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Abstract

Brown’s entry to the Cross-Language Speech Retrieval (CL-SR) track at the 2007
Cross Language Evaluation Forum (CLEF)! was based on the language model (LM)
paradigm for retrieval [17]. For English, our system introduced two minor enhance-
ments to the basic unigram: we extended Dirichlet smoothing (popular with unigram
modeling) to bigrams, and we smoothed the collection LM to compensate for the small
collection size. For Czech, time-constraints restricted us to using a basic unigram
model, though we did apply Czech-specific stemming. While our English system per-
formed well in the evaluation and showed the utility of our enhancements, several
aspects of it were rushed and need to be addressed in future work. Our Czech sys-
tem did not perform competitively but did provide us with a useful first experience in
non-English retrieval.

1 Introduction

Our participation in the Cross-Language Speech Retrieval (CL-SR) track at the 2007 Cross Lan-
guage Evaluation Forum (CLEF) represents our group’s first effort in developing and applying an
information retrieval (IR) system for human language. Our over-arching interest in this area is
focused on two directions for future investigation [9]: (1) deeper syntactic/semantic analysis of
queries and documents and (2) giving greater attention to speech-specific phenomena present in
spontaneous speech. The system we developed for this year’s CL-SR evaluation does not present
new research in these areas but was intended to provide us with initial experience in retrieving
conversational speech data and developing a competitive baseline model supporting future work.

Our retrieval system is based on the language model (LM) paradigm for retrieval in which
a document’s relevance is estimated as the probability of observing the query string as a ran-
dom sample from the document’s underlying LM [17, 25]. The unigram LM approach has been
shown to have a strong theoretical connection to TF-IDF [26] and perform comparably [3] to
other state-of-the-art approaches like vector similarity with pivot length normalization [22, 21]
and the “probabilistic” approach [19, 24]. In addition to re-implementing the basic Dirichlet-
smoothed unigram model, we also added two simple extensions. First, given the bag-of-words
independence assumption underlying unigram and most other approaches to retrieval, modeling
some notion of how words relate to one another seems like a useful step toward better modeling
queries and documents. Previous work has shown that use of phrases yields around 10% relative
improvement [1]. In the LM paradigm, use of phrases has been largely restricted to word pairs
modeled via a unigram-bigram mixture model [23]. Whereas previous work has linearly mixed
bigram and unigram models using a fixed mixture weight over all documents, subsequent work has
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shown Dirichlet smoothing to outperform linear interpolation for unigram modeling by varying the
mixture weight per-document according to document length. We extended document-collection
unigram Dirichlet smoothing to include bigram mixing as well, as described in §3.

The second extension we added was collection smoothing. In the LM paradigm, the document
LM is initially estimated by maximum likelihood, meaning any query word not observed in the
document is assigned zero probability. This is problematic because there are likely many words
related to the document yet which do not appear in it due to its brevity (i.e. chance). Assigning
zero probability to a single term would zero-out the probability assigned to the entire query string,
which is likely to be a poor estimate of document relevance. Consequently, it is common practice
to smooth a document’s LM with the collection LM (as a prior) to make the LM more robust.
However, the collection LM is also estimated by maximum likelihood and so may also suffer from
sparse data problems in the case of small collections. To investigate whether collection smoothing
could help, we tried mixing the collection with larger corpora, and results show that collection
smoothing substantially improved performance (§4).

Retrieval experiments were conducted in English and Czech (i.e. English queries/documents
and Czech queries/documents), but due to time constraints we gave much less attention to Czech,
evaluating only a unigram model without the above extensions. While our English system per-
formed well in the evaluation, our Czech system was not competitive. §2 describes the data used
in our experiments. In §3, system methodology is presented. Results are presented in §4, with
additional details given in the appendix (§7). Concluding remarks appear in §5.

2 Data

This section introduces the English and Czech data used in our retrieval experiments. Our de-
scription is brief since this data has been previously described in detail [16, 15]. In addition to
providing some factoid information about the collection, we also offer a few off-the-cuff reflections
on our impressions of the broader significance of this task/dataset for IR.

The collection consists of interviews conducted by the Survivors of the Shoah Visual History
Foundation (VHF) to record the memories of Holocaust survivors, rescuers, and witnesses. In
terms of information management, cultural heritage archives like this one can be expected to be-
come more frequent as recording and storage technology continues to become ever more widely
accessible. Such archives are also just the tip of the iceberg in terms of the sorts of spontaneous
speech being increasingly archived: debates, meetings, classroom discussion, talk shows, telephone
conversations, online chat, etc.. In regard to information retrieval, previous work has considered
broadcast news in detail [5] while spontaneous speech has garnered far less attention. Sponta-
neous speech also displays strikingly different phenomena than found in broadcast news or text
with potentially interesting consequences for retrieval methodology. Word error rate is higher,
topic segmentation is more problematic (potentially involving speaker identification and conver-
sation untangling [2]), and indexing and use of retrieved content is complicated by back-channels,
disfluency (filled pauses, explicit editing terms, self interruptions and corrections, etc.), and dra-
matically different sentential structure as speakers trail off, interrupt one another, and compose
their utterances on-the-fly.

Compared to modern-sized retrieval collections, the VHF data set is quite small: the English
collection consists of just 8,104 manually segmented interview passages to rank. However, whereas
the size of the early text collections like Cranfield was limited by cost and human effort, a cultural
heritage archive like this one may in fact be naturally small: in the case of VHF, there are only
a limited number of people alive today with first-hand experience of the Holocaust. As for other
forms of archived spontaneous speech, a particular individual may be interviewed only so many
times, a course or talk shows series eventually terminates, etc. As such, we may increasingly see
a practical need for effective search techniques on smaller collections such as this one; optimal
methods and parameters on a terabyte collection may not yield the best performance here. Of
course, one may have a broad information need and not care about which archived talkshow
contained the relevant information. With regard to this scenario, the VHF collection does for



spontaneous speech what early collections did for text, and likely larger collections of spontaneous
speech are on the horizon.

Topics used were written in usual TREC style with three fields of increasing length: title,
description, and narrative. These topics were based on actual information requests received by
VHF from interested parties. Manual transcriptions of the interviews were not available in En-
glish or Czech, unfortunately, making it difficult to evaluate the impact of recognition errors on
retrieval accuracy. Several variant one-best ASR transcripts were available for comparison. Both
interviewer and interviewee were recorded on the same microphone/channel; while dialogue from
the interviewee certainly dominates the interview, interviewer questions and comments are seen
mixed into the same transcript.

2.1 English

Each segment contained a two to three sentence manual summary as well as a set of manually
assigned keywords following a careful ontology developed by VHF. It is worth noting that these
“manual” segments are far shorter than text and spoken documents commonly retrieved today;
they are perhaps most akin to scientific paper abstracts in terms of previous retrieval experiments.
Each interviewee also filled out a pre-interview questionnaire with some additional information
that could also be used in the “manual” retrieval condition. The ontology developed by VHF
could also be exploited for synonym expansion, etc. To date, the interview data and ontology
have rarely been used [15]. For the “automatic” retrieval condition, two sets of automatically
recognized keywords were available in addition to the ASR transcripts [15].

2.2 Czech

Czech interviews were not manually segmented as with English. Instead, track organizers supplied
a set of scripts allowing the interviews to be automatically segmented for a fixed duration and
overlap size with neighboring segments. They also supplied one such “quickstart” segmentation
generated by their scripts, which had 11,377 segments of three-minute passages in which the
first and last minute overlapped the neighboring segments. The idea of the scripts was to allow
participants to explore the effects of various segmentations on retrieval accuracy. Unfortunately,
problems with the scripts were found during the evaluation and led the organizers to suggest teams
use the quickstart segments and avoid use of the scripts.

No manual summary or keywords available were available for the interviews. There also were
no automatically recognized keywords; those used in the 2006 evaluation were removed for 2007
due to an unspecified problem with them.

3 Method

As described in the introduction, our retrieval system was based on the language model (LM)
paradigm for retrieval [17]. In this paradigm, one assumes a unique language model (LM) underlies
each observed document and estimates document relevance by the probability of observing the
query as a random sample generated by the document’s underlying LM. Usually one assumes bag-
of-words independence similar to that employed with the probabilistic and vector-space models:
the probability of a string of words is computed as the product of the individual word probabilities
(i.e. a unigram model).

P@ID) = [] P(w|D) (1)

wEQR

One challenge of the LM paradigm is estimating the parameters of the underlying LMs given
the brevity of the observed documents; if one simply takes the maximum likelihood estimate
(MLE), a single query term unobserved in the document would zero-out the entire probability
of observing the query given the document, making the entire framework exceedingly fragile.
Instead one commonly employs smoothing to discount the probability mass assigned to observed



terms and reserve some probability mass for all unseen terms. Previous work has shown Dirichlet
smoothing of the form below to be most effective in practice [26]. This form of smoothing adds a
hyper-parameter number of pseudo-counts distributed fractionally according to the prior collection
model. N is the total number of words in the document.

Cp(w) + pP(w|C)
N+pu

P(w|D) = (2)
The LM approach has been shown to have a strong theoretical connection to TF-IDF [26] and
perform comparably to vector similarity and probabilistic approaches in practice [3]. A potential
advantage of the LM approach lies in the pre-existing theoretical foundation and set of proven
estimation techniques developed by earlier work in speech recognition.

A well-known improvement to the basic unigram LM is to model word pairs in a unigram-
bigram mixture model [23]. While previous work linearly mixed bigram and unigram models
using a fixed mixture weight over all documents, this misses the key idea of Dirichlet smoothing
that longer documents provide more evidence for MLE and so should require less smoothing.
For this reason, we extended document-collection unigram Dirichlet smoothing equation above to
include bigram mixing. The Dirichlet smoothed bigram is given by:

Cp(wi—1,w;) + p1 P(w;|w;—1, C)
Cp(wi—1) +

P(wilw;-1,D) = (3)

and can be mixed with the unigram by adding an additional hyper-parameter, .

Plwrlwi_1, D) = Cp(wi—1,w;) + p1 P(wi|wi—1,C) + p2 P(w|D) (@)
B Cp(wi-1) + p1 + pi2

This leaves three hyper-parameters for tuning: u, p1, and po.

Our second extension to the basic LM approach was to incorporate collection smoothing. While
it is common practice to smooth a document’s LM with the collection LM (as a prior) to make
the LM more robust, as shown above, the collection LM is also estimated by maximum likelihood
and so may also suffer from sparse data problems in the case of small collections. To investigate
whether collections smoothing could help, we tried linearly mixing the collection with two larger
text corpora: 40,000 sentences from the Wall Street Journal as found in the Penn Treebank [11],
and 450,000 sentences (with automatically induced sentence boundaries) taken from the North
American News Corpus (NANC) [6]. This introduced three additional hyper-parameters specifying
integer mixing ratios between the collection, WSJ, and NANC corpora.

The importance of sentence boundaries is that bigram statistics were not collected across them,
which also differs from previous work. Phrase-based statistics can be expected to perform best
when not collected or applied across sentential boundaries, especially as phrase length increases.
This issue has largely been ignored in previous work since sentences tend to be rather long in text
(maybe around 30 words in a typical newspaper), and so error introduced for short phrase statistics
by approximating the entire document as a single sentence is somewhat limited. Our attention to
sentence boundaries stems primarily from the fact that we are eventually interested in comparing
the efficacy of bigrams with syntactic bi-lexical dependencies induced from sentences, effectively
revisiting previous work [4, 10, 14] with a more accurate parser [12]. It is also worth noting that
the manual summary sentences were quite short on average, suggesting their boundaries are more
important to recognize in order to collect accurate phrasal statistics. Manual summaries were
automatically segmented into sentences using Ratnaparkhi’s tool [18]. Keywords, which could be
phrasal, were already delimited in the distributed collection, and we treated each keyword phrase
as its own sentence. Noting multiple spaces in the ASR transcripts appeared to correlate with
sentential boundaries, we inferred these spaces corresponded to recognizer segments and used them
as sentence boundaries (there is no evidence for our inference in the track’s documentation). The
resulting “sentences” are much longer than typical sentence-like units (SUs) found in conversational
speech [8] and probably have reasonable precision but poor recall, though it is not possible to



measure this without reference transcripts. As such, we used them as an expedient and left
application of more accurate SU-boundary detection for future work [7].

We also applied pseudo-relevance feedback and found it significantly improved results. Exper-
imental parameters included the number of documents to use for feedback and a parameter for
weighting the original query terms relative to the feedback terms (the parameter was expressed
as a multiplier on the query term counts). Feedback was fixed at one iteration with the top 50 n-
grams harvested from each feedback document (for the unigram-bigram mixture model, unigrams
and bigrams competed jointly for the 50 feedback “slots” allotted per document). This feedback
scheme was developed in short order and certainly leaves room for improvement.

As indicated in the introduction, time constraints also caused us to give far less attention to
Czech than to English. We did not model bigrams or perform collection smoothing, and we used
the off-the-shelf Indri system as our model (with one minor change to its parsing code to not
split tokens on accented characters). Indri actually implements a multi-Bernoulli model rather
than a true unigram model, but results are roughly comparable [13]. Anecdotally comparing our
unigram to Indri for the English manual data on development set topics (§4), we saw a similar trend
previously reported in which the unigram model scored about a half point higher MAP [13]. In
terms of stemming Czech, we evaluated use of off-the-shelf “light” and “aggressive” stemmers [20].
We also evaluated use of Indri’s pseudo-relevance feedback mechanism.1

4 Evaluation

This section describes our evaluation on English and Czech, including evaluation framework,
parameter settings, and results.

4.1 English

The same 63 training topics and 33 evaluation topics used in 2006 were used again in 2007. Rele-
vance assessments for the test set were distributed to participants following the 2006 evaluation, so
some participants may have run error analysis experiments on the test data then without realizing
it would be reused this year. Since relevant assessments for all queries were available, 2007 track
organizers clearly indicated which queries comprised the test set to help ensure no one accidentally
tuned on it this year. In order to preserve the test set for future use, we have performed no error
analysis of our results on it. While working on the development set, we found a small problem
with the distributed relevance assessments (across all topics) that some documents marked as
relevant were not actually in the distributed collection, but these cases were automatically filtered
out without compromising the assessments.

For the “manual” case, we used the manual summaries and keywords; we made no use pre-
interview questionnaire information, or the VHF ontology. For “automatic” retrieval, we used the
ASR2006B transcripts and both sets of automatic keywords. As with the manual case, we found
use of the automatic keywords to improve retrieval, although we did not evaluate use of one set of
keywords versus the other. We also did not evaluate other versions of the automatic transcripts,
and this may be worth revisiting since some teams have reported better retrieval accuracy with
the 2004 transcripts. Following previous work [26], u was fixed at 2000 for all runs, manual and
automatic. In hindsight, it would have been interesting to explore alternative u settings since the
manual and automatic “documents” used here are rather different from one another, and both
differ significantly from previous retrieval experiments which varied p on text collections. For both
manual and automatic runs, best performance was almost always seen with u; set to 1, and so this
parameter was also largely fixed. Additional detail on parameter settings used and corresponding
results on the development set can be found in the appendix (§7).

Results in Table 1 show performance of our five submitted runs on development and test sets;
queries used were: title-only (T), title and description (TD), and title, description, and narrative
(TDN). Representative strong results achieved the CL-SR tracks are also shown, though it should
be noted that our results on the development set correspond to optimal tuning on those queries



Collection Queries | Dev MAP CL-SR’05 | Test MAP CL-SR’06 CL-SR’07
Manual TDN .3829 - .2870 .2902 ?

TD .3443 3129 .2366 .2710 ?

T .3161 - .2348 .2489 ?
Auto TDN 1623 2176 .0910 .0768 ?

TD 1397 .1653 .0785 .0754 .0855

Table 1: Mean-average precision (MAP) retrieval accuracy of English submitted runs. CL-SR
columns indicate representative strongs result achieved in that year’s track on the same query
set [15]. Statistical significance analysis between participant submissions is not possible here due
to unavailability of participants’ document rankings; refer to the CL-SR’07 track report for such
analysis.

whereas the CL-SR’05 numbers do not. Retrieval accuracy was measured using mean-average
precision (MAP) as reported by the trec_eval tool version 8.12.

After submitting our official runs, we discovered a system bug which caused some query topic
fields to be prematurely truncated. The bug did not affect the development set but did affect the
narrative field of three test queries. After fixing the bug, we re-ran our two submissions affected by
it (one manual, one automatic). We then made our only use of the test set relevance assessments
to evaluate the resulting retrieval accuracy with the bug fix. The difference was substantial, and
results given in the body of Table 1 show system performance with the bug fix. Without the fix,
Manual-TDN on the test set was .2577 and Auto-TDN was .0831.

Regarding the impact of our enhancements to the basic unigram (bigram mixing and collec-
tions smoothing), we refer the reader to results on the development set shown in the appendix
(§7). To broadly summarize, while the best unigram result was often not too far below the best
bigram result, bigram results were more robust across parameter settings. Bigram statistics also
appeared to have greater impact with pseudo-relevance feedback than without. As for collection
smoothing, it clearly provided a substantial improvement. WSJ smoothing always helped, and
NANC smoothing almost always helped, though less so in the case of pseudo-relevance feedback.

Overall, we are fairly pleased with our system’s relative performance in the evaluation, but
room is certainly left for improvement.

4.2 Czech

Czech retrieval accuracy was measured using the mGAP metric and tool, which mapped retrieved
segments to replay times [15]. We used the distributed quickstart segments and made no use of the
segmentation scripts. 29 topics used for evaluation in 2006 comprised our development set. The
evaluation was blind, with a test set of 42 topics. Results are given in Table 2. Preliminary results
for 2007 indicate our performance was relatively poor. While this is of course disappointing, it
is not too surprising given our focus on developing a strong English baseline system. As for last
year’s scores, it is difficult to compare this year’s results to them because they apparently suffered
from a bug in the 2006 distributed quickstart segments. For the same topics, the absolute value
of all teams’ (preliminary) results this year far surpassed 2006 scores.

5 Conclusion

Brown’s participation in the Cross-Language Speech Retrieval (CL-SR) track at the 2007 Cross
Language Evaluation Forum (CLEF) represented our group’s first effort in developing and applying
an information retrieval (IR) system for human language. Our goal was to develop a strong baseline
system which we could build on and compare to in future research. Our English system applied
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Stemmer Feedback | Dev mGAP Test mGAP
none no .0134 -
aggressive .0140 -

light .0144 -

none yes .0135 .0052
aggressive .0146 .0106
light .0161 .0114

Table 2: Mean Generalized Average Precision (mGAP) retrieval accuracy on Czech for the develop-
ment and test sets. All runs were on the quickstart ASR transcripts using TD queries. Runs using
feedback comprised our official submissions. No statistical significance testing was performed.
Preliminary results for 2007 indicate the top-performing TD run achieved .0228 mGAP.

a novel form of Dirichlet bigram smoothing and showed the importance of collection smoothing
with a small collection. This system performed well, though we expect there is still room for
improvement through more tuning of existing methodology. Our Czech system applied a simple
unigram model under two forms of stemming and provided us with initial experience in non-English
retrieval.
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7 Appendix

This section provides some additional detail on English retrieval experiments, including parameter
settings and results on the development set.

7.1 Manual without pseudo-relevance feedback

MAP retrieval accuracy on development corpus for around 15 top manual runs without pseudo-
relevance feedback. ps unigram weight was either 500 or 100000 (the latter effectively nullifying
bigram statistics). Use of manual key words in addition to manual summaries was varied (use or do
not use in document indexing, user do not use in collection statistics). Collection smoothing was
varied between: none, WSJ, and WSJ+NANC (simple concatenation). Use of manual keywords
is seen to have a large impact with document indexing, particularly with short queries, and small
impact with collection statistics. Collection smoothing is also seen to have a large effect.

0.3369 TDN.IndexKeywords.CollectionWithKeywords.SmoothWSJ+NANC.500
0.3312 TDN.IndexKeywords.CollectionNoKeywords.SmoothWSJ.500

0.3269 TDN.IndexKeywords.CollectionNoKeywords.SmoothWSJ+NANC.500
0.3260 TDN.IndexKeywords.CollectionWithKeywords.SmoothWSJ.500

0.3236 TDN.IndexKeywords.CollectionWithKeywords.SmoothWSJ+NANC. 100000
0.3218 TDN.IndexKeywords.CollectionNoKeywords.SmoothWSJ.100000
0.3149 TDN.IndexKeywords.CollectionWithKeywords.SmoothWSJ.100000
0.3116 TDN.IndexKeywords.CollectionNoKeywords.SmoothWSJ+NANC.100000
0.2967 TDN.IndexKeywords.CollectionNoKeywords.500

0.2914 TDN.IndexKeywords.CollectionWithKeywords.500

0.2810 TDN.IndexKeywords.CollectionNoKeywords.100000

0.2696 TDN.IndexKeywords.CollectionWithKeywords.100000

0.2563 TDN.NoIndexKeywords.CollectionNoKeywords.SmoothWSJ+NANC.500
0.2447 TDN.NoIndexKeywords.CollectionNoKeywords.SmoothWSJ.500

0.2424 TDN.NoIndexKeywords.CollectionNoKeywords.SmoothWSJ+NANC. 100000
0.2371 TDN.NoIndexKeywords.CollectionNoKeywords.SmoothWSJ.100000
0.2239 TDN.NoIndexKeywords.CollectionNoKeywords.500

0.2113 TDN.NoIndexKeywords.CollectionNoKeywords.100000

0.3091 TD.IndexKeywords.CollectionWithKeywords.SmoothWSJ+NANC.500
0.3058 TD.IndexKeywords.CollectionNoKeywords.SmoothWSJ.500

0.3033 TD.IndexKeywords.CollectionWithKeywords.SmoothWSJ.500

0.3021 TD.IndexKeywords.CollectionNoKeywords.SmoothWSJ.100000

0.3016 TD.IndexKeywords.CollectionNoKeywords.SmoothWSJ+NANC.500
0.2992 TD.IndexKeywords.CollectionWithKeywords.SmoothWSJ+NANC.100000
0.2965 TD.IndexKeywords.CollectionWithKeywords.SmoothWSJ.100000
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.SmoothWSJ.100000
.SmoothWSJ+NANC. 500

100000
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7.2 Manual with pseudo-relevance feedback

MAP retrieval accuracy for top 10 parameter settings on development corpus for each query
condition given manual summary and keywords with pseudo-relevance feedback. Fields are: query
condition, po unigram weight, number of documents to use for feedback, and mixing weight of
original query relative to feedback set. p; bigram weight was fixed at 1. The relative rarity of
Lo unigram weight parameter setting of 100000 suggests the bigram model provides more robust,

strong performance for medium and long queries.
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.2000.10.4
.1500.15.8
.1000.10.8
.750.10.8
.2000.15.16
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.2000.20.16
.1500.20.16
.1500.15.16
.100000.20.16
.2000.15.16
.1000.20.16
.2000.20.8
.100000.20.8
.100000.15.16
.100000.20.4

7.3 Automatic without pseudo-relevance feedback

MAP retrieval accuracy for top 10 parameter settings on development corpus for each query
condition given ASRO6B recognizer output plus automatic keywords and no pseudo-relevance
feedback. NANC-smoothing consistently appeared in the two shorter query conditions while rarely
appearing for verbose queries. Fields are: query condition, p; bigram weight, puo unigram weight,
collection weight, WSJ weight, and NANC weight.
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7.4 Automatic with pseudo-relevance feedback

MAP retrieval accuracy for top 10 parameter settings on development corpus for each query con-
dition given ASRO6B recognizer output plus automatic keywords using pseudo-relevance feedback.
WSJ-smoothing was consistently useful while NANC smoothing was not. Fields are: query condi-
tion, po unigram weight, number of documents to use for feedback, mixing weight of original query
relative to feedback set, collection weight, WSJ weight, and NANC weight. p;1 bigram weight was
fixed at 1.
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