

Definition 6 (Locality [10]). A parameter D is locality preserving for a CNF
pair 〈A,B〉 if it satisfies the following conditions.

– For all C ∈ A ∪B and x ∈ Var(C), D(C)(x) 6= ∅.
– For any C ∈ C and x ∈ VA, D(C)(x) ⊆ a.
– For any C ∈ C and x ∈ VB, D(C)(x) ⊆ b.

Theorem 2 ([10]). Let D be locality preserving for a CNF pair 〈A,B〉. If � is
derived from 〈A,B〉 by resolution and E� is the corresponding e-clause derived
with IntD, then int(E�) is an interpolant for 〈A,B〉.

The theorem is proved by showing that for every clause C derived by resolu-
tion, the corresponding e-clause E = 〈C,∆, I〉 satisfies the following conditions:

– A ∧ ¬{t ∈ C|{a} ⊆ ∆(var(t))} ⇒ I
– B ∧ ¬{t ∈ C|{b} ⊆ ∆(var(t))} ⇒ ¬I
– Var(I) ⊆ Var(A) ∩Var(B).

4 Interpolation Systems and Abstract Interpretation

In this section, the parametrised interpolation system is related to the other
systems and the resolution proof system by abstract interpretation.

Lattices. A lattice, 〈S,v,t,u〉 (abbreviated to 〈S,v〉), is a set S equipped with
a partial order v and two binary operators; a least upper bound, t, called the
join, and a greatest lower bound, u, called the meet. A lattice is complete if for
every X ⊆ S, the join

⊔
X and meet

d
X are defined and exist in S. A function

F : S → S is monotone if for any x, y ∈ S, x v y implies that F (x) v F (y). It
follows from the Knaster-Tarski theorem that a monotone function on a complete
lattice has unique least fixed point, denoted µx.F (x).

Consider a set P . A powerset lattice is the complete lattice 〈℘(P ),⊆,∪,∩〉.
Given the set P → S, where S is the lattice above, the structure of S can be
lifted pointwise to obtain the lattice 〈P → S, v̇, ṫ, u̇〉 defined below.
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– For f, g ∈ P → S, fv̇g iff for all x ∈ S, f(x) v g(x).
– For f, g ∈ P → S, f ṫg is the function that maps x ∈ S to f(x) t g(x). The

pointwise meet operation is similarly defined.

Consult [9] for more details on lattice theory.

Abstract Interpretation. Abstract interpretation is a framework for reason-
ing about approximation. Only limited aspects of the framework required for the
paper are covered here. See [3, 4] for an in-depth treatment.

Elements in one lattice, 〈C,vC〉 called the concrete domain, are approxi-
mated by elements in another 〈A,vA〉, called the abstract domain. The notion
of approximation is formalised by an abstraction function α : C → A and a con-
cretisation function γ : A → C which form a Galois connection. The functions
satisfy that for all c ∈ C, a ∈ A, c vC γ(α(c)) and α(γ(a)) vA a. If in addition
α ◦ γ is the identity map on A, the pair is called a Galois insertion. A monotone
function F : C → C is approximated in A by the function FA : A → A, de-
fined as (α ◦ F ◦ γ) and called the best approximation. The structure 〈C,vC , F 〉
is the concrete interpretation and 〈A,vA, FA〉 is the abstract interpretation. In
general, the concrete and abstract interpretations may involve several functions.

The approximation FA is sound, meaning that for any c ∈ C and a ∈ A,
F (γ(a)) vC γ(FA(a)) and α(F (c)) vA FA(α(c)). Soundness further implies
fixed point soundness. That is, µX.F (X) vC γ(µY.FA(Y )) and α(µX.F (X)) vA
µY.FA(Y ). Thus, to compute sound approximations of concrete fixed points
it suffices to compute abstract fixed points. The approximation is complete if
α(F (c)) = FA(α(C). An abstract interpretation is not necessarily complete [12].

Domains connected by Galois insertions can be formalised in several other
ways, in particular by closure operators [5]. An upper closure operator is a func-
tion ρ : C → C that is (a) extensive: c vC ρ(c), (b) idempotent : ρ(c) = ρ(ρ(c)),
and (c) monotone: if c1 vC c2, then ρ(c1) vC ρ(c2). To show that an operator on
a lattice defines an abstraction, it suffices to show that it is a closure operator.
Closure operators are convenient because one can deal with abstractions without
introducing two different lattices. Both Galois insertions and closure operators
are used in this paper, as per convenience.

4.1 The Concrete Domain of Parameters

We introduce the lattice of parameters and show that locality preserving param-
eters are closed under certain operations on this lattice. Recall from § 3 that S is
the powerset lattice 〈℘({a,b}),⊆,∪,∩〉. Further, define the dual of an element
of S as follows: â def= b, b̂ def= a, âb

def= ab and ∅̂ def= ∅. That is, the dual of a is b and
vice versa, but ab and ∅ are self-duals. The term dual is due to Huang [14] who
defined the dual of IntHKP . The lattice of distinction functions, 〈D,vD,tD,uD〉,
where D = Prop → S, is derived from S by pointwise lifting. The lattice of
parameters, 〈C → D,v,t,u〉, is derived from D, also by pointwise lifting. The
dual of a distinction function and a parameter are similarly defined by pointwise
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lifting. In addition, define the function δ〈A,B〉 that maps a parameter D to one
that agrees with D on x ∈ VA ∪ VB but maps all other variables to their duals.
Formally, δ〈A,B〉(D) def= D′, where for C ∈ C and x ∈ Prop, D′(C)(x) is D(C)(x)
if x ∈ VA ∪ VB and is D̂(C)(x) if x ∈ V〈A,B〉.

Locality preserving parameters define correct interpolation systems, so op-
erations on parameters that preserve locality are of particular interest. Such
operations are illustrated in Example 4 and formally identified in Lemma 1.

Example 4. Consider again the CNF pair 〈A,B〉 in Example 1, where A =
{{a1, a2}, {a1, a3}, {a2}} and B = {{a2, a3}, {a2, a4}, {a4}}. Define the D4,D5

and D6 as below. Let C ∈ C be a clause.

– D4(C)(x) is a for x ∈ VA, and is b for x /∈ VA.
– D5(C)(x) is a for x /∈ VB , and is b for x ∈ VB .
– D6(C)(x) is a for x ∈ VA, is ab for x ∈ V〈A,B〉, and is b for x ∈ VB .

These parameters are locality preserving for 〈A,B〉 and that their duals are
locality preserving for 〈B,A〉. Further, we have that δ〈A,B〉(D4) = D5 and D4 t
D5 = D6, so δ〈A,B〉 and t preserve locality. In contrast, D4 u D5 is not locality
preserving for 〈A,B〉. C

Lemma 1. Let 〈A,B〉 be a CNF pair.

1. If D1 and D2 are locality preserving for 〈A,B〉, then so is D1 t D2.
2. If D is locality preserving for 〈A,B〉, then D̂ is locality preserving for 〈B,A〉.

Further, if C is derived by resolution and E and F are the corresponding
clauses in IntD and Int bD respectively, then int(E) = ¬int(F ).

3. If D is locality preserving for 〈A,B〉, so is δ〈A,B〉(D).

Proof. (1) Consider each condition in Definition 6. Observe that D1 t D2 is
the pointwise join of the two parameters. It follows that for any C ∈ C and
x ∈ Var(C), if D1(C)(t) 6= ∅ and D2(C)(t) 6= ∅, then (D1 t D2)(C)(t) 6= ∅. The
same argument applies for the other two locality conditions.
(2) The sets Var(A) \ Var(B) and Var(B) \ Var(A) are identical in both 〈A,B〉
and 〈B,A〉. To preserve locality, any x ∈ Var(A) \Var(B) must be labelled b by
D̂. As D is locality preserving, these variables are labelled a and by the definition
of D̂, will be labelled b. A symmetric argument applies for x ∈ Var(B) \Var(A)

The second property is shown by structural induction.
Base case. Consider C ∈ A ∪B, and the corresponding e-clauses E ∈ TD(A,B)
and F ∈ T bD(B,A). For any t ∈ C, if D(C)(x) = a, then D̂(C)(x) = b. It follows
from the definition of TD and T bD that int(E) = ¬int(F ). Observe in addition

that df (E) = d̂f (F ).
Induction step. For a derived clause C = Res(x,C1, C2) and consider the cor-
responding e-clauses E = ERes(x,E1, E2) and F = ERes(x, F1, F2) derived in
IntD and Int bD, respectively. For the induction hypothesis, assume that int(E1) =

¬int(F1) and df (E1) = d̂f (F1) and likewise for E2 and F2. For the induction
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step, consider the PRes rule in Definition 5. There are three cases for defining
int(E). If case a applies in IntD, then, by the induction hypothesis, case b applies
for Int bD. That is, int(E) = I1∨I2 and int(F ) = ¬I1∧¬I2, so int(E) = ¬(int(F ))
as required. The other cases are similar.
(3) Holds as D(C)(x) = (δ〈A,B〉(D))(C)(x) for C ∈ A ∪B and x ∈ VA ∪ VB .

4.2 Abstract Domains of Parameters

Algorithms derived from IntHKP , IntM and the parametrised system have a run-
ning time that is linear in proof size, however IntHKP and IntM are more space
efficient because they do not modify the distinction function. Intuitively, an in-
terpolation system is space efficient if the value of the distinction function at a
pivot variable does not change in a proof. Formally, a parameter D is derivation
invariant with respect to 〈A,B〉 if for any e-clause E derived from 〈A,B〉 in IntD
and any C ∈ A ∪B, if x ∈ Var(cl(E)) ∩Var(C), then df (E)(x) = D(C)(x).

Example 5. Consider the pair 〈A,B〉 and the parameters D1 and D3 in Exam-
ple 2. For any clause C derived from 〈A,B〉 and corresponding e-clause E in the
example, df (E)(x) is the same as D(C ′)(x), where C ′ ∈ 〈A,B〉. The parameters
in Example 4 are also derivation invariant. In contrast, the parameter D2 in Ex-
ample 2 is not derivation invariant because the value of the distinction function
at a2 changes in the proof. C

We identify a family of abstractions that give rise to derivation invariant
parameters. These abstractions are defined over partitions of Prop. A partition
π of a set S is a set of disjoint subsets of S, called blocks, that are pairwise
disjoint and whose disjoint union is S. Let [x]π denote the block containing
x ∈ S. A partition π is coarser than a partition π′, denoted π � π′, if for
every block β ∈ π, there is a block β′ ∈ π′ such that β ⊆ β′. It is known
that the set of partitions forms a complete lattice. Let 〈Part(Prop),�,t,u〉 be
the lattice of partitions of Prop. For a CNF pair 〈A,B〉, define the partition
π〈A,B〉

def= {{x|x ∈ VA}, {x|x ∈ V〈A,B〉}, {x|x ∈ VB}, {x|x /∈ Var(A) ∪ Var(B)}}.
Given a partition π ∈ Part(Prop) we define a function Υπ that maps a parameter
to another one, assigning the same symbol in S to variables in the same block.

Υπ(D) def= D′ where D′(C)(x) def=
⋃
C′∈C

⋃
y∈[x]π

D(C ′)(y) for C ∈ C and x ∈ Prop.

A parameter D is partitioning if Υπ(D) = D for some π ∈ Part(Prop). In The-
orem 3, we show that each function Υπ defines an abstract domain of parameters
and relate such parameters to derivation invariance and locality preservation.

Example 6. Consider the CNF pair 〈A,B〉 in Example 4 and the partitions πA =
{{x|x ∈ VA}, {x|x /∈ VA}}, πB = {{x|x ∈ VB}, {x|x /∈ VB}}, and π〈A,B〉. Assume
that Var(A ∪ B) = Prop. The parameters D4,D5 and D6 are partitioning, as
witnessed by the partitions πA, πB and π〈A,B〉 respectively.
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Consider the CNF pair 〈A,B〉, the parameters D1,D2 and D3 in Example 3
and the partition π = {Prop}. Observe that VA = VB = ∅, so D1 and D3 are
partitioning with respect to π. However, D2 is not partitioning. C

Theorem 3. 1. The function Υπ is a closure operator.
2. A partitioning parameter is derivation invariant.
3. If D1 and D2 are partitioning, so are D1 t D2, D̂1 and δ〈A,B〉(D1)
4. If D is locality preserving and π � π〈A,B〉, then Υπ(D) is locality preserving.
5. The coarsest π for which Υπ(Λ〈A,B〉) ⊆ Λ〈A,B〉, for any 〈A,B〉, is π = π〈A,B〉.

Proof. (1) We show that Υπ is a closure operator. The function is extensive
because for all C ∈ C and x ∈ Prop, D(C)(x) ⊆ Υπ(D)(C)(x). For any C ∈ C
and y ∈ [x]π, Υπ(D)(C)(x) = Υπ(D)(C)(y), so the function is idempotent. If
D1 v D2, then for all C ∈ C and x ∈ Prop, D1(C)(x) ⊆ D2(C)(x). The values
Υπ(D1)(C)(x) and Υπ(D2)(C)(x) are defined as the union over a set of variables
of D1 and D2 respectively. Monotonicity follows because union is monotone.
(2) Let E be an e-clause derived with IntD from 〈A,B〉. We show that D is
derivation invariant by induction on the structure of the derivation.
Base Case. If E ∈ TD(A,B), as D is partitioning, D(C)(x) = df (E)(x) for any
clause C ∈ C and variable x ∈ Prop.
Induction Step. Consider E = ERes(x,E1, E2) for e-clauses E1 and E2. For the
induction hypothesis, assume that for any C ∈ A ∪ B and x ∈ Var(cl(E1)) ∩
Var(C), df (E1)(x) = D(C)(x) and the same for E2. Consider C ∈ A ∪ B and
x ∈ Var(cl(E)) ∩Var(C). Now, x must be in Var(cl(E1)) only, Var(cl(E2)) only
or both. If x ∈ Var(cl(E1)) only, df (E)(x) = df (E1)(x) and by the induction
hypothesis, df (E)(x) = D(C)(x). The remaining cases are similar.
(3) Consider D1 and D2 which are partitioning. That is, there exist π1 and π2

such that Υπ1(D1) = D1 and Υπ2(D2) = D2. Let D = D1 t D2 and π = π1 u π2.
and D = D1 t D2. Because D1 and D2 are partitioning, it follows that for all x
and y ∈ [x]π, D(C)(x) = D(C)(y). Thus, Υπ(D) = D and D is partitioning. The
other cases hold because the dual and δ〈A,B〉 are defined pointwise on variables,
so the partition for D1 is the partition for D̂1 and δ〈A,B〉(D).
(4) If π � π〈A,B〉, for any x ∈ VA, if y ∈ [x]π, then y ∈ VA. For a locality preserv-
ingD and C ∈ A∪B, it holds thatD(C)(y) ⊆ a. Hence,

⋃
C∈C

⋃
y∈[x]π

D(C)(y) ⊆
a. The same applies for x ∈ VB , so Υπ(D) is locality preserving.
(5) It follows from the previous part that Υπ〈A,B〉(Λ〈A,B〉) ⊆ Λ〈A,B〉. It suffices to
show that there is no π〈A,B〉 ≺ π such that Υπ(Λ〈A,B〉) ⊆ Λ〈A,B〉 for all 〈A,B〉.
We prove it by contradiction. It suffices to find a pair 〈A,B〉 and D ∈ Λ〈A,B〉
such that Υπ(D) /∈ Λ〈A,B〉. Consider 〈A,B〉 with VA, V〈A,B〉 and VB being non-
empty. Let D map x ∈ VA to a, x ∈ VB to b and x ∈ V〈A,B〉 to ab. Consider
variables x ∈ VA, y ∈ V〈A,B〉 and z ∈ VB . As π〈A,B〉 ≺ π, either [x]π = [y]π,
or [y]π = [z]π, or [x]π = [z]π. If [x]π = [y]π, then D(C)(x) = ab, violating the
condition D(C)(x) ⊆ a in Definition 6. Thus, Υπ(Λ〈A,B〉) 6⊆ Λ〈A,B〉. The other
two cases are similar, leading to a contradiction as required.
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We highlight that part 5 of Theorem 3 applies to all 〈A,B〉 and all parameters
D ∈ Λ〈A,B〉. For a specific parameter D ∈ Λ〈A,B〉 and a specific pair 〈A,B〉, there
may exist π〈A,B〉 ≺ π such that Υπ(D) is locality preserving.

4.3 Existing Systems as Abstractions

The setting of the previous section is now applied to study existing systems.
We define two parameters that were shown in [10] to correspond to McMillan’s
system and the HKP system. Let 〈A,B〉 be a CNF pair. Define the value of the
parameters DM and DHKP for C ∈ C and x ∈ Prop as below.

– DM (C)(x) is a if x ∈ VA and is b otherwise.
– DHKP (C)(x) is a if x ∈ VA b if x ∈ VB and is ab for x ∈ V〈A,B〉.

Lemma 2 shows that the parameters above are two of three that exist in the
coarsest partitioning abstraction defined by π〈A,B〉. The third system, δ〈A,B〉(DM ),
was also identified in [10] but the connections presented here were not.

Lemma 2. Let 〈A,B〉 be a CNF pair. The image of Λ〈A,B〉 under Υπ〈A,B〉 is
{DM ,DHKP , δ〈A,B〉(DM )}.

Proof. There are two steps. The first step is to show that each parameter in the
lemma is a fixed point of Υπ〈A,B〉 . We skip this step. The second is to show that no
other such fixed points exist. As only elements of Λ〈A,B〉 are considered, assume
that D is locality preserving. By definition of the closure operator we have that
Υπ〈A,B〉(D) = D only if for any C1, C2 ∈ C and x, y ∈ V〈A,B〉, D(C1)(x) =
D(C2)(y). It follows that for all C and x ∈ V〈A,B〉, D(C)(x) must be either a,
ab or b. Thus, the only three possible parameters are the ones above.

The parameter DHKP has several properties. It is the greatest locality pre-
serving parameter with respect tov, is symmetric in the sense that δ〈A,B〉(DHKP ) =
DHKP and can be derived from McMillan’s system. These properties, sum-
marised below, may explain why IntHKP has been repeatedly discovered.

DHKP =
⊔

D∈Λ〈A,B〉

D and DM t δ〈A,B〉(DM ) = DHKP

4.4 The Domains of E-Clauses and Clauses

We remarked earlier that an interpolation system is an extension of resolution.
This intuition is now made precise using the method in [7]. E-clauses constitute
a concrete domain and interpolation systems define concrete interpretations. We
show that sets of clauses form an abstract domain and that the resolution rule
defines a complete abstract interpretation of an interpolation system.

Recall that E is the set of e-clauses and that for E = 〈C,∆, I〉, cl(E) = C. The
powerset of e-clauses forms the concrete domain 〈℘(E),⊆,∪,∩〉. A parameter D
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defines an interpolation system IntD = 〈TD,PRes〉, which gives rise to a concrete
interpretation consisting of two functions. The translation function TD : ℘(C)×
℘(C) → ℘(E) and a function PRes : ℘(E) → ℘(E) encoding the effect of the
PRes rule. The function PRes is defined in a sequence of steps.

– PRes : Prop× E× E→ E is defined as follows. If E1, E2 ∈ E with cl(E1) =
x∨C and cl(E2) = D ∨ x, then PRes(x,E1, E2) is given by the PRes rule in
Definition 5. PRes(x,E1, E2) is defined as 〈∅, ∅,F〉 otherwise.

– Let PRes : E× E→ E be PRes(E1, E2) def= {PRes(x,E1, E2)|x ∈ Prop}.
– Finally, PRes : ℘(E)→ ℘(E) maps X ∈ ℘(E) to

⋃
E1,E2∈X PRes(E1, E2).

The concrete semantic object of interest is the set of e-clauses that can be
derived in an interpolation system IntD and the interpolants obtained from these
e-clauses. These sets are defined below.

ED
def= µX.(TD(A,B) ∪ PRes(X)) and ID

def= {int(E)|E ∈ ED and cl(E) = �} .

The set ID contains all interpolants that can be derived with IntD from
〈A,B〉. Observe that each interpolation system IntD defines a different concrete
interpretation and a different set of interpolants ID. Note also that the definition
of PRes is independent of the parameter D. Hence, to analyse the properties of
the set ID, we only have to analyse TD. We exploit this observation in § 5.1.

We now relate resolution with interpolation systems. Define the domain
〈℘(C),⊆,∪,∩〉 of CNF formulae. The function Res corresponding to the res-
olution rule is first defined as Res : Prop × C × C → C and then lifted to a
function Res : ℘(C)→ ℘(C), in a manner similar to PRes.

Abstraction and concretisation functions between 〈℘(E),⊆〉 and 〈℘(C),⊆〉
are defined next. Let α : ℘(E) → ℘(C) be a function that maps X ∈ ℘(E) to
the set of clauses cl(X). The concretisation function γ : ℘(C) → ℘(E) maps a
set of clauses Y ∈ ℘(C) to the set of e-clauses {〈C,∆, I〉|C ∈ Y,∆ ∈ D, I ∈ B}.
Lemma 3 states that α and γ define a Galois insertion and that Res is the best
approximation of PRes.

What do soundness and completeness mean in this setting? If α(PRes(X)) ⊆
Res(α(X)), every clause that can be derived with the inference rule PRes can
also be derived with Res. However, we also want that the interpolation system
can derive all clauses that can be derived by resolution. That is, as an inference
rule, PRes should be as powerful as Res. In abstract interpretation terms, the
function Res should be a complete abstraction of PRes.

Lemma 3. The functions α and γ define a Galois insertion between ℘(E) and
℘(C). Further, Res = (α ◦ PRes ◦ γ), and (Res ◦ α) = (α ◦ PRes).

The best approximation of TD is union: (α ◦ TD ◦ γ) = ∪. The abstract
semantic object corresponding to ED is the set of clauses that can be derived by
resolution from 〈A,B〉. The viewpoint presented here is summarised below.

C def= µX.((A ∪B) ∪ Res(X)) = α(ED)

〈℘(C),⊆,∪,Res〉 is a complete abstract interpretation of 〈℘(E),⊆, TD,PRes〉.
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5 Logical Strength and Variable Elimination

Interpolation systems are used in verification tools. The performance of such a
tool depends on the logical strength and size of the interpolants obtained. The
influence of interpolant strength on the termination of a verification tool is dis-
cussed in [10]. Interpolant size affects the memory requirements of a verification
tool. The set of variables in an interpolant gives an upper bound on its size, so we
study the smallest and largest sets of variables that can occur in an interpolant.
We now analyse the logical strength of and variables occurring in interpolants.

5.1 Logical Strength as a Precision Order

The subset ordering on the domain ℘(E) is a computational order. Meaning, it
is the order with respect to which fixed points are defined. The elements of ℘(E)
can moreover be ordered by precision, where the notion of precision is application
dependent. Cousot and Cousot have emphasised that though the computational
and precision orders often coincide, this is not necessary [6]. To understand the
logical strength of interpolants, we use a precision order based on implication.

Given X and Y in ℘(E), the set X is more precise than Y if for every
interpolant in Y , there is a logically stronger interpolant in X. Formally, define
the relation �E on ℘(E) × ℘(E) as X �E Y iff for all E1 ∈ Y with cl(E1) = �,
there exists E2 ∈ X with cl(E2) = � and int(E2) ⇒ int(E1). Let 〈A,B〉 be a
CNF pair, D1 and D2 be two parameters and E1 and E2 be the sets of e-clauses
derived in these two systems. The system IntD1 is more precise or stronger than
IntD2 if E1 �E E2. If PRes is monotone with respect to �E, the problem of
computing logically stronger interpolants can be reduced to that of ordering
translation functions by precision. However, PRes is not monotone with respect
to �E because �E does not take distinction functions into account.

We now derive an order for ℘(E) that is stronger than �E and with respect
to which PRes is monotone. The order from [10] is adapted to our setting. We
define an order on S and lift it pointwise. Define the order �S on S as b �S
ab �S a �S ∅. The set S with this order forms the lattice 〈S,�S ,max,min〉.
By pointwise lifting, we obtain the lattice 〈D,�D,⇑D,⇓D〉. We use the symbols
⇑D and ⇓D to distinguish them from the computational meet and join, tD and
uD, and to emphasise the connection to logical implication.

Recall from § 2 that C|A is the restriction of C to variables in A. Define a
relationvE on ℘(E)×℘(E) as:X vE Y if for each E1 ∈ Y there is an E2 ∈ X such
that cl(E1) = cl(E2), df (E1) �D df (E2) and int(E2) ⇒ int(E1) ∨ (cl(E1)|A ∩
cl(E1)|B). Intuitively, in a strong interpolant, literals are added to the partial
interpolant by the translation function whereas in a weaker interpolant, literals
are added in the resolution step. The partial interpolant int(E1) in the definition
of vE is weakened with (cl(E1)|A ∩ cl(E1)|B) to account for this difference.
Nonetheless, if X vE Y and cl(E1) = � for E1 ∈ Y , there exists E2 ∈ X
such that cl(E2) = � and int(E2) ⇒ int(E1). Thus, X vE Y implies that
X �E Y . Theorem 4 shows that PRes is monotone with respect to vE. To order
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interpolation systems by precision, the precision order on distinction functions
is lifted pointwise to parameters to obtain the lattice 〈C→ D,�,⇑,⇓〉.

Example 7. Revisit the functions D1,D2 and D3 in Example 3. It holds that
D3 � D2 � D1 and the corresponding interpolants imply each other. C

Theorem 4. Let 〈A,B〉 be a CNF pair, and D1 and D2 be locality preserving
parameters for 〈A,B〉.

1. If D1 � D2, then TD1(A,B) vE TD2(A,B).
2. If X vE Y for X,Y ∈ ℘(E), then PRes(X) vE PRes(Y ).
3. The structure 〈Λ〈A,B〉,�,⇑,⇓〉 is a complete lattice [10].

Proof. (1) Consider TD1(A,B), TD2(A,B), and F ∈ TD2(A,B). It follows from
the definition of a translation function that there exists E ∈ TD1(A,B) such
that cl(E) = cl(F ). If C ∈ A, we further have that int(E) ⊆ (cl(F )|A∩cl(F )|B),
and so int(E) ⇒ int(F ) ∨ (cl(F )|A ∩ cl(F )|B). If C ∈ B, then by definition,
¬int(F ) = {t ∈ cl(F )|D2(cl(F ))(t) = a}. Because D2 is locality preserving,
¬int(F ) ⊆ (cl(F )|A∩ cl(F )|B) and we can conclude that ¬int(F ) ⊆ ¬(int(E))∨
(cl(F )|A ∩ cl(F )|B) and so int(E) ⊆ int(F ) ∨ (cl(F )|A ∩ cl(F )|B).
(2) Consider X vE Y and F ∈ PRes(Y ). There exists x ∈ Prop and F1, F2 ∈ X
such that F = PRes(x, F1, F2). By the monotony hypothesis, there exist E1

and E2 in X such that E1 vE F1 and E2 vE F2. From the definition of vE
we conclude that E = PRes(x,E1, E2) satisfies that cl(E) = cl(F ). It remains
to show that int(E) ⇒ int(F ) ∨ (cl(E)|A ∩ cl(E)|B). This can be shown by a
straightforward case analysis.

The following corollary of Theorem 4 formally states that if D1 � D2, then
the interpolants obtained from IntD1 imply the interpolants obtained from IntD2 .

Corollary 1. If D1 and D2 are locality preserving parameters for the CNF pair
〈A,B〉, then µX.(TD1(A,B) ∪ PRes(X)) �E µX.(TD2(A,B) ∪ PRes(X)).

5.2 Variable Elimination

Any interpolant I for an unsatisfiable CNF pair 〈A,B〉 satisfies that Var(I) ⊆
V〈A,B〉. We ask what the largest and smallest possible sets V are such that
Var(I) ⊆ V . To develop some intuition for this question, we visualise the flow of
literals in a proof. Flow graphs have been used by Carbone to study interpolant
size in the sequent calculus [2]. We only use them informally.

Example 8. The flow of literals in the refutation from Example 2 is shown in
Figure 2. Dashed edges connect antecedents with resolvents and solid edges de-
pict flows. Each literal is a vertex in the flow graph. Positive literals flow upwards
and negative literals flow downwards. Observe that a1 appears in multiple cycles
connecting literals in A, literals in B and literals in A and B. In contrast, a2

appears in only cycle which connects an A and a B literal. Recall that every
interpolant constructed from this refutation contained a2. C
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a1 a1 a2 a2 a1 a1

a2
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�

Fig. 2. A resolution proof and its logical flow graph. Dashed edges represent resolution
and solid edges represent flows. Every occurrence of a literal is in a cycle.

Informally, a refutation defines a set of may and must variables. Any literal
flowing from the A to the B part, like a1 above, may be added to the interpolant.
A literal that only flows from an A literal to a B literal, like a2, must be added
to the interpolant. To obtain the interpolant with the smallest set of variables,
we need a parameter that adds only those literals to the interpolant that flow
between A and B. We define two parameters for 〈A,B〉 as follows.

– Dmin(C)(x) is a for C ∈ A and x ∈ Prop and is b for C ∈ B and x ∈ Prop.
– Dmax

def= δ〈A,B〉(Dmin).

Observe that both these parameters are locality preserving. Lemma 4 states
that the parameters above determine the smallest and largest sets of variables
that occur syntactically in an interpolant.

Lemma 4. Let � be derived from 〈A,B〉 and Emin and Emax be the corre-
sponding e-clauses derived in IntDmin and IntDmax respectively. Let E be the cor-
responding e-clause in IntD for a locality preserving parameter D. It holds that
Var(int(Emin)) ⊆ Var(int(E)) ⊆ Var(int(Emax)).

Proof. We first show that if x ∈ Var(int(E)), then x ∈ Var(int(Emax)). Observe
that if x ∈ Var(int(E)), then x ∈ V〈A,B〉 and either x or x must occur in some
C ∈ A ∪ B. Let F be the clause corresponding to C in IntDmax . If C ∈ A,
Dmax(C)(x) = b and if C ∈ B, Dmax(C)(x) = a. In both cases, by the definition
of TDmax it holds that x ∈ Var(int(F )).
We show that if x ∈ Var(int(Emin)), then x ∈ Var(int(E)). We proceed by
induction on the structure of the derivation and consider the step in which x
was added to the partial interpolant. Let F be the e-clause derived by the PRes
rule in IntDmin , given as F = PRes(x, F1, F2) where F1 and F2 are antecedents. It
must be that df (F1)(x)∪df (F2)(x) = ab. Further, it must be that x ∈ cl(F1) and
x ∈ cl(F2) originated in A and B respectively, or vice versa, or are derived from
two literals that originated from these two parts of the formulae. Let G,G1, G2

be the corresponding e-clauses derived in IntD. There are three possibilities for
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df (G1)(x) ∪ df (G2)(x). If the value is ab, then x is added to the interpolant in
this derivation step. If the value is a, then the literal that originated from B was
added to the interpolant by the translation function. If the value is b, the literal
originating from A was added to the interpolant by the translation function. In
all cases, x ∈ Var(int(G)) as required.

We draw two further insights from Lemma 4. Observe that Dmin and Dmax

are distinct from DM and DHKP . A consequence is that McMillan’s system and
the HKP-system do not necessarily yield the interpolant with the smallest set
of variables in an interpolant. This was demonstrated in Example 2, where the
interpolants in these systems contained the variables {a1, a2}, but an interpolant
over {a2} could be obtained.

A more general insight is a way to determine if specific interpolants cannot
be obtained from a refutation. To revisit Example 2 (for the last time), observe
that Var(int(Emin)) = {a2} and that Var(int(Emax)) = {a1, a2}. It follows that
the interpolant a1 for this pair cannot be obtained by any interpolation system
IntD in the family we consider.

6 Related Work

Though Craig’s interpolation theorem was published in 1957 [8], the independent
study of interpolation systems is relatively recent. Constructive proofs of Craig’s
theorem implicitly define interpolation systems. The first such proof is due to
Maehara who introduced split sequents to capture the contribution of the A and
B formulae in a sequent calculus proof [17]. Carbone generalised this construction
to flow graphs to study the effect of cut-elimination on interpolant size [2].

Interpolant size was first studied by Mundici [20], Kraj́ıček observed that
lower bounds on interpolation systems for propositional proofs have implica-
tions for separating complexity classes and gave an interpolation system for
resolution [16]. Pudlák published the same system simultaneously [21].

Huang gave an interpolation system for resolution and its dual [14] but his
work appears to have gone unnoticed. McMillan proposed an propositional in-
terpolation system and applied it to obtain a purely SAT-based finite-state
model checker [19]. These systems were generalised in [10] and the system in
that paper was studied here. Yorsh and Musuvathi [24] study interpolation for
first-order theories, but also gave a new and elaborate correctness proof for the
HKP-system. The invariant for proving Theorem 2 is generalises the induction
hypothesis in their proof. The precision order vE is a modification of their in-
duction hypothesis to relate interpolants by strength rather than correctness.

The study of variables that can be eliminated from a formula is an issue of
gaining interest [13, 15]. Several researchers have noticed that an interpolant can
contain fewer variables than V〈A,B〉. Related observations have been made by
Simmonds and others [23] and have often featured in personal communication.
We have shown that studying variables that cannot be eliminated from a proof
can provide insights into the limitations of a family of interpolation systems.
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Abstract interpretation, due to Cousot and Cousot [4] is a standard frame-
work for reasoning about abstractions of a program’s semantics. They have also
applied the framework to inference rules in [7]. In program verification, the
framework is typically applied to design abstract domains. In contrast, our ap-
plication of abstract interpretation has been concerned with identifying concrete
interpretations corresponding to existing interpolation systems and resolution.
Our work was in part inspired by Ranzato and Tapparo’s application of abstract
interpretation to analyse state minimisation algorithms [22].

7 Conclusion

Interpolation algorithms have several applications in program verification and
several interpolation algorithms exist. In this paper, we applied abstract inter-
pretation to study a family of interpolation algorithms for propositional resolu-
tion proofs. We showed that existing interpolation algorithms can be derived by
abstraction from a general, parametrised algorithm. In abstract interpretation
terms, sets of clauses and the resolution proof system define an abstract domain
and an abstract interpretation. The set of clauses annotated with interpolants
and an interpolation system define a concrete domain and a concrete interpreta-
tion. We have also shown analysed these domains gain insights about interpolant
strength and about variables that are eliminated by an interpolation system.

However, the analysis in this paper has focused on propositional interpolation
systems. Software verification methods based on interpolation require interpo-
lation systems for first order theories. The design and analysis of interpolation
algorithms for such theories is the topic of much current research. An open ques-
tion is whether the kind of analysis in this paper is applicable to these settings.
Another question is whether the approach here extends to a comparative anal-
ysis of interpolation in different propositional proof systems. Answering these
questions is left as future work.

Acknowledgements. Mitra Purandare’s observation triggered the logical flows
leading to this paper. Leopold Haller interpolated the flow diagrams from my
sketches and discussions with Philipp Ruemmer proved useful. A great debt is to
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