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Abstract

Over the last decade the machine learning community has watched the size and complexity

of datasets grow at an exponential rate, with some describing the phenomenon as big

data. There are two main bottlenecks for the performance of machine learning methods:

computational resources and the amount of labelled data, often provided by a human

expert. Advances in distributed computing and the advent of cloud computing platforms

has turned computational resources into a commodity and the price has predictably

dropped precipitously. But the human response time has remained constant: the time

it will take a human to answer a question tomorrow is the same amount of time it

takes today, but tomorrow it will cost more due to rising wages world-wide. This thesis

proposes a simple solution: require fewer labels by asking better questions.

One way to ask better questions is to make the data collection procedure adaptive

so that the question that is asked next depends on all the information gathered up to

the current time. Popular examples of adaptive data collection procedures include the

20 questions game or simply the binary search algorithm. We will investigate several

examples of adaptive data collection methods and for each we will be interested in

answering questions like, how many queries are sufficient for a particular algorithm to

achieve a desired prediction error? How many queries must any algorithm necessarily

ask to achieve a desired prediction error? What are the fundamental quantities that

characterize the difficulty of a particular problem?

This thesis focuses on scenarios where the answers to queries are provided by a human.

Humans are much more comfortable offering qualitative statements in practice like “this
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color is more blue than purple” rather than offering the quantitative RGB values of

a particular hue, and the algorithms in this thesis take these kinds of considerations

into account. Part I of this thesis considers the identification of a ranking or set of

rankings over a set of items by sequentially and adaptively querying an oracle for pairwise

comparisons like “do you prefer A or B?” We characterize the difficulty of these problems

using geometrical arguments and show that adaptively selecting pairwise comparisons can

drastically reduce the number of questions that must be asked relative to the standard

non-adaptive method.

In part II we consider a multi-armed bandits framework that allows us to dive deep

into subtle effects of adaptive data collection when the data is corrupted in some way,

perhaps by some stochastic adversary. In these idealized settings we identify fundamental

quantities that almost completely characterize the difficulty of these problems and propose

algorithms that are nearly optimal with respect to these fundamental quantities. Part III

builds off of the advances of Part II and applies the techniques to scenarios that involve

pairwise comparisons like those used in Part I. Namely, Part III considers combinatorial

and continuous optimization with only pairwise comparison feedback.
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Chapter 1

Introduction

Some of the most advanced examples of adaptive data collection methods go unnoticed

as regular human social interaction. As an example, consider the bar patron who enjoyed

a beer at the bar last night, forgot the name of the favored beer, and returned to the bar

to discover its name. The bartender agreed to help identify the favored beer among the

40 beers on tap by presenting the patron with a sequence of samples of the beers, two at

a time, and asked the patron to identify which of the two beers was more similar to the

favored beer. After just several questions of this type, the bartender had discovered the

patron’s beer.

The story of the bartender and patron is remarkable because the number of questions

used to find the favored beer was much less than the 40 possible beers on tap. Clearly, if

the bartender had asked the patron to try a randomly selected sequence of beers, then

one would expect that the patron would have to try something very close to all 40 beers

before his beer was found. The only way the bartender could find the patron’s beer so

quickly, assuming it was not just by blind luck, was if the bartender was exploiting some

structure about the beer. Perhaps by realizing that the patron’s answers were suggesting

the favored beer was similar to a wheat beer, the bar tender could eliminate all queries

involving stouts or dark beers on tap as possibilities for the favored beer, for instance.

The bartender is a perfect example of an adaptive data collection algorithm, and
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the story raises many questions that go beyond this one example. What exactly is

the structure being exploited by the bartender? Is the structure inherent to the beers

themselves, or is it coupled with the patron’s and bartender’s model of how beers relate?

How many questions would the bartender have had to ask if there were 100 beers on tap,

rather than just 40? If it were not beer but wine, or music, or movies, how would the

necessary number of questions to identify the patron’s favored item change? That is,

what characterizes the fundamental difficulty of this problem? If we can characterize

how hard a problem is and why, can we design algorithms that can provably perform

close to this fundamental speed limit?

In this thesis, we consider several examples of adaptive data collection like this one

and try to answer these kinds of questions and focus on the fundamental quantities of

the problems. The tools used to analyze these problems come from many disciplines.

We will draw some motivation from psychometrics: what are the best ways to extract

information from fallible humans? Statistical learning theory will allow us to confidently

discard invalid hypotheses and confirm valid ones. Information theory will allow us to

characterize the fundamental difficulty of problems. Convex analysis and optimization

will allow us to make powerful statements about the rate at which our algorithms learn.

And the multi-armed bandit framework will provide us with a powerful abstraction giving

us the ability to generalize our results to many domains.

Adaptive data collection is an umbrella term for many sub-disciplines, all with with

their own slightly different terminology. In this thesis, we will take the terms adaptive

data collection and adaptive learning to be synonymous with each other. In the computer

sciences, adaptive learning is often labelled under the name active learning whereas in

electrical engineering and statistics, adaptive learning is sometimes labelled as adaptive
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sampling or adaptive sensing. While one may argue that there are subtle differences

between these terms based largely on historical context, for the purposes of this thesis

we will treat all of these terms as synonymous.

1.1 The Query Complexity of Learning

Adaptive learning can be thought of as a game between two players: a player (taking the

form of an algorithm) and an oracle (perhaps taking the form of a human or stochastic

process). The game proceeds in rounds where at the beginning of the game the oracle

selects some fixed, hidden hypothesis h∗ ∈ H that is unknown to the player. Then

at each round t the player chooses a query (or takes some action) qt ∈ Q, the oracle

responds to qt with a response yt ∈ Y, and then the game proceeds to the next round,

where H,Q,Y are all possibly uncountable sets. The objective of the player is to identify

h∗ ∈ H (or perhaps an h ∈ H that is “close” to h∗ is some well-defined sense) using as

few queries as possible, perhaps in expectation or with high probability1. We define the

query complexity of a problem to be the minimum number of queries that the player,

using the best possible strategy, must make to the oracle in order to identify h∗ ∈ H

(or a sufficiently “close” h, perhaps with high probability). With this definition, one

can talk about a lower bound on the query complexity of a problem which would say

that no algorithm can identify h∗ using fewer queries than the claimed lower bound.

On the other hand, any algorithm that identifies h∗ ∈ H with some number of queries

is a valid upper bound on the query complexity. The goal of this thesis is to identify

interesting problems and algorithms such that we can prove nearly matching lower and
1Stochasticity could be introduced to the process if the oracle responses are stochastic or if the

algorithm itself is random.
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upper bounds on the query complexity of a problem. Throughout this thesis we will

alternate between “queries” and “samples” when one or the other is more appropriate,

thus one should consider query complexity and sample complexity to be synonymous.

1.2 Learning with Comparative Judgments

Much of the work within in this thesis is motivated by applications that rely directly on

human feedback. Therefore, it makes sense to consider the kinds of questions that are

best suited for collecting data from humans. We saw above how comparative judgments,

or pairwise comparisons, were used successfully by the bartender to identify the patron’s

favored beer. Another example of when pairwise comparisons are used is when the

optometrist identifies suitable prescription lenses for a patient using just “better or

worse?” feedback. Pairwise comparisons are convenient when the value of a stimuli (e.g.

the goodness of fit of a given prescription lens) is difficult to quantify. For instance, one

may find that rating the image of the left pane of Figure 1 on a scale of 1-5 in terms of

how safe it appears to be much more difficult to do than if shown the left and right panes

of Figure 1 together and asked, “which street view is more safe?”. Such an approach

using pairwise comparisons was recently explored in [1] to rank the images in the corpus

from safest to most dangerous to compare crime statistics with perceived danger just

by the appearance of the neighborhood at street level. The underlying premise is that

human analysts can answer such a question much more robustly and consistently that

they can apply more traditional labeling mechanisms, such as assigning a numerical

safety rating to the image.

There is significant evidence to support the idea that pairwise comparisons can be
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more informative than asking humans for quantitative scores. Indeed, across a variety of

different pairwise discriminable stimuli (e.g. hues of color or tonal frequencies) human

subjects have been found to only be able to reliably communicate around 3 bits of

information about the perceived value of a stimulus over time despite perfectly answering

queries of “which was it most similar to, A or B?” [2]. In addition, it has been shown that

pairwise comparisons are more robustly recalled in the future compared to quantitative

scores that may change over time if only because a lack of “anchors” in the space [3].

These studies suggest that robust, precise quantitative information can be gathered

more efficiently through asking qualitative relative comparisons rather than asking for

quantitative scores. Pairwise comparisons also have the benefit of not suffering from

calibration over time or between participants: we may have the same preferences over

movies but while I am more liberal with my scores using the full 1-5 scale, you might

avoid giving very lower scores and just use stars in the 2-5 range.

which image scene looks safer ?

Figure 1.1: Asking humans “how safe is the scene on the left on a scale of one to five?”
may feel much more difficult than simply asking “which scene is more safe, left or right?”
Research also shows that comparative judgments are more robust and avoid calibration
issues that arise in requesting scores from humans.

Finally, pairwise comparisons can admit a geometric interpretation in the domain
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space that can be used to more easily determine a relationship between the internal

beliefs of a human subject and their answered responses„ thereby making it easier to

determine which queries may be most informative. To understand the importance of

this last point, suppose I rate two movies a rating of 2 and 4 respectively. Does that

mean that I like the second movie twice as much as the first? If I rate a third movie

a 5, does that mean that the degree to which I prefer a score of 5 to 4 is less than my

preference of a 4 to 2? Depending on how these questions are answered, one may need to

encode this information into the algorithm’s model which can lead to a possibly brittle

and special purpose algorithm. However, these problems do not exist when requesting

pairwise comparisons.

There are also some downsides to using pairwise comparisons. First, per query, a

pairwise comparison admits at most 1-bit of information whereas other kinds of queries

may provide more information (i.e. providing someone with 23 = 8 options to choose

from may provide up to 3 bits of information per query). The consequences of this

issue is evident when trying to rank n items according to a human’s preferences. If

we can request a real-valued score for each item, (and for simplicity, assume the scores

are unique) we can rank the items by requesting just n queries. However, if we request

pairwise comparisons we must ask at least n log2 n queries. To see this, there are n! ≈ nn

rankings which means that to describe a ranking, at least n log2 n bits of information must

be provided, but since a pairwise comparison provides at most one bit of information,

at least this many pairwise comparison queries must be made [4]. On the other hand,

the requested scores may be inaccurate leading to a less precise ranking than the one

obtained using pairwise comparisons, so we see there is a tradeoff here. We will revisit

this particular issue in Chapters 6 and 7. A second downside of pairwise comparisons is
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the possibility for intransitivity of preferences: If I rate movies A,B,C scores with 3,4,5,

respectively, then I may infer that A ≺ B, B ≺ C, and A ≺ C where x ≺ y is read as

“x is preferred to y.” However, if I ask for pairwise comparisons, it is possible to receive

contradictions or intransitive information like A ≺ B, B ≺ C, and C ≺ A. In this case

the algorithm must have define a protocol for resolving these inconsistencies. While there

exist approaches that operate in an agnostic and worst-case sense [5], in this work we

model such contradictions as the result of “noise” in the sense that we model people as

having transitive preferences but they occasionally will erroneously report inconsistent

preferences by chance. We explore these issues further in Chapters 2, 6, and 7.

1.3 Pure Exploration for Multi-armed Bandits

Multi-armed bandits is a conceptual framework for sequential decision processes that

reduces many complex problems from different domains down to a simple game closely

resembling the two-player game introduced in Section 1.1. While in this thesis we

are concerned with pure exploration games, there is a large body of literature in the

multi-armed bandits field that balances exploration and exploitation, so it is prudent to

take a moment to clarify the difference between the two.

In stochastic multi-armed bandit problems there are n “arms” representing the actions

the player can take at each round, i.e. Q = [n] where [n] = {1, . . . , n}. If at round t an

arm It = i ∈ [n] is selected, or “pulled”, by the player for the jth time, a random variable

Xi,j is drawn from an unknown distribution with E[Xi,j] = µi ∈ [0, 1]. In the regret

framework one wishes to balance exploration with exploitation and the player’s goal is to

minimize the cumulative regret of playing suboptimal arms:
∑n

i=1 maxi∈[n] µi−µIt , either
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in expectation or with high probability. In the pure exploration framework with which we

are interested in, the objective is to identify arg maxi∈[n] µi (assuming it is unique) with

high probability in as few pulls, or queries, as possible. Therefore, a player’s strategy

for the pure exploration multi-armed bandit game is composed of deciding which arm

to pull given all the observed pulls up to the current time, and recommending an arm

believed to be optimal. In some formulations, as in Chapter 4, the algorithm (player)

must also define a stopping time at which time the player declares that he has found the

best arm with sufficiently high probability.

One can also define a non-stochastic multi-armed bandit game for both the regret

and pure exploration frameworks. This scenario enforces less than in the stochastic case

so fewer guarantees can be made, but it has the advantage of being applicable in more

domains. The benign conditions on the responses from the arms are technical and require

some motivation so we defer their introduction until Chapter 5.

We also consider the marriage of pairwise comparisons with multi-armed bandits.The

dueling bandits framework, as it is known, was introduced by Yue et. al. [118] where at

each round t a pair of arms (i, j) ∈ [n]2 are chosen by the player and a Bernoulli random

variable is observed whose mean pi,j is interpreted as the probability that arm i “beats”

arm j in a duel. As alluded to in Section 1.2, it is possible that pi,j > 1/2, pj,k > 1/2

and pi,k < 1/2 resulting in a cycle or an intransitive set of relations, making it difficult

to define a “best” arm in general. Several definitions have been proposed throughout

history for the “best” arm including the Condorcet, Borda, and Copeland winners. In

this work we focus on the Borda winner because it always exists and also exhibits subtle

structure that can be exploited by adaptive data collection methods.
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1.4 Organization of the Dissertation

This thesis is organized into three parts. Each part presents a theme that is more or

less self-contained, but draws context from those parts that precede it. Likewise, each

chapter within each part is a variation on that theme and can be read on its own, but

the reader may enjoy the context provided by the preceding chapters. Nevertheless, for

the reader that chooses to read out of order, the text notes where it may be advisable to

consult previous content.

In Chapter 2 we study the problem of identifying a ranking among a set of total

orderings induced by known structure about the objects where queries take the form

“which comes first in the ordering, A or B?” Chapter 3 is concerned with a related problem

of identifying how n objects relate to each other using just queries of the form “is object

C more similar to A or B?” In Chapter 4 we shift our attention to multi-armed bandits

where given n stochastic sources that we can sample, we attempt to identify the source

with the highest mean using as few total samples as possible. Chapter 5 studies the

same problem as the previous chapter, but now the sources are no longer assumed to be

stochastic, leading to more practical applications at the cost of weaker guarantees. In

Chapter 6 we revisit the use of pairwise comparisons in a multi-armed bandit setting.

Chapter 7 then considers the use pairwise comparison for derivative free optimization of

a convex function.

A bibliographical remarks section is found at the end of each chapter describing

the author’s publications that contributed to the chapter as well as references to follow

up work in the literature. For the committee’s convenience, the authors’s relevant

publications contributing to this thesis are listed below:
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Chapter 2

Active Ranking

This chapter addresses the first adaptive learning problem we encountered in this thesis:

the story of the bartender and patron. The patron was thinking of a beer, and the

bartender attempted to identify it by asking as few questions as possible that are of the

form “is it more similar to beer A or B?” where A and B are beers are from a finite set.

In what follows, we modify the problem setup a little bit. We no longer assume that the

patron’s “ideal” beer is among the finite set of beers, and the bartender is now trying to

rank the entire finite set of beers with respect to the patron’s preferences just by asking

the patron about his preferences in the form of pairwise comparisons: “do you prefer

A or B?” It is known that n unstructured, but comparable items can be ranked using

just n log2(n) pairwise comparisons using an algorithm like binary sort. However, we

know from the story of the bartender and the patron that there is sometimes substantial

structure among the objects/beers that can be taken advantage of to reduce the number

of questions. This chapter focuses on strategies of discovering a ranking over n objects

using only O(log(n)) comparisons by exploiting known structure.
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2.1 Introduction

A ranking over a set of n objects X = (x1, x2, . . . , xn) is a mapping σ : {1, . . . , n} →

{1, . . . , n} that prescribes an order

σ(X ) := xσ(1) ≺ xσ(2) ≺ · · · ≺ xσ(n−1) ≺ xσ(n) (2.1)

where xi ≺ xj means xi precedes xj in the ranking. A ranking uniquely determines the

collection of pairwise comparisons between all pairs of objects. The primary objective

here is to bound the number of pairwise comparisons needed to correctly determine

the ranking when the objects (and hence rankings) satisfy certain known structural

constraints. Specifically, we suppose that the objects may be embedded into a low-

dimensional Euclidean space such that the ranking is consistent with distances in the

space. We wish to exploit such structure in order to discover the ranking using a very

small number of pairwise comparisons.

We begin by assuming that every pairwise comparison is consistent with an unknown

ranking. Each pairwise comparison can be viewed as a query: is xi before xj? Each

query provides 1 bit of information about the underlying ranking. Since the number of

rankings is n!, in general, specifying a ranking requires Θ(n log n) bits of information.

This implies that at least this many pairwise comparisons are required without additional

assumptions about the ranking. In fact, this lower bound can be achieved with a standard

adaptive sorting algorithm like binary sort [15]. In large-scale problems and n is very

large or when humans are queried for pairwise comparisons, obtaining this many pairwise

comparisons may be impractical and therefore we consider situations in which the space

of rankings is structured and thereby less complex.
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A natural way to induce a structure on the space of rankings is to suppose that the

objects can be embedded into a d-dimensional Euclidean space so that the distances

between objects are consistent with the ranking. This may be a reasonable assumption

in many applications, and for instance the audio dataset used in our experiments is

believed to have a 2 or 3 dimensional embedding [16]. We further discuss motivations

for this assumption in Section 2.1.2. It is not difficult to show (see Section 2.2) that

the number of full rankings that could arise from n objects embedded in Rd grows like

n2d, and so specifying a ranking from this class requires only O(d log n) bits. The main

results of the paper show that under this assumption, a randomly selected ranking can be

determined using O(d log n) pairwise comparisons selected in an adaptive and sequential

fashion, but almost all
(
n
2

)
pairwise rankings are needed if they are picked randomly

rather than selectively. In other words, actively selecting the most informative queries

has a tremendous impact on the complexity of learning the correct ranking.

2.1.1 Problem statement

Let σ denote the ranking to be learned. The objective is to learn the ranking by querying

the reference for pairwise comparisons of the form

qi,j := {xi ≺ xj}. (2.2)

The response or label of qi,j is binary and denoted as yi,j := 1{qi,j} where 1 is the

indicator function taking a value of 1 if its argument is true and 0 otherwise; ties are not

allowed. The main results quantify the minimum number of queries or labels required to

determine the reference’s ranking, and they are based on two key assumptions.
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A1 Embedding: The set of n objects are embedded in Rd (in general position) and

we will also use x1, . . . , xn to refer to their (known) locations in Rd. Every ranking σ can

be specified by a reference point rσ ∈ Rd, as follows. The Euclidean distances between

the reference and objects are consistent with the ranking in the following sense: if the

σ ranks xi ≺ xj, then ‖xi − rσ‖ < ‖xj − rσ‖. Let Σn,d denote the set of all possible

rankings of the n objects that satisfy this embedding condition.

The interpretation of this assumption is that we know how the objects are related (in

the embedding), which limits the space of possible rankings. The ranking to be learned,

specified by the reference (e.g., preferences of the bar patron), is unknown. Many have

studied the problem of finding an embedding of objects from data [17, 18, 19]. While

related, this is not the focus here, but it could certainly play a supporting role in our

methodology (e.g., the embedding could be determined from known similarities between

the n objects, as is done in our experiments with the audio dataset). We assume the

embedding is given and our interest is minimizing the number of queries needed to learn

the ranking, and for this we require a second assumption.

A2 Consistency: Every pairwise comparison is consistent with the ranking to be

learned. That is, if the reference ranks xi ≺ xj, then xi must precede xj in the (full)

ranking.

As we will discuss later in Section 2.2.2, these two assumptions alone are not enough

to rule out pathological arrangements of objects in the embedding for which at least

Ω(n) queries must be made to recover the ranking. However, because such situations

are not representative of what is typically encountered, we analyze the problem in the

framework of the average-case analysis [20].

Definition 2.1. With each ranking σ ∈ Σn,d we associate a probability πσ such that
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∑
σ∈Σn,d

πσ = 1. Let π denote these probabilities and write σ ∼ π for shorthand. The

uniform distribution corresponds to πσ = |Σn,d|−1 for all σ ∈ Σn,d, and we write σ ∼ U

for this special case.

Definition 2.2. If Mn(σ) denotes the number of pairwise comparisons requested by an

algorithm to identify the ranking σ, then the average query complexity with respect to π

is denoted by Eπ[Mn].

We focus on the special case of π = U , the uniform distribution, to make the analysis

more transparent and intuitive. However in the statement and proof of our main result

we show how to extend the results to general distributions π that satisfy certain mild

conditions. All results henceforth, unless otherwise noted, will be given in terms of

(uniform) average query complexity and we will say such results hold “on average.”

Our main results can be summarized as follows. If the queries are chosen determin-

istically or randomly in advance of collecting the corresponding pairwise comparisons,

then we show that almost all
(
n
2

)
pairwise comparisons queries are needed to identify

a ranking under the assumptions above. However, if the queries are selected in an

adaptive and sequential fashion according to the algorithm in Figure 2.1, then we show

that the number of pairwise rankings required to identify a ranking is no more than a

constant multiple of d log n, on average. The algorithm requests a query if and only if

the corresponding pairwise ranking is ambiguous (see Section 2.3.2), meaning that it

cannot be determined from previously collected pairwise comparisons and the locations

of the objects in Rd. The efficiency of the algorithm is due to the fact that most of the

queries are unambiguous when considered in a sequential fashion. For this very same

reason, picking queries in a non-adaptive or random fashion is very inefficient. It is also

noteworthy that the algorithm is also computationally efficient with an overall complexity
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no greater than O(n poly(d) poly(log n)) (see Appendix A.1). In Section 2.4 we present

a robust version of the algorithm of Figure 2.1 that is tolerant to a fraction of errors in

the pairwise comparison queries. In the case of persistent errors (see Section 2.4) we show

that we can find a probably approximately correct ranking by requesting just O(d log2 n)

pairwise comparisons. This allows us to handle situations in which either or both of the

assumptions, A1 and A2, are reasonable approximations to the situation at hand, but

do not hold strictly (which is the case in our experiments with the audio dataset).

Proving the main results involves an uncommon marriage of ideas from the ranking

and statistical learning literatures. Geometrical interpretations of our problem derive

from the seminal works of [21] in ranking and [22] in learning. From this perspective

our problem bears a strong resemblance to the halfspace learning problem, with two

crucial distinctions. In the ranking problem, the underlying halfspaces are not in general

position and have strong dependencies with each other. These dependencies invalidate

many of the typical analyses of such problems [23,24]. One popular method of analysis in

exact learning involves the use of something called the extended teaching dimension [25].

However, because of the possible pathological situations alluded to earlier, it is easy to

show that the extended teaching dimension must be at least Ω(n) making that sort of

worst-case analysis uninteresting. These differences present unique challenges to learning.

2.1.2 Motivation and related work

The problem of learning a ranking from few pairwise comparisons is motivated by what

we perceive as a significant gap in the theory of ranking and permutation learning. Most

work in ranking with structural constraints assumes a passive approach to learning;
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Query Selection Algorithm

input: n objects in Rd

initialize: objects X = {x1, . . . , xn} in
uniformly random order

for j=2,. . . ,n
for i=1,. . . ,j-1

if qi,j is ambiguous,
request qi,j’s label from reference;

else
impute qi,j’s label from previously
labeled queries.

output: ranking of n objects

Figure 2.1: Sequential algorithm for select-
ing queries. See Figure 2.2 and Section 2.3.2
for the definition of an ambiguous query.

Figure 2.2: Objects x1, x2, x3 and
queries. The rσ lies in the shaded
region (consistent with the labels of
q1,2, q1,3, q2,3). The dotted (dashed) lines
represent new queries whose labels are
(are not) ambiguous given those labels.

pairwise comparisons or partial rankings are collected in a random or non-adaptive

fashion and then aggregated to obtain a full ranking (cf. [26, 27, 28, 29]). However,

this may be quite inefficient in terms of the number of pairwise comparisons or partial

rankings needed to learn the (full) ranking. This inefficiency was recently noted in the

related area of social choice theory [30]. Furthermore, empirical evidence suggests that

adaptively selecting pairwise comparisons based on certain heuristics can reduce the

number needed to learn the ranking [31, 32, 33]. In many applications it is expensive and

time-consuming to obtain pairwise comparisons. For example, psychologists and market

researchers collect pairwise comparisons to gauge human preferences over a set of objects,

for scientific understanding or product placement. The scope of these experiments is

often very limited simply due to the time and expense required to collect the data [3].

This suggests the consideration of more selective and judicious approaches to gathering

inputs for ranking. We are interested in taking advantage of underlying structure in the
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set of objects in order to choose more informative pairwise comparison queries. From

a learning perspective, our work provides provable guarantees for active learning for a

problem domain that has primarily been dominated by passive learning results.

We assume that the objects can be embedded in Rd and that the distances between

objects and the reference are consistent with the ranking (Assumption A1). The

problem of learning a general function f : Rd → R using just pairwise comparisons that

correctly ranks the objects embedded in Rd has previously been studied in the passive

setting [26,27,28,29]. The main contributions of this paper are theoretical bounds for

the specific case when f(x) = ||x − rσ|| where rσ ∈ Rd is the reference point. This is

a standard model used in multidimensional unfolding and psychometrics [21, 34] and

one can show that this model also contains the familiar functions f(x) = rTσ x for all

rσ ∈ Rd. We are unaware of any existing query-complexity bounds for this problem. We

do not assume a generative model is responsible for the relationship between rankings to

embeddings, but one could. For example, the objects might have an embedding (in a

feature space) and the ranking is generated by distances in this space. Or alternatively,

structural constraints on the space of rankings could be used to generate a consistent

embedding. Assumption A1, while arguably quite natural/reasonable in many situations,

significantly constrains the set of possible rankings.

2.2 Geometry of rankings from pairwise comparisons

The embedding assumption A1 gives rise to geometrical interpretations of the ranking

problem, which are developed in this section. The pairwise comparison qi,j can be viewed

as the membership query: is xi ranked before xj in the (full) ranking σ? The geometrical
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interpretation is that qi,j requests whether the reference rσ is closer to object xi or object

xj in Rd. Consider the line connecting xi and xj in Rd. The hyperplane that bisects this

line and is orthogonal to it defines two halfspaces: one containing points closer to xi and

the other the points closer to xj . Thus, qi,j is a membership query about which halfspace

rσ is in, and there is an equivalence between each query, each pair of objects, and the

corresponding bisecting hyperplane. The set of all possible pairwise comparison queries

can be represented as
(
n
2

)
distinct halfspaces in Rd. The intersections of these halfspaces

partition Rd into a number of cells, and each one corresponds to a unique ranking of X .

Arbitrary rankings are not possible due to the embedding assumption A1, and recall

that the set of rankings possible under A1 is denoted by Σn,d. The cardinality of Σn,d

is equal to the number of cells in the partition. We will refer to these cells as d-cells

(to indicate they are subsets in d-dimensional space) since at times we will also refer to

lower dimensional cells; e.g., (d− 1)-cells.

2.2.1 Counting the number of possible rankings

The following lemma determines the cardinality of the set of rankings, Σn,d, under

assumption A1.

Lemma 2.3. [21] Assume A1-2. Let Q(n, d) denote the number of d-cells defined by

the hyperplane arrangement of pairwise comparisons between these objects (i.e. Q(n, d) =

|Σn,d|). Q(n, d) satisfies the recursion

Q(n, d) = Q(n− 1, d) + (n− 1)Q(n− 1, d− 1) , where Q(1, d) = 1 and Q(n, 0) = 1.

(2.3)
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In the hyperplane arrangement induced by the n objects in d dimensions, each

hyperplane is intersected by every other and is partitioned into Q(n− 1, d− 1) subsets

or (d− 1)-cells. The recursion, above, arises by considering the addition of one object at

a time. Using this lemma in a straightforward fashion, we prove the following corollary

in Appendix A.2.

Corollary 2.4. Assume A1-2. There exist positive real numbers k1 and k2 such that

k1
n2d

2dd!
< Q(n, d) < k2

n2d

2dd!

for n > d + 1. If n ≤ d + 1 then Q(n, d) = n!. For fixed d and n sufficiently large,

k1 = 1/2 and k2 = 2 suffice.

2.2.2 Lower bounds on query complexity

Since the cardinality of the set of possible rankings is |Σn,d| = Q(n, d), we have a simple

lower bound on the number of queries needed to determine the ranking.

Theorem 2.5. Assume A1-2. To reconstruct an arbitrary ranking σ ∈ Σn,d any algo-

rithm will require at least log2 |Σn,d| = Θ(2d log2 n) pairwise comparisons.

Proof. By Corollary 2.4 |Σn,d| = Θ(n2d), and so at least 2d log n bits are needed to specify

a ranking. Each pairwise comparison provides at most one bit.

If each query provides a full bit of information about the ranking, then we achieve

this lower bound. For example, in the one-dimensional case (d = 1) the objects can be

ordered and binary search can be used to select pairwise comparison queries, achieving the
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lower bound. This is generally impossible in higher dimensions. Even in two dimensions

there are placements of the objects (still in general position) that produce d-cells in the

partition induced by queries that have n− 1 faces (i.e., bounded by n− 1 hyperplanes)

as shown in Appendix A.3. It follows that the worst case situation may require at least

n− 1 queries in dimensions d ≥ 2. In light of this, we conclude that worst case bounds

may be overly pessimistic indications of the typical situation, and so we instead consider

the average case performance introduced in Section 2.1.1.

2.2.3 Inefficiency of random queries

The geometrical representation of the ranking problem reveals that randomly choosing

pairwise comparison queries is inefficient relative to the lower bound above. To see this,

suppose m queries were chosen uniformly at random from the possible
(
n
2

)
. The answers

to m queries narrows the set of possible rankings to a d-cell in Rd. This d-cell may consist

of one or more of the d-cells in the partition induced by all queries. If it contains more

than one of the partition cells, then the underlying ranking is ambiguous.

Theorem 2.6. Assume A1-2. Let N =
(
n
2

)
. Suppose m pairwise comparison are

chosen uniformly at random without replacement from the possible
(
n
2

)
. Then for all

positive integers N ≥ m ≥ d the probability that the m queries yield a unique ranking is(
m
d

)
/
(
N
d

)
≤ ( em

N
)d.

Proof. No fewer than d hyperplanes bound each d-cell in the partition of Rd induced by

all possible queries. The probability of selecting d specific queries in a random draw of
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m is equal to

(
N − d
m− d

)/(
N

m

)
=

(
m

d

)/(
N

d

)
≤ md

d!

dd

Nd
≤
(m
N

)d dd
d!
≤
(em
N

)d
. �

Note that
(
m
d

)
/
(
N
d

)
< 1/2 unless m = Ω(n2). Therefore, if the queries are randomly

chosen, then we will need to ask almost all queries to guarantee that the inferred ranking

is probably correct.

2.3 Analysis of sequential algorithm for query selec-

tion

Now consider the basic sequential process of the algorithm in Figure 2.1. Suppose we

have ranked k − 1 of the n objects. Call these objects 1 through k − 1. This places the

reference rσ within a d-cell (defined by the labels of the comparison queries between

objects 1, . . . , k−1). Call this d-cell Ck−1. Now suppose we pick another object at random

and call it object k. A comparison query between object k and one of objects 1, . . . , k− 1

can only be informative (i.e., ambiguous) if the associated hyperplane intersects this

d-cell Ck−1 (see Figure 2.2). If k is significantly larger than d, then it turns out that the

cell Ck−1 is probably quite small and the probability that one of the queries intersects

Ck−1 is very small; in fact the probability is on the order of 1/k2.
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2.3.1 Hyperplane-point duality

Consider a hyperplane h = (h0, h1, . . . , hd) with (d + 1) parameters in Rd and a point

p = (p1, . . . , pd) ∈ Rd that does not lie on the hyperplane. Checking which halfspace

p falls in, i.e., h1p1 + h2p2 + · · · + hdpd + h0 ≷ 0, has a dual interpretation: h is a

point in Rd+1 and p is a hyperplane in Rd+1 passing through the origin (i.e., with d free

parameters).

Recall that each possible ranking can be represented by a reference point rσ ∈ Rd.

Our problem is to determine the ranking, or equivalently the vector of responses to the(
n
2

)
queries represented by hyperplanes in Rd. Using the above observation, we see that

our problem is equivalent to finding a labeling over
(
n
2

)
points in Rd+1 with as few queries

as possible. We will refer to this alternative representation as the dual and the former as

the primal.

2.3.2 Characterization of an ambiguous query

The characterization of an ambiguous query has interpretations in both the primal and

dual spaces. We will now describe the interpretation in the dual which will be critical to

our analysis of the sequential algorithm of Figure 2.1.

Definition 2.7. [22] Let S be a finite subset of Rd and let S+ ⊂ S be points labeled +1

and S− = S \ S+ be the points labeled −1 and let x be any other point except the origin.

If there exists two homogeneous linear separators of S+ and S− that assign different labels

to the point x, then the label of x is said to be ambiguous with respect to S.

Lemma 2.8. [22, Lemma 1] The label of x is ambiguous with respect to S if and only

if S+ and S− are homogeneously linearly separable by a (d − 1)-dimensional subspace
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containing x.

Let us consider the implications of this lemma to our scenario. Assume that we have

labels for all the pairwise comparisons of k − 1 objects. Next consider a new object

called object k. In the dual, the pairwise comparison between object k and object i, for

some i ∈ {1, . . . , k − 1}, is ambiguous if and only if there exists a hyperplane that still

separates the original points and also passes through this new point. In the primal, this

separating hyperplane corresponds to a point lying on the hyperplane defined by the

associated pairwise comparison.

2.3.3 The probability that a query is ambiguous

An essential component of the sequential algorithm of Figure 2.1 is the initial random

order of the objects; every sequence in which it could consider objects is equally probable.

This allows us to state a nontrivial fact about the partial rankings of the first k objects

observed in this sequence.

Lemma 2.9. Assume A1-2 and σ ∼ U . Consider the subset S ⊂ X with |S| = k that is

randomly selected from X such that all
(
n
k

)
subsets are equally probable. If Σk,d denotes

the set of possible rankings of these k objects then every σ ∈ Σk,d is equally probable.

Proof. Let a k-partition denote the partition of Rd into Q(k, d) d-cells induced by k

objects for 1 ≤ k ≤ n. In the n-partition, each d-cell is weighted uniformly and is

equal to 1/Q(n, d). If we uniformly at random select k objects from the possible n and

consider the k-partition, each d-cell in the k-partition will contain one or more d-cells of

the n-partition. If we select one of these d-cells from the k-partition, on average there

will be Q(n, d)/Q(k, d) d-cells from the n-partition contained in this cell. Therefore the
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probability mass in each d-cell of the k-partition is equal to the number of cells from

the n-partition in this cell multiplied by the probability of each of those cells from the

n-partition: Q(n, d)/Q(k, d)× 1/Q(n, d) = 1/Q(k, d), and |Σk,d| = Q(k, d).

As described above, for 1 ≤ i ≤ k some of the pairwise comparisons qi,k+1 may be

ambiguous. The algorithm chooses a random sequence of the n objects in its initialization

and does not use the labels of q1,k+1, . . . , qj−1,k+1, qj+1,k+1, . . . , qk,k+1 to make a determi-

nation of whether or not qj,k+1 is ambiguous. It follows that the events of requesting the

label of qi,k+1 for i = 1, 2, . . . , k are independent and identically distributed (conditionally

on the results of queries from previous steps). Therefore it makes sense to talk about the

probability of requesting any one of them.

Lemma 2.10. Assume A1-2 and σ ∼ U . Let A(k, d,U) denote the probability of

the event that the pairwise comparison qi,k+1 is ambiguous for i = 1, 2, . . . , k. Then

there exists a positive, real number constant a independent of k such that for k ≥ 2d,

A(k, d,U) ≤ a 2d
k2 .

Proof. By Lemma 2.8, a point in the dual (pairwise comparison) is ambiguous if and only

if there exists a separating hyperplane that passes through this point. This implies that

the hyperplane representation of the pairwise comparison in the primal intersects the cell

containing rσ (see Figure 2.2 for an illustration of this concept). Consider the partition of

Rd generated by the hyperplanes corresponding to pairwise comparisons between objects

1, . . . , k. Let P (k, d) denote the number of d-cells in this partition that are intersected

by a hyperplane corresponding to one of the queries qi,k+1, i ∈ {1, . . . , k}. Then it is

not difficult to show that P (k, d) is bounded above by a constant independent of n

and k times k2(d−1)

2d−1(d−1)!
(see Appendix A.4). By Lemma 2.9, every d-cell in the partition
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induced by the k objects corresponds to an equally probable ranking of those objects.

Therefore, the probability that a query is ambiguous is the number of cells intersected

by the corresponding hyperplane divided by the total number of d-cells, and therefore

A(k, d,U) = P (k,d)
Q(k,d)

. The result follows immediately from the bounds on P (k, d) and

Corollary 2.4.

Because the individual events of requesting each query are conditionally independent,

the total number of queries requested by the algorithm is justMn =
∑n−1

k=1

∑k
i=1 1{Request qi,k+1}.

Using the results above, it straightforward to prove our main result.

Theorem 2.11. Assume A1-2 and σ ∼ U . Let the random variable Mn denote the

number of pairwise comparisons that are requested in the algorithm of Figure 2.1, then

EU [Mn] ≤ d2dae log2 n.

Furthermore, if σ ∼ π and maxσ∈Σn,d πσ ≤ c|Σn,d|−1 for some c > 0, then Eπ[Mn] ≤

cEU [Mn].

Proof. Let Bk+1 denote the total number of pairwise comparisons requested of the

(k+ 1)st object; i.e., number of ambiguous queries in the set qi,k+1, i = 1, . . . , k. Because

the individual events of requesting these are conditionally independent (see Section 2.3.3),

it follows that each Bk+1 is an independent binomial random variable with parameters

A(k, d,U) and k. The total number of queries requested by the algorithm is

Mn =
n−1∑
k=1

k∑
i=1

1{Request qi,k+1} =
n−1∑
k=1

Bk+1 . (2.4)

Because Lemma 2.10 is only relevant for sufficiently large k, we assume that none of the
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pairwise comparisons are ambiguous when k ≤ 2da. Recall from Section A.1 that binary

sort is implemented so for these first d2dae objects, at most d2dae log2(d2dae) queries

are requested. For k > 2da the number of requested queries to the kth object is upper

bounded by the number of ambiguous queries of the kth object. Then using the known

mean and variance formulas for the binomial distribution

EU [Mn] =
n−1∑
k=1

EU [Bk+1]

≤
d2dae∑
k=2

Bk+1 +
n−1∑

k=d2dae+1

2da

k

≤ d2dae log2d2dae+ 2da log (n/d2dae)

≤ d2dae log2 n

We now consider the case for a general distribution π. Enumerate the rankings of

Σn,d. Let Ni denote the (random) number of requested queries needed by the algorithm

to reconstruct the ith ranking. Note that the randomness of Ni is only due to the

randomization of the algorithm. Let πi denote the probability it assigns to the ith

ranking as in Definition 2.1. Then

Eπ[Mn] =

Q(n,d)∑
i=1

πi E[Ni]. (2.5)

Assume that the distribution over rankings is bounded above such that no ranking is

overwhelmingly probable. Specifically, assume that the probability of any one ranking is

upper bounded by c/Q(n, d) for some constant c > 1 that is independent of n. Under this

bounded distribution assumption, Eπ[Mn] is maximized by placing probability c/Q(n, d)
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on the k := Q(n, d)/c cells for which E[Ni] is largest (we will assume k is an integer, but

it is straightforward to extend the following argument to the general case). Since the

mass on these cells is equal, without loss of generality we may assume that E[Ni] = µ, a

common value on each, and we have Eπ[Mn] = µ. For the remaining Q(n, d)− k cells

we know that E[Ni] ≥ d, since each cell is bounded by at least d hyperplanes/queries.

Under these conditions, we can relate Eπ[Mn] to EU [Mn] as follows. First observe that

EU [Mn] =
1

Q(n, d)

Q(n,d)∑
i=1

E[Ni] ≥
k

Q(n, d)
µ+ d

Q(n, d)− k
Q(n, d)

,

which implies

Eπ[Mn] = µ ≤ Q(n,d)
k

(
EU [Mn]− dQ(n,d)−k

Q(n,d)

)
= c

(
EU [Mn]− dQ(n,d)−k

Q(n,d)

)
≤ cEU [Mn] .

In words, the non-uniformity constant c > 1 scales the expected number of queries.

Under A1-2, for large n we have Eπ[Mn] = O(c d log n).

2.4 Robust sequential algorithm for query selection

We now extend the algorithm of Figure 2.1 to situations in which the response to each

query is only probably correct. If the correct label of a query qi,j is yi,j, we denote

the possibly incorrect response by Yi,j. Let the probability that Yi,j = yi,j be equal to

1− p, p < 1/2. The robust algorithm operates in the same fashion as the algorithm in

Figure 2.1, with the exception that when an ambiguous query is encountered several

(equivalent) queries are made and a decision is based on the majority vote. We will now

judge performance based on two metrics: (i) how many queries are requested and (ii)
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how accurate the estimated ranking is with respect to the true ranking before it was

corrupted. For any two rankings σ, σ̂ we adopt the popular Kendell-Tau distance [35]

dτ (σ, σ̂) =
∑

(i,j):σ(i)<σ(j)

1{σ̂(j) < σ̂(i)} (2.6)

where 1 is the indicator function. Clearly, dτ (σ, σ̂) = dτ (σ̂, σ) and 0 ≤ dτ (σ, σ̂) ≤
(
n
2

)
.

For any ranking σ ∈ Σn,d we wish to find an estimate σ̂ ∈ Σn,d that is close in terms of

dτ (σ, σ̂) without requesting too many pairwise comparisons. For convenience, we will

some times report results in terms of the proportion ε of incorrect pairwise orderings

such that dτ (σ, σ̂) ≤ ε
(
n
2

)
. Using the equivalence of the Kendell-Tau and Spearman’s

footrule distances (see [36]), if dτ (σ, σ̂) ≤ ε
(
n
2

)
then each object in σ̂ is, on average, no

more than O(εn) positions away from its position in σ. Thus, the Kendell-Tau distance

is an intuitive measure of closeness between two rankings.

First consider the case in which each query can be repeated to obtain multiple

independent responses (votes) for each comparison query. This random errors model

arises, for example, in social choice theory where the “reference” is a group of people,

each casting a vote.

Theorem 2.12. Assume A1-2 and σ ∼ U but that each response to the query qi,j is

a realization of an i.i.d. Bernoulli random variable Yi,j with P (Yi,j 6= yi,j) ≤ p < 1/2

for all distinct i, j ∈ {1, . . . , n}. If all ambiguous queries are decided by the majority

vote of R independent responses to each such query, then with probability greater than

1− 2n log2(n) exp(−1
2
(1− 2p)2R) this procedure correctly identifies the correct ranking

(i.e. ε = 0) and requests no more than O(Rd log n) queries on average.

Proof. Suppose qi,j is ambiguous. Let α̂ be the frequency of Yi,j = 1 after R trials. Let
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E[α̂] = α. The majority vote decision is correct if |α − α̂| ≤ 1/2 − p. By Chernoff’s

bound, P(|α− α̂| ≥ 1/2− p) ≤ 2 exp(−2(1/2− p)2R). The result follows from the union

bound over the total number of queries considered: n log2 n.

We can deduce from the above theorem that to exactly recover the true ranking

under the stated conditions with probability 1 − δ, one need only request O
(
d(1 −

2p)−2 log2(n/δ)

)
pairwise comparisons, on average.

In other situations, if we ask the same query multiple times we may get the same,

possibly incorrect, response each time. This persistent errors model is natural, for

example, if the reference is a single human. Under this model, if two rankings differ by

only a single pairwise comparison, then they cannot be distinguished with probability

greater than 1− p. So, in general, exact recovery of the ranking cannot be guaranteed

with high probability. The best we can hope for is to exactly recover a partial ranking of

the objects (i.e. the ranking over a subset of the objects) or a ranking that is merely

probably approximately correct in terms of the Kendell-Tau distance of (2.6). We will

first consider the task of exact recovery of a partial ranking of objects and then turn our

attention to the recovery of an approximate ranking. Henceforth, we will assume the

errors are persistent.

2.4.1 Robust sequential algorithm for persistent errors

The robust query selection algorithm for persistent errors is presented in Figure 2.3.

The key ingredient in the persistent errors setting is the design of a voting set for each

ambiguous query encountered. Suppose the query qi,j is ambiguous in the algorithm of

Figure 2.1. In principle, a voting set could be constructed using objects ranked between
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i and j. If object k is between i and j, then note that yi,j = yi,k = yk,j. In practice, we

cannot identify the subset of objects ranked between i and j exactly, but we can find a

set that contains them. For an ambiguous query qi,j define

Ti,j := {k ∈ {1 . . . , n} : qi,k, qk,j, or both are ambiguous}. (2.7)

Then Ti,j contains all objects ranked between i and j (if k is ranked between i and j, and

qi,k and qk,j are unambiguous, then so is qi,j, a contradiction). Furthermore, if the first

j − 1 objects ranked in the algorithm were selected uniformly at random (or initialized

in a random order in the algorithm) Lemma 2.9 implies that each object in Ti,j is ranked

between i and j with probability at least 1/3 due to the uniform distribution over the

rankings Σn,d (see proof of Theorem 2.13 for an explanation). Ti,j will be our voting

set. If we follow the sequential procedure of the algorithm of Figure 2.3, the first query

encountered, call it q1,2, will be ambiguous and T1,2 will contain all the other n−2 objects.

However, at some point for some query qi,j it will become probable that the objects i

and j are closely ranked. In that case, Ti,j may be rather small, and so it is not always

possible to find a sufficiently large voting set to accurately determine yi,j. Therefore,

we must specify a size-threshold R ≥ 0. If the size of Ti,j is at least R, then we draw

R indices from Ti,j uniformly at random without replacement, call this set {tl}Rl=1, and

decide the label for qi,j by voting over the responses to {qi,k, qk,j : k ∈ {tl}Rl=1}; otherwise

we pass over object j and move on to the next object in the list. Given that |Ti,j| ≥ R
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Robust Query Selection Algorithm

input: n objects in Rd, R ≥ 0
initialize: objects X = {x1, . . . , xn} in uniformly random order, X ′ = X
for j=2,. . . ,n

for i=1,. . . ,j-1
if qi,j is ambiguous,
Ti,j := {k ∈ {1 . . . , n} : qi,k, qk,j, or both are ambiguous}
if |Ti,j| ≥ R

{tl}Rl=1
i.i.d.∼ uniform(Ti,j).

request Yi,k, Yk,j for all k ∈ {tl}Rl=1

decide label of qi,j with (2.8)
else
X ′ ← X ′ \ xj , j ← j + 1

else
impute qi,j’s label from previously labeled queries.

output: ranking over objects in X ′

Figure 2.3: Robust sequential algorithm for selecting queries of Sec-
tion 2.4.1. See Figure 2.2 and Section 2.3.2 for the definition of an
ambiguous query.

the label of qi,j is determined by:

0
i≺j
R
j≺i

∑
k∈{tl}Rl=1

1{Yi,k = 1 ∧ Yk,j = 1} − 1{Yi,k = 0 ∧ Yk,j = 0}. (2.8)

In the next section we will analyze this algorithm and show that it enjoys a very favorable

query complexity while also admitting a probably approximately correct ranking.

2.4.2 Analysis of the robust sequential algorithm

Consider the robust algorithm in Figure 2.3. At the end of the process, some objects that

were passed over may then be unambiguously ranked (based on queries made after they

were passed over) or they can be ranked without voting (and without guarantees). As
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mentioned in Section 2.4.1, if the first j − 1 objects ranked in the algorithm of Figure 2.3

were chosen uniformly at random from the full set (i.e., none of the first j − 1 objects

were passed over) then there is at least a one in three chance each object in Ti,j for some

ambiguous query qi,j is ranked between i and j.

Theorem 2.13. Assume A1-2, σ ∼ U , and P (Yi,j 6= yi,j) = p. For every set Ti,j

constructed in the algorithm of Figure 2.3, assume that an object selected uniformly at

random from Ti,j is ranked between xi and xj with probability at least 1/3. Then for any

size-threshold R ≥ 1, with probability greater than 1− 2n log2(n) exp

(
− 2

9
(1− 2p)2R

)
the algorithm correctly ranks at least n/(2R + 1) objects and requests no more than

O(Rd log n) queries on average.

Proof. Suppose qi,j is ambiguous. Let Si,j denote the subset of X such that xk ∈ Si,j

if it is ranked between objects xi and xj (i.e. Si,j = {xk ∈ X : xi ≺ xk ≺ xj or

xj ≺ xk ≺ xi}). Note that yi,j = yi,k = yk,j if and only if xk ∈ Si,j. If we define

Ek
i,j = 1{Yi,k = 1 ∧ Yk,j = 1} − 1{Yi,k = 0 ∧ Yk,j = 0}, where 1 is the indicator function,

then for any subset T ⊂ X such that Si,j ⊂ T , the sign of the sum
∑

xk∈T E
k
i,j is a predictor

of yi,j. In fact, with respect to just the random errors, E
[∣∣∣∣∑xk∈T E

k
i,j

∣∣∣∣] = |Si,j|(1− 2p).

To see this, without loss of generality let yi,j = 1, then for xk ∈ Si,j

E[Ek
i,j] = E [1{Yi,k = 1 ∧ Yk,j = 1} − 1{Yi,k = 0 ∧ Yk,j = 0}]

= P(Yi,k = 1 ∧ Yk,j = 1)− P(Yi,k = 0 ∧ Yk,j = 0)

= (1− p)2 − p2

= 1− 2p.
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If xk /∈ Si,j then it can be shown by a similar calculation that E[Ek
i,j] = 0.

To identify Si,j we use the fact that if xk ∈ Si,j then qi,k, qj,k, or both are also

ambiguous simply because otherwise qi,j would not have been ambiguous in the first

place (Figure 2.4 may be a useful aid to see this). While the converse is false, Lemma 2.9

says that each of the six possible rankings of {xi, xj, xk} are equally probable if they

were uniformly at random chosen (thus partly justifying this explicit assumption in the

theorem statement). It follows that if we define the subset Ti,j ∈ X to be those objects xk

with the property that qi,k, qk,j, or both are ambiguous then the probability that xk ∈ Si,j

is at least 1/3 if xk ⊂ Ti,j. You can convince yourself of this using Figure 2.4. Moreover,

E
[∣∣∣∣∑k∈Ti,j E

k
i,j

∣∣∣∣] ≥ |Ti,j|(1− 2p)/3 which implies the sign of the sum
∑

xk∈Ti,j E
k
i,j is a

reliable predictor of qi,j; just how reliable depends only on the size of Ti,j.

Figure 2.4: Let qi,j be ambiguous. Object k will be informative to the majority vote
of yi,j if the reference lies in the shaded region. There are six possible rankings and if
qi,k, qk,j, or both are ambiguous then the probability that the reference is in the shaded
region is at least 1/3

Fix R > 0. Suppose qi,j is ambiguous and assume without loss of generality that yi,j =
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1. Given that E
[∑

k∈Ti,j E
k
i,j

]
≥ |Ti,j|(1− 2p)/3 from above, it follows from Hoeffding’s

inequality that the probability that
∑

k∈Ti,j E
k
i,j ≤ 0 is less than exp

(
−2

9
(1− 2p)2|Ti,j|

)
. If

only a subset of Ti,j of size R is used in the sum then |Ti,j| is replaced by R in the exponent.

This test is only performed when |Ti,j| > R and clearly no more times than the number

of queries considered to rank n objects in the full ranking: n log2 n. Thus, all decisions

using this test are correct with probability at least 1 − 2n log2(n) exp
(
−2

9
(1− 2p)2R

)
.

Only a subset of the n objects will be ranked and of those, 2R + 1 times more queries

will be requested than in the error-free case (two queries per object in Ti,j). Thus the

robust algorithm will request no more than O(Rd log n) queries on average.

To determine the number of objects that are in the partial ranking, let X ′ ⊂ X denote

the subset of objects that are ranked in the output partial ranking. Each xk ∈ X ′ is

associated with an index in the true full ranking and is denoted by σ(xk). That is, if

σ(xk) = 5 then it is ranked fifth in the full ranking but in the partial ranking could be

ranked first, second, third, fourth, or fifth. Now imagine the real line with tick marks

only at the integers 1, . . . , n. For each xk ∈ X ′ place an R-ball around each xk on these

tick marks such that if σ(xk) = 5 and R = 3 then 2, . . . , 8 are covered by the ball around

σ(xk) and 1 and 9, . . . , n are not. Then the union of the balls centered at the objects

in X ′ cover 1, . . . , n. If this were not true then there would be an object xj /∈ X ′ with

|Si,j| > R for all xi ∈ X ′. But Si,j ⊂ Ti,j implies |Ti,j| > R which implies j ∈ X ′, a

contradiction. Because at least n/(2R+ 1) R-balls are required to cover 1, . . . , n, at least

this many objects are contained in X ′.

Note that before the algorithm skips over an object for the first time, all objects that

are ranked at such an intermediate stage are a subset chosen uniformly at random from
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the full set of objects, due to the initial randomization. Therefore, if Ti,j is a voting set in

this stage, an object selected uniformly at random from Ti,j is ranked between xi and xj

with probability at least 1/3, per Lemma 2.9. After one or more objects are passed over,

however, the distribution is no longer necessarily uniform due to this action, and so the

assumption of the theorem above may not hold. The procedure of the algorithm is still

reasonable, but it is difficult to give guarantees on performance without the assumption.

Nevertheless, this discussion leads us to wonder how many objects the algorithm will

rank before it skips over its first object.

Lemma 2.14. Consider a ranking of n objects and suppose objects are drawn sequentially,

chosen uniformly at random without replacement. If M is the largest integer such that M

objects are drawn before any object is within R positions of another one in the ranking,

then M ≥
√

n/R
6 log(2)

with probability at least 1
6 log(2)

(
e−(
√

6 log(2)R/n+1)2/2 − 2−n/(3R)

)
. As

n/R→∞, P (M ≥
√

n/R
6 log(2)

)→ 1
6
√
e log(2)

.

Proof. Assume M ≤ n
3R

. If pm denotes the probability that the (m+ 1)st object is within

R positions of one of the first m objects, given that none of the first m objects are within

R positions of each other, then Rm
n
< pm ≤ 2Rm

n−m and

P (M = m) ≥
m−1∏
l=1

(
1− 2Rl

n− l

)
Rm

n
.
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Taking the log we find

logP (M = m) ≥ log
Rm

n
+

m−1∑
l=1

log

(
1− 2Rl

n− l

)

≥ log
Rm

n
+ (m− 1) log

(
1

(m− 1)

m−1∑
l=1

(
1− 2Rl

n− l

))

≥ log
Rm

n
+ (m− 1) log

(
1− Rm

n−m+ 1

)
≥ log

Rm

n
+ (m− 1) log

(
1− 3Rm

2n

)
≥ log

Rm

n
+ (m− 1)

(
−3 log(2)Rm

n

)

where the second line follows from Jensen’s inequality, the fourth line follows from the fact

that m ≤ n
3R

, and the last line follows from the fact that (1− x) ≥ exp(−2 log(2)x) for

x ≤ 1/2. We conclude that P (M = m) ≥ R
n
m exp{−3 log(2)R

n
m2}. Now if a =

√
n/R

6 log(2)

we have

P (M ≥ a) ≥
n/(3R)−1∑
m=dae

R

n
m exp{−3 log(2)

R

n
m2}

≥
∫ n/(3R)

a+1

R

n
x exp{−3 log(2)

R

n
x2}dx

=
1

6 log(2)

(
e−(
√

6 log(2)R/n+1)2/2 − e− log(2)n/(3R)
)

where the second line follows from the fact that xe−αx2/2 is monotonically decreasing

for x ≥
√

1/α. Note, P (M ≥
√

n/R
6 log(2)

) is greater than 1
100

for n/R ≥ 7, and 1
10

for

n/R ≥ 40. Moreover, as n/R→∞, P (M ≥
√

n/R
6 log(2)

)→ 1
6
√
e log(2)

.

Lemma 2.14 characterizes how many objects the robust algorithm will rank before
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it passes over its first object because if there are at least R objects between every

pair of the first M objects, then Ti,j ≥ R for all distinct i, j ∈ {1, . . . ,M} and none

of the first M objects will be passed over. We can conclude from Lemma 2.14 and

Theorem 2.13 that with constant probability (with respect to the initial ordering of

the objects and the randomness of the voting), the algorithm of Figure 2.3 exactly

recovers a partial ranking of at least Ω(
√

(1− 2p)2n/ log n) objects by requesting just

O

(
d(1− 2p)−2 log2 n

)
pairwise comparisons, on average, with respect to all the rankings

in Σn,d. If we repeat the algorithm with different initializations of the objects each

time, we can boost this constant probability to an arbitrarily high probability (recall

that the responses to queries will not change over the repetitions). Note, however, that

the correctness of the partial ranking does not indicate how approximately correct the

remaining rankings will be. If the algorithm of Figure 2.3 ranks m objects before skipping

over its first, then the next lemma quantifies how accurate an estimated ranking is in

terms of Kendel-Tau distance, given that it is some ranking in Σn,d that is consistent

with the probably correct partial ranking of the first m objects (the output ranking of

the algorithm may contain more than m objects but we make no guarantees about these

additional objects).

Lemma 2.15. Assume A1-2 and σ ∼ U . Suppose we select 1 ≤ m < n objects uniformly

at random from the n and correctly rank them amongst themselves. If σ̂ is any ranking

in Σn,d that is consistent with all the known pairwise comparisons between the m objects,

then E[dτ (σ, σ̂)] = O(d/m2)
(
n
2

)
, where the expectation is with respect to the random

selection of objects and the distribution of the rankings U .

Proof. Enumerate the objects such that the first m are the objects ranked amongst
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themselves. Let y be the pairwise comparison label vector for σ and ŷ be the corresponding

vector for σ̂. Then

E[dτ (σ, σ̂)] =
m∑
k=2

k−1∑
l=1

1{yl,k 6= ŷl,k}+
n∑

k=m+1

k−1∑
l=1

1{yl,k 6= ŷl,k}

=
n∑

k=m+1

k−1∑
l=1

1{yl,k 6= ŷl,k}

≤
n∑

k=m+1

k−1∑
l=1

P{Request ql,k|labels to qs≤m,t≤m}

≤
n∑

k=m+1

k−1∑
l=1

2ad

m2

≤ 2ad

m2

(n−m)(n+m+ 1)

2

≤ ad

(
(n+ 1)2

m2
− 1

)
.

where the third line assumes that every pairwise comparison that is ambiguous (that

is, cannot be imputed using the knowledge gained from the first m objects) is incorrect.

The fourth line follows from the application of Lemma 2.9 and Lemma 2.10.

Combining Lemmas 2.14 and 2.15 in a straightforward way, we have the following

theorem.

Theorem 2.16. Assume A1-2, σ ∼ U , and P (Yi,j 6= yi,j) = p. If R = Θ((1−2p)−2 log n)

and σ̂ is any ranking in Σn,d that is consistent with all known pairwise comparisons

between the subset of objects ranked in the output of the algorithm of Figure 2.3, then

with constant probability E[dτ (σ, σ̂)] = O(d(1− 2p)−2 log(n)/n)
(
n
2

)
and no more than

O(d(1− 2p)−2 log2(n)) pairwise comparisons are requested, on average.

If we repeat the algorithm with different initializations of the objects until a sufficient
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number of objects are ranked before an object is passed over, we can boost this constant

probability to an arbitrarily high probability. However, in practice, we recommend

running the algorithm just once to completion since we do not believe passing over an

object early on greatly affects performance.

2.5 Empirical results

In this section we present empirical results for both the error-free algorithm of Figure 2.1

and the robust algorithm of Figure 2.3. For the error-free algorithm, n = 100 points,

representing the objects to be ranked, were uniformly at random simulated from the

unit hypercube [0, 1]d for d = 1, 10, 20, . . . , 100. The reference was simulated from the

same distribution. For each value of d the experiment was repeated 25 times using

a new simulation of points and the reference. Because responses are error-free, exact

identification of the ranking is guaranteed. The number of requested queries is plotted in

Figure 2.5 with the lower bound of Theorem 2.5 for reference. The number of requested

queries never exceeds twice the lower bound which agrees with the result of Theorem 2.11.

The robust algorithm of Figure 2.3 was evaluated using a symmetric similarity matrix

dataset available at [37] whose (i, j)th entry, denoted si,j, represents the human-judged

similarity between audio signals i and j for all i 6= j ∈ {1, . . . , 100}. If we consider the

kth row of this matrix, we can rank the other signals with respect to their similarity to the

kth signal; we define q(k)
i,j := {sk,i > sk,j} and y

(k)
i,j := 1{q(k)

i,j }. Since the similarities were

derived from human subjects, the derived labels may be erroneous. Moreover, there is no

possibility of repeating queries here and so the errors are persistent. The analysis of this

dataset in [16] suggests that the relationship between signals can be well approximated
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Figure 2.5: Mean and standard deviation
of requested queries (solid) in the error-
free case for n = 100; log2 |Σn,d| is a
lower bound (dashed).

Table 2.1: Statistics for the algorithm
robust to persistent errors of Section 2.4
with respect to all

(
n
2

)
pairwise compar-

isons. Recall y is the noisy response vec-
tor, ỹ is the embedding’s solution, and
ŷ is the output of the robust algorithm.

Dimension 2 3
% of queries
requested

mean 14.5 18.5
std 5.3 6

Average error d(y, ỹ) 0.23 0.21
d(y, ŷ) 0.31 0.29

by an embedding in 2 or 3 dimensions. We used non-metric multidimensional scaling [19]

to find an embedding of the signals: x1, . . . , x100 ∈ Rd for d = 2 and 3. For each

object xk, we use the embedding to derive pairwise comparison labels between all other

objects as follows: ỹ(k)
i,j := 1{||xk − xi|| < ||xk − xj||}, which can be considered as the

best approximation to the labels y(k)
i,j (defined above) in this embedding. The output of

the robust sequential algorithm, which uses only a small fraction of the similarities, is

denoted by ŷ(k)
i,j . We set R = 15 using Theorem 2.16 as a rough guide. Using the popular

Kendell-Tau distance d(y(k), ŷ(k)) =
(
n
2

)−1∑
i<j 1{y

(k)
i,j 6= ŷ

(k)
i,j } [35] for each object k, we

denote the average of this metric over all objects by d(y, ŷ) and report this statistic and

the number of queries requested in Table 2.1. Because the average error of ŷ is only 0.07

higher than that of ỹ, this suggests that the algorithm is doing almost as well as we

could hope. Also, note that 2R 2d log n/
(
n
2

)
is equal to 11.4% and 17.1% for d = 2 and

3, respectively, which agrees well with the experimental values.



44

2.6 Discussion

This chapter considered a natural model for constraining the set of total orderings over a

set of objects. By a counting argument we proved a lower bound on the query complexity

of this problem and presented an algorithm that matches it up to constants. In addition,

we considered the possibility that answers to pairwise comparisons were“noisy” or reversed

with some probability less than one half and proposed a robust version of our algorithm

to account for this uncertainty.

However, there are obstacles to overcome before something like the schemes proposed

in this Chapter can be realized in practice. First, the algorithm is quite brittle in that if

it makes a mistake early on, the mistake can cascade through the algorithm resulting in

unpredictable behavior. The most likely way the algorithm could falter is by abiding

by the model too strictly and not accounting for possible model mismatch. After all,

the geometrical model is trying to model a possibly unknowable reality of someone’s

perception, so while it may be a reasonable model, it should be taken with a grain

of salt and an algorithm should be robust to small perturbations of this model. The

second obstacle to overcome is one of computation. By making “hard” decisions, i.e.

deciding the direction of a pairwise comparison was absolutely one way or the other

without any uncertainty, the task of identifying which queries were ambiguous or not and

boiled down to a simple linear program. However, methods that make“soft” decisions

and update those beliefs as more information becomes available tend to be much more

robust [38]. Unfortunately, these statistical advantages come at a substantially higher

computational cost making them infeasible for all but the most simple cases. While this

chapter provided a theoretical foundation for active ranking, the question of how best to
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realize it in practice remains open.

2.7 Bibliographical Remarks

The content of this chapter was based on the author’s following publications:

• Kevin G Jamieson and Robert D Nowak. Active ranking using pairwise comparisons.

In Advances in Neural Information Processing Systems (NIPS), pages 2240–2248,

2011,

• Kevin G Jamieson and Robert D Nowak. Active ranking in practice: General

ranking functions with sample complexity bounds. In NIPS Workshop, 2011.

Two lines of related research were performed around the time of the publication of this

work.

The first related work considers a set of n objects and an arbitrary set of bits

S = {yi,j}1≤i<j≤n that each represent the pairwise preference yi,j = 1{i ≺ j}. It is not

assumed that there exists a ranking consistent with all
(
n
2

)
pairwise preferences in S and

one can define the loss of a total ordering π as `(π, S) =
∑

yi,j=0 1{i ≺π j}. It is shown

in [5, 39] that using an adaptive sampling procedure one can find a ranking π such that

`(π, S)−minπ′ `(π
′, S) ≤ ε using no more than n log(n)poly(ε−1) pairwise comparisons

with high probability, whereas Ω(n2poly(ε−1)) are required if pairwise comparisons are

chosen non-adaptively.

The work presented in this chapter is very relevant to nearest neighbor search or

top-k nearest neighbor search when only pairwise comparisons are available. This is

precisely the setting studied in [40] who introduce a complexity measure called the



46

combinatorial disorder coefficient which, in the context of this chapter, roughly measures

how far the embedding of the objects differs from a one dimensional subspace. They show

that the number of pairwise comparisons to identify a nearest neighbor using pairwise

comparisons is polynomial in D log(n) where D is the combinatorial disorder coefficient

and n is the number of objects. While this is reminiscent of the results presented here„

the combinatorial disorder coefficient cannot be directly mapped to this setting and the

tools used there are significantly different.
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Chapter 3

Active Non-metric Multidimensional

Scaling

The main mathematical question of active ranking introduced in Chapter 2 was essentially

the following: given {x1, . . . , xn} ∈ Rd and one additional point xn+1 whose location was

not known, find the ranking σ : {1, . . . , n} → {1, . . . , n} such that

||xσ(1) − xn+1||2 < ||xσ(2) − xn+1||2 < · · · < ||xσ(n) − xn+1||2

using as few binary queries or comparisons of the form {||xi − xn+1||2 < ||xj − xn+1||2}

as possible. In some sense, we are “adding” xn+1 to the embedding of n points since

the possible location of xn+1 is seems highly constrained given that its location obeys

the discovered ranking. Indeed, one could even consider starting with no points and

adding points one at a time, at each time requiring the new point to rank all other

points, and visa versa. If we knew that there existed an Euclidean embedding of n

points in d dimensions that was consistent with all possible triplet queries of the form

{||xi − xk||2 < ||xj − xk||2} that we could ask, it is natural to wonder how many queries

would it take to find an embedding of the n points in Rd that agrees with all the answers

to all possible triplet queries. Active ranking hints that to add the (k+ 1)st object to the
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embedding, it may only take just O(d log(k)) queries, suggesting that finding a consistent

ordinal embedding may only require O(dn log(n)) queries. This chapter explores this

hypothesis in-depth.

3.1 Introduction

We study the problem of learning a low-dimensional embedding from ordinal data.

Consider a set of n points {x1, . . . , xn} in Rd. The locations of the points are unknown

to us, but assume we are given the set of constraints of the form “object xk is closer to

(or further from) xi than xj” for all distinct i, j, k ∈ {1, . . . , n}. The goal is to identify

an embedding into Rd consistent with these constraints. This is a classic problem that

has been addressed using a technique known as non-metric multidimensional scaling

(non-metric MDS).

Here we consider a new variation on this problem. Constraints of the form above

are often collected from human subjects. Each constraint is associated with a binary

variable, the answer to the comparison query “Is object xk closer to xi than xj?” People

are better at providing this sort of information as opposed to giving more fine-grained

numerical judgments or distances [2]. There are on the order of n3 constraints. Collecting

ordinal data of this type from people is time-consuming and costly, and quickly becomes

prohibitive as n grows. So it is of interest to consider whether it is necessary to obtain

the complete set of data. Since the points are assumed to exist in Rd, it is reasonable to

conjecture that if the embedding dimension is low, i.e., d� n, then there may be a high

degree of redundancy in these constraints. If this conjecture is correct, then it should be

possible to identify a consistent embedding (i.e., consistent will all the constraints) from
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a small subset of the constraints.

In this work we lower bound the minimum number of constraints needed to determine

a consistent embedding by dn log n, far fewer than the total number. We conjecture that

this lower bound is tight and propose a sequential procedure for adaptively selecting

comparison queries. A comparison query is made if and only if the answer to the query

(i.e., the corresponding constraint) is ambiguous given the answers to all previously

selected queries. Ambiguity can be tested by solving an optimization problem that is,

in general, non-convex but is observed to be well-behaved in practice (see Section 3.3.4).

Analysis of the procedure and numerical experiments support the conjecture that on the

order of dn log n queries/constraints determine the embedding. Furthermore, we show

that if queries are selected uniformly at random, then almost all the queries must be

requested in order to determine an embedding consistent with all the constraints.

3.1.1 Related work

Non-metric multidimensional scaling (MDS) was designed to provide researchers with

a graphical or spatial representation of the human-perceived relationships between a

set of arbitrary objects [41]. In addition to the pairwise comparisons of the form

||xi − xj|| < ||xj − xk|| for all triples (i, j, k), non-metric MDS also forces constraints of

the type

||xi − xj|| < ||xk − xl|| (3.1)

for all quadruples (i, j, k, l) ∈ {1, . . . , n}. These additional queries make the total number

of queries grow like n4 which is often prohibitively large for even small values of n.
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Consequently these additional constraints are often omitted in practice [42,43]. Also

note that because our query-ambiguity test alluded to above is a special case of non-metric

MDS, it follows that non-metric MDS is also non-convex and these additional queries

can make the already difficult optimization even harder. However, these issues are not

the only problems; they can also, at times, be difficult to answer accurately because a

query “is the distance between objects i and j less than the distance between objects

k and l?” requires a comparison of the absolute scales of the dissimilarities instead of

simply asking which object is closer to another. This difficulty is our primary reason for

considering constraints using just three objects.

While pairwise comparisons using triples of objects are very natural and easy to

answer, some research suggests that people can find answering these kind of queries

extremely tedious and boring. Presumably, this could lead to erroneous answers after

extended sessions of querying a user [3]. Some researchers have suggested that perhaps

only a sparse subset of these inequalities are actually required, greatly reducing the load

on the human subject [42,44]. Early work using just a random subset of these kinds of

queries by Johnson supports this hypothesis [45]. While researchers in the past have

proposed algorithms to find an embedding given a fixed number of answers to queries,

we are unaware of any research that attempts to characterize the number of queries

that must necessarily be made to uniquely determine an embedding. We provide partial

answers to this question and propose an algorithm that we conjecture to be optimal

in the sense that it asks within a constant factor of the minimum number of necessary

queries to uniquely determine an embedding consistent with all the constraints.

Prior to this point, we have assumed that the constraints we are querying for are

consistent with an embedding of a known dimension. However, [43] assumes that labels
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to queries are the result of a consensus from a number of individuals, or a crowd. This

perspective allows one to consider the problem from a probabilistic point of view so that

one can speak of requesting the comparison that would provide the greatest potential

information gain. While [43] presents some results for empirical datasets, few guarantees

were made about the quality of the embedding and no guidance was given to how many

queries were “enough” or sufficient to achieve an embedding of satisfactory quality.

As discussed in the prelude to this chapter, this problem is very related to the active

ranking problem [6]. Given a fixed embedding x1, . . . , xk of k objects in Rd (i.e. the

locations of the k objects are known exactly) and just one additional object is placed

in an unknown location in the same space, it is shown that the ranking of the objects

relative to their proximity to this new object can be discovered with just Θ(d log k)

queries on average, depending on the particular placement of the new object. Note that

the embeddings we consider in this paper are determined up to an equivalence class by

the correct ranking of the objects with respect to each object. While active ranking

appears to give us a valuable tool set, we will see later that it cannot get us all the way

to a sufficiency result. However, the active ranking analysis immediately yields a lower

bound on the query complexity of finding an embedding, providing us with a sufficiency

result.

3.2 The geometry of an embedding

Consider an embedding of n points in Rd. For any triple (i, j, k), we have that either

||xi−xk|| < ||xk−xj|| or its opposite are true (we assume ties are not allowed). We wish

to learn an embedding {x1, . . . , xn} ⊂ Rd that satisfies all of these constraints. If we
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concatenate each point xi ∈ Rd into a column vector x = (xT1 , . . . , x
T
n )T , we see that an

embedding of n points in d dimensions can be represented by a single vector living in Rnd.

If for every triple (i, j, k) we define the region ri,j,k = {x ∈ Rnd : ||xi− xk|| < ||xk − xj||},

then the query: “is object xk closer to xi or xj” is equivalent to asking if x ∈ ri,j,k. We

call this pairwise comparison query a membership query. All possible intersections of

these regions (and their complements) partition Rnd into many nd-dimensional regions

which we will call nd-cells to distinguish them from the regions of the form of ri,j,k.

Because every point in an nd-cell agrees with all of the same constraints, we call any

two embeddings in the same nd-cell equivalent. From this perspective, we see that we

are trying to locate a point in one of these nd-cells bounded by surfaces passing through

Rnd that are induced by the membership queries ri,j,k. Before considering this problem

directly, we would like to provide some intuition about the space of embeddings.

3.2.1 A lower bound on the query complexity

In this section we state a lower bound on the number of membership queries that are

necessary to define an embedding of n objects in d dimensions such that all the constraints

are satisfied. Our strategy is to add one object at a time to the embedding and lower

bound how quickly the number of embeddings grows.

Recall that we assumed the existence of a fixed embedding of n points in d dimensions

that generated the n
(
n−1

2

)
constraints. Suppose we somehow had the exact locations of

k < n objects and we would simply like to add the (k + 1)st point to the embedding. At

the very least, we must determine the order of the distances from xk+1 to all the other

xi’s for i = 1, . . . , k. That is, we must determine some permutation σ of the k indices
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such that we can write

||xk+1 − xσ(1)|| < ||xk+1 − xσ(2)|| < · · · < ||xk+1 − xσ(k)|| . (3.2)

Because the points x1, . . . , xk are embedded in d-dimensions, there are far fewer than

k! possibilities for σ. In fact, if all the points are in general position, the number of

possibilities for σ is known exactly. Namely, Theorem 2.3 and Corollary 2.4 of Chapter 2

apply. We conclude from those results that if Q(k, d) denotes the number of d-cells

formed by the arrangement of hyperplanes induced by the
(
k
2

)
pairs of objects, then

Q(k, d) = Θ( n
2d

2dd!
) where d is considered fixed. We are now ready to state a lower-bound

on the query complexity of finding an embedding.

Theorem 3.1. The number of membership queries {x ∈ ri,j,k}i,j,k≤n required to determine

an embedding of n objects in d dimensions that satisfies all of the constraints is Ω(dn log n).

Proof. Using the help of an oracle, who will not only supply us the answers to membership

queries but also additional side information, we will construct an embedding adding one

object at a time. We will lower bound the number of bits of information that we will

need to collect from the oracle and then use this as a lower bound for the number of

queries necessary since a query provides at most one bit of information.

Recall that we assume the existence of a fixed embedding {x1, . . . , xn} ⊂ Rd that

generated the constraints. We begin by asking the oracle for the exact locations of

the first two objects x1 and x2. Given the fixed positions of the first two objects, we

find which d-cell (a single halfspace in this case) the third object resides in, tell the

oracle, and then ask the oracle to provide the exact location of the third object. That is,

before getting the exact location of an object from the oracle, we must tell the oracle
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which d-cell the object is in. After k objects have been embedded this way, we find the

d-cell that the (k + 1)th object resides in, and then tell the oracle who returns the exact

location of this object. Because the oracle is providing to us the exact locations of the

objects, any queries that are inferred, due to them being unambiguous, are consistent

with any embedding that satisfies all the n
(
n−1

2

)
constraints; even those that have not

been considered by this sequential procedure yet. This subtle point will be considered

again in Section 3.3.2 when we do not have access to the exact locations of the objects.

There are Q(k, d) possible rankings of the k objects that we must discriminate between to

tell which d-cell the (k + 1)th object is in. Therefore, we must provide at least Ω(d log k)

bits of information to the oracle. The lower bound follows from summing the number of

bits to add all of the objects to the embedding sequentially.

Based on how the above lower bound was constructed, it is not clear how tight the

bound is because the oracle provided the exact location of the current object: information

which is clearly sufficient but unlikely to be absolutely necessary. However, as alluded to

before in Section 3.1.1, theoretical and empirical evidence suggests that as the number

of objects to be embedded grows, the amount of “wiggle” possible in each point of the

embedding decreases rapidly to zero [46]. Intuitively, as the number of constraints grows

with the number of objects embedded, the embedding acts more and more as if it were

constrained with metric constraints. We will revisit this idea in the Section 3.4.

3.2.2 Counting the number of embeddings

Given the lower bound of the last section, that showed that the log of the number of

embeddings is Ω(dn log(n), it is natural to wonder how tight it is. If we could upper
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bound the number of embeddings and look at the log of this number, this would tell us

how many bits it takes to encode an embedding of n objects in d dimensions. If this

number matched the lower bound, it would still not be enough to tell us if we could

achieve the lower bound because the possible membership queries we have at our disposal

may not be informative enough. However, it would not rule out, and give some hope

that a query complexity of O(dn log(n) is achievable.

Consider the membership query x ∈ ri,j,k = {x ∈ Rnd : ||xi − xk|| < ||xk − xj||} for

some (i, j, k) triple. By squaring both sides of the inequality in the definition of ri,j,k we

find that

ri,j,k = {x ∈ Rnd : xTi xi − 2xTi xk − xTj xj + 2xTj xk < 0}. (3.3)

Note that the boundary of ri,j,k is given by the degree-2 polynomial in nd dimensions

defined by xTi xi−2xTi xk−xTj xj +2xTj xk = 0, and that there are n
(
n−1

2

)
of them. Inspired

by a technique used to count the number of unique sign patters of a matrix when the

underlying matrix is low-rank [47], we use the same result used there to count the number

of embeddings. We restate the main lemma from there verbatim that is originally thanks

to Warren [48].

Lemma 3.2. [48] Let P1, . . . , Pm be real polynomials in r variables and let C be the

complement of the variety defined by
∏

i Pi, i.e. the set of points in which all the m

polynomials are non-zero: C = {z ∈ Rr : ∀iPi(z) 6= 0}. If all m polynomials are of degree
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at most q, then then number of connected components of C is at most

2(2q)r
r∑
i=0

2i
(
m

i

)
≤
(

4eqm

r

)r

where the inequality holds when m > r > 2.

In the lemma, each distinct connected components defines an nd-cell. While multiple

nd-cells may correspond to the same equivalent embedding, counting the number of

nd-cells is still an upper bound on the number of embeddings.

Corollary 3.3. The number of equivalent embeddings of n objects in d-dimensions if

n ≥ d is no greater than
(

4n√
d

)2dn

.

Proof. The result follows from a direct application of Lemma 3.2 with q = 2, r = nd,

and m = n
(
n−1

2

)
< n3/2.

The above corollary implies that it only takes O(dn log(n)) bits to describe each

equivalent embedding of n objects in d dimensions. We stress that this does not imply

that there exists an algorithm that can discover the embedding in just this many queries

because the queries may not provide enough information (e.g. less than a constant

fraction of a bit). But the result does not rule out the existence of such a result.

3.2.3 The inefficiency of randomly selected queries

Before we discuss different adaptive methods of selecting queries, it is natural to wonder

if such complicated schemes are really necessary; is it sufficient to simply select queries

uniformly at random to find a solution? In this section we show that if membership

queries are selected in a random fashion, Ω(n3) queries must be requested to uniquely
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determine an nd-cell and thus, an embedding. In fact, we actually show that to solve

a problem using extra side information would require this many queries and because

that information could have always been ignored, to solve the problem without the side

information is at least as hard. Our strategy is to add a single object to the embedding

one at a time and show that if there are k objects already embedded, it requires Ω(k2)

queries to add the (k + 1)th object.

We assume that queries are selected independently such that after selecting a subset

of the queries, they are exchangeable in the sense that we can reorder them any way

we like and it does not affect which nd-cell they define. Enumerate the objects so that

they are labeled 1, . . . , n. Then, order the randomly selected queries such that for any

query defined over the triple (i, j, k) in the list, all queries that are ordered before it use

objects whose indices are less than or equal to max{i, j, k}. In other words, we would

like to reorder the selected queries such that it appears as if we are adding one object

at a time like we constructed the lower bound of above. Again, suppose we somehow

had the exact locations of k < n objects and we would simply like to add the (k + 1)th

point to the embedding. At the very least, we must determine the order of the distances

from xk+1 to all the other xi’s for i = 1, . . . , k as in (3.2). Recall from Section 3.2.1

that if the k objects are fixed, each possible ranking over the k objects has a one-to-one

correspondence with a d-cell that is bounded by hyperplanes corresponding to the queries.

If m queries were chosen uniformly at random from the possible
(
k
2

)
, the answers to m

queries narrows the set of possible rankings to a d-cell in Rd. This d-cell may consist of

one or more of the d-cells in the partition induced by all
(
k
2

)
hyperplanes. If it contains

more than one of the partition cells, then the underlying ranking is ambiguous.

Lemma 3.4. Let N =
(
k
2

)
. Suppose m membership queries {x ∈ ri,k+1,j}i,j≤k are
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chosen uniformly at random without replacement from the possible
(
k
2

)
. Then for all

positive integers N ≥ m ≥ d the probability that the m queries yield a unique ranking is(
m
d

)
/
(
N
d

)
≤ ( em

N
)d.

Proof. No fewer than d hyperplanes bound each d-cell in the partition of Rd induced by

all possible queries. The probability of selecting d specific queries in a random draw of

m is equal to

(
N − d
m− d

)/(
N

m

)
=

(
m

d

)/(
N

d

)
≤ md

d!

dd

Nd
≤
(m
N

)d dd
d!
≤
(em
N

)d
.

Note that
(
m
d

)
/
(
N
d

)
< 1/2 unless m = Ω(k2). Therefore, if the queries are randomly

chosen, then we will need to ask almost all queries to guarantee that the inferred ranking

over the first k objects is probably correct. The proof of the next theorem is shown by

repeated application of the above result using the same line of reasoning as the proof of

Theorem 3.1.

Theorem 3.5. Given the existence of an embedding of n objects in d dimensions, if m

membership queries {x ∈ ri,j,k}i,j,k≤n are chosen uniformly at random without replacement

from the possible n
(
n−1

2

)
, then to uniquely determine the nd-cell and thus an embedding

that satisfies all of the constraints with probability greater than 1/2, m = Ω(n3).
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3.3 Query selection algorithms

In this section we propose query selection algorithms that attempt to satisfy all of the

n
(
n−1

2

)
constraints by only requesting a small subset of them. First, we review classical

binary sort in Section 3.3.1 because it is implemented in all of the algorithms and its

performance guarantees should be clearly stated. We then propose a sequential algorithm

in Section 3.3.2 that adds one object at a time to the embedding and asks for queries

only if they cannot be inferred using all the known constraints up to that time. Finally,

we present a non-metric (or generalized) version of landmark MDS in Section 3.3.3 that

was originally designed to reduce the amount of data collection for metric MDS [49].

Both algorithms assume the existence of a subroutine that, given any set of constraints

that are consistent, will output whether there exists an embedding that is consistent

with all of the constraints, or not. In addition, we assume that if such an embedding

exists, we can request it from the subroutine. After presenting the algorithms that utilize

this subroutine, we will consider its implementation in Section 3.3.4.

3.3.1 Binary Sort

Binary sort is a simple, adaptive algorithm that finds an arbitrary ranking over n

objects using no more than n log2 n pairwise comparisons. Because there are n! = Θ(nn)

possible rankings, this algorithm is optimal in terms of the number of requested pairwise

comparisons if no additional structure about the objects is assumed. The algorithm works

as follows: given a ranking of k objects, there are (k + 1) positions that the (k + 1)th

object can be put into; and because there is an ordering over the objects, binary search

can be used to find the correct position in no more than log2(k+1) queries. By induction,
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no more than n log2 n pairwise comparisons are needed to rank n objects.

Consider finding an embedding of n objects in d dimensions. An embedding is only

unique up to the constraints ||xi − xj|| < ||xj − xk|| for all triples (i, j, k). This is

equivalent to having each object rank the other n− 1 objects relative to their distance

away from themselves, like in (3.2). By the above argument, to find n rankings of (n− 1)

objects, no more than n(n− 1) log2(n− 1) queries must be requested.

3.3.2 A sequential query selection algorithm

Here we introduce an algorithm to find an embedding of n objects in d dimensions

that sequentially chooses membership queries in an adaptive way in hopes of drastically

reducing the number of requested queries. But first, we consider a näıve approach to

point out some potential pitfalls of a sequential algorithm.

Recall the sequential process used in the proof of the lower bound of Theorem 3.1.

We added one object at a time by finding the d-cell the object was located in, and then

requested the exact location of the object within that d-cell from the oracle. It is natural

to wonder if this exact location is really necessary and if picking an arbitrary point in the

d-cell would suffice. Unfortunately, as Borg illustrates in a non-pathological example of

an embedding, this arbitrary placement of objects can potentially close off possibilities

for the locations of future objects which would make it impossible to satisfy all the future

constraints [41, Chapter 2]. Intuitively, if you are not careful with how you decide the

coordinates of the objects, it is very easy to walk yourself into a corner with no escape.

What we should take from this example is that we must allow for the objects to have

maximum flexibility while obeying the constraints if we would like to guarantee that all
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the constraints, in the end, are satisfied.

The underlying principle behind our proposed algorithm is very simple and has

enjoyed great success in other active learning settings [50,51]. The sequential algorithm

for requesting queries begins by enumerating the objects and considers them one at a

time. The algorithm will proceed through the queries using binary sort and request

the membership query if only if it cannot be determined using the previously requested

constraints. That is, if Q is the set of constraints corresponding to the membership

queries we have requested up to the consideration of some new query {x ∈ ri,j,k}, we will

run our constraint-validating subroutine twice: once with Q∪ {x ∈ ri,j,k} and the second

time with Q ∪ {x ∈ rci,j,k}. If the subroutine confirms that both set of constraints lead to

valid embeddings, then the query in question Q ∪ {x ∈ ri,j,k} is said to be ambiguous.

Otherwise, if only one of the runs of the subroutine confirms a valid embedding, we can

infer what the constraint must be and we do not need to request it from the user. This

algorithm is presented in Figure 3.1. Note that despite what is written in the presentation

of the algorithm in Figure 3.1, binary sort is implemented; it is presented this way for

clarity.

Given the full set of n
(
n−1

2

)
constraints from the algorithm, we can then run the

subroutine to get the full embedding of the n objects in d dimensions.

3.3.3 Landmark non-metric MDS (LNM-MDS)

Here we introduce landmark non-metric MDS (LNM-MDS) which can be thought of

as a non-metric or generalized version of landmark metric MDS [49]. The basic idea

behind landmark-based versions of MDS is that instead of collecting data for all pairs
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Sequential query selection algorithm
input: n objects in unknown positions in Rd

initialize: Q = ∅, enumerate objects x1, . . . , xn in uniformly
random order
for k = {2, . . . , n}

for j = {1, . . . , k}
for i = {1, . . . , k}

if {x ∈ ri,j,k} is ambiguous using only Q,
ask if {x ∈ ri,j,k};

else
infer if {x ∈ ri,j,k} with Q and add it to Q

output: n
(
n−1

2

)
constraints

Figure 3.1: Sequential algorithm for selecting queries. See Section 3.3.2 for the definition
of an ambiguous query.

or triples of objects, a small number of objects are designated as landmarks. The

objects are embedded using only distances (or comparisons, in this paper) relative to the

landmarks. For example, the LNM-MDS proposed here only uses comparisons of the

form ||xi − l|| < ||xj − l|| or ||l − xi|| < ||l′ − xi||, where xi and xj are arbitrary objects,

but l and l′ must be members of a small set of landmarks. If d � n and the number

of landmarks is large enough, then the intuition is that using these landmarks may be

sufficient to describe the same information as if all information was collected between all

objects.

For any integer L ≥ 2, LNM-MDS chooses L objects uniformly at random from the

set of n and requests only the queries between the objects so that each landmark has

a complete ranking over the other n − 1 objects and each non-landmark object has a

ranking over the L landmarks. This algorithm is motivated by the idea that if the the

dimension d is not too big, perhaps the relative proximities to just a small subset of the

objects suffices to define the embedding. While these rankings define L
(
n−1

2

)
+ (n−L)

(
L
2

)
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total pairwise comparisons, we will use binary sort to acquire these rankings which

would mean only about L(n − 1) log2(n − 1) + (n − L)L log2(L) will be requested. If

the number of landmarks is small, this could be a significant savings in the number of

requested queries compared to asking for all n rankings over n−1 objects, about n2 log2 n.

While LNM-MDS does not explicitly take advantage of the low-dimensional nature of

the embedding, it may implicitly use it to its advantage because a few landmarks may

suffice to define the embedding. One of the drawbacks of this algorithm is that to ensure

that all the constraints are satisfied, one must check if all the other queries not asked are

unambiguous. If landmarks are added one at a time, this could be very computationally

demanding.

3.3.4 Constraint validation subroutine

This section describes the constraint validation subroutine that determines whether a

query is ambiguous or not. This subroutine is, in essence, an algorithm for non-metric

MDS that just uses constraints of triples of objects as input. As described in the beginning

of Section 3.2, to check if a set of constraints is valid, we must check if there is non-empty

intersection of the sets defined by the membership queries ri,j,k.

In general, to find a point in Rp that lies in the intersection of sets is known as a

feasibility program [52]. Unfortunately, it is easy to show that the sets defined by the

membership queries, or equivalently the constraints of (3.3), produce non-convex sets

which makes the feasibility program non-convex. This implies that what the constraint

validation subroutine converges to could be a local minima (if it converges at all) which

may erroneously indicate that a set of constraints do not correspond to a valid embedding
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when they really do. Clearly, this could be disastrous to the algorithm because queries

may be indicated as unambiguous when they really are ambiguous. Some algorithms

for solving non-metric MDS deal with this non-convexity by allowing d to be variable

(in contrast to fixed), possibly as large as n, but penalizing the optimization by adding

the trace norm of the inner product matrix of the embedding. This encourages low-

dimensional (or approximately low-dimensional) embeddings [42]. Because essentially

arbitrary constraints can be obeyed if d is allowed to be n, this sort of approach would

not constrain the set of solutions and would indicate that almost all the queries are

ambiguous. What this means is that solving the non-convex program is unavoidable and

the only thing that can be done is to repeat the optimization multiple times, each with a

random initialization. If this is done enough times, we can be relatively confident that

its results are trust-worthy. Fortunately, in practice, this optimization problem tends

to converge to a solution rather easily if it exists. We will return to this issue in the

presentation of our numerical results.

The earliest reference of an algorithm that attempts to do the job of the subroutine

is credited to Johnson in 1973 who solves the feasibility problem by penalizing any

violated inequalities with a quadratic loss function [45]. In the last few decades there

have been enormous advances in optimization and we know that a linear loss function

using Lagrange multipliers leads to much quicker convergence [52, 53]. To make the

optimization problem converge in a reasonable amount of time for the problem sizes

we are considering (3 ≤ n ≤ 50) many known techniques and tricks for non-convex

optimization are necessary [53]. Matlab code of our implementation is available upon

request.
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3.4 Empirical Results

In this section we present empirical results regarding how many queries are requested to

embed n objects into d dimensions. We compare standard binary sort of Section 3.3.1,

the sequential algorithm of Section 3.3.2, and LNM-MDS of Section 3.3.3. In LNM-MDS,

recall from Section 3.3.3 that to check if an existing solution given some number of

landmarks satisfies all the constraints, we have to check if any of the queries not requested

are ambiguous or not. Because we will be adding one landmark at a time, we will give

the algorithm the benefit of the doubt in our simulations and end LNM-MDS as soon

as it finds an embedding using the fewest number of landmarks with zero violations of

all the constraints (even those that it may not know about yet). Clearly, this is a lower

bound on its performance. On the other hand, when either binary sort or the sequential

algorithm of Figure 3.1 finishes, it guarantees that all the constraints are satisfied (under

the assumption that the subroutine always returns correct results).

Recall from Section 3.3.4 that the constraint-validating subroutine is solving a non-

convex problem. It is possible that the subroutine will converge to a local minima,

indicating that there does not exist an embedding consistent with the given constraints

when, actually, there does. This behavior could potentially lead to the algorithm

believeing that a query is unambiguous when, in reality, it is the opposite case and must

be requested. For our simulations, we assumed that if the algorithm failed to converge

to a consistent embedding after 3 attempts, then a consistent embedding did not exist.

Fortunately, in our studies, with the number of restarts set to 3, in each run we observed

no more than about a few of these mistakes out of the total of about 3000 considered for

n = 30. However, this seemingly disastrous problem is actually not much of a problem
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at all because in practice, the only queries fed to the constraint validation subroutine

are those that were ambiguous when they were considered (we do not need to give the

algorithm unambiguous constraints because by definition, their labels were determined

by the constraints already in the subroutine, which were ambiguous.) This means that

if a query is erroneously indicated as unambiguous, it is not added to the optimization

problem and thus does not constrain the solution. Because we expect many queries to be

redundant, it is even possible that we will infer the true label of this query with queries

requested in the future.

For our experiments, we chose d = {1, 2, 3} with n = {3, . . . , 30}. Note that

because binary sort is implemented in both our sequential algorithm and LNM-MDS,

neither algorithm can do worse than binary sort, which requests about n2 log2 n queries,

regardless of how large d is. All experiments were repeated just 5 times in the interest

of time. In Figure 3.2 we have plotted the mean and standard deviation of the number

of requested queries using error bars for the sequential algorithm of Figure 3.1 in blue,

LNM-MDS in black, and binary sort in red. Clearly, LNM-MDS performs nearly as bad

as binary sort (but can never perform as badly because binary sort is implemented for all

the rankings in LNM-MDS). LNM-MDS was only run for d = 1, 2 because it was clear

from just these results that LNM-MDS was not exploiting the fact that d� n. It is also

clear that the sequential algorithm requests significantly fewer membership queries than

either binary sort or LNM-MDS.
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Figure 3.2: The mean number of requested membership queries to determine all the
constraints of an embedding of n objects in d dimensions using the three algorithms
described in Section 3.3. The standard deviation of the trials are presented using error
bars.

Analysis of Empirical Results

From just Figure 3.2, for a fixed dimension d, it is unclear how the number of queries

grows with n; is it more like n2 log n or n log n? It is our conjecture that it grows like

the latter. In this section we will analyze the empirical data more closely and also point

out some theoretical results that, together, we believe provide strong evidence to support

our conjecture.

Consider how many queries are requested when adding just a single object to the

embedding. Under the hypothesis that the number of queries for the sequential algorithm

grows like n log n times some constant depending on the dimension, we should observe

that the number of queries required to add just a single object should be no greater than

order log n. If the hypothesis is false and the number of queries actually grows faster
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Figure 3.3: Given all the constraints between (n− 1) objects in d dimensions, the mean
number of requested membership queries to determine the all the constraints of n objects
in d dimensions. The standard deviation of the trials are presented using error bars.

than this, like n2 log n, the number of queries requested to add just a single object should

grow like n log n. Figure 3.3 presents the average number of queries required to add just

the kth object for k = 3, . . . , 30 and d = 1, 2, 3 for the sequential algorithm in blue and

for binary sort in red. It is clear that this the quantity associated with the sequential

algorithm grows sub-linearly and perhaps even reasonable to conjecture that it grows

logarithmically. This behavior can be explained by some previous analyses of non-metric

multidimensional scaling and the previous analysis of the ranking problem alluded to

earlier.

If we consider an embedding of n objects in d dimensions that satisfies all of the

constraints, we know that this embedding lives in some nd-cell and therefore has some

amount of flexibility. In related studies, this amount of flexibility is observed to decrease

rapidly to zero as n grows. For example, at least qualitatively, the amount of flexibility
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in an embedding in 2 dimensions has been observed to be negligible for n as small as 10

or 15 using similar constraints to those discussed here [46,54]. So as k < n becomes very

large, adding the (k + 1)th object becomes more and more like adding an object to a

fixed embedding of k objects. Recall that the embedding is constrained only so far as

forcing each object to rank the other objects with respect to their relative proximity. To

add the (k + 1)th object to the embedding, we must discover how the (k + 1)th object

ranks the other k objects, and how the k objects insert the (k + 1)th object into their

ranking. In previous work, we showed that if the positions of the first k objects are fixed

and known, and we have discovered how the (k + 1)th object has ranked some subset of

j < k objects, it requires only about d/j pairwise comparisons, in expectation, to insert

the (j + 1)th object into the ranking [51, Lemma 4]. It follows that to discover how the

(k + 1)th object ranks all k objects, it requires only about d log k queries. This predicts

part of the story, but we still must consider how many queries it requires to insert the

(k + 1)th object in to the rankings of the other 1, . . . , k objects.

As k gets very large, the size of the d-cells corresponding to the possible ways the

(k+1)th object can rank the first k objects (see Section 3.2) becomes very small, something

like on the order k−2d. What this means is that if we first locate the (k + 1)th object in

this tiny cell, with respect to the other objects, it looks fixed. This means that to these

other objects, it looks as if they are simply adding a fixed object to their ranking which

takes only about d/k queries. Using these informal approximations, we should expect

that only about d log k+ k× d/k ≈ d log k queries will be requested to add the (k+ 1)th

object. Repeated application of this argument and the observation that embeddings

appear more and more fixed as n→∞, we conjecture with some level of confidence that

the algorithm of Section 3.3.2 requests no more than O(dn log n) queries to uniquely
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define an embedding of n objects in d dimensions.

3.5 Discussion

The previous section provided some support for the conjecture that the number of queries

required to embed n objects in d dimensions grows no faster than O(dn log n). This would

be consistent with the required number of bits to specify an embedding, as calculated in

Section 3.2.2 when we upper bounded the number of equivalent embeddings. But, of

course, this is just a conjecture. Future work will attempt to prove this conjecture.

While we have assumed throughout that the n objects embed into exactly d dimensions

with no violations of the inequalities, this assumption should never be expected to be true

in practice, especially when humans provide the query responses. While the sequential

algorithm described here can easily be made robust to only probably-correct query

responses by paying an additional log n multiplicative factor in the number of requested

queries using the techniques developed in Chapter 2, this still does not resolve the problem

that the model may be wrong. Any practical implementation of adaptive non-metric

multidimensional scaling must be robust to a certain degree of mismatch between the

perception of humans and the best d dimensional representation of the objects.

3.6 Bibliographical Remarks

The work presented in this chapter was largely based off of the author’s publication

• Kevin G Jamieson and Robert D Nowak. Low-dimensional embedding using

adaptively selected ordinal data. In Communication, Control, and Computing
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(Allerton), 2011 49th Annual Allerton Conference on, pages 1077–1084. IEEE, 2011

however, the content of Section 3.2.2 is novel to this thesis.
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Chapter 4

Stochastic Best-arm Identification

In Part 1 of this thesis, it was shown that the query complexity of a problem can be

dramatically reduced if the problem exhibits some low-dimensional structure that could

be taken advantage of. It was also shown in Chapter 2 that the algorithm considered

there could be made robust to random errors in the answers to queries, the result of

flipping the binary answers with some known, fixed probability p < 1/2, by repeatedly

sampling the answer to the same query for a number of trials dependent on the constant p.

The result of which allows us to confidently state that the majority votes of the answers

is correct with probability at least 1− δ. By repeating this for N different encountered

queries, one has that all of them are simultaneously correct with probability at least

1−Nδ. We see that the probability of failure increases linearly with N , the number of

queries before the algorithm is terminated. It is natural to wonder if such a scaling in

the probability of failure is unavoidable.

To study this subtle problem and others like it, we turn to the simple and unstructured

setting of multi-armed bandits. This framework allows us to ignore the complexities

of the low-dimensional structure and focus purely on the statistical problems. In this

chapter we study a problem so easy to state and fundamental to sequential decision

making that it is remarkable that it was not solved until recently: given n biased coins,

what is the fewest number of total flips necessary to identify the coin with the highest
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probability of heads with probability at least 1− δ?

4.1 Introduction

This chapter introduces a new algorithm for the best arm problem in the stochastic

multi-armed bandit (MAB) setting. Consider a MAB with n arms, each with unknown

mean payoff µ1, . . . , µn in [0, 1]. A sample of the ith arm is an independent realization of

a sub-Gaussian random variable with mean µi. In the fixed confidence setting, the goal

of the best arm problem is to devise a sampling procedure with a single input δ that,

regardless of the values of µ1, . . . , µn, finds the arm with the largest mean with probability

at least 1− δ. More precisely, best arm procedures must satisfy supµ1,...,µn P(̂i 6= i∗) ≤ δ,

where i∗ is the best arm, î an estimate of the best arm, and the supremum is taken

over all set of means such that there exists a unique best arm. In this sense, best arm

procedures must automatically adjust sampling to ensure success when the mean of the

best and second best arms are arbitrarily close. Contrast this with the fixed budget setting

where the total number of samples remains a constant and the confidence in which the

best arm is identified within the given budget varies with the setting of the means. While

the fixed budget and fixed confidence settings are related (see [55] for a discussion) this

work focuses on the fixed confidence setting only.

4.1.1 Related Work

The best arm problem has a long history dating back to the ’50s with the work of

[56, 57]. In the fixed confidence setting, the last decade has seen a flurry of activity

providing new upper and lower bounds. In 2002, the successive elimination procedure
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of [58] was shown to find the best arm with order
∑

i 6=i∗ ∆−2
i log(n∆−2

i ) samples, where

∆i = µi∗ − µi, coming within a logarithmic factor of the lower bound for any algorithm

of
∑

i 6=i∗ ∆−2
i , shown in 2004 in [59]. For reference, a lower bound of nmax

i 6=i∗
∆−2
i can

be shown for any non-adaptive method, exposing the gap between adaptive and non-

adaptive methods for this problem [11]. A similar bound to the bound of [59] was

also obtained using a procedure known as LUCB1 that was originally designed for

finding the m-best arms [60]. Recently, [11] proposed a procedure called PRISM which

succeeds with
∑

i ∆
−2
i log log

(∑
j ∆−2

j

)
or
∑

i ∆
−2
i log

(
∆−2
i

)
samples depending on the

parameterization of the algorithm, improving the result of [58] by at least a factor of

log(n). The best sample complexity result for the fixed confidence setting comes from a

procedure similar to PRISM, called exponential-gap elimination [61], which guarantees

best arm identification with high probability using order
∑

i ∆
−2
i log log ∆−2

i samples,

coming within a doubly logarithmic factor of the lower bound of [59]. While the authors

of [61] conjecture that the log log term cannot be avoided, it remained unclear as to

whether the upper bound of [61] or the lower bound of [59] was loose.

The classic work of [62] answers this question. It shows that the doubly logarithmic

factor is necessary, implying that order
∑

i ∆
−2
i log log ∆−2

i samples are necessary and

sufficient in the sense that no procedure can satisfy sup∆1,...,∆n
P(̂i 6= i∗) ≤ δ and use

fewer than
∑

i ∆
−2
i log log ∆−2

i samples in expectation for all ∆1, . . . ,∆n. The doubly

logarithmic factor is a consequence of the law of the iterated logarithm (LIL) [63]. The

LIL states that if X` are i.i.d. sub-Gaussian random variables with E[X`] = 0, E[X2
` ] = σ2
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and we define St =
∑t

`=1X` then

lim sup
t→∞

St√
2σ2t log log(t)

= 1 and lim inft→∞
St√

2σ2t log log(t)
= −1

almost surely. Here is the basic intuition behind the lower bound. Consider the two-arm

problem and let ∆ be the difference between the means. In this case, it is reasonable

to sample both arms equally and consider the sum of differences of the samples, which

is a random walk with drift ∆. The deterministic drift crosses the LIL bound above

when t∆ =
√

2t log log t. Solving this equation for t yields t ≈ 2∆−2 log log ∆−2. This

intuition will be formalized in Section 4.2.

4.1.2 Motivation

The LIL also motivates a novel approach to the best arm problem. Specifically, the LIL

suggests a natural scaling for confidence bounds on empirical means, and we follow this

intuition to develop a new algorithm for the best-arm problem. The algorithm is an Upper

Confidence Bound (UCB) procedure [64] based on a finite sample version of the LIL.

The new algorithm, called lil’UCB, is described in Figure 4.1. By explicitly accounting

for the log log factor in the confidence bound and using a novel stopping criterion, our

analysis of lil’UCB avoids taking naive union bounds over time, as encountered in some

UCB algorithms [60, 65], as well as the wasteful “doubling trick” often employed in

algorithms that proceed in epochs, such as the PRISM and exponential-gap elimination

procedures [11,58,61]. Also, in some analyses of best arm algorithms the upper confidence

bounds of each arm are designed to hold with high probability for all arms uniformly,

incurring a log(n) term in the confidence bound as a result of the necessary union bound
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over the n arms [58, 60, 65]. However, our stopping time allows for a tighter analysis

so that arms with larger gaps are allowed larger confidence bounds than those arms

with smaller gaps where higher confidence is required. Like exponential-gap elimination,

lil’UCB is order optimal in terms of sample complexity.

It is easy to show that without the stopping condition (and with the right δ) our

algorithm achieves a cumulative regret of the same order as standard UCB. Thus for

the expert it may be surprising that such an algorithm can achieve optimal sample

complexity for the best arm identification problem given the lower bound of [66]. As it

was empirically observed in the latter paper there seems to be a transient regime, before

this lower bound applies, where the performance in terms of best arm identification is

excellent. In some sense the results in the present paper can be viewed as a formal proof

of this transient regime: if stopped at the right time performance of UCB for best arm

identification is near-optimal (or even optimal for lil’UCB).

One of the main motivations for this work was to develop an algorithm that exhibits

great practical performance in addition to optimal sample complexity. While the sample

complexity of exponential-gap elimination is optimal up to constants, and PRISM up to

small log log factors, the empirical performance of these methods is rather disappointing,

even when compared to non-sequential sampling. Both PRISM and exponential-gap

elimination employ median elimination [58] as a subroutine. Median elimination is used

to find an arm that is within ε > 0 of the largest, and has sample complexity within

a constant factor of optimal for this subproblem. However, the constant factors tend

to be quite large, and repeated applications of median elimination within PRISM and

exponential-gap elimination are extremely wasteful. On the contrary, lil’UCB does not

invoke wasteful subroutines. As we will show, in addition to having the best theoretical
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sample complexities bounds known to date, lil’UCB also exhibits superior performance

in practice with respect to state-of-the-art algorithms.

4.2 Lower Bound

Before introducing the lil’UCB algorithm, we show that the log log factor in the sample

complexity is necessary for best-arm identification. It suffices to consider a two armed

bandit problem with a gap ∆. If a lower bound on the gap is unknown, then the log log

factor is necessary, as shown by the following result.

Theorem 4.1. Consider the best arm problem in the fixed confidence setting with n = 2,

difference between the two means ∆, and expected number of samples E∆[T ]. Any

procedure with sup∆ 6=0 P(̂i 6= i∗) ≤ δ, δ ∈ (0, 1/2), then has

lim sup
∆→0

E∆[T ]
∆−2 log log ∆−2 ≥ 2− 4δ.

Proof. The proof follows readily from Theorem 1 of [62] that considers the deviations of

a biased random walk. By considering a reduction of the best arm problem with n = 2

in which the value of one arm is known. In this case, the only strategy available is to

sample the other arm some number of times to determine if it is less than or greater

than the known value.

Theorem 4.1 implies that in the fixed confidence setting, no best arm procedure

can have supP(̂i 6= i∗) ≤ δ and use fewer than (2 − 4δ)
∑

i ∆
−2
i log log ∆−2

i samples in

expectation for all ∆i.
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In brief, the result of Farrell [62] follows by showing a generalized sequential probability

ratio test, which compares the running empirical mean of X after t samples against a

series of thresholds, is an optimal test. In the limit as t increases, if the thresholds are

not at least
√

(2/t) log log(t) then the LIL implies the procedure will fail with probability

approaching 1/2 for small values of ∆. Setting the thresholds to be just greater than√
(2/t) log log(t), in the limit, one can show the expected number of samples must scale

as ∆−2 log log ∆−2. As the proof in [62] is quite involved, we provide a short argument

for a slightly simpler result in the original publication of this work [9].

Since the original publication of this work, other finite-time law-of-the-iterated-

logarithm bounds have appeared in the literature [67,68]. In particular, a very strong

lower bound was proven in [68] that implies that the above bound on the number of

measurements also holds with high probability, in addition to just in expectation. This

is very satisfying as it corresponds to our upper bounds that hold with high probability.

4.3 Algorithm and Analysis

This section introduces lil’UCB. The procedure operates by sampling the arm with the

largest upper confidence bound; the confidence bounds are defined to account for the

implications of the LIL. The procedure terminates when one of the arms has been sampled

more than a constant times the number of samples collected from all other arms combined.

Fig. 4.1 details the algorithm and Theorem 4.2 quantifies performance. In what follows,

let Xi,s, s = 1, 2, . . . denote independent samples from arm i and let Ti(t) denote the

number of times arm i has been sampled up to time t. Define µ̂i,Ti(t) := 1
Ti(t)

∑Ti(t)
s=1 Xi,s

to be the empirical mean of the Ti(t) samples from arm i up to time t. The algorithm of
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Fig. 4.1 assumes that the centered realizations of the ith arm are sub-Gaussian1 with

known scale parameter σ.

lil’ UCB
input: confidence δ > 0, algorithm parameters ε, λ, β > 0
initialize: sample each of the n arms once, set Ti(t) = 1 for all i and set t = n
while Ti(t) < 1 + λ

∑
j 6=i Tj(t) for all i

sample arm

It = argmax
i∈{1,...,n}

µ̂i,Ti(t) + (1 + β)(1 +
√
ε)

√√√√2σ2(1 + ε) log
(

log((1+ε)Ti(t))
δ

)
Ti(t)

 .

set Ti(t+ 1) = Ti(t) + 1 if It = i, otherwise set Ti(t+ 1) = Ti(t).
else stop and output arg maxi∈{1,...,n} Ti(t)

Figure 4.1: The lil’ UCB algorithm.

Define

H1 =
∑
i 6=i∗

1

∆2
i

and H3 =
∑
i 6=i∗

log log+(1/∆2
i )

∆2
i

where log log+(x) = log log(x) if x ≥ e, and 0 otherwise. Our main result is the following.

Theorem 4.2. For ε ∈ (0, 1), let cε = 2+ε
ε

(1/ log(1+ε))1+ε and fix δ ∈ (0, log(1+ε)/(ecε)).

Then for any β ∈ (0, 3], there exists a constant λ > 0 such that with probability at least

1− 4
√
cεδ − 4cεδ lil’ UCB stops after at most c1H1 log(1/δ) + c3H3 samples and outputs

the optimal arm, where c1, c3 > 0 are known constants that depend only on ε, β, σ2.

Note that the algorithm obtains the optimal query complexity of H1 log(1/δ) + H3

up to constant factors. We remark that the theorem holds with any value of λ satisfying

(4.7). Inspection of (4.7) shows that as δ → 0 we can let λ tend to
(

2+β
β

)2

. We point out

1A zero-mean random variable X is said to be sub-Gaussian with scale parameter σ if for all t ∈ R
we have E[exp{tX}] ≤ exp{σ2t2/2}. If a ≤ X ≤ b almost surely than it suffices to take σ2 = (b− a)2/4.
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that the sample complexity bound in the theorem can be optimized by choosing ε and

β. For a setting of these parameters in a way that is more or less faithful to the theory,

we recommend taking ε = 0.01, β = 1, and λ =
(

2+β
β

)2

. For improved performance in

practice, we recommend applying footnote 2 and setting ε = 0, β = 0.5, λ = 1 + 10/n

and δ ∈ (0, 1), which do not meet the requirements of the theorem, but work very well

in our experiments presented later. We prove the theorem via two lemmas, one for the

total number of samples taken from the suboptimal arms and one for the correctness of

the algorithm. In the lemmas we give precise constants.

4.3.1 Proof of Theorem 4.2

Before stating the two main lemmas that imply the result, we first present a finite form

of the law of iterated logarithm. This finite LIL bound is necessary for our analysis and

may also prove useful for other applications.

Lemma 4.3. Let X1, X2, . . . be i.i.d. centered sub-Gaussian random variables with scale

parameter σ. For any ε ∈ (0, 1) and δ ∈ (0, log(1 + ε)/e)2 one has with probability at

least 1− 2+ε
ε

(
δ

log(1+ε)

)1+ε

for all t ≥ 1,

t∑
s=1

Xs ≤ (1 +
√
ε)

√
2σ2(1 + ε)t log

(
log((1 + ε)t)

δ

)
.

Proof. We denote St =
∑t

s=1 Xs, and ψ(x) =

√
2σ2x log

(
log(x)
δ

)
. We also define by

induction the sequence of integers (uk) as follows: u0 = 1, uk+1 = d(1 + ε)uke.
2Note δ is restricted to guarantee that log( log((1+ε)t)

δ ) is well defined. This makes the analysis cleaner
but in practice one can allow the full range of δ by using log( log((1+ε)t+2)

δ ) instead and obtain the same
theoretical guarantees.
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Step 1: Control of Suk , k ≥ 1. The following inequalities hold true thanks to an

union bound together with Chernoff’s bound, the fact that uk ≥ (1 + ε)k, and a simple

sum-integral comparison:

P
(
∃k ≥ 1 : Suk ≥

√
1 + ε ψ(uk)

)
≤

∞∑
k=1

exp
(
−(1 + ε) log

(
log(uk)

δ

))
≤

∞∑
k=1

(
δ

k log(1+ε)

)1+ε

≤
(
1 + 1

ε

) (
δ

log(1+ε)

)1+ε

.

Step 2: Control of St, t ∈ (uk, uk+1). Adopting the notation [n] = {1, . . . , n}, recall

that Hoeffding’s maximal inequality3 states that for any m ≥ 1 and x > 0 one has

P(∃ t ∈ [m] s.t. St ≥ x) ≤ exp
(
− x2

2σ2m

)
.

Thus the following inequalities hold true (by using trivial manipulations on the sequence

(uk)):

P
(
∃ t ∈ {uk + 1, . . . , uk+1 − 1} : St − Suk ≥

√
ε ψ(uk+1)

)
= P

(
∃ t ∈ [uk+1 − uk − 1] : St ≥

√
ε ψ(uk+1)

)
≤ exp

(
−ε uk+1

uk+1−uk−1
log
(

log(uk+1)

δ

))
≤ exp

(
−(1 + ε) log

(
log(uk+1)

δ

))
≤
(

δ
(k+1) log(1+ε)

)1+ε

.

Step 3: By putting together the results of Step 1 and Step 2 we obtain that with

probability at least 1 − 2+ε
ε

(
δ

log(1+ε)

)1+ε

, one has for any k ≥ 0 and any t ∈ {uk +

3It is an easy exercise to verify that Azuma-Hoeffding holds for martingale differences with sub-
Gaussian increments, which implies Hoeffding’s maximal inequality for sub-Gaussian distributions.
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1, . . . , uk+1},

St = St − Suk + Suk

≤ √
ε ψ(uk+1) +

√
1 + ε ψ(uk)

≤ √
ε ψ((1 + ε)t) +

√
1 + ε ψ(t)

≤ (1 +
√
ε) ψ((1 + ε)t),

which concludes the proof.

Without loss of generality we assume that µ1 > µ2 ≥ . . . ≥ µn. To shorten notation

we denote

U(t, ω) = (1 +
√
ε)

√
2σ2(1+ε)

t
log
(

log((1+ε)t)
ω

)
.

The following events will be useful in the analysis:

Ei(ω) = {∀t ≥ 1, |µ̂i,t − µi| ≤ U(t, ω)}

where µ̂i,t = 1
t

∑t
j=1 xi,j. Note that Lemma 4.3 shows P(Ei(ω)c) = O(ω). The following

inequalities will also be useful and their proofs can be found in Appendix 4 (the second

one is derived from the first inequality and the fact that x+a
x+b
≤ a

b
for a ≥ b, x ≥ 0). For

t ≥ 1, ε ∈ (0, 1), c > 0, 0 < ω ≤ 1,

1

t
log

(
log((1 + ε)t)

ω

)
≥ c⇒ t ≤ 1

c
log

(
2 log((1 + ε)/(cω))

ω

)
, (4.1)
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and for t ≥ 1, s ≥ 3, ε ∈ (0, 1), c ∈ (0, 1], 0 < ω ≤ δ ≤ e−e,

1

t
log

(
log((1 + ε)t)

ω

)
≥ c

s
log

(
log((1 + ε)s)

δ

)
and ω ≤ δ ⇒ t ≤ s

c

log
(
2 log

(
1
cω

)
/ω
)

log(1/δ)
.

(4.2)

Lemma 4.4. Let β, ε, δ be set as in Theorem 4.2 and let γ = 2(2 +β)2(1 +
√
ε)2σ2(1 + ε)

and cε = 2+ε
ε

(
1

log(1+ε)

)1+ε

. Then we have with probability at least 1− 2cεδ and any t ≥ 1,

n∑
i=2

Ti(t) ≤ n+ 5γH1 log(e/δ) +
n∑
i=2

γ
log(2 max{1, log(γ(1 + ε)/∆2

i /δ)})
∆2
i

.

The proof relies crucially on the fact that the realizations from each arm are indepen-

dent of each other. This means that if we condition on the event that the realizations

from the optimal arm are well-behaved, it is shown that the number of times the ith

suboptimal arm is pulled is an independent sub-exponential random variable with mean

on the order of ∆−2
i log(log(∆−2

i )/δ). We then apply a standard tail bound to the sum

of independent sub-exponential random variables to obtain the result.

Proof. We decompose the proof in two steps.

Step 1. Let i > 1. Assuming that E1(δ) and Ei(ω) hold true and that It = i one has

µi+U(Ti(t), ω)+(1+β)U(Ti(t), δ) ≥ µ̂i,Ti(t)+(1+β)U(Ti(t), δ) ≥ µ̂1,T1(t)+(1+β)U(T1(t), δ) ≥ µ1,

which implies (2 + β)U(Ti(t),min(ω, δ)) ≥ ∆i. If γ = 2(2 + β)2(1 +
√
ε)2σ2(1 + ε) then



85

using (4.1) with c =
∆2
i

γ
one obtains that if E1(δ) and Ei(ω) hold true and It = i then

Ti(t) ≤
γ

∆2
i

log

(
2 log(γ(1 + ε)/∆2

i /min(ω, δ))

min(ω, δ)

)
≤ τi +

γ

∆2
i

log

(
log(e/ω)

ω

)
≤ τi +

2γ

∆2
i

log

(
1

ω

)
,

where τi = γ
∆2
i

log
(

2 max{1,log(γ(1+ε)/∆2
i /δ)}

δ

)
.

Since Ti(t) only increases when i is played the above argument shows that the following

inequality is true for any time t ≥ 1:

Ti(t)1{E1(δ) ∩ Ei(ω)} ≤ 1 + τi +
2γ

∆2
i

log

(
1

ω

)
. (4.3)

Step 2. We define the following random variable:

Ωi = max{ω ≥ 0 : Ei(ω) holds true}.

Note that Ωi is well-defined and by Lemma 4.3 it holds that P(Ωi < ω) ≤ cεω where

cε = 2+ε
ε

(
1

log(1+ε)

)1+ε

. Furthermore one can rewrite (4.3) as

Ti(t)1{E1(δ)} ≤ 1 + τi +
2γ

∆2
i

log

(
1

Ωi

)
. (4.4)
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We use this equation as follows:

P

(
n∑
i=2

Ti(t) > x+
n∑
i=2

(τi + 1)

)
≤ cεδ + P

 n∑
i=2

Ti(t) > x+
n∑
i=2

(τi + 1)

∣∣∣∣∣∣∣ E1(δ)


≤ cεδ + P

(
n∑
i=2

2γ

∆2
i

log

(
1

Ωi

)
> x

)
. (4.5)

Let Zi = 2γ
∆2
i

log
(
c−1
ε

Ωi

)
, i ∈ [n] \ 1. Observe that these are independent random variables

and since P(Ωi < ω) ≤ cεω it holds that P(Zi > x) ≤ exp(−x/ai) with ai = 2γ/∆2
i .

Using standard techniques to bound the sum of sub-exponential random variables one

directly obtains that

P

(
n∑
i=2

(Zi − ai) ≥ z

)
≤ exp

(
−min

{
z2

4‖a‖2
2

,
z

4‖a‖∞

})
≤ exp

(
−min

{
z2

4‖a‖2
1

,
z

4‖a‖1

})
.

(4.6)

Putting together (4.5) and (4.6) with z = 4‖a‖1 log(1/(cεδ)), x = z + ||a||1 log(ecε) one

obtains

P

(
n∑
i=2

Ti(t) >
n∑
i=2

(
4γ log(e/δ)

∆2
i

+ τi + 1

))
≤ 2cεδ,

which concludes the proof.

Lemma 4.5. Let β, ε, δ be set as in Theorem 4.2 and let cε = 2+ε
ε

(
1

log(1+ε)

)1+ε

. If

λ ≥ 1+
log

(
2 log

(
( 2+β

β )
2
/δ

))
log(1/δ)

1−(cεδ)−
√

(cεδ)1/4 log(1/(cεδ))

(
2+β
β

)2

, (4.7)

then for all i = 2, . . . , n and t = 1, 2, . . . , we have Ti(t) < 1+λ
∑

j 6=i Tj(t) with probability

at least 1− 2cεδ + 4
√
cεδ.
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Note that the right hand side of (4.7) can be bound by a universal constant for all

allowable δ which leads to the simplified statement of Theorem 4.2. Moreover, for any

ν > 0 there exists a sufficiently small δ ∈ (0, 1) such that the right hand side of (4.7) is

less than or equal to (1 + ν)
(

2+β
β

)2

.

Essentially, the proof relies on the fact that given any two arms j < i (i.e. µj ≥ µi),

Ti(t) cannot be larger than a constant times Tj(t) with probability at least 1 − δ.

Considering this fact, it is reasonable to suppose that the probability that Ti(t) is larger

than a constant times
∑i−1

j=1 Tj(T ) is decreasing exponentially fast in i. Consequently,

our stopping condition is not based on a uniform confidence bound for all arms. Rather,

it is based on confidence bounds that grow in size as the arm index i increases.

Proof. We decompose the proof in two steps.

Step 1. Let i > j. Assuming that Ei(ω) and Ej(δ) hold true and that It = i one has

µi + U(Ti(t), ω) + (1 + β)U(Ti(t), δ) ≥ µ̂i,Ti(t) + (1 + β)U(Ti(t), δ)

≥ µ̂j,Tj(t) + (1 + β)U(Tj(t), δ) ≥ µj + βU(Tj(t), δ),

which implies (2+β)U(Ti(t),min(ω, δ)) ≥ βU(Tj(t), δ). Thus using (4.2) with c =
(

β
2+β

)2

one obtains that if Ei(ω) and Ej(δ) hold true and It = i then

Ti(t) ≤
(

2+β
β

)2 log
(

2 log
(
( 2+β

β )
2
/min(ω,δ)

)
/min(ω,δ)

)
log(1/δ)

Tj(t).

Similarly to Step 1 in the proof of Lemma 4.4 we use the fact that Ti(t) only increases

when It is played and the above argument to obtain the following inequality for any time
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t ≥ 1:

(Ti(t)− 1)1{Ei(ω) ∩ Ej(δ)} ≤
(

2+β
β

)2 log
(

2 log
(
( 2+β

β )
2
/min(ω,δ)

)
/min(ω,δ)

)
log(1/δ)

Tj(t). (4.8)

Step 2. Using (4.8) with ω = δi−1 we see that

1{Ei(δi−1)} 1

i− 1

i−1∑
j=1

1{Ej(δ)} > 1− α ⇒ (1− α)(Ti(t)− 1) ≤ κ
∑
j 6=i

Tj(t)

where κ =
(

2+β
β

)2

1 +
log
(

2 log
(
( 2+β

β )
2
/δ
))

log(1/δ)

. This implies the following, using that

P(Ei(ω)) ≥ 1− cεω,

P

(
∃ (i, t) ∈ {2, . . . , n} × {1, . . . } : (1− α)(Ti(t)− 1) ≥ κ

∑
j 6=i

Tj(t)

)

≤ P

(
∃ i ∈ {2, . . . , n} : 1{Ei(δi−1)} 1

i− 1

i−1∑
j=1

1{Ej(δ)} ≤ 1− α
)

≤
n∑
i=2

P(Ei(δi−1) does not hold) +
n∑
i=2

P

(
1

i− 1

i−1∑
j=1

1{Ej(δ)} ≤ 1− cεδ − (α− cεδ)
)
.

Let δ′ = cεδ. Note that by a simple Hoeffding’s inequality and a union bound one has

P

(
1

i− 1

i−1∑
j=1

1{Ej(δ)} ≤ 1− δ′ − (α− δ′)
)
≤ min((i− 1)δ′, exp(−2(i− 1)(α− δ′)2),
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and thus if we define j∗ = dδ′−1/4/2e we obtain with the above calculations

P

(
∃ (i, t) ∈ {2, . . . , n} × {1, . . . } :

(
1− δ′ −

√
δ′1/4 log(1/δ′)

)
(Ti(t)− 1) ≥ κ

∑
j 6=i

Tj(t)

)

≤
n∑
i=2

(
δ′i−1 + min

(
(i− 1)δ′, e−2(i−1)δ′1/4 log( 1

δ′ )
))
≤ δ′

1− δ′ + δ′j2
∗ +

e−2j∗δ′
1/4 log( 1

δ′ )

1− e−2δ′1/4 log( 1
δ′ )

≤ δ′

1− δ′ + 9
4
δ′1/2 + 3

2
δ′3/4 ≤ 2cεδ + 4

√
cεδ.

Treating ε, σ2 and factors of log log(β) as constants, Lemma 4.4 says that the total num-

ber of times the suboptimal arms are sampled does not exceed (β+2)2 (c1H1 log(1/δ) + c3H3).

Lemma 4.5 states that only the optimal arm will meet the stopping condition with

λ = cλ

(
2+β
β

)2

for some cλ constant defined in the lemma. Combining these results,

we observe that the total number of times all the arms are sampled does not exceed

(β + 2)2 (c1H1 log(1/δ) + c3H3)

(
1 + cλ

(
2+β
β

)2
)

, completing the proof of the theorem.

We also observe using the approximation cλ = 1, the optimal choice of β ≈ 1.66.

4.4 Implementation and Simulations

In this section we investigate how the state of the art methods for solving the best arm

problem compare to lil’UCB in practice. But first, we review the different strategies for

identifying the best arm and provide intuition about how they work.
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4.4.1 Review of Best-arm Identification Strategies

Most popular best-arm algorithms can be described by essentially one of three kinds of

algorithm.

• Action Elimination (AE) algorithm - [11,56,57,58,61] Maintaining a set Ωk

for k = 1, 2, . . . initialized as Ω1 = [n], these algorithms proceed in epochs by

sampling the arms indexed by Ωk a predetermined number of times rk, and updated

to Ωk+1 based on the rule:

Ωk+1 = {i ∈ Ωk : µ̂a,Ta(t) −Ba,Ta(t) < µ̂i,Ti(t) +Bi,Ti(t)}

where a ∈ Ωk is a reference arm (for instance a = arg maxi∈[n] µ̂i,Ti(t) +Bi,Ti(t)) and

Bi,Ti(t) is a confidence bound that describes the deviation of the empirical mean

from its true mean (for instance, (4.11)). The algorithm terminates when |Ωk| = 1

and outputs the single element of Ωk.

In any action elimination algorithm, every arm must be sufficiently sampled before

it can be decided with high probability that it is the best arm or not. This kind of

algorithm simply keeps sampling all the arms and throws those arms out that it is

confident are not the best arm.

• Upper Confidence Bound (UCB) algorithm - [55,65] These algorithms begin

by sampling all arms once. For each each time t > n the algorithm samples the

arm indexed by

arg max
i∈[n]

µ̂i,Ti(t) + αBi,Ti(t)

where α is some constant and Bi,Ti(T ) is an appropriately chosen confident bound.



91

One stopping condition (c.f. [55, 65]) is to stop when

µ̂ht,Tht (t) −Bht,Tht (t)
> µ̂`t,T`t (t) +B`t,T`t (t)

(4.9)

and output ht. Alternatively, as is proposed and shown to work in this manuscript,

one can stop when

∃i ∈ [n] : Ti(t) > α
∑
j 6=i

Tj(t) (4.10)

and output arg maxi Ti(t) for some α > 0.

While UCB sampling strategies were originally designed for the regret setting to

optimize “exploration versus exploitation” [64], it was shown in [65] that UCB

strategies were also effective in the pure exploration (find the best) setting. These

algorithms are attractive because they are more sequential than the AE algorithms

that tend to act more like uniform sampling for the first several epochs.

• LUCB (a variation on UCB) - [60, 69] Sample all arms once. For each time

t > n sample the arms indexed by ht and `t (i.e. at each time t two arms are

sampled) and stop when the criterion defined in (4.9) is met.

While the LUCB and UCB sampling strategies appear to be only subtly different,

the LUCB strategies appear to be better designed for exploration than UCB

sampling strategies. For instance, given just two arms, the most reasonable strategy

would be to sample both arms the same number of times until a winner could be

confidently proclaimed, which is what LUCB would do. On the other hand, UCB

strategies would tend to sample the best arm far more than the second-best arm
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leading to a strategy that seems to emphasize exploitation over pure exploitation.

If the same confidence bound Bi,Ti(t) is used in the analysis of all three algorithms, as

is done in [10] using the LIL bound proved in this manuscript, then the overall sample

complexity bounds of the action elimination, UCB, and LUCB strategies are very similar,

even up to constants. For the very simple case of just n = 6 Gaussian arms with linearly

decreasing means: {1, 4/5, 3/5, 2/5, 1/5, 0} and input confidence δ = 0.1, we have plotted

in Figure 4.2 the empirical probability P(It = i) at every time t over 5000 trials where

It is the index of the arm played by each algorithm at time t. The specific definitions

of the algorithms can be found in [10] but they are essentially tuned versions of the

above archetypal algorithms. We immediately observe a dramatic difference between

the three sampling procedures: the action elimination strategy peels one arm away at

a time and the plot of P(It = i) gives little indication of the best arm until many pulls

in. On the other hand, the plot of P(It = i) for the LUCB and UCB sampling strategies

clearly identifies the best arm very quickly with a large separation between the first and

second arm. We remark that these algorithms may vary in performance using different

parameters but the qualitative shape of these curves remain the same.
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Action Elimination Sampling

UCB Sampling

LUCB Sampling

Figure 4.2: Comparison of the sampling strategies for the three main types of best-arm
identification algorithms for n = 6 arms.
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4.4.2 An Empirical Performance Comparison

Before describing each of the specific algorithms in the comparison against lil’UCB, we

briefly describe an LIL-based stopping criterion alluded to above that can be applied to

any of the algorithms.

LIL Stopping (LS) : For any algorithm and i ∈ [n], after the t-th time we have

that the i-th arm has been sampled Ti(t) times and accumulated a mean µ̂i,Ti(t).

We can apply Lemma 4.3 (with a union bound) so that with probability at least

1− 2+ε
ε

(
δ

log(1+ε)

)1+ε

∣∣µ̂i,Ti(t) − µi∣∣ ≤ Bi,Ti(t) := (1 +
√
ε)

√
2σ2(1+ε) log

(
2 log((1+ε)Ti(t)+2)

δ/n

)
Ti(t)

(4.11)

for all t ≥ 1 and all i ∈ [n]. We may then conclude that if î := arg maxi∈[n] µ̂i,Ti(t)

and µ̂î,Tî(t)
−Bî,Tî(t)

≥ µ̂j,Tj(t) +Bj,Tj(t) ∀j 6= î then with high probability we have

that î = i∗.

The LIL stopping condition is somewhat naive but often quite effective in practice for

smaller size problems when log(n) is negligible. To implement the strategy for any

algorithm with fixed confidence ν, simply run the algorithm with ν/2 in place of ν and

assign the other ν/2 confidence to the LIL stopping criterion. Note that to for the LIL

bound to hold with probability at least 1− ν, one should use δ = log(1 + ε)
(
νε

2+ε

)1/(1+ε).

The algorithms compared were:

• Nonadaptive + LS : Draw a random permutation of [n] and sample the arms in an

order defined by cycling through the permutation until the LIL stopping criterion

is met. This is in some sense the most naive action elimination strategy.
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• Exponential-Gap Elimination (+LS) [61] : This action elimination procedure

proceeds in stages where at each stage, median elimination [58] is used to find an

ε-optimal reference arm whose mean is guaranteed (with large probability) to be

within a specified ε > 0 of the mean of the best arm, and then arms are discarded

if their empirical mean is sufficiently below the empirical mean of the ε-optimal

arm. The algorithm terminates when there is only one arm that has not yet been

discarded (or when the LIL stopping criterion is met).

• Successive Elimination [58] : This action elimination procedure proceeds in the

same spirit as Exponential-Gap Elimination except the ε-optimal arm is equal to

î := arg maxi∈[n] µ̂i,Ti(t).

• lil’UCB (+LS) : The UCB procedure of Figure 4.1 is run with ε = 0.01, β = 1,

λ = (2 + β)2/β2 = 9, and δ =
(
√

1+ν(/2)−1)2

4cε
for input confidence ν. The algorithm

terminates according to Fig. 4.1 (or when the LIL stopping criterion is met). Note

that δ is defined as prescribed by Theorem 4.2 but we approximate the leading

constant in (4.7) by 1 to define λ.

• lil’UCB Heuristic : The UCB procedure of Figure 4.1 is run with ε = 0, β = 1/2,

λ = 1 + 10/n, and δ = ν/5 for input confidence ν. These parameter settings do

not satisfy the conditions of Theorem 4.2, and thus there is no guarantee that this

algorithm will find the best arm.

• LUCB1 (+ LS) [60] : This LUCB procedure pulls two arms at each time: the arm

with the highest empirical mean and the arm with the highest upper confidence

bound among the remaining arms. The upper confidence bound was of the form
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prescribed in the simulations section of [69] and is guaranteed to return the arm

with the highest mean with confidence 1− δ.

We did not compare to the action elimination strategy known as PRISM of [11] because the

algorithm and its empirical performance are very similar to Exponential-Gap Elimination

so its inclusion in the comparison would provide very little added value. We remark that

the first three algorithms require O(1) amortized computation per time step, the lil’UCB

algorithms require O(log(n)) computation per time step using smart data structures4,

and LUCB1 requires O(n) computation per time step. LUCB1 was not run on all problem

sizes due to poor computational scaling with respect to the problem size.

Three problem scenarios were considered over a variety problem sizes (number of

arms). The “1-sparse” scenario sets µ1 = 1/2 and µi = 0 for all i = 2, . . . , n resulting

in a hardness of H1 = 4n. The “α = 0.3” and “α = 0.6” scenarios consider n + 1

arms with µ0 = 1 and µi = 1 − (i/n)α for all i = 1, . . . , n with respective hardnesses

of H1 ≈ 3/2n and H1 ≈ 6n1.2. That is, the α = 0.3 case should be about as hard as

the sparse case with increasing problem size while the α = 0.6 is considerably more

challenging and grows super linearly with the problem size. See [11] for an in-depth study

of the α parameterization. All experiments were run with input confidence δ = 0.1. All

realizations of the arms were Gaussian random variables with mean µi and variance 1/45.
4The sufficient statistic for lil’UCB to decide which arm to sample depends only on µ̂i,Ti(t) and Ti(t)

which only changes for an arm if that particular arm is pulled. Thus, it suffices to maintain an ordered
list of the upper confidence bounds in which deleting, updating, and reinserting the arm requires just
O(log(n)) computation. Contrast this with a UCB procedure in which the upper confidence bounds
depend explicitly on t so that the sufficient statistics for pulling the next arm changes for all arms after
each pull, requiring Ω(n) computation per time step.

5The variance was chosen such that the analyses of algorithms that assumed realizations were in [0, 1]
and used Hoeffding’s inequality were still valid using sub-Gaussian tail bounds with scale parameter 1/2.
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1-sparse, H1 = 4n α = 0.3, H1 ≈ 3
2
n α = 0.6, H1 ≈ 6n1.2

Figure 4.3: Stopping times of the algorithms for three scenarios for a variety of problem
sizes. The problem scenarios from left to right are the 1-sparse problem (µ1 = 0.5,
µi = 0 ∀i > 1), α = 0.3 (µi = 1− (i/n)α, i = 0, 1, . . . , n), and α = 0.6.

Each algorithm terminates at some finite time with high probability so we first consider

the relative stopping times of each of the algorithms in Figure 4.3. Each algorithm was

run on each problem scenario and problem size, repeated 50 times. The first observation

is that Exponential-Gap Elimination (+LS) appears to barely perform better than

nonadaptive sampling with the LIL stopping criterion. This confirms our suspicion that

the constants in median elimination are just too large to make this algorithm practically

relevant. While the LIL stopping criterion seems to have measurably improved the

lil’UCB algorithm, it had no impact on the lil’UCB Heuristic variant (not plotted).

While lil’UCB Heuristic has no theoretical guarantees of outputting the best arm, we

remark that over the course of all of our tens of thousands of experiments, the algorithm

never failed to terminate with the best arm. The LUCB algorithm, despite having

worse theoretical guarantees than the lil’UCB algorithm, performs surprisingly well. We

conjecture that this is because UCB style algorithms tend to lean towards exploiting the

top arm versus focusing on increasing the gap between the top two arms, which is the

goal of LUCB.
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In reality, one cannot always wait for an algorithm to run until it terminates on its

own so we now explore how the algorithms perform if the algorithm must output an arm

at every time step before termination (this is similar to the setting studied in [66]). For

each algorithm, at each time we output the arm with the highest empirical mean. Clearly,

the probability that a sub-optimal arm is output by any algorithm should very close to 1

in the beginning but then eventually decrease to at least the desired input confidence,

and likely, to zero. Figure 4.4 shows the “anytime” performance of the algorithms for

the three scenarios and unlike the empirical stopping times of the algorithms, we now

observe large differences between the algorithms. Each experiment was repeated 5000

times. Again we see essentially no difference between nonadaptive sampling and the

exponential-gap procedure. While in the stopping time plots of Figure 4.3 the successive

elimination appears competitive with the UCB algorithms, we observe in Figure 4.4

that the UCB algorithms are collecting sufficient information to output the best arm at

least twice as fast as successive elimination. This tells us that the stopping conditions

for the UCB algorithms are still too conservative in practice which motivates the use

of the lil’UCB Heuristic algorithm which appears to perform very strongly across all

metrics. The LUCB algorithm again performs strongly here suggesting that LUCB-style

algorithms are very well-suited for exploration tasks.

4.5 Discussion

This paper proposed a new procedure for identifying the best arm in a multi-armed

bandit problem in the fixed confidence setting, a problem of pure exploration. However,

there are some scenarios where one wishes to balance exploration with exploitation and
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1-sparse, H1 = 4n α = 0.3, H1 ≈ 3
2
n α = 0.6, H1 ≈ 6n1.2

n
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n

=
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Figure 4.4: At every time, each algorithm outputs an arm î that has the highest empirical
mean. The P(̂i 6= i∗) is plotted with respect to the total number of pulls by the
algorithm. The problem sizes (number of arms) increase from top to bottom. The
problem scenarios from left to right are the 1-sparse problem (µ1 = 0.5, µi = 0 ∀i > 1) ,
α = 0.3 (µi = 1− (i/n)α, i = 0, 1, . . . , n), and α = 0.6. The arrows indicate the stopping
times (if not shown, those algorithms did not terminate within the time window shown).
Note that LUCB1 is not plotted for n = 10000 due to computational constraints (see
text for explanation). Also note that in some plots it is difficult to distinguish between
the nonadaptive sampling procedure, the exponential-gap algorithm, and successive
elimination due to the curves being on top of each other.
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the metric of interest is the cumulative regret. We remark that the techniques developed

here can be easily extended to show that the lil’UCB algorithm obtains bounded regret

with high probability, improving upon the result of [70].

In this work we proved upper and lower bounds over the class of distributions with

bounded means and sub-Guassian realizations and presented our results just in terms

of the difference between the means of the arms. In contrast to just considering the

means of the distributions, [69] studied the Chernoff information between distributions,

a quantity related to the KL divergence, that is sharper and can result in improved rates

in identifying the best arm in theory and practice (for instance if the realizations from

the arms have very different variances). Pursuing methods that exploit distributional

characteristics beyond the mean is a good direction for future work.

Finally, an obvious extension of this work is to consider finding the top-m arms instead

of just the best arm. This idea has been explored in both the fixed confidence setting [69]

and the fixed budget setting [71] but we believe both of these sample complexity results

to be suboptimal. It may be possible to adapt the approach developed in this paper to

find the top-m arms and obtain gains in theory and practice.

4.6 Bibliographical Remarks

The content of this chapter was based on the author’s following publications:

• Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb:

An optimal exploration algorithm for multi-armed bandits. In Proceedings of The

27th Conference on Learning Theory, pages 423–439, 2014,
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• Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-

armed bandits in the fixed confidence setting. In Information Sciences and Systems

(CISS), 2014 48th Annual Conference on, pages 1–6. IEEE, 2014,

• Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sebastien Bubeck. On finding

the largest mean among many. Signals, Systems and Computers (ASILOMAR),

2013.

Remarkably, within weeks of the first publication of these results, two other publications

appeared that also independently derived a form of the finite-time law of the iterated

logarithm resembling Lemma 4.3 [67, 68]. The two results focus on tightening the bound

for large times at the sacrifice of smaller times. In addition, [68] presents a nearly

matching lower bound to the upper bound that may be useful for future lower bounds in

the multi-armed bandits literature. On a related note, the proof of the lower bound on

the sample complexity of the best-arm identification of [59] was significantly simplified

and generalized by [67].
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Chapter 5

Non-stochastic Best-arm

Identification

In Chapter 4 we studied the stochastic best-arm identification problem where the rewards

from each arm were independent random variables with some fixed, unknown mean

µi and the objective was to discover arg maxi µi. The fact that the rewards for each

arm were independent allowed us to take advantage of concentration inequalities, which

informed us of how far the empirical mean of a random variable can deviate from its

true mean. While this stochastic setting encompasses many interesting and fundamental

problems, there are many natural problems encountered in practice that do not exhibit

such structure.

For motivation, consider minimizing a non-convex function with gradient descent.

After many iterations, the solver will converge to a local-minima, but because this

local-minima may not be the global-minima, a common strategy is to perform gradient

descent multiple times, each time starting at a different, random location. If we start

with n different random starting positions, we can think of a “pull” of an arm as taking a

gradient step (or some fixed number of steps) and computing the function value at the new

iterate. As we pull the different arms, they will all start to converge to fixed values, and

our objective is to identify the arm that will eventually converge to the lowest function



103

value. There are many similarities to the stochastic best-arm identification problem,

but also many differences. For instance, we know that the function evaluations, like the

empirical means in the stochastic case, eventually converge, but unlike the stochastic

case we have no confidence bounds to tell us at what rate the sequences converge unless

something is known about function to be optimized, such as the norm of its gradients

being bounded. Without any information about the rate at which the sequences converge,

we can also never verify that we have correctly identified the correct arm. And finally, in

the stochastic case we assumed that we could observe the raw rewards instantly whereas

in the non-stochastic case there may be some cost to evaluating the value of an arm,

like computing the value of the objective function. In this chapter, motivated by a

hyperparameter tuning problem for machine learning, we address these challenges and

propose a new framework for solving the non-stochastic best-arm identification problem.

5.1 Introduction

As supervised learning methods are becoming more widely adopted, hyperparameter

optimization has become increasingly important to simplify and speed up the development

of data processing pipelines while simultaneously yielding more accurate models. In

hyperparameter optimization for supervised learning, we are given labeled training data,

a set of hyperparameters associated with our supervised learning methods of interest,

and a search space over these hyperparameters. We aim to find a particular configuration

of hyperparameters that optimizes some evaluation criterion, e.g., loss on a validation

dataset.

Since many machine learning algorithms are iterative in nature, particularly when
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working at scale, we can evaluate the quality of intermediate results, i.e., partially

trained learning models, resulting in a sequence of losses that eventually converges to

the final loss value at convergence. For example, Figure 5.1 shows the sequence of

validation losses for various hyperparameter settings for kernel SVM models trained via

stochastic gradient descent. The figure shows high variability in model quality across

hyperparameter settings. It thus seems natural to ask the question: Can we terminate

these poor-performing hyperparameter settings early in a principled online fashion to

speed up hyperparameter optimization?

Figure 5.1: Validation error for different hyperparameter choices for a classification task
trained using stochastic gradient descent.

Although several hyperparameter optimization methods have been proposed recently,

e.g., [72,73,74,75,76], the vast majority of them consider the training of machine learning

models to be black-box procedures, and only evaluate models after they are fully trained

to convergence. A few recent works have made attempts to exploit intermediate results.

However, these works either require explicit forms for the convergence rate behavior of the

iterates which is difficult to accurately characterize for all but the simplest cases [77,78], or

focus on heuristics lacking theoretical underpinnings [79]. We build upon these previous
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works, and in particular study the multi-armed bandit formulation proposed in [77]

and [79], where each arm corresponds to a fixed hyperparameter setting, pulling an arm

corresponds to a fixed number of training iterations, and the loss corresponds to an

intermediate loss on some hold-out set.

We aim to provide a robust, general-purpose, and widely applicable bandit-based

solution to hyperparameter optimization. Remarkably, however, the existing multi-armed

bandits literature fails to address this natural problem setting: a non-stochastic best-arm

identification problem. While multi-armed bandits is a thriving area of research, we

believe that the existing work fails to adequately address the two main challenges in this

setting:

1. We know each arm’s sequence of losses eventually converges, but we have no

information about the rate of convergence, and the sequence of losses, like those in

Figure 5.1, may exhibit a high degree of non-monotonicity and non-smoothness.

2. The cost of obtaining the loss of an arm can be disproportionately more costly than

pulling it. For example, in the case of hyperparameter optimization, computing the

validation loss is often drastically more expensive than performing a single training

iteration.

We thus study this novel bandit setting, which encompasses the hyperparameter

optimization problem, and analyze an algorithm we identify as being particularly well-

suited for this setting. Moreover, we confirm our theory with empirical studies that

demonstrate an order of magnitude speedups relative to standard baselines on a number

of real-world supervised learning problems and datasets.

We note that this bandit setting is quite generally applicable. While the problem

of hyperparameter optimization inspired this work, the setting itself encompasses the
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stochastic best-arm identification problem [80], less-well-behaved stochastic sources

like max-bandits [81], exhaustive subset selection for feature extraction, and many

optimization problems that “feel” like stochastic best-arm problems but lack the i.i.d.

assumptions necessary in that setting.

The remainder of the paper is organized as follows: In Section 5.2 we present the

setting of interest, provide a survey of related work, and explain why most existing

algorithms and analyses are not well-suited or applicable for our setting. We then

study our proposed algorithm in Section 5.3 in our setting of interest, and analyze its

performance relative to a natural baseline. We then relate these results to the problem

of hyperparameter optimization in Section 5.4, and present our experimental results in

Section 5.5.

5.2 Non-stochastic best arm identification

Objective functions for multi-armed bandits problems tend to take on one of two flavors:

1) best arm identification (or pure exploration) in which one is interested in identifying

the arm with the highest average payoff, and 2) exploration-versus-exploitation in which

we are trying to maximize the cumulative payoff over time [82]. While the latter has

been analyzed in both the stochastic and non-stochastic settings, we are unaware of any

work that addresses the best arm objective in the non-stochastic setting, which is our

setting of interest. Moreover, while related, a strategy that is well-suited for maximizing

cumulative payoff is not necessarily well-suited for the best-arm identification task, even

in the stochastic setting [80].

The algorithm of Figure 5.2 presents a general form of the best arm problem for
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Best Arm Problem for Multi-armed Bandits
input: n arms where `i,k denotes the loss observed on the
kth pull of the ith arm
initialize: Ti = 1 for all i ∈ [n]

for t = 1, 2, 3, . . .

Algorithm chooses an index It ∈ [n]

Loss `It,TIt is revealed, TIt = TIt + 1

Algorithm outputs a recommendation Jt ∈ [n]

Receive external stopping signal, otherwise continue

Figure 5.2: A generalization of the best arm problem for multi-armed bandits [80] that
applies to both the stochastic and non-stochastic settings.

multi-armed bandits. Intuitively, at each time t the goal is to choose Jt such that the

arm associated with Jt has the lowest loss in some sense. Note that while the algorithm

gets to observe the value for an arbitrary arm It, the algorithm is only evaluated on its

recommendation Jt, that it also chooses arbitrarily. This is in contrast to the exploration-

versus-exploitation game where the arm that is played is also the arm that the algorithm

is evaluated on, namely, It.

The best-arm identification problems defined below require that the losses be generated

by an oblivious adversary, which essentially means that the loss sequences are independent

of the algorithm’s actions. Contrast this with an adaptive adversary that can adapt

future losses based on all the arms that the algorithm has played up to the current time.

If the losses are chosen by an oblivious adversary then without loss of generality we

may assume that all the losses were generated before the start of the game. See [82] for

more info. We now compare the stochastic and the proposed non-stochastic best-arm

identification problems.

Stochastic : For all i ∈ [n], k ≥ 1, let `i,k be an i.i.d. sample from a probability
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distribution supported on [0, 1]. For each i, E[`i,k] exists and is equal to some

constant µi for all k ≥ 1. The goal is to identify arg mini µi while minimizing∑n
i=1 Ti.

Non-stochastic (proposed in this work) : For all i ∈ [n], k ≥ 1, let `i,k ∈ R be

generated by an oblivious adversary and assume νi = lim
τ→∞

`i,τ exists. The goal is

to identify arg mini νi while minimizing
∑n

i=1 Ti.

These two settings are related in that we can always turn the stochastic setting into

the non-stochastic setting by defining `i,Ti = 1
Ti

∑Ti
k=1 `

′
i,Ti

where `′i,Ti are the losses from

the stochastic problem; by the law of large numbers limτ→∞ `i,τ = E[`′i,1]. In fact, we

could do something similar with other less-well-behaved statistics like the minimum

(or maximum) of the stochastic returns of an arm. As described in [81], we can define

`i,Ti = min{`′i,1, `′i,2, . . . , `′i,Ti}, which has a limit since `i,t is a bounded, monotonically

decreasing sequence.

However, the generality of the non-stochastic setting introduces novel challenges.

In the stochastic setting, if we set µ̂i,Ti = 1
Ti

∑Ti
k=1 `i,k then with probability at least

1− δ we have |µ̂i,Ti − µi| ≤
√

log(4nT 2
i )

2Ti
for all i ∈ [n] and Ti > 0 by applying Hoeffding’s

inequality and a union bound. In contrast, the non-stochastic setting’s assumption

that limτ→∞ `i,τ exists implies that there exists a non-increasing function γi such that

|`i,t − limτ→∞ `i,τ | ≤ γi(t) and that limt→∞ γi(t) = 0. However, the existence of this limit

tells us nothing about how quickly γi(t) approaches 0. The lack of an explicit convergence

rate as a function of t presents a problem as even the tightest γi(t) could decay arbitrarily

slowly and we would never know it.

This observation has two consequences. First, we can never reject the possibility that
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an arm is the “best” arm. Second, we can never verify that an arm is the “best” arm

or even attain a value within ε of the best arm. Despite these challenges, in Section 5.3

we identify an effective algorithm under natural measures of performance, using ideas

inspired by the fixed budget setting of the stochastic best arm problem [55,61,65].

5.2.1 Related work

Despite dating to back to the late 1950’s, the best-arm identification problem for the

stochastic setting has experienced a surge of activity in the last decade. The work

has two major branches: the fixed budget setting and the fixed confidence setting. In

the fixed budget setting, the algorithm is given a set of arms and a budget B and is

tasked with maximizing the probability of identifying the best arm by pulling arms

without exceeding the total budget. While these algorithms were developed for and

analyzed in the stochastic setting, they exhibit attributes that are very amenable to the

non-stochastic setting. In fact, the algorithm we propose to use in this paper is exactly

the Successive Halving algorithm of [61], though the non-stochastic setting requires its

own novel analysis that we present in Section 5.3. Successive Rejects [65] is another fixed

budget algorithm that we compare to in our experiments.

The best-arm identification problem in the fixed confidence setting takes an input

δ ∈ (0, 1) and guarantees to output the best arm with probability at least 1− δ while

attempting to minimize the number of total arm pulls. These algorithms rely on

probability theory to determine how many times each arm must be pulled in order to

decide if the arm is suboptimal and should no longer be pulled, either by explicitly

discarding it, e.g., Successive Elimination [83] and Exponential Gap Elimination [61],
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Exploration algorithm # observed losses
Uniform (baseline) (B) n
Successive Halving* (B) 2n+ 1
Successive Rejects (B) (n+ 1)n/2
Successive Elimination (C) n log2(2B)
LUCB (C), lil’UCB (C), EXP3 (R) B

Table 5.1: The number of times an algorithm observes a loss in terms of budget B
and number of arms n, where B is known to the algorithm. (B), (C), or (R) indicate
whether the algorithm is of the fixed budget, fixed confidence, or cumulative regret
variety, respectfully. (*) indicates the algorithm we propose for use in the non-stochastic
best arm setting.

or implicitly by other methods, e.g., LUCB [60] and Lil’UCB [84]. For an in-depth

review of the stochastic best-arm identification problem, we refer the reader to Chapter 4

Algorithms from the fixed confidence setting are ill-suited for the non-stochastic best-arm

identification problem because they rely on statistical bounds that are generally not

applicable in the non-stochastic case. These algorithms also exhibit some undesirable

behavior with respect to how many losses they observe, which we explore next.

In addition to just the total number of arm pulls, this work also considers the required

number of observed losses. This is a natural cost to consider when `i,Ti for any i is

the result of doing some computation like evaluating a partially trained classifier on a

hold-out validation set or releasing a product to the market to probe for demand. In

some cases the cost, be it time, effort, or dollars, of an evaluation of the loss of an arm

after some number of pulls can dwarf the cost of pulling the arm. Assuming a known time

horizon (or budget), Table 5.1 describes the total number of times various algorithms

observe a loss as a function of the budget B and the number of arms n. We include in

our comparison the EXP3 algorithm [85], a popular approach for minimizing cumulative

regret in the non-stochastic setting. In practice B � n, and thus Successive Halving is
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a particular attractive option, as along with the baseline, it is the only algorithm that

observes losses proportional to the number of arms and independent of the budget. As

we will see in Section 5.5, the performance of these algorithms is quite dependent on the

number of observed losses.

5.3 Proposed algorithm and analysis

The proposed Successive Halving algorithm of Figure 5.3 was originally proposed for the

stochastic best arm identification problem in the fixed budget setting by [61]. However,

our novel analysis in this work shows that it is also effective in the non-stochastic setting.

The idea behind the algorithm is simple: given an input budget, uniformly allocate the

budget to a set of arms for a predefined amount of iterations, evaluate their performance,

throw out the worst half, and repeat until just one arm remains.

Successive Halving Algorithm
input: Budget B, n arms where `i,k denotes the kth loss from the ith arm
Initialize: S0 = [n].
For k = 0, 1, . . . , dlog2(n)e − 1

Pull each arm in Sk for rk = b B
|Sk|dlog2(n)ec additional times and set Rk =

∑k
j=0 rj .

Let σk be a bijection on Sk such that `σk(1),Rk ≤ `σk(2),Rk ≤ · · · ≤ `σk(|Sk|),Rk
Sk+1 =

{
i ∈ Sk : `σk(i),Rk ≤ `σk(b|Sk|/2c),Rk

}
.

output : Singleton element of Sdlog2(n)e

Figure 5.3: Successive Halving was originally proposed for the stochastic best arm
identification problem in [61] but is also applicable to the non-stochastic setting.

The budget as an input is easily removed by the “doubling trick” that attempts

B ← n, then B ← 2B, and so on. This method can reuse existing progress from iteration

to iteration and effectively makes the algorithm parameter free. But its most notable

quality is that if a budget of B′ is necessary to succeed in finding the best arm, by
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performing the doubling trick one will have only had to use a budget of 2B′ in the worst

case without ever having to know B′ in the first place. Thus, for the remainder of this

section we consider a fixed budget.

5.3.1 Analysis of Successive Halving

We first show that the algorithm never takes a total number of samples that exceeds the

budget B:

dlog2(n)e−1∑
k=0

|Sk|
⌊

B
|Sk|dlog(n)e

⌋
≤
dlog2(n)e−1∑

k=0

B
dlog(n)e ≤ B .

Next we consider how the algorithm performs in terms of identifying the best arm. First,

for i = 1, . . . , n define νi = limτ→∞ `i,τ which exists by assumption. Without loss of

generality, assume that

ν1 < ν2 ≤ · · · ≤ νn .

We next introduce functions that bound the approximation error of `i,t with respect

to νi as a function of t. For each i = 1, 2, . . . , n let γi(t) be the point-wise smallest,

non-increasing function of t such that

|`i,t − νi| ≤ γi(t) ∀t.
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In addition, define γ−1
i (α) = min{t ∈ N : γi(t) ≤ α} for all i ∈ [n]. With this definition,

if ti > γ−1
i (νi−ν1

2
) and t1 > γ−1

1 (νi−ν1

2
) then

`i,ti − `1,t1 = (`i,ti − νi) + (ν1 − `1,t1) + 2

(
νi−ν1

2

)
≥ −γi(ti)− γ1(t1) + 2

(
νi−ν1

2

)
> 0.

Indeed, if min{ti, t1} > max{γ−1
i (νi−ν1

2
), γ−1

1 (νi−ν1

2
)} then we are guaranteed to have that

`i,ti > `1,t1 . That is, comparing the intermediate values at ti and t1 suffices to determine

the ordering of the final values νi and ν1. Intuitively, this condition holds because the

envelopes at the given times, namely γi(ti) and γ1(t1), are small relative to the gap

between νi and ν1. This line of reasoning is at the heart of the proof of our main result,

and the theorem is stated in terms of these quantities.

Theorem 5.1. Let νi = lim
τ→∞

`i,τ , γ̄(t) = max
i=1,...,n

γi(t) and

z = 2dlog2(n)e max
i=2,...,n

i (1 + γ̄−1
(
νi−ν1

2

)
)

≤ 2dlog2(n)e
(
n+ γ̄−1

(
ν2−ν1

2

)
+
∑

i=2,...,n

γ̄−1
(
νi−ν1

2

))
< 8dlog2(n)e

∑
i=2,...,n

γ̄−1
(
νi−ν1

2

)
.

If the budget B > z then the best arm is returned from the algorithm.

Proof. For notational ease, define [·] = {{·}t=1}ni=1 so that [`i,t] = {{`i,t}∞t=1}ni=1. Without

loss of generality, we may assume that the n infinitely long loss sequences [`i,t] with

limits {νi}ni=1 were fixed prior to the start of the game so that the γi(t) envelopes are also

defined for all time and are fixed. Let Ω be the set that contains all possible sets of n
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infinitely long sequences of real numbers with limits {νi}ni=1 and envelopes [γ̄(t)], that is,

Ω =
{

[`′i,t] : [ |`′i,t − νi| ≤ γ̄(t) ] ∧ lim
τ→∞

`′i,τ = νi ∀i
}

where we recall that ∧ is read as “and” and ∨ is read as “or.” Clearly, [`i,t] is a single

element of Ω.

We present a proof by contradiction. We begin by considering the singleton set

containing [`i,t] under the assumption that the Successive Halving algorithm fails to

identify the best arm, i.e., Sdlog2(n)e 6= 1. We then consider a sequence of subsets of Ω,

with each one contained in the next. The proof is completed by showing that the final

subset in our sequence (and thus our original singleton set of interest) is empty when

B > z, which contradicts our assumption and proves the statement of our theorem.

To reduce clutter in the following arguments, it is understood that S ′k for all k in the

following sets is a function of [`′i,t] in the sense that it is the state of Sk in the algorithm

when it is run with losses [`′i,t]. We now present our argument in detail, starting with the
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singleton set of interest, and using the definition of Sk in Figure 5.3.

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧ S ′dlog2(n)e 6= 1


=

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧
dlog2(n)e∨
k=1

{1 /∈ S ′k, 1 ∈ S ′k−1}


=

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧
dlog2(n)e−1∨

k=0


∑
i∈S′k

1{`′i,Rk < `′1,Rk} > b|S
′
k|/2c




=

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧
dlog2(n)e−1∨

k=0


∑
i∈S′k

1{νi − ν1 < `′1,Rk − ν1 − `′i,Rk + νi} > b|S ′k|/2c




⊆

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0


∑
i∈S′k

1{νi − ν1 < |`′1,Rk − ν1|+ |`′i,Rk − νi|} > b|S
′
k|/2c




⊆

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0


∑
i∈S′k

1{2γ̄(Rk) > νi − ν1} > b|S ′k|/2c


 , (5.1)

where the last set relaxes the original equality condition to just considering the maximum

envelope γ̄ that is encoded in Ω. The summation in Eq. 5.1 only involves the νi, and this
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summand is maximized if each S ′k contains the first |S ′k| arms. Hence we have,

(5.1) ⊆

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0


|S′k|∑
i=1

1{2γ̄(Rk) > νi − ν1} > b|S ′k|/2c




=

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0

{
2γ̄(Rk) > νb|S′k|/2c+1 − ν1

}
⊆

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0

{
Rk < γ̄−1

(νb|S′
k
|/2c+1−ν1

2

)} , (5.2)

where we use the definition of γ−1 in Eq. 5.2. Next, we recall thatRk =
∑k

j=0b B
|Sk|dlog2(n)ec ≥

B/2
(b|Sk|/2c+1)dlog2(n)e − 1 since |Sk| ≤ 2(b|Sk|/2c+ 1). We note that we are underestimating

by almost a factor of 2 to account for integer effects in favor of a simpler form. By

plugging in this value for Rk and rearranging we have that

(5.2) ⊆

[`′i,t] ∈ Ω :

dlog2(n)e−1∨
k=0

{
B/2

dlog2(n)e < (b|S ′k|/2c+ 1)(1 + γ̄−1
(νb|S′

k
|/2c+1−ν1

2

)
)
}

=

[`′i,t] ∈ Ω : B/2
dlog2(n)e < max

k=0,...,dlog2(n)e−1
(b|S ′k|/2c+ 1)(1 + γ̄−1

(νb|S′
k
|/2c+1−ν1

2

)
)


⊆

[`′i,t] ∈ Ω : B < 2dlog2(n)e max
i=2,...,n

i (γ̄−1
(
νi−ν1

2

)
+ 1)

 = ∅

where the last equality holds if B > z.

The second, looser, but perhaps more interpretable form of z is thanks to [65] who
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showed that for a decreasing sequence of numbers x1, . . . , xn

max
i=1,...,n

i xi ≤
∑

i=1,...,n

xi ≤ log2(2n) max
i=1,...,n

i xi

where both inequalities are achievable with particular settings of the xi variables.

The representation of z on the right-hand-side of the inequality is very intuitive: if

γ̄(t) = γi(t) ∀i and an oracle gave us an explicit form for γ̄(t), then to merely verify

that the ith arm’s final value is higher than the best arm’s, one must pull each of the

two arms at least a number of times equal to the ith term in the sum (this becomes clear

by inspecting the proof of Theorem 5.3). Repeating this argument for all i = 2, . . . , n

explains the sum over all n − 1 arms. While clearly not a proof, this argument along

with known lower bounds for the stochastic setting [65,67], a subset of the non-stochastic

setting, suggest that the above result may be nearly tight in a minimax sense up to log

factors.

Example 1. Consider a feature-selection problem where you are given a dataset {(xi, yi)}ni=1

where each xi ∈ RD and you are tasked with identifying the best subset of features of

size d that linearly predicts yi in terms of the least-squares metric. In our framework,

each d-subset is an arm and there are n =
(
D
d

)
arms. Least squares is a convex quadratic

optimization problem that can be efficiently solved with stochastic gradient descent. Using

known bounds for the rates of convergence [86] one can show that γa(t) ≤ σa log(nt/δ)
t

for

all a = 1, . . . , n arms and all t ≥ 1 with probability at least 1− δ where σa is a constant

that depends on the condition number of the quadratic defined by the d-subset. Then

in Theorem 5.1, γ̄(t) = σmax log(nt/δ)
t

with σmax = maxa=1,...,n σa so after inverting γ̄ we
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find that z = 2dlog2(n)emaxa=2,...,n a
4σmax log

(
2nσmax

δ(νa−ν1)

)
νa−ν1

is a sufficient budget to identify

the best arm. Later we put this result in context by comparing to a baseline strategy.

In the above example we computed upper bounds on the γi functions in terms of

problem dependent parameters to provide us with a sample complexity by plugging these

values into our theorem. However, we stress that constructing tight bounds for the γi

functions is very difficult outside of very simple problems like the one described above,

and even then we have unspecified constants. Fortunately, because our algorithm is

agnostic to these γi functions, it is also in some sense adaptive to them: the faster the

arms’ losses converge, the faster the best arm is discovered, without ever changing the

algorithm. This behavior is in stark contrast to the hyperparameter tuning work of [78]

and [77], in which the algorithms explicitly take upper bounds on these γi functions as

input, meaning the performance of the algorithm is only as good as the tightness of these

difficult to calculate bounds.

5.3.2 Comparison to a uniform allocation strategy

We can also derive a result for the naive uniform budget allocation strategy. For simplicity,

let B be a multiple of n so that at the end of the budget we have Ti = B/n for all i ∈ [n]

and the output arm is equal to î = arg mini `i,B/n.

Theorem 5.2. (Uniform strategy – sufficiency) Let νi = lim
τ→∞

`i,τ , γ̄(t) = maxi=1,...,n γi(t)

and

z = max
i=2,...,n

nγ̄−1
(
νi−ν1

2

)
.
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If B > z then the uniform strategy returns the best arm.

Proof. Recall the notation from the proof of Theorem 5.1 and let î([`′i,t]) be the output

of the uniform allocation strategy with input losses [`′i,t].

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧ î([`′i,t]) 6= 1

 =

[`′i,t] ∈ Ω : [`′i,t = `i,t] ∧ `′1,B/n ≥ min
i=2,...,n

`′i,B/n


⊆

[`′i,t] ∈ Ω : 2γ̄(B/n) ≥ min
i=2,...,n

νi − ν1


=

[`′i,t] ∈ Ω : 2γ̄(B/n) ≥ ν2 − ν1


⊆

[`′i,t] ∈ Ω : B ≤ nγ̄−1
(
ν2−ν1

2

) = ∅

where the last equality follows from the fact that B > z which implies î([`i,t]) = 1.

Theorem 5.2 is just a sufficiency statement so it is unclear how the performance of

the method actually compares to the Successive Halving result of Theorem 5.1. The next

theorem says that the above result is tight in a worst-case sense, exposing the real gap

between the algorithm of Figure 5.3 and the naive uniform allocation strategy.

Theorem 5.3. (Uniform strategy – necessity) For any given budget B and final values

ν1 < ν2 ≤ · · · ≤ νn there exists a sequence of losses {`i,t}∞t=1, i = 1, 2, . . . , n such that if

B < max
i=2,...,n

nγ̄−1
(
νi−ν1

2

)

then the uniform budget allocation strategy will not return the best arm.
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Proof. Let β(t) be an arbitrary, monotonically decreasing function of t with limt→∞ β(t) =

0. Define `1,t = ν1+β(t) and `i,t = νi−β(t) for all i. Note that for all i, γi(t) = γ̄(t) = β(t)

so that

î = 1 ⇐⇒ `1,B/n < min
i=2,...,n

`i,B/n

⇐⇒ ν1 + γ̄(B/n) < min
i=2,...,n

νi − γ̄(B/n)

⇐⇒ ν1 + γ̄(B/n) < ν2 − γ̄(B/n)

⇐⇒ γ̄(B/n) <
ν2 − ν1

2

⇐⇒ B ≥ nγ̄−1
(
ν2−ν1

2

)
.

If we consider the second, looser representation of z on the right-hand-side of the

inequality in Theorem 5.1 and multiply this quantity by n−1
n−1

we see that the sufficient

number of pulls for the Successive Halving algorithm essentially behaves like (n −

1) log2(n) times the average 1
n−1

∑
i=2,...,n γ̄

−1
(
νi−ν1

2

)
whereas the necessary result of

the uniform allocation strategy of Theorem 5.3 behaves like n times the maximum

maxi=2,...,n γ̄
−1
(
νi−ν1

2

)
. The next example shows that the difference between this average

and max can be very significant.

Example 2. Recall Example 1 and now assume that σa = σmax for all a = 1, . . . , n. Then

Theorem 5.3 says that the uniform allocation budget must be at least n
4σmax log

(
2nσmax

δ(ν2−ν1)

)
ν2−ν1

to identify the best arm. To see how this result compares with that of Successive Halving,

let us parameterize the νa limiting values such that νa = a/n for a = 1, . . . , n. Then

a sufficient budget for the Successive Halving algorithm to identify the best arm is just



121

8ndlog2(n)eσmax log
(
n2σmax

δ

)
while the uniform allocation strategy would require a budget

of at least 2n2σmax log
(
n2σmax

δ

)
. This is a difference of essentially 4n log2(n) versus n2.

5.3.3 A pretty good arm

Up to this point we have been concerned with identifying the best arm: ν1 = arg mini νi

where we recall that νi = lim
τ→∞

`i,τ . But in practice one may be satisfied with merely an

ε-good arm iε in the sense that νiε − ν1 ≤ ε. However, with our minimal assumptions,

such a statement is impossible to make since we have no knowledge of the γi functions to

determine that an arm’s final value is within ε of any value, much less the unknown final

converged value of the best arm. However, as we show in Theorem 5.4, the Successive

Halving algorithm cannot do much worse than the uniform allocation strategy.

Theorem 5.4. For a budget B and set of n arms, define îSH as the output of the

Successive Halving algorithm. Then

ν̂iSH − ν1 ≤ dlog2(n)e2γ̄
(
b B
ndlog2(n)ec

)
.

Moreover, îU , the output of the uniform strategy, satisfies

ν̂iU − ν1 ≤ `̂i,B/n − `1,B/n + 2γ̄(B/n) ≤ 2γ̄(B/n).

Proof. We can guarantee for the Successive Halving algorithm of Figure 5.3 that the
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output arm î satisfies

ν̂i − ν1 = min
i∈Sdlog2(n)e

νi − ν1

=

dlog2(n)e−1∑
k=0

min
i∈Sk+1

νi −min
i∈Sk

νi

≤
dlog2(n)e−1∑

k=0

min
i∈Sk+1

`i,Rk −min
i∈Sk

`i,Rk + 2γ̄(Rk)

=

dlog2(n)e−1∑
k=0

2γ̄(Rk) ≤ dlog2(n)e2γ̄
(
b B
ndlog2(n)ec

)

simply by inspecting how the algorithm eliminates arms and plugging in a trivial lower

bound for Rk for all k in the last step.

Example 3. Recall Example 1. Both the Successive Halving algorithm and the uniform

allocation strategy satisfy ν̂i− ν1 ≤ Õ (n/B) where î is the output of either algorithm and

Õ suppresses poly log factors.

We stress that this result is merely a fall-back guarantee, ensuring that we can

never do much worse than uniform. However, it does not rule out the possibility of

the Successive Halving algorithm far outperforming the uniform allocation strategy in

practice. Indeed, we observe order of magnitude speed ups in our experimental results.

5.4 Hyperparameter optimization for supervised learn-

ing

In supervised learning we are given a dataset that is composed of pairs (xi, yi) ∈ X ×Y for

i = 1, . . . , n sampled i.i.d. from some unknown joint distribution PX,Y , and we are tasked
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with finding a map (or model) f : X → Y that minimizes E(X,Y )∼PX,Y [loss(f(X), Y )] for

some known loss function loss : Y ×Y → R. Since PX,Y is unknown, we cannot compute

E(X,Y )∼PXY [loss(f(X), Y )] directly, but given m additional samples drawn i.i.d. from

PX,Y we can approximate it with an empirical estimate, that is, 1
m

∑m
i=1 loss(f(xi), yi).

We do not consider arbitrary mappings X → Y but only those that are the output

of running a fixed, possibly randomized, algorithm A that takes a dataset {(xi, yi)}ni=1

and algorithm-specific parameters θ ∈ Θ as input so that for any θ we have fθ =

A ({(xi, yi)}ni=1, θ) where fθ : X → Y . For a fixed dataset {(xi, yi)}ni=1 the parameters θ ∈

Θ index the different functions fθ, and will henceforth be referred to as hyperparameters.

We adopt the train-validate-test framework for choosing hyperparameters [87]:

1. Partition the total dataset into TRAIN, VAL , and TEST sets with TRAIN∪VAL∪TEST =

{(xi, yi)}mi=1.

2. Use TRAIN to train a model fθ = A ({(xi, yi)}i∈TRAIN, θ) for each θ ∈ Θ,

3. Choose the hyperparameters that minimize the empirical loss on the examples in

VAL: θ̂ = arg minθ∈Θ
1
|VAL|

∑
i∈VAL loss(fθ(xi), yi)

4. Report the empirical loss of θ̂ on the test error: 1
|TEST|

∑
i∈TEST loss(fθ̂(xi), yi).

Example 4. Consider a linear classification example where X ×Y = Rd×{−1, 1}, Θ ⊂

R+, fθ = A ({(xi, yi)}i∈TRAIN, θ) where fθ(x) = 〈wθ, x〉 with wθ = arg minw
1

|TRAIN|
∑

i∈TRAIN max(0, 1−

yi〈w, xi〉) + θ||w||22, and finally θ̂ = arg minθ∈Θ
1
|VAL|

∑
i∈VAL 1{y fθ(x) < 0}.

In the simple above example involving a single hyperparameter, we emphasize that for

each θ we have that fθ can be efficiently computed using an iterative algorithm [88],

however, the selection of f̂ is the minimization of a function that is not necessarily even
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continuous, much less convex. This pattern is more often the rule than the exception.

We next attempt to generalize and exploit this observation.

5.4.1 Posing as a best arm non-stochastic bandits problem

Let us assume that the algorithm A is iterative so that for a given {(xi, yi)}i∈TRAIN and θ,

the algorithm outputs a function fθ,t every iteration t > 1 and we may compute

`θ,t = 1
|VAL|

∑
i∈VAL

loss(fθ,t(xi), yi).

We assume that the limit limt→∞ `θ,t exists1 and is equal to 1
|VAL|

∑
i∈VAL loss(fθ(xi), yi).

With this transformation we are in the position to put the hyperparameter opti-

mization problem into the framework of Figure 5.2 and, namely, the non-stochastic

best-arm identification formulation developed in the above sections. We generate the

arms (different hyperparameter settings) uniformly at random (possibly on a log scale)

from within the region of valid hyperparameters (i.e. all hyperparameters within some

minimum and maximum ranges) and sample enough arms to ensure a sufficient cover

of the space [76]. Alternatively, one could input a uniform grid over the parameters of

interest. We note that random search and grid search remain the default choices for

many open source machine learning packages such as LibSVM [89], scikit-learn [90] and

MLlib [91]. As described in Figure 5.2, the bandit algorithm will choose It, and we will

use the convention that Jt = arg minθ `θ,Tθ . The arm selected by Jt will be evaluated on

the test set following the work-flow introduced above.
1We note that fθ = limt→∞ fθ,t is not enough to conclude that limt→∞ `θ,t exists (for instance, for

classification with 0/1 loss this is not necessarily true) but these technical issues can usually be usurped
for real datasets and losses (for instance, by replacing 1{z < 0} with a very steep sigmoid). We ignore
this technicality in our experiments.
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5.4.2 Related work

We aim to leverage the iterative nature of standard machine learning algorithms to speed

up hyperparameter optimization in a robust and principled fashion. We now review

related work in the context of our results. In Section 5.3.3 we show that no algorithm can

provably identify a hyperparameter with a value within ε of the optimal without known,

explicit functions γi, which means no algorithm can reject a hyperparameter setting with

absolute confidence without making potentially unrealistic assumptions. [78] explicitly

defines the γi functions in an ad-hoc, algorithm-specific, and data-specific fashion which

leads to strong ε-good claims. A related line of work explicitly defines γi-like functions

for optimizing the computational efficiency of structural risk minimization, yielding

bounds [77]. We stress that these results are only as good as the tightness and correctness

of the γi bounds, and we view our work as an empirical, data-driven driven approach

to the pursuits of [77]. Also, [79] empirically studies an early stopping heuristic for

hyperparameter optimization similar in spirit to the Successive Halving algorithm.

We further note that we fix the hyperparameter settings (or arms) under consideration

and adaptively allocate our budget to each arm. In contrast, Bayesian optimization

advocates choosing hyperparameter settings adaptively, but with the exception of [78],

allocates a fixed budget to each selected hyperparameter setting [72, 73, 74, 75, 76].

These Bayesian optimization methods, though heuristic in nature as they attempt to

simultaneously fit and optimize a non-convex and potentially high-dimensional function,

yield promising empirical results. We view our approach as complementary and orthogonal

to the method used for choosing hyperparameter settings, and extending our approach

in a principled fashion to adaptively choose arms, e.g., in a mini-batch setting, is an
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interesting avenue for future work.

5.5 Experiment results

Figure 5.4: Ridge Regression. Test error with respect to both the number of iterations
(left) and wall-clock time (right). Note that in the left plot, uniform, EXP3, and Successive
Elimination are plotted on top of each other.

In this section we compare the proposed algorithm to a number of other algorithms,

including the baseline uniform allocation strategy, on a number of supervised learning

hyperparameter optimization problems using the experimental setup outlined in Sec-

tion 5.4.1. Each experiment was implemented in Python and run in parallel using the

multiprocessing library on an Amazon EC2 c3.8xlarge instance with 32 cores and 60 GB

of memory. In all cases, full datasets were partitioned into a training-base dataset and a

test (TEST) dataset with a 90/10 split. The training-base dataset was then partitioned

into a training (TRAIN) and validation (VAL) datasets with an 80/20 split. All plots report

loss on the test error.

To evaluate the different search algorithms’ performance, we fix a total budget of

iterations and allow the search algorithms to decide how to divide it up amongst the

different arms. The curves are produced by implementing the doubling trick by simply
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doubling the measurement budget each time. For the purpose of interpretability, we

reset all iteration counters to 0 at each doubling of the budget, i.e., we do not warm

start upon doubling. All datasets, aside from the collaborative filtering experiments, are

normalized so that each dimension has mean 0 and variance 1.

Ridge regression

We first consider a ridge regression problem trained with stochastic gradient descent

on this objective function with step size .01/
√

2 + Tλ. The `2 penalty hyperparameter

λ ∈ [10−6, 100] was chosen uniformly at random on a log scale per trial, wth 10 values

(i.e., arms) selected per trial. We use the Million Song Dataset year prediction task [92]

where we have down sampled the dataset by a factor of 10 and normalized the years

such that they are mean zero and variance 1 with respect to the training set. The

experiment was repeated for 32 trials. Error on the VAL and TEST was calculated using

mean-squared-error. In the left panel of Figure 5.4 we note that LUCB, lil’UCB perform

the best in the sense that they achieve a small test error two to four times faster, in

terms of iterations, than most other methods. However, in the right panel the same

data is plotted but with respect to wall-clock time rather than iterations and we now

observe that Successive Halving and Successive Rejects are the top performers. This is

explainable by Table 5.1: EXP3, lil’UCB, and LUCB must evaluate the validation loss

on every iteration requiring much greater compute time. This pattern is observed in all

experiments so in the sequel we only consider the uniform allocation, Successive Halving,

and Successive Rejects algorithm.
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Kernel SVM

We now consider learning a kernel SVM using the RBF kernel κγ(x, z) = e−γ||x−z||
2
2 . The

SVM is trained using Pegasos [88] with `2 penalty hyperparameter λ ∈ [10−6, 100] and

kernel width γ ∈ [100, 103] both chosen uniformly at random on a log scale per trial.

Each hyperparameter was allocated 10 samples resulting in 102 = 100 total arms. The

experiment was repeated for 64 trials. Error on the VAL and TEST was calculated using

0/1 loss. Kernel evaluations were computed online (i.e. not precomputed and stored).

We observe in Figure 5.5 that Successive Halving obtains the same low error more than

an order of magnitude faster than both uniform and Successive Rejects with respect to

wall-clock time, despite Successive Halving and Success Rejects performing comparably

in terms of iterations (not plotted).

Collaborative filtering

We next consider a matrix completion problem using the Movielens 100k dataset trained

using stochastic gradient descent on the bi-convex objective with step sizes as described

in [93]. To account for the non-convex objective, we initialize the user and item variables

with entries drawn from a normal distribution with variance σ2/d, hence each arm has

hyperparameters d (rank), λ (Frobenium norm regularization), and σ (initial conditions).

d ∈ [2, 50] and σ ∈ [.01, 3] were chosen uniformly at random from a linear scale, and

λ ∈ [10−6, 100] was chosen uniformly at random on a log scale. Each hyperparameter is

given 4 samples resulting in 43 = 64 total arms. The experiment was repeated for 32

trials. Error on the VAL and TEST was calculated using mean-squared-error. One observes

in Figure 5.6 that the uniform allocation takes two to eight times longer to achieve a
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Figure 5.5: Kernel SVM. Successive Halving and Successive Rejects are separated by an
order of magnitude in wall-clock time.

particular error rate than Successive Halving or Successive Rejects.

5.6 Discussion

Our theoretical results are presented in terms of maxi γi(t). An interesting future direction

is to consider algorithms and analyses that take into account the specific convergence

rates γi(t) of each arm, analogous to considering arms with different variances in the

stochastic case [67]. Incorporating pairwise switching costs into the framework could

model the time of moving very large intermediate models in and out of memory to

perform iterations, along with the degree to which resources are shared across various
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Figure 5.6: Matrix Completion (bi-convex formulation).

models (resulting in lower switching costs). Finally, balancing solution quality and time

by adaptively sampling hyperparameters as is done in Bayesian methods is of considerable

practical interest.
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Chapter 6

Dueling Bandits with the Borda

Voting Rule

In this chapter we revisit the use of pairwise comparisons under the bandit framework.

As discussed in Chapter 1, pairwise comparisons can be an excellent way of collecting

information from humans, and from time to time we wish to identify a “most” preferred

item by polling the crowd. For instance, suppose the the computer sciences department

decided to make a new T-shirt and held a contest among contenders in which the students

decided which T-shirt to use. If the amount of T-shirts is large, then the users won’t be

able to rate all the T-shirts so the department asks students to rate on a, say, 1-10 scale,

this scale could change because students are not calibrated: they may disagree on what

a score of ”7” means and moreover, they may change their own scales over time as they

see more T-shirts. With pairwise comparisons, this calibration issue is nonexistent. In

Chapter 4 we learned how to adaptively select T-shirts to show to students in order to

identify the top rated T-shirt as soon as possible. However, with pairwise comparisons

when there are no scores observed, there is no obvious strategy. Indeed, defining a map

from pairwise comparisons to a “winner” has been an intensely studied topic in social

choice theory for hundreds of years [94]. The candidates for mapping comparisons to

“winners” range widely from statistically rigorous definitions that make very few modeling
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assumptions to heuristics that seem to work well in practice [95].

In this chapter we use the Borda rule to map pairwise comparisons to a winner and

design an algorithm with this metric in mind. To make this mathematically rigorous,

we assume that whenever we request if a is preferred to b, we receive an independent

Bernoulli random variable Xa,b with expectation Pa,b (note, repeated draws of Xa,b need

not be identically distributed, but independence is essential, as is natural if each response

is coming from a different person in a crowd). We define the Borda score of item i with

respect to the other n objects as si := 1
n−1

∑
j 6=i pi,j so that si can be interpreted as the

expected value of the result of picking a second object J not equal to i uniformly at

random from [n] \ {i} and comparing with i, i.e. si = E[pi,J ] = E[E[Xi,j|J = j]]. The

careful reader will realize that we can turn this “Borda bandits” game into the standard

multi-armed bandit game of 4 where µi = si and a pull of the ith arm is equal to Xi,J

where J is drawn uniformly at random from [n] \ {i}. This chapter explores whether

this is the best we can do or whether there is additional structure that can be taken

advantage of.

6.1 Introduction

The dueling bandit is a variation of the classic multi-armed bandit problem in which the

actions are noisy comparisons between arms, rather than observations from the arms

themselves [96]. Each action provides 1 bit indicating which of two arms is probably

better. For example, the arms could represent objects and the bits could be responses

from people asked to compare pairs of objects. In this paper, we focus on the pure

exploration problem of finding the “best” arm from noisy pairwise comparisons. This
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problem is different from the explore-exploit problem studied in [96]. There can be

different notions of “best” in the dueling framework, including the Condorcet and Borda

criteria (defined below).

Most of the dueling-bandit algorithms are primarily concerned with finding the

Condorcet winner (the arm that is probably as good or better than every other arm).

There are two drawbacks to this. First, a Condorcet winner does not exist unless the

underlying probability matrix governing the outcomes of pairwise comparisons satisfies

certain restrictions. These restrictions may not be met in many situations. In fact, we

show that a Condorcet winner doesn’t exist in our experiment with real data presented

below. Second, the best known upper bounds on the sample complexity of finding the

Condorcet winner (assuming it exists) grow quadratically (at least) with the number of

arms. This makes Condorcet algorithms impractical for large numbers of arms.

To address these drawbacks, we consider the Borda criterion instead. The Borda

score of an arm is the probability that the arm is preferred to another arm chosen

uniformly at random. A Borda winner (arm with the largest Borda score) always exists

for every possible probability matrix. We assume throughout this paper that there exists

a unique Borda winner. Finding the Borda winner with probability at least 1− δ can be

reduced to solving an instance of the standard multi-armed bandit problem resulting in

a sufficient sample complexity of O
(∑

i>1(s1 − si)−2 log (log((s1 − si)−2)/δ)
)
, where si

denotes Borda score of arm i and s1 > s2 > · · · > sn are the scores in descending order

(c.f. Chapter 4 or [61, 97]). In favorable cases, for instance, if s1 − si ≥ c, a constant

for all i > 1, then this sample complexity is linear in n as opposed to the quadratic

sample complexity necessary to find the Condorcet winner. In this paper we show that

this upper bound is essentially tight, thereby apparently “closing” the Borda winner
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identification problem. However, in this paper we consider a specific type of structure

that is motivated by its existence in real datasets that complicates this apparently simple

story. In particular, we show that the reduction to a standard multi-armed bandit

problem can result in very bad performance when compared to an algorithm that exploits

this observed structure.

We explore the sample complexity dependence in more detail and consider structural

constraints on the matrix (a particular form of sparsity natural to this problem) that can

significantly reduce the sample complexity. The sparsity model captures the commonly

observed behavior in elections in which there are a small set of “top” candidates that

are competing to be the winner but only differ on a small number of attributes, while a

large set of “others” are mostly irrelevant as far as predicting the winner is concerned

in the sense that they would always lose in a pairwise matchup against one of the “top”

candidates.

This motivates a new algorithm called Successive Elimination with Comparison

Sparsity (SECS). SECS takes advantage of this structure by determining which of

two arms is better on the basis of their performance with respect to a sparse set of

“comparison” arms. Experimental results with real data demonstrate the practicality

of the sparsity model and show that SECS can provide significant improvements over

standard approaches.

The main contributions of this work are as follows:

• A distribution dependent lower bound for the sample complexity of identifying

the Borda winner that essentially shows that the Borda reduction to the standard

multi-armed bandit problem (explained in detail later) is essentially optimal up to

logarithmic factors, given no prior structural information.
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• A new structural assumption for the n-armed dueling bandits problem in which

the top arms can be distinguished by duels with a sparse set of other arms.

• An algorithm for the dueling bandits problem under this assumption, with theoret-

ical performance guarantees showing significant sample complexity improvements

compared to naive reductions to standard multi-armed bandit algorithms.

• Experimental results, based on real-world applications, demonstrating the superior

performance of our algorithm compared to existing methods.

6.2 Problem Setup

The n-armed dueling bandits problem [96] is a modification of the n-armed bandit problem,

where instead of pulling a single arm, we choose a pair of arms (i, j) to duel, and receive

one bit indicating which of the two is better or preferred, with the probability of i winning

the duel is equal to a constant pi,j and that of j equal to pj,i = 1− pi,j. We define the

probabilty matrix P = [pi,j], whose (i, j)th entry is pi,j.

Almost all existing n-armed dueling bandit methods [96, 98, 99, 100, 101] focus on

the explore-exploit problem and furthermore make a variety of assumptions on the

preference matrix P . In particular, those works assume the existence of a Condorcet

winner: an arm, c, such that pc,j > 1
2

for all j 6= c. The Borda winner is an arm b that

satisfies
∑

j 6=b pb,j ≥
∑

j 6=i pi,j for all i = 1, · · · , n. In other words, the Borda winner

is the arm with the highest average probability of winning against other arms, or said

another way, the arm that has the highest probability of winning against an arm selected

uniformly at random from the remaining arms. The Condorcet winner has been given
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more attention than the Borda, the reasons being: 1) Given a choice between the Borda

and the Condorcet winner, the latter is preferred in a direct comparison between the two.

2) As pointed out in [99, 100] the Borda winner can be found by reducing the dueling

bandit problem to a standard multi-armed bandit problem as follows.

Definition 6.1. Borda Reduction. The action of pulling arm i with reward 1
n−1

∑
j 6=i pi,j

can be simulated by dueling arm i with another arm chosen uniformly at random.

However, we feel that the Borda problem has received far less attention than it

deserves. Firstly, the Borda winner always exists, the Condorcet does not. For example,

a Condorcet winner does not exist in the MSLR-WEB10k datasets considered in this

paper. Assuming the existence of a Condorcet winner severely restricts the class of

allowed P matrices: only those P matrices are allowed which have a row with all entries

≥ 1
2
. In fact, [96, 98] require that the comparison probabilities pi,j satisfy additional

transitivity conditions that are often violated in practice. Secondly, there are many cases

where the Borda winner and the Condorcet winner are distinct, and the Borda winner

would be preferred in many cases. Lets assume that arm c is the Condorcet winner,

with pc,i = 0.51 for i 6= c. Let arm b be the Borda winner with pb,i = 1 for i 6= b, c, and

pb,c = 0.49. It is reasonable that arm c is only marginally better than the other arms,

while arm b is significantly preferred over all other arms except against arm c where it is

marginally rejected. In this example - chosen extreme to highlight the pervasiveness of

situations where the Borda arm is preferred - it is clear that arm b should be the winner:

think of the arms representing objects being contested such as t-shirt designs, and the

P matrix is generated by showing users a pair of items and asking them to choose the

better among the two. This example also shows that the Borda winner is more robust
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to estimation errors in the P matrix (for instance, when the P matrix is estimated by

asking a small sample of the entire population to vote among pairwise choices). The

Condorcet winner is sensitive to entries in the Condorcet arm’s row that are close to 1
2
,

which is not the case for the Borda winner. Finally, there are important cases (explained

next) where the winner can be found in fewer number of duels than would be required

by Borda reduction.

6.3 Motivation

We define the Borda score of an arm i to be the probability of the ith arm winning a

duel with another arm chosen uniformly at random:

si = 1
n−1

∑
j 6=i

pi,j .

Without loss of generality, we assume that s1 > s2 ≥ · · · ≥ sn but that this ordering is

unknown to the algorithm. As mentioned above, if the Borda reduction is used then the

dueling bandit problem becomes a regular multi-armed bandit problem and lower bounds

for the multi-armed bandit problem [67,102] suggest that the number of samples required

should scale like Ω
(∑

i 6=1
1

(s1−si)2 log 1
δ

)
, which depends only on the Borda scores, and

not the individual entries of the preference matrix. This would imply that any preference

matrix P with Borda scores si is just as hard as another matrix P ′ with Borda scores s′i

as long as (s1 − si) = (s′1 − s′i). Of course, this lower bound only applies to algorithms

using the Borda reduction, and not any algorithm for identifying the Borda winner that

may, for instance, collect the duels in a more deliberate way. Next we consider specific P
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P1 =

1 2 3 · · · n si s1 − si



1 1
2

1
2

3
4
· · · 3

4
+ ε

1
2

+ε

n−1
+ 3

4
n−2
n−1

0

2 1
2

1
2

3
4
· · · 3

4

1
2

n−1
+ 3

4
n−2
n−1

ε
n−1

3 1
4

1
4

1
2
· · · 1

2
1
2
n−2
n−1

1
2

+ε

n−1
+ 1

4
n−2
n−1

... ... ... ... . . . ... ... ...

n 1
4
− ε 1

4
1
2
· · · 1

2
− ε
n−1

+ 1
2
n−2
n−1

1
2

+2ε

n−1
+ 1

4
n−2
n−1

(6.1)

P2 =

1 2 3 · · · n si s1 − si



1 1
2

1
2

+ ε
n−1

3
4

+ ε
n−1

· · · 3
4

+ ε
n−1

1
2

+ε

n−1
+ 3

4
n−2
n−1

0

2 1
2
− ε

n−1
1
2

3
4

· · · 3
4

1
2
− ε
n−1

n−1
+ 3

4
n−2
n−1

ε
n−1

+ ε
(n−1)2

3 1
4
− ε

n−1
1
4

1
2

· · · 1
2

− ε
n−1

n−1
+ 1

2
n−2
n−1

1
2

+ε+ ε
n−1

n−1
+ 1

4
n−2
n−1

... ... ... ... . . . ... ... ...

n 1
4
− ε

n−1
1
4

1
2

· · · 1
2

− ε
n−1

n−1
+ 1

2
n−2
n−1

1
2

+ε+ ε
n−1

n−1
+ 1

4
n−2
n−1

(6.2)
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matrices that exhibit two very different kinds of structure but have the same differences

in Borda scores which motivates the structure considered in this paper.

6.3.1 Preference Matrix P known up to permutation of indices

Shown below in equations (6.1) and (6.2) are two preference matrices P1 and P2 indexed

by the number of arms n that essentially have the same Borda gaps – (s1 − si) is either

like ε
n

or approximately 1/4 – but we will argue that P1 is much “easier” than P2 in a

certain sense (assume ε is an unknown constant, like ε = 1/5). Specifically, if given P1

and P2 up to a permutation of the labels of their indices (i.e. given ΛP1ΛT for some

unknown permutation matrix Λ), how many comparisons does it take to find the Borda

winner in each case for different values of n?

Recall from above that if we ignore the fact that we know the matrices up to a

permutation and use the Borda reduction technique, we can use a multi-armed bandit

algorithm (e.g. Chapter 4 or [61, 97]) and find the best arm for both P1 and P2 using

O (n2 log(log(n))) samples. We next argue that given P1 and P2 up to a permutation,

there exists an algorithm that can identify the Borda winner of P1 with just O(n log(n))

samples while the identification of the Borda winner for P2 requires at least Ω(n2)

samples. This shows that given the probability matrices up to a permutation, the sample

complexity of identifying the Borda winner does not rely just on the Borda differences,

but on the particular structure of the probability matrix.

Consider P1. We claim that there exists a procedure that exploits the structure of

the matrix to find the best arm of P1 using just O(n log(n)) samples. Here’s how: For

each arm, duel it with 32 log n
δ

other arms chosen uniformly at random. By Hoeffding’s
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inequality, with probability at least 1− δ our empirical estimate of the Borda score will

be within 1/8 of its true value for all n arms and we can remove the bottom (n − 2)

arms due to the fact that their Borda gaps exceed 1/4. Having reduced the possible

winners to just two arms, we can identify which rows in the matrix they correspond to

and duel each of these two arms against all of the remaining (n− 2) arms O( 1
ε2

) times to

find out which one has the larger Borda score using just O
(

2(n−2)
ε2

)
samples, giving an

overall sample complexity of O (n log n). We have improved the sample complexity from

O(n2 log(log(n))) using the Borda reduction to just O(n log(n)).

Consider P2. We claim that given this matrix up to a permutation of its indices,

no algorithm can determine the winner of P2 without requesting Ω(n2) samples. To

see this, suppose an oracle has made the problem easier by reducing the problem down

to just the top two rows of the P2 matrix. This is a binary hypothesis test for which

Fano’s inequality implies that to guarantee that the probability of error is not above

some constant level, the number of samples to identify the Borda winner must scale like

minj∈[n]\{1,2}
1

KL(p1,j ,p2,j)
≥ minj∈[n]\{1,2}

c
(p1,j−p2,j)2 = Ω((n/ε)2) where the inequality holds

for some c by Lemma 6.6 in the Appendix.

We just argued that the structure of the P matrix, and not just the Borda gaps, can

dramatically influence the sample complexity of finding the Borda winner. This leads us

to ask the question: if we don’t know anything about the P matrix beforehand (i.e. do

not know the matrix up to a permutation of its indices), can we learn and exploit this

kind of structural information in an online fashion and improve over the Borda reduction

scheme? The answer is no, as we argue next.
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6.3.2 Distribution-Dependent Lower Bound

We prove a distribution-dependent lower bound on the complexity of finding the best

Borda arm for a general P matrix. This is a result important in its own right as it shows

that the lower bound obtained for an algorithm using the Borda reduction is tight, that

is, this result implies that barring any structural assumptions, the Borda reduction is

optimal.

Definition 6.2. δ-PAC dueling bandits algorithm: A δ-PAC dueling bandits algorithm

is an algorithm that selects duels between arms and based on the outcomes finds the Borda

winner with probability greater than or equal to 1− δ.

Theorem 6.3. (Distribution-Dependent Lower Bound) Consider a matrix P such that
3
8
≤ pi,j ≤ 5

8
, ∀i, j ∈ [n] with n ≥ 4. Let τ be the total number of duels. Then for δ ≤ 0.15,

any δ-PAC dueling bandits algorithm to find the Borda winner has

EP [τ ] ≥ C log
1

2δ

∑
i 6=1

1

(s1 − si)2

where si = 1
n−1

∑
j 6=i pi,j denotes the Borda score of arm i. Furthermore, C can be chosen

to be 1/90.

Remark 1. Recalling the sample complexity of identifying the best arm for the Borda

reduction scheme, Theorem 6.3 says that for any two preference matrices P and P ′ that

have the same Borda scores, the sample complexity to identify the best arm of either

of them is nearly the same, regardless of how the how the matrices are structured. In

particular, the theorem implies that any algorithm that does not make any additional
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structural assumptions requires as many samples to find the best arm of P1 as it does

to find the best arm of P2, where P1, P2 are the matrices of above. Next we argue that

the particular structure found in P1 is an extreme case of a more general structural

phenomenon found in real datasets and that it is a natural structure to assume and design

algorithms to exploit.

Before proving the theorem we need a few technical lemmas. At the heart of the

proof of the lower bound is Lemma 1 of [67] restated here for completeness.

Lemma 6.4. Let ν and ν ′ be two bandit models defined over n arms. Let σ be a stopping

time with respect to (Ft) and let A ∈ Fσ be an event such that 0 < Pν(A) < 1. Then

n∑
a=1

Eν [Na(σ)]KL(νa, ν
′
a) ≥ d(Pν(A),Pν′(A))

where d(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

Note that the function d is exactly the KL-divergence between two Bernoulli distribu-

tions.

Corollary 6.5. Let Ni,j = Nj,i denote the number of duels between arms i and j. For

the duelling bandits problem with n arms, we have (n−1)(n−2)
2

free parameters (or arms).

These are the numbers in the upper triangle of the P matrix. Then, if P ′ is an alternate

matrix, we have from Lemma 6.4,

n∑
i=1

n∑
j=i+1

EP [Ni,j]d(pi,j, p
′
i,j) ≥ d(PP (A),PP ′(A))

The above corollary relates the cumulative number of duels of a subset of arms to the

uncertainty between the actual distribution and an alternative distribution. In deference
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to interpretability rather than preciseness, we will use the following bound of the KL

divergence.

Lemma 6.6. (Upper bound on KL Divergence for Bernoullis) Consider two Bernoulli

random variables with means p and q, 0 < p, q < 1. Then d(p, q) ≤ (p−q)2

q(1−q) .

Proof.

d(p, q) = p log
p

q
+ (1− p) log

1− p
1− q ≤ p

p− q
q

+ (1− p)q − p
1− q =

(p− q)2

q(1− q)

where we use the fact that log x ≤ x− 1 for x > 0.

We are now in a position to restate and prove the lower bound theorem.

Proof of Theorem 6.3. Consider an alternate hypothesis P ′ where arm b is the best arm,

and such that P ′ differs from P only in the indices {bj : j /∈ {1, b}}. Note that the Borda

score of arm 1 is unaffected in the alternate hypothesis. Corollary 6.5 then gives us:

∑
j∈[n]\{1,b}

EP [Nb,j]d(pb,j, p
′
b,j) ≥ d(P(A),P(A′)) (6.3)

Let A be the event that the algorithm selects arm 1 as the best arm. Since we assume

a δ-PAC algorithm, PP (A) ≥ 1 − δ, PP ′(A) ≤ δ. It can be shown that for δ ≤ 0.15,

d(PP (A),PP ′(A)) ≥ log 1
2δ

.
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Define Nb =
∑
j 6=b

Nb,j. Consider

(
max
j /∈{1,b}

(pb,j − p′b,j)2

p′b,j(1− p′b,j)

)
EP [Nb] ≥

(
max
j /∈{1,b}

d(pb,j, p
′
b,j)

)
EP [Nb]

=

(
max
j /∈{1,b}

d(pb,j, p
′
b,j)

)(∑
j 6=b

EP [Nb,j]

)

≥
(

max
j /∈{1,b}

d(pb,j, p
′
b,j)

) ∑
j /∈{1,b}

EP [Nb,j]


≥

∑
j∈[n]\{1,b}

EP [Nb,j]d(pb,j, p
′
b,j)

≥ log
1

2δ
. (by (6.3)) (6.4)

In particular, choose p′b,j = pb,j + n−1
n−2

(s1 − sb) + ε, j /∈ {1, b}. As required, under

hypothesis P ′, arm b is the best arm.

Since pb,j ≤ 5
8
, s1 ≤ 5

8
, and sb ≥ 3

8
, as ε↘ 0, lim

ε↘0
p′b,j ≤ 15

16
. This implies 1

p′b,j(1−p
′
b,j)
≤

256
15
≤ 20. (??) implies

20

(
n− 1

n− 2
(s1 − sb) + ε

)2

EP [Nb] ≥ log
1

2δ

⇒ EP [Nb] ≥
1

20

(
n− 2

n− 1

)2
1

(s1 − sb)2
log

1

2δ
(6.5)

where we let ε↘ 0.
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Finally, iterating over all arms b 6= 1, we have

EP [τ ] =
1

2

n∑
b=1

∑
j 6=b

EP [Nb,j] =
1

2

n∑
b=1

EP [Nb]

≥ 1

2

n∑
b=2

EP [Nb] ≥
1

40

(
n− 2

n− 1

)2
(∑
b 6=1

1

(s1 − sb)2

)
log

1

2δ
.

6.3.3 Motivation from Real-World Data

The matrices P1 and P2 above illustrate a key structural aspect that can make it easier

to find the Borda winner. If the arms with the top Borda scores are distinguished by

duels with a small subset of the arms (as exemplified in P1), then finding the Borda

winner may be easier than in the general case. Before formalizing a model for this sort

of structure, let us look at two real-world datasets, which motivate the model.

We consider the Microsoft Learning to Rank web search datasets MSLR-WEB10k [103]

and MQ2008-list [104] (see the experimental section for a descrptions). Each dataset is

used to construct a corresponding probability matrix P . We use these datasets to test

the hypothesis that comparisons with a small subset of the arms may suffice to determine

which of two arms has a greater Borda score.

Specifically, we will consider the Borda score of the best arm (arm 1) and every other

arm. For any other arm i > 1 and any positive integer k ∈ [n − 2], let Ωi,k be a set

of cardinality k containing the indices j ∈ [n] \ {1, i} with the k largest discrepancies

|p1,j−pi,j|. These are the duels that, individually, display the greatest differences between

arm 1 and i. For each k, define αi(k) = 2(p1,i− 1
2
) +
∑

j∈Ωi,k
(p1,j−pi,j). If the hypothesis
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holds, then the duels with a small number of (appropriately chosen) arms should indicate

that arm 1 is better than arm i. In other words, αi(k) should become and stay positive

as soon as k reaches a relatively small value. Plots of these αi curves for two datasets

are presented in Figures 6.1, and indicate that the Borda winner is apparent for small

k. This behavior is explained by the fact that the individual discrepancies |p1,j − pi,j|,

decay quickly when ordered from largest to smallest, as shown in Figure 6.2.

The take away message is that it is unnecessary to estimate the difference or gap

between the Borda scores of two arms. It suffices to compute the partial Borda gap based

on duels with a small subset of the arms. An appropriately chosen subset of the duels

will correctly indicate which arm has a larger Borda score. The algorithm proposed in

the next section automatically exploits this structure.

Figure 6.1: Plots of αi(k) = 2(p1,i− 1
2
)+
∑

j∈Ωi,k
(p1,j−p1,j) vs. k for 30 randomly chosen

arms (for visualization purposes); MSLR-WEB10k on left, MQ2008-list on right. The
curves are strictly positive after a small number of duels.
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Figure 6.2: Plots of discrepancies |p1,j − pi,j| in descending order for 30 randomly chosen
arms (for visualization purposes); MSLR-WEB10k on left, MQ2008-list on right.

6.4 Algorithm and Analysis

In this section we propose a new algorithm that exploits the kind of structure just

described above and prove a sample complexity bound. The algorithm is inspired by the

Successive Elimination (SE) algorithm of [83] for standard multi-armed bandit problems.

Essentially, the proposed algorithm below implements SE with the Borda reduction and

an additional elimination criterion that exploits sparsity (condition 1 in the algorithm).

We call the algorithm Successive Elimination with Comparison Sparsity (SECS).

We will use 1E to denote the indicator of the event E and [n] = {1, 2, . . . , n}. The

algorithm maintains an active set of arms At such that if j /∈ At then the algorithm has

concluded that arm j is not the Borda winner. At each time t, the algorithm chooses an

arm It uniformly at random from [n] and compares it with all the arms in At. Note that

Ak ⊆ A` for all k ≥ `. Let Z(t)
i,j ∈ {0, 1} be independent Bernoulli random variables with

E[Z
(t)
i,j ] = pi,j , each denoting the outcome of “dueling” i, j ∈ [n] at time t (define Z(t)

i,j = 0
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Algorithm 1 Sparse Borda Algorithm
Input sparsity level k ∈ [n− 2], time gate T0 ≥ 0
Start with active set A1 = {1, 2, · · · , n}, t = 1

Let Ct =
√

2 log(4n2t2/δ)
t/n

+ 2 log(4n2t2/δ)
3t/n

While|At| > 1 Choose It uniformly at random [n].
Forj ∈ At Observe Z(t)

j,It
and update p̂j,It,t = n

t

∑t
`=1 Z

(`)
j,I`

1I`=It , ŝj,t = n/(n−1)
t

∑t
`=1 Z

(`)
j,I`

.

At+1 = At \
{
j ∈ At : ∃i ∈ At with

1) 1{t>T0} ∆̂i,j,t

(
arg maxΩ⊂[n]:|Ω|=k ∇̂i,j,t(Ω)

)
> 6(k + 1)Ct

OR 2) ŝi,t > ŝj,t + n
n−1

√
2 log(4nt2/δ)

t

}
t← t+ 1

for i = j). For any t ≥ 1, i ∈ [n], and j ∈ At define

p̂j,i,t =
n

t

t∑
`=1

Z
(`)
j,I`

1I`=i

so that E [p̂j,i,t] = pj,i. Furthermore, for any t ≥ 1, j ∈ At define

ŝj,t =
n/(n− 1)

t

t∑
`=1

Z
(`)
j,I`
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so that E [ŝj,t] = sj. For any Ω ⊂ [n] and i, j ∈ [n] define

∆i,j(Ω) = 2(pi,j − 1
2
) +

∑
ω∈Ω:ω 6=i 6=j

(pi,ω − pj,ω)

∆̂i,j,t(Ω) = 2(p̂i,j,t − 1
2
) +

∑
ω∈Ω:ω 6=i 6=j

(p̂i,ω,t − p̂j,ω,t)

∇i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|pi,ω − pj,ω|

∇̂i,j(Ω) =
∑

ω∈Ω:ω 6=i 6=j

|p̂i,ω,t − p̂j,ω,t| .

The quantity ∆i,j(Ω) is the partial gap between the Borda scores for i and j, based

on only the comparisons with the arms in Ω. Note that 1
n−1

∆i,j([n]) = si − sj. The

quantity arg maxΩ⊂[n]:|Ω|=k∇i,j(Ω) selects the indices ω yielding the largest discrepancies

|pi,ω − pj,ω|. ∆̂ and ∇̂ are empirical analogs of these quantities.

Definition 6.7. For any i ∈ [n] \ 1 we say the set {(p1,ω − pi,ω)}ω 6=16=i is (γ, k)-

approximately sparse if

max
Ω∈[n]:|Ω|≤k

∇1,i(Ω \ Ωi) ≤ γ∆1,i(Ωi)

where Ωi = arg max
Ω⊂[n]:|Ω|=k

∇1,i(Ω).

Instead of the strong assumption that the set {(p1,ω − pi,ω)}ω 6=16=i has no more than

k non-zero coefficients, the above definition relaxes this idea and just assumes that the

absolute value of the coefficients outside the largest k are small relative to the partial

Borda gap. This definition is inspired by the structure described in previous sections

and will allow us to find the Borda winner faster.
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The parameter T0 is specified (see Theorem 6.8) to guarantee that all arms with

sufficiently large gaps s1 − si are eliminated by time step T0 (condition 2). Once t > T0,

condition 1 also becomes active and the algorithm starts removing arms with large

partial Borda gaps, exploiting the assumption that the top arms can be distinguished by

comparisons with a sparse set of other arms. The algorithm terminates when only one

arm remains.

Theorem 6.8. Let k ≥ 0 and T0 > 0 be inputs to the above algorithm and let R be the

solution to 32
R2 log

(
32n/δ
R2

)
= T0. If for all i ∈ [n] \ 1, at least one of the following holds:

1. {(p1,ω − pi,ω)}ω 6=16=i is (1
3
, k)-approximately sparse,

2. (s1 − si) ≥ R,

then with probability at least 1 − 3δ, the algorithm returns the best arm after no more

than

c
∑
j>1

min

{
max

{
1
R2 log

(
n/δ
R2

)
, (k+1)2/n

∆2
j

log
(
n/δ

∆2
j

)}
, 1

∆2
j

log
(
n/δ

∆2
j

)}

samples where ∆j := s1 − sj and c > 0 is an absolute constant.

Remark 2. In the above theorem, the second argument of the min is precisely the result

one would obtain by running Successive Elimination with the Borda reduction [83]. Thus,

under the stated assumptions, the algorithm never does worse than the Borda reduction

scheme. The first argument of the min indicates the potential improvement gained by

exploiting the sparsity assumption. The first argument of the max is the result of throwing

out the arms with large Borda differences and the second argument is the result of throwing

out arms where a partial Borda difference was observed to be large.
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Remark 3. Consider the P1 matrix discussed above, then Theorem 6.8 implies that by

setting T0 = 32
R2 log

(
32n/δ
R2

)
with R = 1/2+ε

n−1
+ 1

4
n−2
n−1
≈ 1

4
and k = 1 we obtain a sample

complexity of O(ε−2n log(n)) for the proposed algorithm compared to the standard Borda

reduction sample complexity of Ω(n2). In practice it is difficult to optimize the choice of

T0 and k, but motivated by the results shown in the experiments section, we recommend

setting T0 = 0 and k = 5 for typical problems.

To prove Theorem 6.8 we first need a technical lemma.

Lemma 6.9. For all s ∈ N, let Is be drawn independently and uniformly at random from

[n] and let Z(s)
i,j be a Bernoulli random variable with mean pi,j. If p̂i,j,t = n

t

∑t
s=1 Z

(s)
i,j 1Is=j

for all i ∈ [n] and Ct =
√

2 log(4n2t2/δ)
t/n

+ 2 log(4n2t2/δ)
3t/n

then

P

 ⋃
(i,j)∈[n]2:i 6=j

∞⋃
t=1

{|p̂i,j,t − pi,j| > Ct}

 ≤ δ.

Proof. Note that tp̂i,j,t =
∑t

s=1 nZ
(s)
i,j 1Is=j is a sum of i.i.d. random variables taking values

in [0, n] with E
[(
nZ

(s)
i,j 1Is=j

)2
]
≤ n2E [1Is=j] ≤ n. A direct application of Bernstein’s

inequality [105] and union bounding over all pairs (i, j) ∈ [n]2 and time t gives the

result.
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A consequence of the lemma is that by repeated application of the triangle inequality,

∣∣∣∇̂i,j,t(Ω)−∇i,j(Ω)
∣∣∣ =

∣∣∣∣∣∣∣
∑

ω∈Ω:ω 6=i 6=j

|p̂i,ω,t − p̂j,ω,t| − |pi,ω − pj,ω|

∣∣∣∣∣∣∣
≤

∑
ω∈Ω:ω 6=i 6=j

|p̂i,ω,t − pi,ω|+ |pj,ω − p̂j,ω,t|

≤ 2|Ω|Ct

and similarly
∣∣∣∆̂i,j,t(Ω)−∆i,j(Ω)

∣∣∣ ≤ 2(1 + |Ω|)Ct for all i, j ∈ [n] with i 6= j, all t ∈ N

and all Ω ⊂ [n]. We are now ready to prove Theorem 6.8.

Proof. We begin the proof by defining Ct(Ω) = 2(1 + |Ω|)Ct and considering the events

∞⋂
t=1

⋂
Ω⊂[n]

{
|∆̂i,j,t(Ω)−∆i,j(Ω)| < Ct(Ω)

}
,

∞⋂
t=1

⋂
Ω⊂[n]

{
|∇̂i,j,t(Ω)−∇i,j(Ω)| < Ct(Ω)

}
,

∞⋂
t=1

n⋂
i=1

{
|ŝi,t − si| <

n

n− 1

√
log(4nt2/δ)

2t

}
,

that each hold with probability at least 1− δ. The first set of events are a consequence

of Lemma 6.9 and the last set of events are proved using a straightforward Hoeffding

bound [105] and a union bound similar to that in Lemma 6.9. In what follows assume

these events hold.

Step 1: If t > T0 and s1 − sj > R, then j /∈ At.

We begin by considering all those j ∈ [n] \ 1 such that s1 − sj ≥ R and show that with

the prescribed value of T0, these arms are thrown out before t > T0. By the events
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defined above, for arbitrary i ∈ [n] \ 1 we have

ŝi,t − ŝ1,t = ŝi,t − si + s1 − ŝ1,t + si − s1

≤ si − s1 +
2n

n− 1

√
log(4nt2/δ)

2t
≤ 2n

n− 1

√
log(4nt2/δ)

2t

since by definition s1 > si. This proves that the best arm will never be thrown out using

the Borda reduction which implies that 1 ∈ At for all t ≤ T0. On the other hand, for any

j ∈ [n] \ 1 such that s1 − sj ≥ R and t ≤ T0 we have

max
i∈At

ŝi,t − ŝj,t ≥ ŝ1,t − ŝj,t

≥ s1 − sj −
2n

n− 1

√
log(4nt2/δ)

2t

=
∆1,j([n])

n− 1
− 2n

n− 1

√
log(4nt2/δ)

2t
.

If τj is the first time t that the right hand side of the above is greater than or equal to
2n
n−1

√
log(4nt2/δ)

2t
then

τj ≤
32n2

∆2
1,j([n])

log

(
32n3/δ

∆2
1,j([n])

)
,

since for all positive a, b, t with a/b ≥ e we have t ≥ 2 log(a/b)
b

=⇒ b ≥ log(at)
t

. Thus, any

j with ∆1,j([n])

n−1
= s1 − sj ≥ R has τj ≤ T0 which implies that any i ∈ At for t > T0 has

s1 − si ≤ R.

Step 2: For all t, 1 ∈ At.

We showed above that the Borda reduction will never remove the best arm from At. We
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now show that the sparse-structured discard condition will not remove the best arm.

At any time t > T0, let i ∈ [n] \ 1 be arbitrary and let Ω̂i = arg max
Ω⊂[n]:|Ω|=k

∇̂i,1,t(Ω) and

Ωi = arg max
Ω⊂[n]:|Ω|=k

∇i,1(Ω). Note that for any Ω ⊂ [n] we have ∇i,1(Ω) = ∇1,i(Ω) but

∆i,1(Ω) = −∆1,i(Ω) and

∆̂i,1,t(Ω̂i) ≤ ∆i,1(Ω̂i) + Ct(Ω̂i)

= ∆i,1(Ω̂i)−∆i,1(Ωi) + ∆i,1(Ωi) + Ct(Ω̂i)

=

∑
ω∈Ω̂i

(pi,ω − p1,ω)

−(∑
ω∈Ωi

(pi,ω − p1,ω)

)
−∆1,i(Ωi) + Ct(Ω̂i)

≤ −

 ∑
ω∈Ωi\Ω̂i

(pi,ω − p1,ω)

− 2

3
∆1,i(Ωi) + Ct(Ω̂i)

since
(∑

ω∈Ω̂i\Ωi(pi,ω − p1,ω)
)
≤ ∇1,i

(
Ω̂i \ Ωi

)
≤ 1

3
∆1,i(Ωi) by the conditions of the
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theorem. Continuing,

∆̂i,1,t(Ω̂i) ≤ −

 ∑
ω∈Ωi\Ω̂i

(pi,ω − p1,ω)

− 2

3
∆1,i(Ωi) + Ct(Ω̂i)

≤

 ∑
ω∈Ωi\Ω̂i

|p̂i,ω,t − p̂1,ω,t|

− 2

3
∆1,i(Ωi) + Ct(Ω̂i) + Ct(Ωi \ Ω̂i)

≤

 ∑
ω∈Ω̂i\Ωi

|p̂i,ω,t − p̂1,ω,t|

− 2

3
∆1,i(Ωi) + Ct(Ω̂i) + Ct(Ωi \ Ω̂i)

≤

 ∑
ω∈Ω̂i\Ωi

|pi,ω − p1,ω|

− 2

3
∆1,i(Ωi) + Ct(Ω̂i) + Ct(Ωi \ Ω̂i) + Ct(Ω̂i \ Ωi)

≤ −1

3
∆1,i(Ωi) + Ct(Ω̂i) + Ct(Ωi \ Ω̂i) + Ct(Ω̂i \ Ωi)

≤ 3 max
Ω⊂[n]:|Ω|≤k

Ct(Ω) = 6(1 + k)Ct

where the third inequality follows from the fact that ∇̂i,1,t

(
Ωi \ Ω̂i

)
≤ ∇̂i,1,t

(
Ω̂i \ Ωi

)
by definition, and the second-to-last line follows again by the same theorem condition

used above. Thus, combining both steps one and two, we have that 1 ∈ At for all t.

Step 3 : Sample Complexity

At any time t > T0, let j ∈ [n] \ 1 be arbitrary and let Ω̂i = arg max
Ω⊂[n]:|Ω|=k

∇̂1,j,t(Ω) and
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Ωi = arg max
Ω⊂[n]:|Ω|=k

∇1,j(Ω). We begin with

max
i∈[n]\j

∆̂i,j,t

(
Ω̂i

)
≥ ∆̂1,j,t(Ω̂i)

≥ ∆1,j(Ω̂i)− Ct(Ω̂i)

≥ ∆1,j(Ω̂i)−∆1,j(Ωi) + ∆1,j(Ωi)− Ct(Ω̂i)

=

∑
ω∈Ω̂

(p1,ω − pj,ω)

−(∑
ω∈Ωi

(p1,ω − pj,ω)

)
+ ∆1,j(Ωi)− Ct(Ω̂i)

≥ −

 ∑
ω∈Ωi\Ω̂

(pi,ω − p1,ω)

+
2

3
∆1,j(Ωi)− Ct(Ω̂i)

≥ −

 ∑
ω∈Ωi\Ω̂

|p̂i,ω,t − p̂1,ω,t|

+
2

3
∆1,j(Ωi)− Ct(Ω̂i)− Ct(Ωi \ Ω̂i)

≥ −

 ∑
ω∈Ω̂i\Ωi

|p̂i,ω,t − p̂1,ω,t|

+
2

3
∆1,j(Ωi)− Ct(Ω̂i)− Ct(Ωi \ Ω̂i)

≥ −

 ∑
ω∈Ω̂i\Ωi

|pi,ω − p1,ω|

+
2

3
∆1,j(Ωi)− Ct(Ω̂i)− Ct(Ωi \ Ω̂i)− Ct(Ω̂i \ Ωi)

≥ 1

3
∆1,j(Ωi)− 3 max

Ω⊂[n]:|Ω|≤k
Ct(Ω) =

1

3
∆1,j(Ωi)− 6(1 + k)Ct

by a series of steps as analogous to those in Step 2. If τj is the first time t > T0 such that

the right hand side is greater than or equal to 6(1 + k)Ct, the point at which j would be

removed, we have that

τj ≤
20736n(k + 1)2

∆2
1,j(Ωi)

log

(
20736n2(k + 1)2

∆2
1,j(Ωi) δ

)

using the same inequality as above in Step 2. Combining steps one and three we have
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that the total number of samples taken is bounded by

∑
j>1

min

{
max

{
T0,

20736n(k + 1)2

∆2
1,j(Ωi)

log

(
20736n2(k + 1)2

∆2
1,j(Ωi) δ

)}
,

32n2

∆2
1,j([n])

log

(
32n3/δ

∆2
1,j([n])

)}

with probability at least 1− 3δ. The result follows from recalling that ∆1,j(Ωi)

n−1
= s1 − sj

and noticing that n
n−1
≤ 2 for n ≥ 2.

6.5 Experiments

The goal of this section is not to obtain the best possible sample complexity results for

the specified datasets, but to show the relative performance gain of exploiting structure

using the proposed SECS algorithm with respect to the Borda reduction. That is, we

just want to measure the effect of exploiting sparsity while keeping all other parts of the

algorithms constant. Thus, the algorithm we compare to that uses the simple Borda

reduction is simply the SECS algorithm described above but with T0 =∞ so that the

sparse condition never becomes activated. Running the algorithm in this way, it is very

closely related to the Successive Elimination algorithm of [83]. In what follows, our

proposed algorithm will be called SECS and the benchmark algorithm will be denoted as

just the Borda reduction (BR) algorithm.

We experiment on both simulated data and two real-world datasets. During all

experiments, both the BR and SECS algorithms were run with δ = 0.1. For the SECS

algorithm we set T0 = 0 to enable condition 1 from the very beginning (recall for BR

we set T0 = ∞). Also, while the algorithm has a constant factor of 6 multiplying

(k + 1)Ct, we feel that the analysis that led to this constant is very loose so in practice
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Figure 6.3: Comparison of the Borda reduction algorithm and the proposed SECS
algorithm ran on the P1 matrix for different values of n. Plot is on log-log scale so that
the sample complexity grows like ns where s is the slope of the line.

we recommend the use of a constant of 1/2 which was used in our experiments. While

the change of this constant invalidates the guarantee of Theorem 6.8, we note that in

all of the experiments to be presented here, neither algorithm ever failed to return the

best arm. This observation also suggests that the SECS algorithm is robust to possible

inconsistencies of the model assumptions.

6.5.1 Synthetic Preference matrix

Both algorithms were tasked with finding the best arm using the P1 matrix of (6.1) with

ε = 1/5 for problem sizes equal to n = 10, 20, 30, 40, 50, 60, 70, 80 arms. Inspecting the P1

matrix, we see that a value of k = 1 in the SECS algorithm suffices so this is used for all

problem sizes. The entries of the preference matrix Pi,j are used to simulate comparisons

between the respective arms and each experiment was repeated 75 times.

Recall from Section 6.3 that any algorithm using the Borda reduction on the P1

matrix has a sample complexity of Ω(n2). Moreover, inspecting the proof of Theorem 6.8
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one concludes that the BR algorithm has a sample complexity of O(n2 log(n)) for the P1

matrix. On the other hand, Theorem 6.8 states that the SECS algorithm should have

a sample complexity no worse than O(n log(n)) for the P1 matrix. Figure 6.3 plots the

sample complexities of SECS and BR on a log-log plot. On this scale, to match our

sample complexity hypotheses, the slope of the BR line should be about 2 while the slope

of the SECS line should be about 1, which is exactly what we observe.

6.5.2 Web search data

We consider two web search data sets. The first is the MSLR-WEB10k Microsoft Learning

to Rank data set [103] that is characterized by approximately 30,000 search queries

over a number of documents from search results. The data also contains the values

of 136 features and corresponding user labelled relevance factors with respect to each

query-document pair. We use the training set of Fold 1, which comprises of about 2,000

queries. The second data set is the MQ2008-list from the Microsoft Learning to Rank

4.0 (MQ2008) data set [104]. We use the training set of Fold 1, which has about 550

queries. Each query has a list of documents with 46 features and corresponding user

labelled relevance factors.

For each data set, we create a set of rankers, each corresponding to a feature from

the feature list. The aim of this task is be to determine the feature whose ranking of

query-document pairs is the most relevant. To compare two rankers, we randomly choose

a pair of documents and compare their relevance rankings with those of the features.

Whenever a mismatch occurs between the rankings returned by the two features, the

feature whose ranking matches that of the relevance factors of the two documents “wins
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the duel”. If both features rank the documents similarly, the duel is deemed to have

resulted in a tie and we flip a fair coin. We run a Monte Carlo simulation on both data

sets to obtain a preference matrix P corresponding to their respective feature sets. As

with the previous setup, the entries of the preference matrices ([P ]i,j = pi,j) are used to

simulate comparisons between the respective arms and each experiment was repeated 75

times.

From the MSLR-WEB10k data set, a single arm was removed for our experiments as

its Borda score was unreasonably close to the arm with the best Borda score and behaved

unlike any other arm in the dataset with respect to its αi curves, confounding our model.

For these real datasets, we consider a range of different k values for the SECS algorithm.

As noted above, while there is no guarantee that the SECS algorithm will return the true

Borda winner, in all of our trials for all values of k reported we never observed a single

error. This is remarkable as it shows that the correctness of the algorithm is insensitive

to the value of k on at least these two real datasets. The sample complexities of BR and

SECS on both datasets are reported in Figure 6.4. We observe that the SECS algorithm,

for small values of k, can identify the Borda winner using as few as half the number

required using the Borda reduction method. As k grows, the performance of the SECS

algorithm becomes that of the BR algorithm, as predicted by Theorem 6.8.

Lastly, the preference matrices of the two data sets support the argument for finding

the Borda winner over the Condorcet winner. The MSLR-WEB10k data set has no

Condorcet winner arm. However, while the MQ2008 data set has a Condorcet winner,

when we consider the Borda scores of the arms, it ranks second.



162

(a) MSLR-WEB10k (b) MQ2008

Figure 6.4: Comparison of an action elimination-style algorithm using the Borda reduction
(denoted as BR) and the proposed SECS algorithm with different values of k on the two
datasets.

6.6 Discussion

This chapter studied the dueling bandits best-arm identification problem using the Borda

voting rule. We proved a distribution dependent lower bound for this problem that

nearly matches the upper bound achieved by using the so-called Borda reduction and

a standard multi-armed bandit algorithm, e.g. the lil’UCB algorithm of Chapter 4.

However, we showed that there exists naturally occurring structure found in real datasets

that, when assumed to be there, can be exploited by adaptive sampling to accelerate the

identification of the best arm both in theory and practice. This structure is characterized

in our algorithm by two parameters describing a notion of sparsity and a threshold

separating easy from difficult arms. Our lower bound implies that it is impossible to be

adaptive to both parameters, but perhaps these two parameters can be reduced down to

a single, intuitive parameter that can be estimated for different problems in a natural way.

Another future direction is coming up with a new algorithm for this setting. Chapter 4



163

suggests that Successive Elimination, the algorithm that the proposed algorithm in this

work is based off of, may be a poor algorithm for practice. An open question is whether

an algorithm like lil’UCB can be adapted to this setting.

6.7 Bibliographical Remarks

The work presented in this chapter was based on the author’s publication

• Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and

hyperparameter optimization. arXiv preprint arXiv:1502.07943, 2015.
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Chapter 7

Stochastic Derivative-Free

Optimization

Up until this point, this thesis has considered a finite set of objects to rank, embed, or

find the best of. In this chapter we consider an optimization problem in which the space

of objects is uncountable, e.g. an object is identified by its location in Rd of which there

are infinitely many. To motivate this setting, consider getting fit for prescription lenses.

Prescriptions are specified by 6 numbers taking values in a continuum and the doctor

attempts to search the space of prescriptions for some acceptable solution by asking a

series of questions to the patient of the form “better or worse?” In a small number of

questions of this form, the doctor optimizes a function, namely, the patient’s ability to

see, over these 6 continuous-valued dimensions. This chapter attempts to understand

how hard this problem is and explain how one might automate such a process.

Mathematically, the objective of this chapter is to study the difficulty of minimizing

a convex function f : Rd → R under different measurement methods. We consider two

types of measurements:

• function evaluations : for any point x ∈ Rd we may observe the independent

random variable Ef (x) where E[Ef (x)] = f(x),
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• function comparisons : for any points x, y ∈ Rd we may observe the independent

random variable Cf (x, y) where P (Cf (x, y) = sign(f(y)− f(x))) > 1/2.

Both measurement types have previously appeared in this thesis, and it would be under-

standable if the reader assumed there was some tradeoff between these two: function

evaluations may provided more information (e.g. more than 1-bit) but function com-

parisons are more convenient to use when gathering measurements from humans. This

chapter questions this intuitive hypothesis and in a sense, shows it to be false. In

particular, we propose an algorithm that uses noisy pairwise comparisons to minimize a

convex function to within accuracy ε and requires no more than a constant multiple of

the number of queries required by the best algorithm that uses noisy function evaluations.

7.1 Introduction

Optimizing large-scale complex systems often requires the tuning of many parameters.

With training data or simulations one can evaluate the relative merit, or incurred loss,

of different parameter settings, but it may be unclear how each parameter influences

the overall objective function. In such cases, derivatives of the objective function with

respect to the parameters are unavailable. Thus, we have seen a resurgence of interest in

Derivative Free Optimization (DFO) [106,107,108,109,110,111,112,113]. When function

evaluations are noiseless, DFO methods can achieve the same rates of convergence as

noiseless gradient methods up to a small factor depending on a low-order polynomial of

the dimension [110,114,115]. This leads one to wonder if the same equivalence can be

extended to the case when function evaluations and gradients are noisy.

Sadly, we prove otherwise. We show that when function evaluations are noisy, the
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optimization error of any DFO is Ω(
√

1/T ), where T is the number of evaluations. This

lower bound holds even for strongly convex functions. In contrast, noisy gradient methods

exhibit Θ(1/T ) error scaling for strongly convex functions [114,116]. A consequence of

our theory is that finite differencing cannot achieve the rates of gradient methods when

the function evaluations are noisy.

On the positive side, we also present a new derivative-free algorithm that achieves

this lower bound with near optimal dimension dependence. Moreover, the algorithm uses

only boolean comparisons of function values, not actual function values. This makes the

algorithm applicable to situations in which the optimization is only able to probably

correctly decide if the value of one configuration is better than the value of another. This

is especially interesting in optimization based on human subject feedback, where paired

comparisons are often used instead of numerical scoring. The convergence rate of the new

algorithm is optimal in terms of T and near-optimal in terms of its dependence on the

ambient dimension. Surprisingly, our lower bounds show that this new algorithm that

uses only function comparisons achieves the same rate in terms of T as any algorithm

that has access to function evaluations.

7.2 Problem formulation and background

We now formalize the notation and conventions for our analysis of DFO. A function f is

strongly convex with constant τ on a convex set B ⊂ Rd if there exists a constant τ > 0

such that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
τ

2
||x− y||2
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for all x, y ∈ B. The gradient of f , if it exists, denoted ∇f , is Lipschitz with constant L

if ||∇f(x)−∇f(y)|| ≤ L||x− y|| for some L > 0. The class of strongly convex functions

with Lipschitz gradients defined on a nonempty, convex set B ⊂ Rd which take their

minimum in B with parameters τ and L is denoted by Fτ,L,B. For background on these

concepts and convex optimization in general, see [52,53].

The problem we consider is minimizing a function f ∈ Fτ,L,B. The function f is not

explicitly known. An optimization procedure may only query the function in one of the

following two ways.

Function Evaluation Oracle: For any point x ∈ B an optimization procedure can

observe

Ef (x) = f(x) + w

where w ∈ R is a random variable with E[w] = 0 and E[w2] = σ2.

Function Comparison Oracle: For any pair of points x, y ∈ B an optimization

procedure can observe a binary random variable Cf (x, y) satisfying

P (Cf (x, y) = sign{f(y)− f(x)}) ≥ 1

2
+ min

{
δ0, µ|f(y)− f(x)|κ−1

}
(7.1)

for some 0 < δ0 ≤ 1/2, µ > 0 and κ ≥ 1. When κ = 1, without loss of generality

assume µ ≤ δ0 ≤ 1/2. Note κ = 1 implies that the comparison oracle is correct

with a probability that is greater than 1/2 and independent of x, y. If κ > 1, then

the oracle’s reliability decreases as the difference between f(x) and f(y) decreases.

To illustrate how the function comparison oracle and function evaluation oracles
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relate to each other, suppose Cf (x, y) = sign{Ef (y)− Ef (x)} where Ef (x) is a function

evaluation oracle with additive noise w. If w is Gaussian distributed with mean zero and

variance σ2 then κ = 2 and µ ≥ (4πσ2e)
−1/2 (see Appendix C.1). In fact, this choice

of w corresponds to Thurston’s law of comparative judgment which is a popular model

for outcomes of pairwise comparisons from human subjects [117]. If w is a “spikier”

distribution such as a two-sided Gamma distribution with shape parameter in the range

of (0, 1] then all values of κ ∈ (1, 2] can be realized (see Appendix C.1).

Interest in the function comparison oracle is motivated by certain popular derivative-

free optimization procedures that use only comparisons of function evaluations (e.g. [112])

and by optimization problems involving human subjects making paired comparisons

(for instance, getting fitted for prescription lenses or a hearing aid where unknown

parameters specific to each person are tuned with the familiar queries “better or worse?”).

Pairwise comparisons have also been suggested as a novel way to tune web-search

algorithms [118,119]. Pairwise comparison strategies have previously been analyzed in

the finite setting where the task is to identify the best alternative among a finite set of

alternatives (sometimes referred to as the dueling-bandit problem) [51,118]. A similar

pairwise comparison oracle in the continuous domain has also been considered previously

and we compare to these results below [119]. The function comparison oracle presented

in this work and its analysis are novel. The main contributions of this work and new

art are as follows (i) lower bounds for the function evaluation oracle in the presence of

measurement noise (ii) lower bounds for the function comparison oracle in the presence

of noise and (iii) an algorithm for the function comparison oracle, which can also be

applied to the function evaluation oracle setting, that nearly matches both the lower

bounds of (i) and (ii).
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We prove our lower bounds for strongly convex functions with Lipschitz gradients

defined on a compact, convex set B, and because these problems are a subset of those

involving all convex functions (and have non-empty intersection with problems where f

is merely Lipschitz), the lower bound also applies to these larger classes. While there are

known theoretical results for DFO in the noiseless setting [110,115,120], to the best of

our knowledge we are the first to characterize lower bounds for DFO in the stochastic

setting. Moreover, we believe we are the first to show a near-optimal upper bound for

stochastic DFO using a function comparison oracle, which also applies to the function

evaluation oracle (the work of [119] predates our results but they achieve suboptimal

rates). However, there are algorithms with upper bounds on the rates of convergence for

stochastic DFO with the function evaluation oracle [120,121]. We discuss the relevant

results in the next section following the lower bounds .

While there remains many open problems in stochastic DFO, rates of convergence with

a stochastic gradient oracle are well known and were first lower bounded by Nemirovski

and Yudin [120]. These classic results were recently tightened to show a dependence

on the dimension of the problem [122]. And then tightened again to show a better

dependence on the noise [116] which matches the upper bound achieved by stochastic

gradient descent [114]. The aim of this work is to start filling in the knowledge gaps of

stochastic DFO so that it is as well understood as the stochastic gradient oracle. Our

bounds are based on simple techniques borrowed from the statistical learning literature

that use natural functions and oracles in the same spirit of [116].
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7.3 Main results

The results below are presented with simplifying constants that encompass many factors

to aid in exposition. Explicit constants are given in the proofs in Sections 7.4 and 7.5.

Throughout, we denote the minimizer of f as x∗f . The expectation in the bounds is

with respect to the noise in the oracle queries and (possible) optimization algorithm

randomization.

7.3.1 Query complexity of the function comparison oracle

Theorem 7.1. For some f ∈ Fτ,L,B let Cf be a function comparison oracle with param-

eters (κ, µ, δ0). Then for d ≥ 8 and sufficiently large T

inf
x̂T

sup
f∈Fτ,L,B

E
[
f(x̂T )− f(x∗f )

]
≥


c1 exp

{
−c2

T
d

}
if κ = 1

c3

(
d
T

) 1
2(κ−1) if κ > 1

where the infimum is over the collection of all possible estimators of x∗f using at most

T queries to a function comparison oracle and the supremum is taken with respect to

all problems in Fτ,L,B and function comparison oracles with parameters (κ, µ, δ0). The

constants c1, c2, c3 depend the oracle and function class parameters, as well as the geometry

of B, but are independent of T and d.

For upper bounds we propose a specific algorithm based on coordinate-descent in

Section 7.5 and prove the following theorem for the case of unconstrained optimization,

that is, B = Rd.
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Theorem 7.2. For some f ∈ Fτ,L,B with B = Rd let Cf be a function comparison

oracle with parameters (κ, µ, δ0). Then there exists a coordinate-descent algorithm that

is adaptive to unknown κ ≥ 1 that outputs an estimate x̂T after T function comparison

queries such that with probability 1− δ

sup
f∈Fτ,L,B

E
[
f(x̂T )− f(x∗f )

]
≤


c1 exp

{
−c2

√
T
d

}
if κ = 1

c3d
(
d
T

) 1
2(κ−1) if κ > 1

where c1, c2, c3 depend the oracle and function class parameters as well as T ,d, and 1/δ,

but only poly-logarithmically.

7.3.2 Query complexity of the function evaluation oracle

Theorem 7.3. For some f ∈ Fτ,L,B let Ef be a function evaluation oracle with variance

σ2. Then for d ≥ 8 and sufficiently large T

inf
x̂T

sup
f∈Fτ,L,B

E
[
f(x̂T )− f(x∗f )

]
≥ c

(
dσ2

T

) 1
2

where the infimum is taken with respect to the collection of all possible estimators of

x∗f using just T queries to a function evaluation oracle and the supremum is taken with

respect to all problems in Fτ,L,B and function evaluation oracles with variance σ2. The

constant c depends on the oracle and function class parameters, as well as the geometry

of B, but is independent of T and d.

Because a function evaluation oracle can always be turned into a function comparison

oracle (see discussion above), the algorithm and upper bound in Theorem 2 with κ = 2
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applies to many typical function evaluation oracles (e.g. additive Gaussian noise), yielding

an upper bound of (d3σ2/T )
1/2 ignoring constants and log factors. This matches the rate

of convergence as a function of T and σ2, but has worse dependence on the dimension d.

Alternatively, under a less restrictive setting (i.e. not strongly convex), Nemirovski

and Yudin proposed two algorithms for the class of convex, Lipschitz functions that

obtain rates of d1/2/T 1/4 and p(d)/T 1/2, respectively, where p(d) was left as an unspecified

polynomial of d [120]. Yue and Joachims in [119] built off the work of Flaxman [123] and

showed that a pairwise comparison oracle can achieve the same d1/2/T 1/4 rate achieved by

function evaluations. While focusing on stochastic DFO with bandit feedback, Agarwal

et. al. built on the ideas developed in [120] to obtain a result that implies a convergence

rate of d16/T 1/2 [121]. Whether or not these rates can be improved under the more

restrictive function classes we consider is an open question.

A related but fundamentally different problem that is somewhat related with the

setting considered in this paper is described as online (or stochastic) convex optimization

with multi-point feedback [110,124,125]. Essentially, this setting allows the algorithm

to probe the value of the function f plus noise at multiple locations where the noise

changes at each time step, but each set of samples at each time experiences the same

noise. Because the noise model of that work is incompatible with the one considered

here, no comparisons should be made between the two.

7.4 Lower Bounds

The lower bounds in Theorems 1 and 3 are proved using a general minimax bound [126,

Thm. 2.5]. Our proofs are most related to the approach developed in [127] for active
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learning, which like optimization involves a Markovian sampling process. Roughly

speaking, the lower bounds are established by considering a simple case of the optimization

problem in which the global minimum is known a priori to belong to a finite set. Since

the simple case is “easier” than the original optimization, the minimum number of queries

required for a desired level of accuracy in this case yields a lower bound for the original

problem.

The following theorem is used to prove the bounds. In the terms of the theorem,

f is a function to be minimized and Pf is the probability model governing the noise

associated with queries when f is the true function.

Theorem 7.4. [126, Thm. 2.5] Consider a class of functions F and an associated

family of probability measures {Pf}f∈F . Let M ≥ 2 be an integer and f0, f1, . . . , fM be

functions in F . Let d(·, ·) : F × F → R be a semi-distance and assume that:

1. d(fi, fj) ≥ 2s > 0, for all 0 ≤ i < j ≤M ,

2. 1
M

∑M
j=1 KL(Pi||P0) ≤ a logM ,

where the Kullback-Leibler divergence KL(Pi||P0) :=
∫

log dPi
dP0
dPi is assumed to be well-

defined (i.e., P0 is a dominating measure) and 0 < a < 1/8 . Then

inf
f̂

sup
f∈F

P(d(f̂ , f) ≥ s) ≥ inf
f̂

max
f∈{f0,...,fM}

P(d(f̂ , f) ≥ s) ≥
√
M

1+
√
M

(
1− 2a− 2

√
a

logM

)
> 0 ,

where the infimum is taken over all possible estimators based on a sample from Pf .

We are concerned with the functions in the class F := Fτ,L,B. The volume of B will

affect only constant factors in our bounds, so we will simply denote the class of functions

by F and refer explicitly to B only when necessary. Let xf := arg minx f(x), for all
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f ∈ F . The semi-distance we use is d(f, g) := ‖xf − xg||, for all f, g ∈ F . Note that

each point in B can be specified by one of many f ∈ F . So the problem of selecting an f

is equivalent to selecting a point x ∈ B. Indeed, the semi-distance defines a collection of

equivalence classes in F (i.e., all functions having a minimum at x ∈ B are equivalent).

For every f ∈ F we have infg∈F f(xg) = infx∈B f(x), which is a useful identity to keep in

mind.

We now construct the functions f0, f1, . . . , fM that will be used for our proofs. Let

Ω = {−1, 1}d so that each ω ∈ Ω is a vertex of the d-dimensional hypercube. Let V ⊂ Ω

with cardinality |V| ≥ 2d/8 such that for all ω 6= ω′ ∈ V, we have ρ(ω, ω′) ≥ d/8 where

ρ(·, ·) is the Hamming distance. It is known that such a set exists by the Varshamov-

Gilbert bound [126, Lemma 2.9]. Denote the elements of V by ω0, ω1, . . . , ωM . Next we

state some elementary bounds on the functions that will be used in our analysis.

Lemma 7.5. For ε > 0 define the set B ⊂ Rd to be the `∞ ball of radius ε and

define the functions on B: fi(x) := τ
2
||x − εωi||2, for i = 0, . . . ,M , ωi ∈ V, and

xi := arg minx fi(x) = εωi. Then for all 0 ≤ i < j ≤ M and x ∈ B the functions fi(x)

satisfy

1. fi is strongly convex-τ with Lipschitz-L gradients and xi ∈ B

2. ||xi − xj|| ≥ ε
√

d
2

3. |fi(x)− fj(x)| ≤ 2τdε2 .

We are now ready to prove Theorems 1 and 3. Each proof uses the functions f0, . . . , fM

a bit differently, and since the noise model is also different in each case, the KL divergence

is bounded differently in each proof. We use the fact that if X and Y are random variables
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distributed according to Bernoulli distributions PX and PY with parameters 1/2 + µ

and 1/2 − µ, then KL(PX ||PY ) ≤ 4µ2/(1/2 − µ). Also, if X ∼ N (µX , σ
2) =: PX and

Y ∼ N (µY , σ
2) =: Py then KL(PX ||PY ) = 1

2σ2 ||µX − µY ||2.

7.4.1 Proof of Theorem 7.1

First we will obtain the bound for the case κ > 1. Let the comparison oracle satisfy

P (Cfi(x, y) = sign{fi(y)− fi(x)}) =
1

2
+ min

{
µ|fi(y)− fi(x)|κ−1, δ0

}
.

In words, Cfi(x, y) is correct with probability as large as the right-hand-side of above and

is monotonic increasing in fi(y)−fi(x). Let {xk, yk}Tk=1 be a sequence of T pairs in B and

let {Cfi(xk, yk)}Tk=1 be the corresponding sequence of noisy comparisons. We allow the

sequence {xk, yk}Tk=1 to be generated in any way subject to the Markovian assumption that

Cfi(xk, yk) given (xk, yk) is conditionally independent of {xi, yi}i<k. For i = 0, . . . ,M , and

` = 1, . . . , T let Pi,` denote the joint probability distribution of {xk, yk, Cfi(xk, yk)}`k=1,

let Qi,` denote the conditional distribution of Cfi(x`, y`) given (x`, y`), and let S` denote

the conditional distribution of (x`, y`) given {xk, yk, Cfi(xk, yk)}`−1
k=1. Note that S` is only

a function of the underlying optimization algorithm and does not depend on i.

KL(Pi,T ||Pj,T ) = EPi,T
[
log

Pi,T
Pj,T

]
= EPi,T

[
log

∏T
`=1 Qi,`S`∏T
`=1Qj,`S`

]
= EPi,T

[
log

∏T
`=1Qi,`∏T
`=1 Qj,`

]

=
T∑
`=1

EPi,T
[
EPi,T

[
log

Qi,`

Qj,`

∣∣∣∣{xk, yk}Tk=1

]]
≤ T sup

x1,y1∈B
EPi,1

[
EPi,1

[
log

Qi,1

Qj,1

∣∣∣∣x1, y1

]]

By the second claim of Lemma 7.5, |fi(x) − fj(x)| ≤ 2τdε2, and therefore the bound

above is less than or equal to the KL divergence between the Bernoulli distributions with
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parameters 1
2
± µ (2τdε2)

(κ−1), yielding the bound

KL(Pi,T |Pj,T ) ≤ 4Tµ2 (2τdε2)
2(κ−1)

1/2− µ (2τdε2)(κ−1)
≤ 16Tµ2

(
2τdε2

)2(κ−1)

provided ε is sufficiently small. We also assume ε (or, equivalently, B) is sufficiently small

so that |fi(x)− fj(x)|κ−1 ≤ δ0. We are now ready to apply Theorem 7.4. Recalling that

M ≥ 2d/8, we want to choose ε such that

KL(Pi,T |Pj,T ) ≤ 16Tµ2
(
2τdε2

)2(κ−1) ≤ a
d

8
log(2) ≤ a logM

with an a small enough so that we can apply the theorem. By setting a = 1/16 and

equating the two sides of the equation we have ε = εT := 1
2
√
d

(
2
τ

)1/2
(
d log(2)

2048µ2T

) 1
4(κ−1)

(note that this also implies a sequence of sets BT by the definition of the functions in

Lemma 7.5). Thus, the semi-distance satisfies

d(fj, fi) = ||xj − xi|| ≥
√
d/2εT ≥

1

2
√

2

(
2

τ

)1/2(
d log(2)

2048µ2T

) 1
4(κ−1)

=: 2sT .

Applying Theorem 7.4 we have

inf
f̂

sup
f∈F

P(‖xf̂ − xf‖ ≥ sT ) ≥ inf
f̂

max
i∈{0,...,M}

P(‖xf̂ − xi‖ ≥ sT ) = inf
f̂

max
i∈{0,...,M}

P(d(f̂ , fi) ≥ sT )

≥
√
M

1+
√
M

(
1− 2a− 2

√
a

logM

)
> 1/7 ,
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where the final inequality holds since M ≥ 2 and a = 1/16. Strong convexity implies

that f(x)− f(xf ) ≥ τ
2
||x− xf ||2 for all f ∈ F and x ∈ B. Therefore

inf
f̂

sup
f∈F

P
(
f(xf̂ )− f(xf ) ≥

τ

2
s2
T

)
≥ inf

f̂
max

i∈{0,...,M}
P
(
fi(xf̂ )− fi(xi) ≥

τ

2
s2
T

)
≥ inf

f̂
max

i∈{0,...,M}
P
(τ

2
‖xf̂ − xi‖2 ≥ τ

2
s2
T

)
= inf

f̂
max

i∈{0,...,M}
P
(
‖xf̂ − xi‖ ≥ sT

)
> 1/7 .

Finally, applying Markov’s inequality we have

inf
f̂

sup
f∈F

E
[
f(xf̂ )− f(xf )

]
≥ 1

7

(
1

32

)(
d log(2)

2048µ2T
.

) 1
2(κ−1)

7.4.2 Proof of Theorem 7.1 for κ = 1

To handle the case when κ = 1 we use functions of the same form, but the construction

is slightly different. Let ` be a positive integer and let M = `d. Let {ξi}Mi=1 be a set

of uniformly space points in B which we define to be the unit cube in Rd, so that

‖ξi−ξj‖ ≥ `−1 for all i 6= j. Define fi(x) := τ
2
||x−ξi||2, i = 1, . . . ,M . Let s := 1

2`
so that

d(fi, fj) := ||x∗i−x∗j || ≥ 2s. Because κ = 1, we have P (Cfi(x, y) = sign{fi(y)− fi(x)}) ≥

µ for some µ > 0, all i ∈ {1, . . . ,M}, and all x, y ∈ B. We bound KL(Pi,T ||Pj,T ) in

exactly the same way as we bounded it in Section 7.4.1 except that now we have

Cfi(xk, yk) ∼ Bernoulli(1
2

+ µ) and Cfj(xk, yk) ∼ Bernoulli(1
2
− µ). It then follows that if

we wish to apply the theorem, we want to choose s so that

KL(Pi,T |Pj,T ) ≤ 2Tµ2/(1/2− µ) ≤ a logM = ad log
(

1
2s

)
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for some a < 1/8. Using the same sequence of steps as in Section 7.4.1 we have

inf
f̂

sup
f∈F

E
[
f(xf̂ )− f(xf )

]
≥ 1

7

τ

2

(
1

2

)2

exp

{
− 128Tµ2

d(1/2− µ)

}
.

7.4.3 Proof of Theorem 7.3

Let fi for all i = 0, . . . ,M be the functions considered in Lemma 7.5. Recall that the

evaluation oracle is defined to be Ef (x) := f(x) + w, where w is a random variable

(independent of all other random variables under consideration) with E[w] = 0 and

E[w2] = σ2 > 0. Let {xk}Tk=1 be a sequence of points in B ⊂ Rd and let {Ef (xk)}Tk=1

denote the corresponding sequence of noisy evaluations of f ∈ F . For ` = 1, . . . , T

let Pi,` denote the joint probability distribution of {xk, Efi(xk)}`k=1, let Qi,` denote the

conditional distribution of Efi(xk) given xk, and let S` denote the conditional distribution

of x` given {xk, Ef (xk)}`−1
k=1. S` is a function of the underlying optimization algorithm

and does not depend on i. We can now bound the KL divergence between any two

hypotheses as in Section 7.4.1:

KL(Pi,T ||Pj,T ) ≤ T sup
x1∈B

EPi,1

EPi,1
log

Qi,1

Qj,1

∣∣∣∣∣∣∣x1


 .
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To compute a bound, let us assume that w is Gaussian distributed. Then

KL(Pi,T ||Pj,T ) ≤ T sup
z∈B

KL
(
N (fi(z), σ2)||N (fj(z), σ2)

)
=

T

2σ2
sup
z∈B
|fi(z)− fj(z)|2 ≤ T

2σ2

(
2τdε2

)2

by the third claim of Lemma 7.5. We then repeat the same procedure as in Section 7.4.1

to attain

inf
f̂

sup
f∈F

E
[
f(xf̂ )− f(xf )

]
≥ 1

7

(
1

32

)(
dσ2 log(2)

64T

) 1
2

.

7.5 Upper bounds

The algorithm that achieves the upper bound using a pairwise comparison oracle is a

combination of a few standard techniques and methods pulled from the convex optimiza-

tion and statistical learning literature. The algorithm can be summarized as follows. At

each iteration the algorithm picks a coordinate uniformly at random from the n possible

dimensions and then performs an approximate line search. By exploiting the fact that

the function is strongly convex with Lipschitz gradients, one guarantees using standard

arguments that the approximate line search makes a sufficient decrease in the objective

function value in expectation [52, Ch.9.3]. If the pairwise comparison oracle made no

errors then the approximate line search is accomplished by a binary-search-like scheme
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that is known in the literature as the golden section line-search algorithm [128]. How-

ever, when responses from the oracle are only probably correct we make the line-search

robust to errors by repeating the same query until we can be confident about the true,

uncorrupted direction of the pairwise comparison using a standard procedure from the

active learning literature [129].

7.5.1 Coordinate descent algorithm

n-dimensional Pairwise comparison algorithm
Input: x0 ∈ Rd, η ≥ 0
For k=0,1,2,. . .

Choose vk = ei for i ∈ {1, . . . , d} chosen uniformly at random
Obtain αk from a line-search such that
|αk − α∗| ≤ η where α∗ = arg minα f(xk + α vk)

xk+1 = xk + αk vk
end

Figure 7.1: Algorithm to minimize a convex function in d dimensions. Here ei is
understood to be a vector of all zeros with a one in the ith position.

Theorem 7.6. Let f ∈ Fτ,L,B with B = Rd. For any η > 0 assume the line search in

the algorithm of Figure 7.1 requires at most T`(η) queries from the pairwise comparison

oracle. If xK is an estimate of x∗ = arg minx f(x) after requesting no more than K

pairwise comparisons, then

sup
f

E[f(xK)− f(x∗)] ≤
4dL2η2

τ
whenever K ≥ 4dL

τ
log

(
f(x0)− f(x∗)

η22dL2/τ

)
T`(η)

where the expectation is with respect to the random choice of vk at each iteration.

Proof. First note that ||vk|| = 1 for all k with probability 1. Because the gradients of f
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are Lipschitz (L) we have from Taylor’s theorem

f(xk+1) ≤ f(xk) + 〈∇f(xk), αkvk〉+
α2
kL

2
.

Note that the right-hand-side is convex in αk and is minimized by

α̂k = −〈∇f(xk), vk〉
L

.

However, recalling how αk is chosen, if α∗ = arg minα f(xk + α vk) then we have

f(xk + αk vk)− f(xk + α∗ vk) ≤
L

2
||(αk − α∗)vk||2 =

L

2
|αk − α∗|2 ≤

L

2
η2.

This implies

f(xk + αkvk)− f(xk) ≤ f(xk + α∗vk)− f(xk) +
L

2
η2

≤ f(xk + α̂kvk)− f(xk) +
L

2
η2

≤ −〈∇f(xk), vk〉2
2L

+
L

2
η2.

Taking the expectation with respect to vk, we have

E [f(xk+1)] ≤ E [f(xk)]− E
[〈∇f(xk), vk〉2

2L

]
+
L

2
η2

= E [f(xk)]− E

E
〈∇f(xk), vk〉2

2L

∣∣∣∣∣∣∣v0, . . . , vk−1


+

L

2
η2

= E [f(xk)]− E
[ ||∇f(xk)||2

2dL

]
+
L

2
η2
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where we applied the law of iterated expectation. Let x∗ = arg minx f(x) and note that

x∗ is a unique minimizer by strong convexity (τ). Using the previous calculation we have

E [f(xk+1)− f(x∗)]− L
2
η2 ≤ E [f(xk)− f(x∗)]− E[||∇f(xk)||2]

2dL
≤ E [f(xk)− f(x∗)]

(
1− τ

4dL

)

where the second inequality follows from

(f(xk)− f(x∗))2 ≤ (〈∇f(xk), xk − x∗〉)2

≤||∇f(xk)||2||xk − x∗||2 ≤ ||∇f(xk)||2
(τ

2

)−1

(f(xk)− f(x∗)) .

If we define ρk := E [f(xk)− f(x∗)] then we equivalently have

ρk+1 −
2dL2η2

τ
≤
(

1− τ

4dL

)(
ρk −

2dL2η2

τ

)
≤
(

1− τ

4dL

)k (
ρ0 −

2dL2η2

τ

)

which completes the proof.

This implies that if we wish supf E[f(xK)− f(x∗)] ≤ ε it suffices to take η =
√

ετ
4dL2

so that at most 4dL
τ

log
(
f(x0)−f(x∗)

ε/2

)
T`
(√

ετ
4dL2

)
pairwise comparisons are requested.

7.5.2 Line search

This section is concerned with minimizing a function f(xk + α vk) over some α ∈ R.

Because we are minimizing over a single variable, α, we will restart the indexing at 0

such that the line search algorithm produces a sequence α0, α1, . . . , αK′ . This indexing

should not be confused with the indexing of the iterates x1, x2, . . . , xK . We will first

present an algorithm that assumes the pairwise comparison oracle makes no errors and
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then extend the algorithm to account for the noise model introduced in Section 7.2.

Consider the algorithm of Figure 7.2. At each iteration, one is guaranteed to eliminate

at least 1/2 the search space at each iteration such that at least 1/4 the search space

is discarded for every pairwise comparison that is requested. However, with a slight

modification to the algorithm, one can guarantee a greater fraction of removal (see the

golden section line-search algorithm). We use this sub-optimal version for simplicity

because it will help provide intuition for how the robust version of the algorithm works.

One Dimensional Pairwise comparison algorithm
Input: x ∈ Rd, v ∈ Rd, η > 0
Initialize: α0 = 0, α+

0 = α0 + 1, α−0 = α0 − 1, k = 0
If Cf (x, x+ α+

0 v) > 0 and Cf (x, x+ α−0 v) < 0
α+

0 = 0
end
If Cf (x, x+ α−0 v) > 0 and Cf (x, x+ α+

0 v) < 0
α−0 = 0

end
While Cf (x, x+ α+

k v) < 0
α+
k+1 = 2α+

k , k = k + 1
end
While Cf (x, x+ α−k v) < 0

α−k+1 = 2α−k , k = k + 1
end
αk = 1

2
(α−k + α+

k )
While |α+

k − α−k | ≥ η/2
if Cf (x+ αk v, x+ 1

2
(αk + α+

k ) v) < 0
αk+1 = 1

2
(αk + α+

k ), α+
k+1 = α+

k , α−k+1 = αk
else if Cf (x+ αk v, x+ 1

2
(αk + α−k ) v) < 0

αk+1 = 1
2
(αk + α−k ), α+

k+1 = αk, α−k+1 = α−k
else
αk+1 = αk, α+

k+1 = 1
2
(αk + α+

k ), α−k+1 = 1
2
(αk + α−k )

end
end
Output: αk

Figure 7.2: Algorithm to minimize a convex function in one dimension.
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Theorem 7.7. Let f ∈ Fτ,L,B with B = Rd and let Cf be a function comparison oracle

that makes no errors. Let x ∈ Rd be an initial position and let v ∈ Rd be a search

direction with ||v|| = 1. If αK is an estimate of α∗ = arg minα f(x+ α v) that is output

from the algorithm of Figure 7.2 after requesting no more than K pairwise comparisons,

then for any η > 0

|αK − α∗| ≤ η whenever K ≥ 2 log2

(
256L (f(x)− f(x+ α∗ v))

τ 2η2

)
.

Proof. First note that if αK is output from the algorithm, we have 1
2
|αK − α∗| ≤

|α+
K − α−K | ≤ 1

2
η, as desired.

We will handle the cases when |α∗| is greater than one and less than one sepa-

rately. First assume that |α∗| ≥ 1. Using the fact that f is strongly convex (τ), it

is straightforward to show that immediately after exiting the initial while loops, (i)

at most 2 + 1
2

log2

(
8
τ

(f(x)− f(x+ α∗ v))
)

pairwise comparisons were requested, (ii)

α∗ ∈ [α−k , α
+
k ], and (iii) |α+

k − α−k | ≤
(

8
τ

(f(x)− f(x+ α∗ v))
)1/2. We also have that

α∗ ∈ [α−k+1, α
+
k+1] if α∗ ∈ [α−k , α

+
k ] for all k. Thus, it follows that

|α+
k+l − α−k+l| = 2−l|α+

k − α−k | ≤ 2−l
(

8

τ
(f(x)− f(x+ α∗ v))

)1/2

.

To make the right-hand-side less than or equal to η/2, set l = log2

(
( 8
τ

(f(x)−f(x+α∗ v)))
1/2

η/2

)
.

This brings the total number of pairwise comparison requests to no more than

2 log2

(
32(f(x)−f(x+α∗ v))

τη

)
.

Now assume that |α∗| ≤ 1. A straightforward calculation shows that the while

loops will terminate after requesting at most 2 + 1
2

log2

(
L
τ

)
pairwise comparisons. And
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immediately after exiting the while loops we have |α+
k − α−k | ≤ 2. It follows by the same

arguments of above that if we want |α+
k+l − α−k+l| ≤ η/2 it suffices to set l = log2

(
4
η

)
.

This brings the total number of pairwise comparison requests to no more than 2 log2

(
8L
τη

)
.

For sufficiently small η both cases are positive and the result follows from adding the

two.

This implies that if the function comparison oracle makes no errors and it is given

an iterate xk and direction dk then T`
(√

ετ
4dL2

)
≤ 2 log2

(
2048dL2(f(xk)−f(xk+α∗ vk))

τ3ε

)
which

brings the total number of pairwise comparisons requested to at most
8dL
τ

log
(
f(x0)−f(x∗)

ε/2

)
log2

(
2048dL2 maxk(f(xk)−f(xk+α∗ vk))

τ3ε

)
.

7.5.3 Proof of Theorem 7.2

We now introduce a line search algorithm that is robust to a function comparison

oracle that makes errors. Essentially, the algorithm consists of nothing more than

repeatedly querying the same random pairwise comparison. This strategy applied to

active learning is well known because of its simplicity and its ability to adapt to unknown

noise conditions [129]. However, we mention that when used in this way, this sampling

procedure is known to be sub-optimal so in practice, one may want to implement a more

efficient approach like that of [127]. Consider the subroutine of Figure 7.3.

Lemma 7.8. [129] For any x, y ∈ Rd with P (Cf (x, y) = sign{f(y)− f(x)}) = p, then

with probability at least 1− δ the algorithm of Figure 7.3 correctly identifies the sign of

E [Cf (x, y)] and requests no more than

log(2/δ)

4|1/2− p|2 log2

(
log(2/δ)

4|1/2− p|2
)
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Repeated querying subroutine
Input: x, y ∈ Rd, δ > 0
Initialize: S = ∅, l = −1
do

l = l + 1

∆l =
√

(l+1) log(2/δ)
2l

S = S ∪ {2l i.i.d. draws of Cf (x, y)}
while

∣∣1
2

∑
ei∈S ei

∣∣−∆l < 0

return sign
{∑

ei∈S ei
}

.

Figure 7.3: Subroutine that estimates E [Cf (x, y)] by repeatedly querying the random
variable.

pairwise comparisons.

We mention that that Lemma 7.8 is an inferior result compared to Lemma 4.3 but it

more than suffices for our purposes here. It would be convenient if we could simply apply

the result of Lemma 7.8 to the algorithm of Figure 7.2. Unfortunately, if we do this

there is no guarantee that |f(y)− f(x)| is bounded below so for the case when κ > 1, it

would be impossible to lower bound |1/2− p| in the lemma. To account for this, we will

sample at four points per iteration as opposed to just two in the noiseless algorithm to

ensure that we can always lower bound |1/2− p|. We will see that the algorithm and

analysis naturally adapts to when κ = 1 or κ > 1.

Consider the following modification to the algorithm of Figure 7.2. We discuss the

sampling process that takes place in [αk, α
+
k ] but it is understood that the same process

is repeated symmetrically in [α−k , αk]. We begin with the first two while loops. Instead

of repeatedly sampling Cf (x, x+ α+
k v) we will have two sampling procedures running

in parallel that repeatedly compare αk to α+
k and αk to 2α+

k . As soon as the repeated

sampling procedure terminates for one of them we terminate the second sampling strategy
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and proceed with what the noiseless algorithm would do with α+
k assigned to be the

sampling location that finished first. Once we’re out of the initial while loops, instead

of comparing αk to 1
2
(αk + α+

k ) repeatedly, we will repeatedly compare αk to 1
3
(αk + α+

k )

and αk to 2
3
(αk + α+

k ). Again, we will treat the location that finishes its sampling first as
1
2
(αk + α+

k ) in the noiseless algorithm.

If we perform this procedure every iteration, then at each iteration we are guaranteed

to remove at least 1/3 the search space, as opposed to 1/2 in the noiseless case, so we

realize that the number of iterations of the robust algorithm is within a constant factor

of the number of iterations of the noiseless algorithm. However, unlike the noiseless case

where at most two pairwise comparisons were requested at each iteration, we must now

apply Lemma 7.8 to determine the number of pairwise comparisons that are requested

per iteration.

Intuitively, the repeated sampling procedure requests the most pairwise comparisons

when the distance between the two function evaluations being compared smallest. This

corresponds to when the distance between probe points is smallest, i.e. when η/2 ≤

|αk − α∗| ≤ η. By considering this worst case, we can bound the number of pairwise

comparisons that are requested at any iteration. By strong convexity (τ) we find through

a straightforward calculation that

max

{
|f(x+ αk v)− f(x+

2

3
(αk + α+

k ) v)|, |f(x+ αk v)− f(x+
1

3
(αk + α+

k ) v)|
}
≥ τ

18
η2

for all k. This implies |1/2−p| ≥ µ
(
τ
18
η2
)κ−1 so that on on any given call to the repeated

querying subroutine, with probability at least 1− δ the subroutine requests no more than

Õ
(

log(1/δ)

(τη2)2(κ−1)

)
pairwise comparisons. However, because we want the total number of calls
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to the subroutine to hold with probability 1−δ, not just one, we must union bound over 4

pairwise comparisons per iteration times the number of iterations per line search times the

number of line searches. This brings the total number of calls to the repeated query sub-

routine to no more than 4× 3
2

log2

(
256Lmaxk(f(xk)−f(xk+α∗k vk))

τ2η2

)
× 4dL

τ
log
(
f(x0)−f(x∗)
η22dL2/τ

)
=

O
(
dL
τ

log2
(
f(x0)−f(x∗)

dη2

))
. If we set η =

(
ετ

4dL2

)1/2 so that E [f(xK)− f(x∗)] ≤ ε by

Theorem 7.6, then the total number of requested pairwise comparisons does not exceed

Õ

(
dL

τ

(
d

ε

)2(κ−1)

log2

(
f(x0)− f(x∗)

ε

)
log(d/δ)

)
.

By finding a T > 0 that satisfies this bound for any ε we see that this is equivalent

to a rate of O
(
d log(d/δ)

(
d
T

) 1
2(κ−1)

)
for κ > 1 and O

(
exp

{
−c
√

T
d log(d/δ)

})
for κ = 1,

ignoring polylog factors.

7.6 Discussion

This paper presented lower bounds on the performance of derivative-free optimization

for (i) an oracle that provides noisy function evaluations and (ii) an oracle that provides

probably correct boolean comparisons between function evaluations. Our results were

proven for the class of strongly convex functions but because this class is a subset of

all, possibly non-convex functions, our lower bounds hold for much larger classes as well.

Under both oracle models we showed that the expected error decays like Ω
(
(d/T )1/2

)
.

Furthermore, for the class of strongly convex functions with Lipschitz gradients, we

proposed an algorithm that achieves a rate of Õ
(
d(d/T )1/2

)
for both oracle models which

shows that the lower bounds are tight with respect to the dependence on the number of
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iterations T and no more than a factor of d off in terms of the dimension.

7.7 Bibliographical Remarks

The work presented in this chapter was based on the author’s publication

• Kevin G. Jamieson, Robert D Nowak, and Ben Recht. Query complexity of

derivative-free optimization. In Advances in Neural Information Processing Systems

(NIPS), pages 2672–2680, 2012.

Following the publication of this work, the lower bound of
√

d
T

proved in this chapter

was improved to
√

d2

T
which is believed to be tight for strongly convex functions [130].



190

Bibliography

[1] Hidalgo CA Salesses P, Schechtner K. The collaborative image of the city: Mapping

the inequality of urban perception. PLoS ONE 8(7): e68400, 2013.

[2] N. Stewart, G.D.A. Brown, and N. Chater. Absolute identification by relative

judgment. Psychological Review, 112(4):881–911, 2005.

[3] T.H.A. Bijmolt and M. Wedel. The effects of alternative methods of collecting

similarity data for multidimensional scaling. International Journal of Research in

Marketing, 12(4):363–371, 1995.

[4] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley

& Sons, 2012.

[5] Nir Ailon. Active learning ranking from pairwise preferences with almost optimal

query complexity. In Advances in Neural Information Processing Systems, pages

810–818, 2011.

[6] Kevin G Jamieson and Robert D Nowak. Active ranking using pairwise comparisons.

In Advances in Neural Information Processing Systems (NIPS), pages 2240–2248,

2011.

[7] Kevin G Jamieson and Robert D Nowak. Active ranking in practice: General

ranking functions with sample complexity bounds. In NIPS Workshop, 2011.

[8] Kevin G Jamieson and Robert D Nowak. Low-dimensional embedding using

adaptively selected ordinal data. In Communication, Control, and Computing



191

(Allerton), 2011 49th Annual Allerton Conference on, pages 1077–1084. IEEE,

2011.

[9] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb:
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Appendix A

Chapter 2 Supplementary Materials

A.1 Computational complexity and implementation

The computational complexity of the algorithm in Figure 2.1 is determined by the

complexity of testing whether a query is ambiguous or not and how many times we make

this test. As written in Figure 2.1, the test would be performed O(n2) times. But if

binary sort is used instead of the brute-force linear search this can be reduced to n log2 n

and, in fact, this is implemented in our simulations and the proofs of the main results.

The complexity of each test is polynomial in the number of queries requested because

each one is a linear constraint. Because our results show that no more than O(d log n)

queries are requested, the overall complexity is no greater than O(n poly(d) poly(log n)).



207

A.2 Proof of Corollary 2.4

Proof. For initial conditions given in Lemma 2.3, if d� n− 1 a simple manipulation of

(2.3) shows

Q(n, d) = 1 +
n−1∑
i=1

(n− i)Q(n− i, d− 1)

= 1 +
n−1∑
i=1

i Q(i, d− 1)

= 1 +
n−1∑
i=1

i

[
1 +

i−1∑
j=1

j Q(j, d− 2)

]

= 1 + Θ(n2/2) +
n−1∑
i=1

i−1∑
j=1

i j

[
1 +

j−1∑
k=1

k Q(k, d− 3)

]

= 1 + Θ(n2/2) + Θ(n4/2/4) +
n−1∑
i=1

i−1∑
j=1

j−1∑
k=1

i j k

[
1 +

k−1∑
l=1

l Q(l, d− 4)

]

= 1 + Θ(n2/2) + · · ·+ Θ

(
n2d

2dd!

)
.

From simulations, this is very tight for large values of n. If d ≥ n− 1 then Q(n, d) = n!

because any permutation of n objects can be embedded in n−1 dimensional space [21].

A.3 Construction of a d-cell with n− 1 sides

Situations may arise in which Ω(n) queries must be requested to identify a ranking

because the d-cell representing the ranking is bounded by n−1 hyperplanes (queries) and

if they are not all requested, the ranking is ambiguous. We now show how to construct

this pathological situation in R2. Let Θ be a collection of n points in R2 where each
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θ ∈ Θ satisfies θ2
1 = θ2 and θ1 ∈ [0, 1] where θi denotes the ith dimension of θ (i ∈ {1, 2}).

Then there exists a 2-cell in the hyperplane arrangement induced by the queries that

has n− 1 sides. This follows because the slope of the parabola keeps increasing with θ1

making at least one query associated with (n− 1) θ’s bisect the lower-left, unbounded

2-cell. This can be observed in Figure A.1. Obviously, a similar arrangement could be

constructed for all d ≥ 2.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

n − 1 sided d-cell

Figure A.1: The points Θ representing the objects are dots on the right, the lines are the
queries, and the black, bold lines are the queries bounding the n− 1 sided 2-cell.

A.4 Proof of Lemma 2.10

Proof. Here we prove an upper bound on P (k, d). P (k, d) is equal to the number of

d-cells in the partition induced by objects 1, . . . , k that are intersected by a hyperplane

corresponding to a pairwise comparison query between object k + 1 and object i, i ∈

{1, . . . , k}. This new hyperplane is intersected by all the
(
k
2

)
hyperplanes in the partition.

These intersections partition the new hyperplane into a number of (d− 1)-cells. Because

the (k+ 1)st object is in general position with respect to objects 1, . . . , k, the intersecting



209

hyperplanes will not intersect the hyperplane in any special or non-general way. That

is to say, the number of (d − 1)-cells this hyperplane is partitioned into is the same

number that would occur if the hyperplane were intersected by
(
k
2

)
hyperplanes in general

position. Let K =
(
k
2

)
for ease of notation. It follows then from [22, Theorem 3] that

P (k, d) =
d−1∑
i=0

(
K

i

)
≤

d−1∑
i=0

Ki

i!
≤

d−1∑
i=0

k2i

2ii!
=

k2(d−1)

2d−1(d− 1)!

(
1 +

d−1∑
i=1

(d− 1)!

(d− 1− i)!

(
2

k2

)i)

≤ k2(d−1)

2d−1(d− 1)!

(
1 +

d−1∑
i=1

(
2(d− 1)

k2

)i)

=
k2(d−1)

2d−1(d− 1)!

(
1− (2(d− 1)/k2)

d

1− 2(d− 1)/k2

)
.

Thus, 2(d−1)
k2 ≤ ε < 1 implies P (k, d) < k2(d−1)

2d−1(d−1)!
1

1−ε .
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Appendix B

Chapter 4 Supplementary Materials

B.1 Inverting expressions of the form log(log(t))/t

Lemma B.1. for all positive a, b, t with a/b ≥ e we have t ≥ 2 log(a/b)
b

=⇒ b ≥ log(at)
t

.

Proof Sketch. It can be shown that log(at)
t

is monotonically decreasing for t ≥ 2 log(a/b)
b

. It

then suffices to show that b ≥ log(at0)
t0

for t0 = 2 log(a/b)
b

which is true whenever a/b ≥ e.

Lemma B.2. Let c > 0, t ≥ 1, ε ∈ (0, 1), and ω ∈ (0, 1). Then

1

t
log

(
log((1 + ε)t)

ω

)
≥ c⇒ t ≤ 1

c
log

(
2 log((1 + ε)/(cω))

ω

)
. (B.1)

Proof. It suffices to show set c0 = 1
t

log
(

log((1+ε)t)
ω

)
and show 1

c0
log
(

2 log((1+ε)/(c0ω))
ω

)
≥ t.

We begin with

1

c0

log

2 log
(

1+ε
c0ω

)
ω

 = t

log

(
2 log((1+ε)t)−2 log(log( log((1+ε)t)

ω )ω)

ω

)
log
(

log((1+ε)t)
ω

)

= t

log
(

log((1+ε)t)
ω

)
+ log

(
2− 2

log(log( log((1+ε)t)
ω )ω)

log((1+ε)t)

)
log
(

log((1+ε)t)
ω

) .

The right hand side is greater than or equal to one if and only if the second term in the
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numerator is greater than or equal to 0. And

log

2− 2
log(log

(
log((1+ε)t)

ω

)
ω)

log ((1 + ε)t)

 ≥ 0 ⇐⇒ 1− 2
log(log

(
log((1+ε)t)

ω

)
ω)

log ((1 + ε)t)
≥ 0

⇐⇒
√

(1 + ε)t ≥ log

(
log((1 + ε)t)

ω

)
ω

⇐ √y ≥ log

(
log(y)

ω

)
ω ∀y > 0.

Note that ω ∈ (0, 1) and supω∈(0,1) ω log
(

1
ω

)
= e−1 so that

log

(
log(y)

ω

)
ω ≤ log (log(y)) + log

(
1

ω

)
ω

≤ log (log(y)) + e−1 <
√
y

where the last inequality follows from noting that log (log(y)) − √y + e−1 takes its

maximum at ỹ such that 2 =
√
ỹ log(ỹ), which implies 2 < ỹ < e which implies the result

as e−1 < 1 <
√

2.

Lemma B.3. Let c ∈ (0, 1], t ≥ 1, s ≥ 3, ε ∈ (0, 1), and δ ∈ (0, e−e), ω ∈ (0, δ]. Then

1

t
log

(
log((1 + ε)t)

ω

)
≥ c

s
log

(
log((1 + ε)s)

δ

)
and ω ≤ δ ⇒ t ≤ s

c

log
(
2 log

(
1
cω

)
/ω
)

log(1/δ)
.

(B.2)



212

Proof. We now use (B.1) with c0 = c
s

log
(

log((1+ε)s)
δ

)
to find that

t ≤ 1

c0

log

2 log
(

1+ε
c0ω

)
ω

 =
s

c

log

2 log((1+ε)s)+log

(
1

ωc log( log((1+ε)s)
δ )

)
ω


log
(

log((1+ε)s)
δ

)

=
s

c

log (log ((1 + ε)s)) + log

2 log

(
e

ωc log( log((1+ε)s)
δ )

)
ω log((1+ε)s)


log (log((1 + ε)s)) + log(1/δ)

≤ s

c

log (log ((1 + ε)s)) + log
(
2 log

(
1
ωc

)
/ω
)

log (log((1 + ε)s)) + log(1/δ)

≤ s

c

log
(
2 log

(
1
ωc

)
/ω
)

log(1/δ)

where the second to last line follows if log ((1 + ε)s) ≥ 1 and log
(

log((1+ε)s)
δ

)
≥ e which

is satisfied by the assumption.and The last line follows because ω ≤ δ since for any x > 0

and a ≥ b, we have x+a
x+b
≥ a

b
.
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Appendix C

Chapter 7 Supplementary Materials

C.1 Bounds on (κ, µ, δ0) for some distributions

In this section we relate the function evaluation oracle to the function comparison oracle

for some common distributions. That is, if Ef (x) = f(x)+w for some random variable w,

we lower bound the probability η(y, x) := P(sign{Ef (y)− Ef (x)} = sign{f(y)− f(x)})

in terms of the parameterization of (7.1).

Lemma C.1. Let w be a Gaussian random variable with mean zero and variance σ2.

Then η(y, x) ≥ 1
2

+ min
{

1√
2πe
, 1√

4πσ2e
|f(y)− f(x)|

}
.

Proof. Notice that η(y, x) = P(Z + |f(y) − f(x)|/
√

2σ2 ≥ 0) where Z is a standard

normal. The result follows by lower bounding the density of Z by 1√
2πe

1{|Z| ≤ 1} and

integrating where 1{·} is equal to one when its arguments are true and zero otherwise.

We say w is a 2-sided gamma distributed random variable if its density is given by
βα

2Γ(α)
|x|α−1e−β|x| for x ∈ [−∞,∞] and α, β > 0. Note that this distribution is unimodal

only for α ∈ (0, 1] and is equal to a Laplace distribution for α = 1. This distribution has

variance σ2 = α/β2.

Lemma C.2. Let w be a 2-sided gamma distributed random variable with parameters

α ∈ (0, 1] and β > 0. Then η(y, x) ≥ 1
2

+ min
{

1
4α2Γ(α)2

(
α
e

)2α
, (β/2e)2α

4α2Γ(α)2 |f(y)− f(x)|2α
}

.
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Proof. Let Ef (y) = f(y) + w and Ef (x) = f(x) + w′ where w and w′ are i.i.d. 2-sided

gamma distributed random variables. If we lower bound e−β|x| with e−α1{|x| ≤ α/β}

and integrate we find that P(−t/2 ≤ w ≤ 0) ≥ min
{

1
2αΓ(α)

(
α
e

)α
, (β/e)α

2αΓ(α)
(t/2)α

}
. And by

the symmetry and independence of w and w′ we have

P(−t ≤ w − w′) ≥ 1

2
+ P(−t/2 ≤ w ≤ 0)P(−t/2 ≤ w ≤ 0).

While the bound in the lemma immediately above can be shown to be loose, these

two lemmas are sufficient to show that the entire range of κ ∈ (1, 2] is possible.
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