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1. Introduction 
As more medical images are collected on a routine basis, study of images of multiple 

patients or a population becomes feasible. The study of images of a population leads to 
statistics of the population, which manifests itself in a probabilistic atlas. Probabilistic 
atlases have been very useful to bring prior information to medical image segmentation and 
registration especially for brain [1, 17]. Segmentation algorithms use atlas information as 
prior probability in Bayesian framework or as a starting guess [2]. Atlas information guides 
segmentation algorithms where there is little grayscale information available. For example 
atlas information may be able to differentiate between body wall and liver where the 
grayscale information in a non-contrast CT is almost identical. Registration algorithms can 
benefit from the atlas information as a prior on a distribution of a displacement field [3]. 
 
Typically researchers first build their atlas by picking a target image and mapping other 
training images onto the target image. Statistical processing can be performed on the same 
spatial frame after all images are mapped onto the target image. Statistical processing can 
be as simple as a simple grayscale average or some measure of probability at every voxel 
location. Methods for registration (i.e., mapping) in terms of degrees of freedom (DOF) and 
geometric interpolant have to be the same for all registration tasks to ensure consistent 
construction and use of the atlas. The resulting atlas is inherently biased by the choice of 
the chosen target image. The atlas does not represent the population effectively if the target 
image is an extreme of the population. Applying the atlas to a test image involves 
registering the test image with the atlas. This task of bringing in the atlas information to the 
test image becomes difficult if the atlas is built on an extreme case of the population. In this 
case, the geometric distance the test image has to travel to reach the atlas has been 
increased compared to the case of reaching an atlas which resides at the mean geometry of 
the population. The bias towards a specific target may be reduced if the whole process of 
mapping other images onto the target is repeated with the target replaced with an average 
image from the previous registrations until the average image converges [4]. 
 
Studholme et al. proposed a method to jointly register all images simultaneously to a target 
space that is very close to the mean geometry [5]. In this approach, there is very little bias 
since the target image space is very close to the mean geometry. They register all images at 
the same time using a cost function that encourages mean displacement field from the target 
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onto other images to be an identity trnasform and minimizes the joint entropy of all images. 
All displacement fields to other images have to be known to compute the mean 
displacement field. Thus their approach, which requires registration of all images 
simultaneously, increases the dimensionality of the optimization space tremendously.  
 
Joshi et al. proposed an atlas construction independent of choosing a specific target image 
[6]. First an arbitrary image is chosen as a target and the rest of the training images are 
mapped onto the target. Once the mappings are finished an atlas is created on the target 
image space. After the atlas is constructed on the target image space, the atlas is warped 
onto a space where there is less bias towards the rest of the images. The warping involved 
is derived from the mean displacement field. In theory, they can choose any target image 
and arrive at the same atlas space since the atlas calculated on a specific target image space 
is always going to be warped onto another space where there is less bias. Their method has 
certain limitations, which will be discussed in the discussion section (i.e., section 5). 
 
Marsland et al. proposed to construct an atlas on a target image that is close to the mean 
geometry of the training images [7]. They choose the target image such that the sum of 
distances from the target image to the rest of the images is minimized. Our method of target 
selection in this paper shares a similar approach. Improvements in our approach will be 
shown in the discussion section. 
 
The above is a brief overview of existing methods of atlas construction. Details of the 
existing methods and comparison with our approach will be given in the discussion section. 
We present an alternative approach to unbiased atlas construction methods robust to effects 
of imperfect registrations. Here we present a method to choose a target image that is the 
closest to the mean geometry of the population. Our approach is based on forming a 
distance matrix based on bending energies of all pair-wise registrations and performing 
multidimensional scaling (MDS) on the distance matrix to find the best target. The paper is 
organized as the following. Section 2 includes an overview of the method of target selection, 
section 3 includes a validation of the method on simulated 2D cases, section 4 contains an 
application of the method to 3D scans, and sections 5 and 6 contain the discussion and 
summary of our method respectively.  
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2. Methods 
Throughout the paper we choose the traditional approach of atlas construction, 

mapping other images onto a chosen target image and processing the mapped images on the 
target image space. Our contribution is how to choose a target image that is the least biased 
towards the rest of the training images. 
 

2.1. Pair-wise Registration 
Atlas construction involves many tasks of mapping one image onto another image. This 

task of mapping is called registration. Registration has been well reviewed in Hill’s paper 
[8]. Basically two main components need to be addressed for any registration algorithm: the 
similarity measure which measures degree of alignment and the geometric interpolant 
which defines the geometric transform between two images. We choose mutual information 
(MI) as the similarity measure and thin-plate splines (TPS) as the geometric interpolant [9]. 
Mutual information between image A and B is defined as below, 

2
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A simple histogram with fixed bin width is used to calculate the probability density 
function of grayscale value distributions. Thin-plate splines in 2D is defined as below, 
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In similar fashion to (2) displacement in y direction can be defined as well. Thin-plate 
splines in 3D is also defined in a similar fashion except that the basis function is replaced 
with |r|. The process of registration can be formulated as maximizing the chosen similarity 
measure (i.e., MI) under a hypothetical geometric transform,  
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A simplex optimizer is used to maximize the cost function [9]. 
 

2.2. Distance Measure 
The outcome of image registration is a geometric transform optimized to maximize a 

certain cost function (e.g., MI). The displacement field is computed by evaluating the 
geometric transform at every pixel location. The geometric distance, hereafter called 
distance, between two images is often measured by the roughness of the geometric 
transform that associates coordinate spaces of two images. We design the distance to have 
invariance to affine transforms. For example, if two images can be registered perfectly with 
an affine transform, then it implies that two images are essentially composed of the same 
objects but lying in different coordinate spaces, thus a value of zero is assigned to the 
distance. Roughness of the geometric transform can be measured by integrating squared 
value of n-th order partial derivatives of the transform. Second order derivatives are chosen 
to ensure invariance to affine transforms. We define the distance between two images as the 
sum of squared second order partial derivatives of the geometric transform, 
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The above formulation is for 2D and can be easily extended for 3D. This distance is often 
called the bending energy. An analytic formula for calculating bending energy is available 
for TPS [10]. For other geometric transforms, the bending energy may need to be calculated 
numerically. The bending energy of TPS is the smallest for all interpolating splines and has 
the property of removing affine differences in the transform. The defined distance in (4) is 
not a metric since the distance between two different images can be zero if two images are 
registered by an affine transform. A metric distance yields zero when the objects (e.g., 
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images) of comparison are identical. There are two more properties that a metric should 
satisfy: symmetry and triangular inequality. If the requirement of invariance to affine 
transform is dropped, others have proposed a distance satisfying all three properties of 
metric [11, 12]. In those cases the distance is defined as a Sobolev norm on the 
displacement field or the velocity field. One example of a metric distance is the viscous 
fluid model where the distance is invariant to only an identity transform [13]. We choose 
our distance to have invariance to affine transform at the expense of not satisfying the 
property of a metric. Devising a metric distance is left for future work. Symmetry of the 
distance is not guaranteed but the distance matrix can be rendered symmetric as will be 
discussed in section 2.6 and 3.6. 
 

2.3. Multidimensional Scaling (MDS) 
Multidimensional scaling (MDS) is a technique to produce relative positional locations 

in a space of dimension d from a collection of pair-wise distances [14, 15]. For example, 
given pair-wise Euclidean distances between North American cities, two dimensional MDS 
will yield a map of relative locations of those cities. The relative locations are accurate up 
to arbitrary rotate-translate transform. For N cities, N(N-1)/2 (i.e., N choose 2) pair-wise 
distances are needed. The distances used in MDS need not be metric, as non-metric 
distances (e.g., ranking) can be used. Thus, our distance defined in section 2.2 can be used 
in MDS settings. MDS has its roots in psychometrics but has been widely used in other 
fields as a tool to gain insight to data relationships. Given a set of distances in the distance 
matrix D, where an element of matrix dij refers to the distance between objects i and j, MDS 
outputs a set of coordinates in a user specified dimension that reproduces the distance 
matrix best in the least square fashion. The dimension of MDS output, called the 
embedding dimension, may be estimated by either thresholding the scree plot of 
eigenvalues of the distance matrix or by more direct approaches such as the manifold 
learning based on entropic graphs [20]. More details on the entropic graph based manifold 
learning will be covered in section 3.3. The output coordinates are in the standard 
Euclidean space of the user chosen dimension. The diagonal elements of the distance 
matrix are zero by definition. The number of dimensions is user controllable and should be 
determined to be the smallest number that allows meaningful description of all the pair-
wise distances.  
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2.4. Target selection based on MDS 
An ideal target image is the one that resides at the mean geometry of the population in 

atlas construction. The sum of distances to other images from the atlas space (i.e., target 
space) is minimized for the ideal target image. For a target image space that is far away 
from the mean geometry, the sum of distances to other images will be greater. Often there 
may not be an image at the mean geometry; thus the best approach in picking a target image, 
which yields the minimum distance to other images, is to choose the image that is the 
closest to the mean geometry. The described approach works only if we know all the 
relative locations of images of the population so that the location for the mean geometry 
can be calculated. MDS identifies all the relative locations of the images from the distance 
matrix. The elements of the distance matrix are determined by the distances of pair-wise 
registrations. In summary, we select the target image which is the closest to the mean 
geometry with the aid of information of relative locations provided by MDS. MDS in turn 
requires a distance matrix whose elements are calculated from pair-wise registrations. The 
following is the procedure for N images, 
1. Perform N(N-1)/2 pair-wise registrations 

2. Calculate bending energies from the registrations 

3. Form distance matrix D 

4. Determine embedding dimension of MDS 

5. Apply MDS and find relative locations of images 

6. Calculate mean location of the images 

7. Choose target image that is the closest to the mean. 

Once the best (i.e., the closest to the mean geometry) target is selected, all other images can 
be mapped onto the chosen target with ease, this step is trivial since all pair-wise 
registrations have been computed previously to fill the distance matrix. 
 

2.5. Robustness to Mis-registration 
The result of pair-wise registration is characterized by the geometric transform or the 

displacement field between two images. In the MDS framework, we compress the whole 
displacement field, whose DOF are on the order of the number of pixels, to a single scalar 
value noted as distance. The effects of imperfect registrations will be less evident on the 
single scalar value than the whole displacement field. But if we stop here we lose the 
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sensitivity of the displacement field to shape change by compressing it to a single scalar. In 
addition, we make multiple measurements of the single scalar value (i.e., distance) between 
various configurations to improve the sensitivity to shape change. For example, for N scans, 
instead of computing N-1 displacement fields and distances with respect to a chosen target 
image, we compute displacement fields and distances with respect to all possible pairs of 
target and source images, i.e. N choose 2 = N(N-1)/2 images. Multiple distance 
measurements correspond to pair-wise distances in MDS framework. Robustness of MDS 
framework regarding mis-registrations will be shown for simulated 2D images in section 
3.4. 
 

2.6. Distance Matrix 
A distance matrix is required for MDS as an input. The distance matrix can be either 

symmetric or asymmetric. For a symmetric distance matrix (i.e., dij = dji), distance between 
object i and j is order independent. In atlas construction, it implies that the distance between 
image i as the reference image and image j as the floating image is the same as the distance 
between images i and j switching the role of the reference and the floating image. In 
practice, switching the order of images in the registration may yield a different geometric 
transform thus it may yield a different distance value with TPS based registrations, but the 
discrepancy in distance values is quite small provided that the DOF of TPS is high enough. 
Even for an asymmetric distance matrix (i.e., dij ≠ dji), the distance matrix can be made 
symmetric by using the average value of dij and dji. For computational savings, we assume a 
symmetric distance matrix thus only the upper half of the distance matrix is computed and 
the lower half of the matrix is replicated. Employing an asymmetric distance matrix will 
require twice the number of pair-wise registrations (i.e., N(N-1)) since all elements except 
for the diagonal elements need to be calculated. While the computation burden increases for 
an asymmetric distance matrix, it will be more tolerant to errors in the distance matrix as in 
the case of low DOF registration where there is a possibility of substantial discrepancy 
between dij and dji. Effects of using an asymmetric distance matrix will be discussed for 2D 
simulated cases in section 3.6. 
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3. 2D Synthetic Experiments 
Synthetic experiments are carried out in 2D to show the feasibility of our approach of 

target selection. 
 
3.1. Experiment Setup 
A synthetic MRI slice from BRAINWEB simulation is obtained [16]. The slice has 

256x256 dimension and 1x1 mm2 resolution. It is deformed in a known way using 6x6 = 36 
knots of B-splines resulting in 50 deformed images. Deformations are applied by randomly 
choosing a knot and displacing the knot by the amount determined by zero mean Gaussian 
of variance 100 pixels in both x and y direction. After the image’s geometry is deformed, a 
zero mean Gaussian noise of variance 16 is added to the image’s grayscale values. One 
sample deformation is described in Figure 1. Six images of the known 50 deformed images 
are shown in Figure 2. The atlas is constructed with these 50 deformed images. Geometric 
distances from the original undeformed image (i.e., BRAINWEB image) to all 50 images 
are calculated given all the known synthetic deformations and are shown in Table 1. We 
verified that the mean displacement field from the original image to other deformed images 
is very close to an identity transform (i.e., root mean squared error with respect to the 
identity transform is less than 0.1 pixel). The best possible target image is the closest image 
to the original image since the original image is absent from the 50 training images. Ground 
truth on what is the best target image can be established based on the distances from the 
original image. In addition, the quality of all potential target images can be rank ordered 
according to the distances from the original image. 
 

3.2. Results 
Pair-wise registrations of the 50 images are performed using 25 uniformly distributed 

control points as described in Figure 3. There are 1225 (i.e., 50 choose 2) pair-wise 
registrations required to fill up the symmetric 50x50 distance matrix; only the upper half of 
the distance matrix is filled and the lower half is duplicated. After the distance matrix is 
computed, MDS is performed with 4 dimensions. The dimension is determined by the 
entropic graph based manifold learning. More details on how to choose the dimension 
appear in the next section. The output of the MDS is 50 coordinates in 4 dimensions 
representing the 50 images in the Euclidean space. Two dimensional projections (out of 
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total of 4) of these coordinates are shown in Figure 4. The location of the mean geometry of 
the 50 images is calculated by taking an arithmetic mean of 50 coordinates, which is set to 
be the origin (i.e., (0,0,0,0)). The image whose coordinate is the closest to the mean 
geometry is chosen to be the best target image. Distances from the mean geometry (i.e., 
origin) to the images (i.e., MDS coordinates) are sorted in Table 2 starting from the closest 
image to the furthest image. The best target image from the MDS output (i.e., the first 
image in Table 2) is image 2, which coincides with the best target from the ground truth 
(i.e., the first image in Table 1). Thus our selected target is the closest image from the mean 
geometry. Moreover comparison of the ordering of images in Table 1 and 2 indicates that 
MDS results in Table 2 are very similar to the ground truth in Table 1. We are able to 
replicate the order of images reasonably well from MDS results, not just the closest image 
to the mean geometry. In fact, the root mean squared error, defined as the root mean 
squared value of the difference in the rank order of images between Table 1 and 2, is 
computed to be 0.3980. Hereafter we note the error as rank order error. 

 
3.3. Determining the embedding dimension for MDS 
An essential step in implementing MDS is the determination of an appropriate 

embedding dimension d for positioning the N points described by the pairwise distance 
matrix. When the set of points is known to lie on a hyperplane of known dimension, the 
embedding dimension should be selected as equal to this dimension. For example in 
geographic location problems, e.g., in [18], the choice of embedding dimension d = 2 is 
obvious. In other cases the points may not lie in any natural or physical domain and the 
points can only be assumed to vary over some space having dimension less than N. A 
standard way of estimating this dimension is to perform a sequence of MDS projections, 
successively increasing the dimension at each iterate, and detecting a knee in the set of 
fitting errors, defined as the Frobenius norm of the difference between the distance matrix 
of the projected sample and the original distance matrix. This is equivalent to choosing the 
embedding dimension by thresholding the scree plot of ordered eigenvalues of the centered 
distance matrix. A major issue in scree plot thresholding methods is the suitable choice of 
threshold. 

 
Recently a class of statistically sound dimension estimation methods based on manifold 

learning have been proposed that are more reliable than ad hoc scree plot thresholding. 
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These methods directly estimate the embedding dimension from the pairwise distance 
matrix without the need for thresholding. The entropic graph method of Costa and Hero 
[20], which we adopt in this paper, extracts a statsitically consistent estimate of dimension 
by determining the rate of growth of a sequence of k-nearest-neighbor graphs constructed 
from the distance matrix. The method of [20] uses bootstrap resampling to estimate a 
histogram of probable dimensions that are consistent with the data and the dimension 
estimate can then be computed as the median, mean or mode of the histogram. For the atlas 
construction problem of interest the dimension is extracted from the distance matrix 
constructed from bending energies resulting in a dimension histogram shown in Figure 5 
for the experiment described in Section 3.1. The range of probable dimensions is d=3 to 
d=6, which is consistent with the dip in eigenvalues around dimension observed in the scree 
plot shown in Figure 5. The mode of the dimension histogram is equal to 4, which can be 
interpreted as the most probable dimension, and this was adopted as the embedding 
dimension for the MDS results described in section 3.2. Note that, the dimension histogram 
reflects the probable dimension of the actual embedding space of the points, which may in 
fact be a non-linear subspace. On the other hand, MDS projects onto a linear subspace so 
dimension estimation using the histogram mode may slightly underestimate the dimension 
required by the MDS algorithm. However, when we redid the analysis with slightly 
increased MDS dimension (d=5) we did not observe significantly different results than 
shown in section 3.2. 

 
3.4. Robustness to Registration Error 
In this section, we provide 2D simulation results regarding robustness of our MDS 

based approach. As indicated in section 2.5, we compress the whole displacement field to a 
single scalar value. In result, registration error (i.e., error in the displacement field) has less 
effect on the measured scalar distance value. We have performed two simulated trials. In 
the first trial, we add registration noise to one of the many pair-wise registrations and 
observe the rank order error. The rank order errors are measured as we increase the 
magnitude of the added registration noise to one chosen pair-wise registration. Registration 
noise is implemented by randomly perturbing the optimized TPS control points location by 
a zero mean Gaussian of appropriate standard deviation. For the first trial, we can see that 
the rank order error does not change much as we increase the magnitude (i.e., standard 
deviation) of the added registration noise as in Figure 6. The affected pair-wise registration 
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is between image 9 and 45. The rank order error changes little even at the standard 
deviation of 50 pixels where the size of the image is 256x256 pixels. In fact the rank order 
error stays the same value after standard deviation of 10 pixels. It implies that one 
erroneous pair-wise registration out of 1250 possible registrations will not affect the rank 
order error. As long as only one pair-wise registration is affected, we have witnessed a 
similar trend, relative constant rank order error with respect to increase in registration noise. 
In the second trial, we fix the amount of registration noise added but increase the number of 
pair-wise registrations affected. Zero mean Gaussian noise of standard deviation 15 pixels 
is added to optimized locations of TPS control points for randomly chosen pair-wise 
registrations. The rank order errors are measured as the number of affected pair-wise 
registration increases. The rank order error stays relative same but eventually increases as 
more pair-wise registrations are affected as in Figure 6. The rank order error with 100 (out 
of 1250 possible registrations, effectively 8% of 1250) erroneous registrations is fairly 
close to the rank order error with no affected pair-wise registrations. It implies that our 
MDS based approach is robust enough withstand many erroneous registrations. The 
robustness of the MDS based approach is partly due to the fact that limited number of 
dimensions is used to represent the whole distance matrix, thus limiting the effect of noise 
to few dimensions. 

 
3.5. Alternatives to MDS 
There are simpler ways to choose a target image based on the distance matrix than our 

MDS based approach but they have degraded accuracy. One can choose the image whose 
average distance to all other images is minimum, which is finding the “L1 median” 
formulated in equation 5. In this case, column wise sum of the distance matrix is sorted 
ascendingly to find the best target. One can also choose the image whose maximal distance 
to all other images is minimum, which is finding the “Minimax median” formulated in 
equation 5 as well. In this case, column wise maximum value of the distance matrix is 
sorted ascendingly to find the best target.  

arg min ( , ); L1 median

arg min ( , ); Minimax median

( , );  distance between image j and k

best
j k j

best k jj

i d j k

i MAX d j k

d j k

≠

≠

=

=

∑
 

(5) 

Both approaches find a target based on a subset of available information, instead of using 
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the full distance matrix as in MDS based approach, either column wise sum or column wise 
maximum of the distance matrix is used. The rank order errors with respect to the ground 
truth in Table 1 for both approaches are 0.4436 and 1.4424 respectively, larger than the 
error of MDS based approach of 0.3980.  
 

3.6. Asymmetry in Distance Matrix 
The effects of employing an asymmetric distance matrix are explored in this section. 

Here the lower half of the distance matrix is computed from additional pair-wise 
registrations, not duplicated from the upper half of the distance matrix. Thus, N(N-1) pair-
wise registrations are computed in total resulting in 2 fold increase in computation burden. 
The root mean squared error of differences between lower elements and upper elements of 
the distance matrix is 0.0041 where individual values of the matrix elements range from 0 
to 0.056. The small difference between the upper and lower elements of the matrix shows 
that the distance matrix is fairly symmetric in the simulated case using 25 control points. As 
noted in section 2.5, using an asymmetric distance matrix increases the computation burden 
by a factor of 2, but is potentially more tolerant to inaccuracies in the distance matrix.  

 
3.7. Additional 2D Results 
One more set of synthetic experiments is performed. It has similar 50 deformed images 

from the BRAINWEB slice except that all B-spline knots are perturbed instead of one knot 
at a time. The image’s geometry is deformed by displacing all B-spline knots by a zero 
mean Gaussian of variance 9 in both x and y directions and a zero mean Gaussian noise of 
variance 16 is added to the image values. Similar to the first experiment, ground truth is 
established by calculating the distance to the original undeformed image. After finishing all 
pair-wise registrations, the entropic graph dimension estimation method yielded a 
dimension histogram with mode at d=5. Performing MDS with 5 dimensions, the error in 
the rank ordering of the images as compared to that of the ground truth was calculated to be 
0.9282. Using simpler target selection methods based on L1 median or Minimax median 
leads rank order errors to be 0.9411 and 2.2493 respectively. We have repeated our target 
selection method on a different set of 50 images and have found that our approach is still 
applicable. 
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4. 3D Experiments 
We have applied our target selection method to 10 3D non-contrast abdominal CT 

scans. All scans contain liver, kidneys, and spinal cord. A typical scan has dimension 
512x512x35 and resolution 0.7x0.7x5 mm3. Here we focus on constructing the atlas of the 
liver not all abdominal organs. 

 
4.1. Experiment Setup 
Pair-wise registrations of 10 scans are performed with 24 control points primarily 

located in the liver. The 24 control points are placed at approximately the same locations 
for all 10 scans to ensure consistency in the registration process. In addition, we mask out 
the scans so that the scans only contain liver and its immediate vicinity. This is to ensure 
that the pair-wise registrations are only driven by the liver and nothing else. An asymmetric 
distance matrix is used for MDS. Thus, there are 90 (= 10x9) pair-wise registrations to fill 
up the distance matrix. Once the distance matrix is computed, MDS is computed with 2 
dimensions chosen by the entropic graph dimensionality estimation procedures described in 
section 3.3. From the MDS coordinates, the scan that is the closest from the mean geometry 
is chosen to construct an atlas. Note there is no ground truth as to what is the best target 
since these scans are not simulated. 

 
4.2. Results 
Manual segmentations of liver are performed by an expert and are available for all 10 

scans. It is possible to map one scan onto another scan from 90 pair-wise registrations. For 
every scan, an atlas is built by mapping other segmented scans onto the segmented chosen 
target scan and computing the percentage a voxel belongs to liver. Atlas value ranges from 
0 to 1, where 1 indicates the voxel always belongs to liver and 0 indicates the voxel always 
belongs to something other than liver for 10 segmented cases. Entropy of the atlas is 
computed to quantify the variability of the atlas. First, atlas values are binned to a fixed 
width histogram and then Shannon entropy of the normalized histogram is computed. If an 
atlas has a sharp spatial transition from liver to non-liver (i.e., 1 to 0), it will have low 
entropy values, since all voxel values tend to be concentrated around 1 and 0. For a more 
diffusely valued atlas, where the spatial transition occurs over larger region, there are more 
voxels with intermediate values, and thus the entropy of the atlas increases. A total of 10 
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atlases are constructed depending on the chosen target scan. Entropy values of constructed 
atlases range from 1.34 to 2.33. MDS results suggest that scan 4 is the closest scan from the 
mean geometry and the entropy of the atlas constructed using scan 4 as the target is 1.35. 
The best atlas (i.e., atlas with the least variability thus the smallest entropy value) is the 
atlas constructed on scan 8 with the entropy value 1.34. Scan 4 with entropy value 1.35 is 
the second best atlas, but the difference in entropy value is quite small between scan 4 and 
8. MDS results also suggest that scan 3 is the furthest scan and the entropy of the atlas 
constructed on scan 3 is 2.33 (i.e., the largest entropy value and thus the worst atlas). Thus, 
MDS results can reasonably predict what target scan is the best or worst from 10 scans 
when constructing an atlas. 

 
5. Discussion 
Our target selection method based on MDS enables us to choose a target that is very 

close to the mean geometry. In addition we can locate where all images are relative to the 
mean geometry. Our approach is independent of the choice of the pair-wise registration 
method. The user can choose any reasonable combination of similarity measure and 
geometric interpolant, not just MI and Thin-plate splines. Our approach is also reasonably 
robust to imperfect pair-wise registrations. 
 

5.1. Computation of MDS 
The computational complexity of MDS is on the order of N3, where N is the number of 

objects (i.e., images). When computed on a computer cluster (e.g., a grid system), this 
might be significantly reduced by applying a distributed weighted modification of MDS 
[18]. The computational complexity of the dimension estimator [20] is NlogN. 
 

5.2. Comparison with Other Methods 
Studholme et al. proposed to jointly register all images simultaneously to a target space 

that is very close to the mean geometry [5]. They register all images simultaneously while 
penalizing a non-identity mean displacement field from the target onto other images and 
minimizing the joint entropy of all images. High dimensional probability density function 
needs to be estimated to calculate the joint entropy. They proposed an adhoc clustering 
approach where only certain areas of the high dimensional histogram are allowed to have 
counts. Such an adhoc approach might have problems dealing with mis-registered states 
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during the optimization when clusters can form virtually anywhere in the histogram and 
thus possibly not be counted. There is inherent difficulty to estimate entropic measures (e.g., 
MI) of high dimensional probability density functions using conventional methods. Hero et 
al. proposed a method to estimate entropic measures of high dimensional probability 
density functions based on the length of minimum spanning tree [19]. 
 
Joshi’s approach requires only N-1 pair-wise registrations for N images and is independent 
of choosing a target image [6]. It maps all other images to the chosen target image and then 
calculates a mean displacement field in the target image space. If the mean displacement 
field is not an identity transform then it warps the atlas created on the target image space to 
another space using the mean displacement field. The underlying assumption is that at the 
mean geometry the mean displacement field with respect to other images should be an 
identity transform. There are certain limitations on their approach. It assumes that the 
geometric transform has certain “small deformation” properties; the transform, 

, is close enough to an identity transform such that the composition of the 
transform can be approximated by the addition of two displacement fields, 

. It is also sensitive to pair-wise registration results requiring 
displacement fields, the optimized geometric transforms of pair-wise registrations, to be 
totally accurate. Any error in the registration (i.e., change in the displacement field) will 
affect the mean displacement field therefore will affect the final space that the atlas resides. 
If the chosen target image is an extreme of the population, pair-wise registrations between 
the target and other training images become unreliable. Thus for practical purpose, it is 
important to pick a target that is close to the mean geometry even for Joshi’s approach so 
that pair-wise registrations are reliable. They also have an atlas building method where the 
constraint of the geometric transform is lifted so that “large scale” deformation can be 
accommodated [6]. 

( ) ( )h x x u x= +

1 2 1 2( ) ( ) ( )h h x x u x u x+ +

 
Our approach and Marsland’s approach share a common theme; find a target image that is 
the closest to the mean geometry [7]. Their method tries to minimize not only the sum of 
distances to all other image but also the sum of similarity measure between the target and 
other images. In their algorithm, they start with an initial guess of the target image and try 
to update the target image if the sum of distances decreases and the sum of MI increases. 
We believe target should be chosen solely on distances to arrive as closely as possible to the 
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mean geometry. For example, if the ideal target image at the mean geometry happens to be 
noisy, under Marsland’s approach it will never be selected as the target since choosing the 
ideal target will surely decrease the sum of MI. Their method is tied to a specific geometric 
interpolant, clamped-plate spline, while our approach can be applied to any geometric 
interpolant.  
 

6. Summary 
We have shown a method to choose a target image that is very close to the mean 

geometry. It is based on information of relative locations provided by MDS. MDS requires 
a distance matrix whose elements are calculated from pair-wise registrations.  
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Original Image Deformed Image

 
Fig. 1. Synthetic image deformation. The left figure is the original image and the right 
figure is the deformed image by a 6x6 B-spline deformation and added Gaussian image 
noise of variance 16. Grid lines show the applied B-spline deformations. Fifty deformed 
images are formed similarly. 
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image1 image2 image3

image4 image8 image15

 

Fig. 2. Six images of the known 50 deformed images. Grid lines show the applied B-spline 
deformations. 
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Original image

 
Fig. 3. Control points used for pair-wise registration. Control points are denoted as x. 
Twenty five control points are uniformly distributed. 
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Fig. 4. Relative locations of 50 images by MDS. Mean location is at (0,0,0,0) and the 
closest image to mean is determined to be image 2. Only a 2 dimensional plot (out of 4) is 
given here for space constraints. Mean is marked with ‘+’ and the nearest image to the 
mean is marked with ‘o’. 
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Fig. 5. Plot of dimension histogram of entropic graph estimator [20] and eigenvalues of the 
distance matrix. The top plot is the dimension histogram of entropic graph dimension 
estimator. Manifold learning is performed for the distance matrix as explained in section 
3.3. The most probable dimension (mode) is dimension 4. The bottom plot is the logarithm 
of eigenvalues of the distance matrix with respect to the dimension of MDS. First 20 values 
out of 50 are plotted. 
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Fig. 6. Plot of rank order error with respect to noisy registrations. The top plot is the rank 
order error measured as the noise magnitude increases for one pair-wise registration. The 
affected pair-wise registration is between image 9 and 45. The bottom plot is the rank order 
error measured as the number of affected pair-wise registration increases. The magnitude of 
registration noise is set at zero mean Gaussian with standard deviation 15 pixels. 
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Table 1. Distances from the original undeformed image. Geometric distances are sorted 
ascendingly. Images with small distances are desirable as the target image. Image 2 is the 
most desirable target image and image 4 is the least desirable target image.  
Distance 0.0009 0.0116 0.0269 0.0282 0.0286 0.0388 0.0413 0.0554 0.0652 

Image No. 2 30 12 44 23 40 33 29 24 

Distance 0.0693 0.0718 0.0729 0.0763 0.0836 0.0866 0.0875 0.1066 0.1088 

Image No. 41 46 20 7 21 1 10 45 37 

Distance 0.1194 0.1307 0.1361 0.1607 0.1657 0.1669 0.1956 0.1981 0.2016 

Image No. 49 26 43 31 19 47 5 14 13 

Distance 0.2219 0.2285 0.2303 0.2334 0.2476 0.3647 0.4034 0.4403 0.4503 

Image No. 16 11 25 35 27 36 42 39 9 

Distance 0.4706 0.4845 0.4871 0.5511 0.5527 0.5654 0.5811 0.6103 0.651 

Image No. 15 48 8 6 28 34 18 3 50 

Distance 0.6685 0.6944 1.0705 1.0835 1.3823     

Image No. 32 17 22 38 4     
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Table 2. MDS results. Image number is sorted by the distance from the location of mean 
geometry. Distances are sorted ascendingly. The order of image number is very similar to 
the order of image number in Table 1. RMS (root mean squared) error between the order of 
image number by MDS and order of image number of the ground truth is computed on the 
bottom row. 

Order 1 2 3 4 5 6 7 8 9 

Image No. 2 30 23 40 44 12 29 24 21 

Order 10 11 12 13 14 15 16 17 18 

Image No. 33 41 10 46 7 1 26 37 49 

Order 19 20 21 22 23 24 25 26 27 

Image No. 20 31 45 19 43 47 13 14 35 

Order 28 29 30 31 32 33 34 35 36 

Image No. 5 11 27 16 25 42 39 36 9 

Order 37 38 39 40 41 42 43 44 45 

Image No. 28 3 18 8 34 48 32 6 15 

Order 46 47 48 49 50     

Image No. 50 17 22 38 4     

Error 0.3980         

 

 


