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1.0 About DPCL

1.1 Why DPCL Is Interesting
DPCL is an application program interface (API) for installing instrumentation into and removing
instrumentation from a serial or parallel program as the program is running. DPCL instrumentation
may measure execution time for performance tools, pass counts for test coverage tools, report or mod-
ify the contents of variables for debuggers, and many other things. Instrumentation is defined by the
tool builder and therefore has unlimited flexibility. Instrumentation is placed in the application
dynamically, as it is needed, and removed when it is no longer desirable. This keeps the cost of gath-
ering data quite low, even on long running and highly parallel jobs. DPCL is designed to:

• reduce the cost of developing new programming tools

• reduce the intrusion cost of instrumentation

• increase the flexibility and usability of tools

• increase interoperability among tools

• increase innovation in tool development

• increase the number and variety of available programming tools.

• provide a mechanism for creating common tools across the industry

DPCL is designed to take advantage of dynamic instrumentation technology originally developed
under Bart Miller at the University of Wisconsin, Madison, by Jeff Hollingsworth, who is currently at
the University of Maryland. The API allows a tool built on DPCL to insert data, functions, and code
patches into a program while it is running. Code patches, or probes, can collect and report perfor-
mance information, program state, or modify the program execution.

The original motivation for DPCL came from the observation that customers were often asking for
more application performance analysis tools than the various tool suppliers had resources to build.
High performance application developers were asking for tools that would provide detailed, accurate
information about disk usage, cache and other memory usage, CPU and functional unit usage, mes-
sage passing and synchronization, and operating system interference with achieving high perfor-
mance. Furthermore, they were asking for application profiles to determine what problems were
occurring (problem determination), and traces to determine what was causing observed problems
(root cause analysis).

As DPCL development became better known, other uses for this technology began to surface. In addi-
tion to performance analysis tools, other potential tools were identified as candidates for development
under DPCL. Among them are correctness debuggers, memory debuggers, relative debuggers, hard-
ware performance monitors, test coverage tools, Reliability/Availability/Serviceability support tools,
application steering tools, dynamic load balancing tools, and more.

One of the major costs of developing new tools is in developing its instrumentation. Some examples
of the types of instrumentation are: manually inserted and compiler generated instrumentation, instru-
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mentation of object files, instrumentation at load time, instrumented libraries, and dynamic instru-
mentation. The specific cost of developing the instrumentation depends on the type of instrumentation
chosen and has to be played against the user effort required to use the tool. Each different type of
instrumentation also carries its own impact on the accuracy and precision of gathered data, as well as
the flexibility with which the data can be gathered. Dynamic instrumentation allows the greatest flex-
ibility in gathering data, which can be used to focus attention on specific items of interest, increase
accuracy by reducing interference caused by gathering unwanted data, or increase convenience to the
user by delaying the decision point for instrumentation until run-time.

With dynamic instrumentation the instrumentation code need only reside in the application as long as
it is needed to gather data. When a problem is suspected the instrumentation can be inserted into the
application to gather data needed to verify the problem. Once the problem is verified the instrumenta-
tion can be replaced with more detailed instrumentation to establish the cause of the problem. If the
initial guess turns out to be incorrect, the original instrumentation can be replaced with new instru-
mentation that examines other possible causes.

Since the goal is to create a variety of tools that are inexpensive as well as flexible, it is important to
address the cost of tool creation. The exact fraction of the cost will vary from one tool to the next, but
in many cases the direct and indirect costs of writing instrumentation software dominates the cost of
the tool. Whether the instrumentation is part of the compiler, the linker, or a library of subroutines,
writing the instrumentation package often requires substantial communication, coordination, and
cooperation across development groups, which can be expensive. If a way is provided that allows
large portions of the instrumentation system to be reused, the cost of writing instrumentation could be
reduced.

DPCL provides a general purpose infrastructure that flexibly supports the generation of arbitrary
instrumentation. It is capable of instrumenting serial, shared memory, and message passing applica-
tions. Based on dynamic instrumentation it requires only the information usually found in ana.out .
Once the infrastructure is in place, the cost of writing instrumentation for an individual tool is a tiny
fraction of the cost of writing tool instrumentation from scratch. Because the infrastructure provides
general programming facilities for writing instrumentation the system can be used for a wide variety
of tools and uses. DPCL is expected to be used for developing several application performance analy-
sis tools, correctness debuggers, memory debuggers, application steering tools, and many other types
of tools.

DPCL is also important in a different sense -- it provides an abstract layer for tool development that is
machine independent. This means DPCL can make it possible for tools to be truly available across the
industry. Major efforts, such as the PTools Forum and HPDF, are under way to standardize available
programming tools across the industry. By defining standard tools and interfaces these organizations
hope to make the transition from one vender system to another easier for developers, especially devel-
opers that must concurrently develop and maintain software for multiple vender machines. Progress is
slow, however, in part because each vender must provide their own implementation of the tool. These
efforts show there is a strong desire within the industry, among labs, customers and some hardware
venders themselves, to provide a common set of tools across the industry.
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Making tools available across multiple platforms is generally a huge undertaking. The use of standard
languages and graphic interface libraries reduces the required effort considerably. Building the tools
on top of DPCL reduces that effort further. Once DPCL is available on a given platform, completing
the port of instrumentation is relatively simple. The cost of porting DPCL to the new machine can
also be amortized over many tools. Thus DPCL can provide a low cost means for making a wider
variety of tools available across the industry.

Easy porting of tools to multiple platforms provides additional benefits. When the cost is low to create
and maintain tools across multiple platforms, ISVs have motivation to support a wider variety of
development and support tools across those platforms. This reduces the development costs that must
be shouldered by hardware venders while simultaneously making the venders’ machines more attrac-
tive.

The reduced cost of developing tools also translates into greater innovation. The level of effort and
expertise is reduced, which allows universities and labs to experiment with more speculative analysis
techniques and tools ideas while maintaining a limited budget. Relatively small investment in a proof-
of-concept prototype is required to determine whether the idea has validity before investing signifi-
cant effort in full scale tool development. When the cost of developing instrumentation is high, the
cost of trying out an uncertain idea may be too great. In other words, DPCL can be used as an engine
of innovation.

1.2 DPCL Concepts and Components
Described briefly, DPCL is implemented as a distributed, asynchronous system, where the end-user-
tool is a client process that requests services, through library calls, from special daemons. Daemon
management is performed by the underlying system and not by the end-user-tool. A tool calls mem-
ber functions in the DPCL class library to request a desired service. The library then forms the request
into a message that is sent to a daemon process. The results of a service request can be an acknowl-
edgement or negative acknowledgement that the request was performed. In some cases, such as
instrumentation (probe) activation, a service request may also result in a stream of data messages
being sent to the client.

In each case a message is received by the DPCL message system and transferred as an argument to a
callback function. Messages containing system information are processed by DPCL system callbacks.
Messages containing positive or negative acknowledgments are processed by user or system call-
backs, depending on how the service was requested. Messages containing data sent by instrumenta-
tion probes are processed by user data callbacks.

Systems that rely on processing events with callback functions are calledasynchronous systems. In
DPCL the events to be processed are messages received from a daemon. Asynchronous systems are
often used in client/server applications. DPCL clients are the end-user-tools built upon DPCL, while
the daemons are the service providers or servers. Daemon services include connecting to an applica-
tion process, installing and activating instrumentation, deactivating and removing instrumentation,
and a host of other services. Service requests may be asynchronous or pseudo-synchronous. Asyn-
chronous service requests explicitly provide user callback functions to process acknowledgments.
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The request function returns immediately upon issuing the request and does not wait for the request to
succeed or fail. Pseudo-synchronous service requests are calledblocking requests or functions, and
differ from purely synchronous requests in that the blocking requests do not return control to the
caller until the request has succeeded or failed, and therefore do not require a callback function to pro-
cess the acknowledgement, positive or negative.

Instrumentation is defined by the end-user-tool using a combination ofprobe expressions andprobe
modules. Probe expressions areabstract syntax trees that represent integer values and variables, con-
nected by the usual arithmetic, logical, and bit-wise operators. A small amount of conditional control
flow is also supported, as are function calls and some pointer operations. Probe modules are collec-
tions of functions, written in a standard language such as C and compiled into object files, that are
loaded into an application and called from within a probe expression.

Source objects, also known as source trees, are data structures that reflect, to some degree of granular-
ity, the structure of the original source code that was used to create the executable program. Informa-
tion to construct the source objects is gathered from both the executable file and the executing
program image in memory. Through the process of compilation, much of the information needed to
construct a detailed source representation is lost. This is especially true when higher levels of com-
piler optimization are used, because they use techniques that move significant amounts of code
around. Examples of these techniques are common sub-expression elimination, removal of invariant
code from loops, loop splitting, loop fusion and loop fission.

Source objects are organized much as a compiler or linker sees a program. The highest level in the
structure is the program itself. Beneath the program is a collection of modules, that represent the
source files in the program. Within each module is a collection of functions and data. The functions
contain data and various forms of nested blocks and statements. Functions also contain instrumenta-
tion points. Instrumentation points are locations within executable code, within functions, where
instrumentation can be placed. Depending on the type of point, instrumentation may be placed before
the point, or after, or both. Probe expressions are the type of instrumentation that may be placed at an
instrumentation point.

There are two other types of instrumentation that may be employed. The simplest isone-shot, or infe-
rior remote procedure call instrumentation, also known as IRPCs. IRPCs are executed immediately
upon request, whatever the application happens to be doing. Upon completion of the IRPC the instru-
mentation is immediately removed. Probe expressions are the type of instrumentation used with
IRPCs.

The remaining type of instrumentation is activated periodically, upon expiration of an interval timer.
This type of instrumentation is called aphase. The period of the interval timer is set by the end-user-
tool when the phase is created. It may also be changed at a later time. Phases use functions as the type
of instrumentation executed when the phase interval timer expires. The functions to be used are estab-
lished when the phase is created and cannot be changed later. Phases are also associated with
instances of probe data.

When a phase interval timer expires three functions are executed for the phase. The first function is
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executed once each time the interval timer expires, and can be used to set up any information that is
useful to this execution of the phase. This is called thephase begin function. When the phase begin
function completes, a second function is executed once for each piece of probe data associated with
the phase. This function is called thephase iteration function. When the phase iteration function com-
pletes for the last piece of data associated with the phase, aphase end function is executed to clean up
any details that might be needed.

Instrumentation may communicate with the client tool by explicitly sending messages. Messages are
treated as unstructured byte streams, the format of which is to be interpreted and understood by the
end-user-tool. DPCL does not understand the contents of the message. Each piece of instrumentation
has a unique callback to receive data. In order to send a message a probe must be able to specify the
callback and client to whom the message is intended. This information is contained in themessage
handle. The message handle is an opaque data object, stored with the instrumentation in the applica-
tion process, that contains the information necessary to direct a message to the correct client and call-
back function for the message.

A typical sequence of operations a tool might use is:

1. connect to the process or application,

2. expand the source tree,

3. find the locations where instrumentation is desired,

4. set up any phases if they are to be used,

5. allocate data storage for the instrumentation data,

6. install and activate the instrumentation,

7. gather the data and process it using data callback functions,

8. remove the data and instrumentation,

9. and finally, disconnect from the application.

1.3 DPCL Features
End-user-tools built upon DPCL are able to instrument applications that use a variety of serial and
parallel programming models. The simplest connection is to a serial application, and works as shown
in Figure 1 on page 6. The end-user-tool establishes a connection to the target application process
through a daemon. The daemon resides on the same machine as the target process, and is able to hook
up to it like a debugger. Once the connection is established, the tool may send its requests to the dae-
mon, who acts on those requests.
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FIGURE  1 A Tool Connects to a Program through a Daemon

Daemons are independent processes that act in behalf of a client process. DPCL daemons are not per-
sistent, in the sense that they do not exist when there is no connection to be maintained. They must be
created at times when connections are established. However, daemons are shared in the sense that
when multiple clients wish to connect to the same application, they do so by connecting through the
same daemon. A single daemon may also serve as an agent in connecting to multiple application pro-
cesses. This coordination is managed through the use of asuper daemon, or a daemon that creates
other daemons.

When a client wishes to create a connection to a process on a given server, the DPCL library creates a
super daemon on the server. This is illustrated in Figure 2 on page 6. The new super daemon checks
for the existence of other super daemons on the server. If an older super daemon exists, the new super
daemon transfers the connection between the new super daemon and the client over to the older super
daemon and exits. The remaining super daemon then decides whether to use a new daemon or an
existing one. If a new daemon is to be used, it creates the new daemon and transfers the client connec-
tion to the new daemon. Otherwise it transfers the client connection to an existing daemon. The deci-
sion to create a new daemon or use an existing one is based on issues of security as well as whether
other daemons currently exist.

FIGURE  2 Connections to Daemons Are Made through Super Daemons

Daemon

Client Machine Server Machine

Application
Process

End-User
Tool

Client Machine Server Machine

Daemon
Super

Daemon Process
Application

Tool
End-User



About DPCL Draft

7/13/98 Copyright 1998 by IBM Corp. chapter1.chp 7

Security within the system is maintained in several ways. First, when a new connection is established
between a client and super daemon, the super daemon requires that the client be authenticated using
the most robust means available. When DCE is in use on the server, DCE authentication is required.
Otherwise an internal authentication procedure is used. Second, in order for the super daemon to be
able to create appropriate daemons it must have super user privileges. For this reason, the super dae-
mon is not allowed to access or modify any user applications. Third, any daemons the super daemon
creates must first change their ownership from the super user to the user ID of the client. Thus the
daemon has only those privileges that would be granted by the system to the client tool if it were run-
ning locally on the daemon.

Client tools are not responsible for connecting directly with a super daemon. Rather, the tool requests
services from the DPCL library, as illustrated in Figure 3 on page 7, and the library handles the details
of establishing the connection. Furthermore, the library also handles all of the details of communicat-
ing between the tool and daemon, including details such as making sure the correct message formats
are used, and that the messages are delivered reliably. When it is appropriate that the tool process a
message, such as a service request acknowledgment from a daemon or a data message from a probe,
the library handles the details of message reception and hands the message over to a callback function
supplied by the tool for the purpose of processing that kind of message.

FIGURE  3 A Tool Communicates with a Daemon through the Library

After a connection is established, a tool is free to install instrumentation into the application. A tool
does so by allocating data, forming probe expressions, and loading modules (collections of functions
to be called by probe expressions) into the application, as illustrated in Figure 4 on page 8. As men-
tioned before, the tool submits its requests via the library, and the library handles all the details of
communication. Once this preparatory work is done, the instrumentation probes can be installed
within the application and activated. Activated instrumentation is free to send messages containing
relevant data back to the client tool, as shown in Figure 5 on page 8.
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FIGURE  4 An End-User Tool Installs Probes in an Application

FIGURE  5 Probes Send Messages to the Client

As mentioned before, DPCL is capable of managing the instrumentation of multiple applications and
multiple clients. The simplest situation is shown in Figure 6 on page 9, where there is exactly one cli-
ent and one application process. Serial programs like this require no special considerations from
DPCL. The dotted box in the figure represents the application. This type of connection requires only a
single daemon, and the daemon must manage communication from a single client.
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FIGURE  6 A Tool May Connect to a Serial Program

Parallel programs introduce an additional level of complexity, whether they are multiple processes on
multiple machines, as illustrated in Figure 7 on page 9 or multiple processes on a single machine, as
illustrated in Figure 8 on page 10. In the former case the client must manage the additional daemons,
while the daemons have the simpler connections. In the latter case, the client maintains a connection
with a single daemon, but both client and daemon must deal with the complexity of multiple applica-
tion processes.

FIGURE  7 A Tool May Connect to a Parallel Program

Something worthy of note is that while a daemon may connect to multiple processes within the same
application, as described before, there is nothing about the processes that require they all be in the
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form an application, but this is a convenience for the client and not required for daemon operation.
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FIGURE  8 A Daemon May Connect to Multiple Processes

Daemons support not only connections to multiple processes, but also connections to multiple clients.
Figure 9 on page 10 illustrates two clients connected to the same parallel application. The two appli-
cations need not be aware of each other. DPCL does not provide explicit facilities at this time for two
tools to be aware of each other nor to communicate except with daemons. However, this could be a
topic for future extensions.

FIGURE  9 Multiple Tools May Connect to a Single Program
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Finally, for completeness, DPCL also supports sharing of daemons when multiple clients and multi-
ple applications are involved. This is illustrated in Figure 10 on page 11. In this situation the shared
daemon may not respond as quickly to requests or in forwarding data because of the extra demands
placed on it by serving two clients. Other factors, such as varying work loads across systems can also
affect performance in this manner.

FIGURE  10 Multiple Tools May Share a Daemon
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2.0 Introduction to DPCL Concepts

This chapter provides a brief introduction to individual concepts used within DPCL.

2.1 Asynchronous Programming
Asynchronous programming is a style of programming where the major activities in a program
involve acting upon events that may arrive at an undetermined time, and in an undetermined order.
The system recognizes the occurrence of an event and reports the event to the program. The program
has event handlers set up to process those events when they arrive. One example of a commonly used
asynchronous system is the Unix signal facility. A Unix process may receive a signal from another
process, from itself, or from the operating system at any time. The event to be acted upon, then, is the
signal. The operating system is the mechanism that transfers the signal to the program and activates
the signal handler, which in this case is the event handler. While this aspect of a program that uses sig-
nals matches the asynchronous programming model, such programs also typically use signals as indi-
cators of exceptional circumstances rather than the norm.

A better example might be something like a Motif or other X-Windows application. Mouse move-
ments, object selection, and keyboard strokes are the typical events in these programs. The program
first sets up whatever relevant program data structures and event handlers there might be, then enters a
main event loop. The main event loop recognizes incoming events and makes a call to the appropriate
event handler. Event handlers in this system are calledcallback functions, or justcallbacks.

DPCL works very similarly to Motif, at least in some ways. End-user-tools built upon DPCL initialize
data and enter a main event loop. The main event loop listens to file descriptors for input. When input
is detected, a dispatch routine for that file descriptor is called. The dispatch routine understands the
protocol for that file descriptor, that is, it understands whether the input is a structured message from
a daemon, unstructured text from a keyboard, screen events from a GUI, or whatever it might be.
When the event is a structured message from a daemon, the dispatch routine reads the message from
the file descriptor, looks up the callback function associated with the incoming message, and executes
the callback function.

The end-user-tool may supply an appropriate dispatch routine when adding a file descriptor to the list
of file descriptors DPCL listens to. The end-user-tool does not get directly involved in messages
passed between client and daemon, except to provide some of the client callback functions that are
activated when certain messages arrive.

2.1.1 Callbacks
Callback functions in DPCL are functions that are called when certain messages arrive from a dae-
mon. A message may represent an acknowledgement of a service request being completed success-
fully, or a service request failing to complete. Or it may represent data being sent from
instrumentation within the application to the client for processing. All callbacks have the same func-
tion prototype, or type signature, regardless of the message type that activates it. The function proto-
type for callbacks is:
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void callback (

GCBSysType sys, // system data structure

GCBTagType tag, // user-supplied tag value

GCBObjType obj, // object that registers the callback

GCBMsgType msg) // message that invokes the callback

The callback function has four parameters. Thesys  parameter is a data structure that includes basic
system information about the message. Values in the structure are: the socket or file descriptor from
which the message was received; a message key or type value that represents the protocol or purpose
behind the message; and the size of the message in 8-bit bytes. The structure is defined as

struct GCBSysType {

int msg_socket;    // socket over which msg was received

int msg_type;      // message type

int msg_size;      // size of the message sent

}

The message type is used as a key value to identify the callback function to be executed. This infor-
mation is provided by the system.

Thetag  parameter is a value, large enough to contain a pointer, that is supplied by the end-user-tool
at the time the service is requested and the callback is identified. This allows callback functions to be
used for more than one purpose when desired. For example, the tag may be used as a pointer to rele-
vant data that changes from one usage of the callback to another. It can be used in many different
ways, but it is entirely up to the end-user-tool to decide. DPCL merely records its value when the call-
back is registered, and passes the value to the callback function when the callback is executed.

One piece of data that is often useful is the object being used to request a service at the time the call-
back is registered. For example, “Process p; ... p.connect(cb, tag); ” uses the data
objectp, of typeProcess , to request a service. The requested service in this example is to connect
the client to a physical process. The callback function might find it useful to know which process data
object requested the connection when it decides what to do with the success or failure of the request.
As an example it might use this information to display informative error messages when requests fail.
The object used in a service request is also known as theinvoking object. A pointer to the invoking
object is stored in the parameterobj .

The actual content of the message is presented as a raw byte stream. A pointer to the message content
is given in the parametermsg. The number of bytes in the message is stored insys.msg_size .
When the message is the acknowledgement of a service request, the message format is defined by the
system. When the message is a data message it is generated by the end-user-tool instrumentation run-
ning within the application. The format is determined by the instrumentation, since the instrumenta-
tion determines what to place in theAis_send  buffer.Ais_send  sends the message.
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2.1.2 Event Recognition and Dispatch
DPCL recognizes two kinds of events: file descriptor input events and signal events. DPCL programs
sit in a main loop that waits for events to occur. Each time an event occurs a dispatch routine, or han-
dler, for that class of event is dispatched to deal appropriately with recognizing the event. In some
cases a callback function associated with the event is also called.

Signal events are the simplest to process. A tool may register a signal event dispatch routine to deal
with certain Unix™ signals. When a signal is raised, an internal signal handler catches the signal and
schedules the signal event dispatch routine to be executed. The internal signal handler releases control
to the normal tool environment, where the signal event dispatch routine is then executed. Because the
signal event dispatch routine is executed within the normal environment, the application stack is used
for function calls rather than the signal stack.

Signal event handling routines are also exempt from the concerns of typical signal handlers, such as
executing a function that uses a data structure caught in an inconsistent state. Subroutines such as
malloc  cannot be safely executed within a signal handler because the signal that caused the handler
to be executed may have interrupted the application while it was in the process of executing a call to
malloc . This would mean the secondmalloc  invocation might catch its internal data structures in
an inconsistent state, which could potentially cause an error to occur and the program to terminate
abnormally. Signal event handlers are not invoked within the internal signal handler, so calls to rou-
tines likemalloc  have an opportunity to restore consistency to their internal data structures and
return normally before the signal event dispatch routine is called.

DPCL only allows one signal event dispatch routine to be registered for each signal. The old signal
event dispatch routine must be removed before a new signal event dispatch routine may be installed.
Signals are not stacked, either. If two signals of the same type are received in rapid succession before
the signal event handler for the first signal is allowed to execute, it is treated as only one signal.

File descriptor input events are the most common events to occur. They can be divided into two major
categories, namely input events that represent communication between the client and daemon, and
those that represent input from a user-tool-specified input file descriptor. When input arrives on a file
descriptor the system recognizes that an event has occurred, but it does not yet know what type of
event has occurred. How one interprets the input to determine the type of event depends on the source
of the event. If the input is from a daemon, certain information is guaranteed to be part of the input
stream -- information that identifies the type of event that occurred and the callback function, if any,
associated with it. If the input is from any other source, DPCL does not know how to determine the
action to take in order to process the input.

For this reason DPCL has dispatch routines associated with every file descriptor it watches. The dis-
patch routine is responsible for interpreting the input stream and breaking it into individual events.
For file descriptors connected to daemons, a special dispatch routine is used that interprets the input
stream as a stream of structured messages, and invokes the appropriate callback function for each
message. Each message represents an individual event to the system.

User-tools are also able to register file descriptors to be watched by the system. That allows other
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types of input to be handled asynchronously as well. For example, a user-tool may wish to incorporate
keyboard input into its processing. The tool may register file descriptor 0 and a dispatch routine with
the system. File descriptor 0 is the default descriptor for standard input, which is usually keyboard
input. A different file descriptor could be substituted for 0 assuming it is opened to a suitable key-
board device. The dispatch routine that is registered with the file descriptor is the routine that will
handle all input processing for that file descriptor. Each time the user types input at the keyboard,
DPCL will recognize that input has been supplied and will invoke the registered dispatch routine.
After the input has been processed the dispatch routine must return to the caller so the system can
continue to monitor other input streams and act on them as well.

Dispatch routines accept a single value, an integer, as its input argument. The value represents the file
descriptor or signal number. The function prototype is

int dispatch (int sig_or_fd)

The function return value indicates whether the socket has reached the end-of-file. The dispatch func-
tion must return a -1 when an end-of-file is reached. Otherwise it should return 0. Signal event dis-
patch routines do not reach an end-of-file condition, and the return value is ignored.

2.1.3 Asynchronous and Semi-Asynchronous Programming
Event driven programming may take on either of two forms, or perhaps a combination of both. The
first is asynchronous programming. Purely asynchronous programming sets up special functions,
known as callbacks, that are activated when certain events occur. In DPCL the events are often
acknowledgement responses to service requests sent to daemons on other hosts. When the service
request is sent a callback is set up so it can be activated when the acknowledgement arrives. There is
only one acknowledgement, so when it arrives the callback can be removed. The key issues are that
the callback is registered, the service request is sent, and control returns immediately to the caller
before the service is granted or denied. The registered callback function takes action when the
acknowledgement arrives.

In contrast, semi-asynchronous programming, or pseudo-asynchronous programming, does not regis-
ter a callback, and does not return control until the service request has been granted or denied. These
functions are also called blocking functions or blocking service requests, because they block the exe-
cution of the caller until the service request has been processed. The underlying system must continue
to process events and therefore it must continue to invoke callback functions that may make addi-
tional service requests even though the execution of the caller is temporarily blocked. The advantage
to the user is that series of services can be requested in a style that is quite similar to procedural pro-
gramming, what most programmers are accustomed to using.

The naming convention for blocking service requests is to prefix the letter “b” to the name of the
asynchronous service request routine. For example,connect  is an asynchronous service request
routine that requests a connection be established to a process. Because it is asynchronous it requires
that a callback function be provided to take action when the acknowledgement arrives. The corre-
sponding blocking request isbconnect . Since it is a blocking service request that will not return
control to the caller until the request has succeeded or failed, the action to be taken may follow the
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blocking request call in the calling code.

2.2 Setting Up a Tool to Use DPCL

As was mentioned in an earlier section, a typical sequence of operations a tool might use is:

1. connect to the process or application,

2. expand the source tree,

3. find the locations where instrumentation is desired,

4. set up any phases if they are to be used,

5. allocate data storage for the instrumentation data,

6. install and activate the instrumentation,

7. gather the data and process it using data callback functions,

8. remove the data and instrumentation,

9. and finally, disconnect from the application.

Each of these steps will be examined in detail in later sections. Before any of that can take place the
end-user-tool must be set up to run in an asynchronous environment. The minimum requirements are
quite simple. The tool must first register all of the system callback functions with the function
Ais_initialize , then it must enter the main event loop with the functionAis_main_loop .
This is done as follows.

main(void)

{

Ais_initialize();

Ais_main_loop();

}

Of course the tool may also do whatever additional initialization is desired for proper tool initializa-
tion, but it should generally be done before the call toAis_main_loop . The tool will not exit this
function until asynchronous operation of the tool is complete.

2.3 Application and Process Management

2.3.1 Working with Single-Process Programs
Serial applications are programs that use only a single Unix process. DPCL allows two methods of
access to serial applications. Since there is only a single process to manage, one may use thePro-
cess  class directly. This technique is described in this section. On the other hand, it may also be
thought of as an application that contains a single process, so theApplication  class may also be
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used. The latter technique is described in Section 2.3.1.3, “Disconnect from a Running Process” on
page 19.

All code examples in this section require the following header file.

#include <Process.h>

2.3.1.1 Create a Process Class Object

TheProcess  class is a DPCL data type that describes the attributes needed for tracking and manip-
ulating Unix processes.Process  data objects may be initialized using one of several functions. One
may use a constructor, a copy constructor, or the assignment operator. The default constructor creates
the necessary storage but does not initialize the object to a valid application process. The following
examples illustrate different ways the data objects may be initialized to valid application processes.

The following example illustrates the simplest method of creating aProcess  object that represents
an application process. In this example the process is currently executing on a host machine with the
IP host name of “myhost.xyz.edu”. The process ID is 12345. Note that no connection is as yet estab-
lished with the process. It is purely a local data structure that resides within the end-user-tool. No
attempt is made to determine whether there is actually a host with that name, or a process with that ID
running on the indicated host.

Process p(“myhost.xyz.edu”, 12345);

This next example is identical to the previous with the following exception. Each process also has a
task identifier that may be used for the purpose of tracking its rank within a parallel application.
When the task identifier is not explicitly provided it is set to zero. When provided, the last parameter
on the constructor determines the value to which it is set.

#include <Process.h>

Process p(“myhost.xyz.edu”, 12345, 3);

The above examples use non-default constructors directly to assign values to the object. In the next
example a non-default constructor and a copy constructor is used to assign values to the object.

Process p = Process(“myhost.xyz.edu”, 12345);

The next example illustrates the use of a default constructor and an assignment operator to assign val-
ues to an object. Of course the right-hand-side of the assignment operator may be any valid object and
need not strictly be a temporary object created directly by a constructor, as is illustrated here.

Process p;

p = Process(“myhost.xyz.edu”, 12345);

2.3.1.2 Connect to a Running Process

In order to perform any subsequent operation on a process, the end-user-tool must first establish a
connection to the process. This may be done with a blocking service request, or with a non-blocking
service request. The simplest approach is to use theProcess::bconnect  member function,
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which is a blocking service request. The service being requested is that DPCL establish a connection
to the indicated process. This function does not return control to the caller until the requested service
has either succeeded or failed.

p.bconnect();

A second method of connecting to the process uses a non-blocking service request. In this case the
request is sent but control is returned immediately to the caller. The function does not wait until the
request succeeds or fails. Instead, a callback function is provided that will process the acknowledge-
ment of success or failure when it arrives.

int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

p.connect(cb, (GCBTagType)tag);

Each of these examples requests a connection to the process indicated in theProcess  objectp. The
service request may fail if the host does not exist or is unreachable, if the requested process identifier
does not correspond to an existing process on that host, or if the process exists but the user does not
have the necessary access privileges to connect to the process.

If the request succeeds the end-user-tool may request additional services that affect the process, such
as installing and activating probes.

2.3.1.3 Disconnect from a Running Process

When an end-user-tool has finished with a process it may release the resources associated with the
connection by disconnecting from the process. This may be done with a blocking or a non-blocking
service request. The simplest approach is to use theProcess::bdisconnect  member function,
which is a blocking service request. The service being requested is that DPCL release a connection to
the indicated process. This function does not return control to the caller until the requested service has
either succeeded or failed.

p.bdisconnect();

A second method of disconnecting from the process uses a non-blocking service request. In this case
the request is sent but control is returned immediately to the caller. The function does not wait until
the request succeeds or fails. Instead, a callback function is provided that will process the acknowl-
edgement of success or failure when it arrives.

int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

p.connect(cb, (GCBTagType)tag);

Each of these examples requests that the end-user-tool disconnect from the process indicated in the
Process  objectp. The service request may fail if process is not connected.
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2.3.2 Working with Multiple-Pr ocess Programs
Multiple process programs may be handled in two ways. They may be treated as a loosely connected
group of processes, or the processes may be explicitly grouped together in anApplication  class
object. This section addresses the latter approach.

All code examples in this section require the following header file.

#include <Application.h>

2.3.2.1 Create an Application Class Object

There are two constructors for theApplication  class -- the default constructor and the copy con-
structor. Initially anApplication  object is created as an empty application. Application processes
represented by objects of typeProcess  may be added to or removed from theApplication
object as needed.Application  objects are indexed collections ofProcess  objects, so individual
processes within anApplication  object may be referenced by knowing its index.

Application app1;

Process p(“kim”, 1080);

app1.add_process(p);

Application app2 = app1;

In the above exampleapp1  is created initially as an empty application. A process is then added to the
application. Note that so far there has been no attempt to verify that the process actually exists nor to
connect to the process.app2  is created as a copy ofapp1  using the copy constructor.

2.3.2.2 Adding and Removing Processes from an Application Class Object

Process  objects may be added and removed from anApplication  object at any time. For exam-
ple, we might continue the example from the previous section with

Process q(“ted”, 7693);

app1.add_process(q);

A word of caution is in order here. As mentioned before,Application  objects are indexed collec-
tions ofProcess  objects. The first valid index is always zero and the last valid index is one less than
the value returned by the functionget_count . The index map is guaranteed to be dense, that is,
there are no gaps in the index range. Each time that a process is removed from an application the map-
ping of indexes to processes changes. When a process is added to an application it is placed at the
next available index at the end of the index range. When a process is removed all processes with
indexes higher than the removed process are shifted downwards to close the gap.

2.3.2.3 Obtain a Parallel Application Process List

When the application of interest is an IBM Parallel Operating Environment (POE) application, a
faster method exists for loading the processes into the application. If one knows the parent POE pro-
cess ID one may create aPoeApp and load the processes automatically. ThePoeApp class is derived
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from theApplication  class so all functions available inApplication  are also available in
PoeApp. The process list may be loaded using either a blocking or a non-blocking service request.
The blocking service request is shown in the next example.

app1.bread_config(“john”, 7177);

This example asserts that the parent POE process of an interesting application may be found on a
machine with a host name of “john” and it has a process ID of 7177. This request queries the system
for the list of processes associated with that particular POE application. That information is then
loaded into thePoeApp objectapp1 . Since it is a blocking request, control does not return to the
caller until the request has either succeeded or failed.

A second method of obtaining the POE application configuration uses a non-blocking service request.
In this case the request is sent but control is returned immediately to the caller. The function does not
wait until the request succeeds or fails. Instead, a callback function is provided that will process the
acknowledgement of success or failure when it arrives.

int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

app1.read_config(“john”, 7177, cb, (GCBTagType)tag);

Each of these examples requests a process list be loaded into thePoeApp object. The service request
may fail if the host does not exist or is unreachable, if the requested process identifier does not corre-
spond to an existing process on that host, if the process exists but the user does not have the necessary
access privileges to access the process information, or if it exists but it is not the root process of a
POE application.

2.3.2.4 Connect to a Running Application

In order to perform any subsequent operation on an application, the end-user-tool must first establish
a connection to all processes within the application. This may be done with a blocking or a non-
blocking service request. The simplest approach is to use theApplication::bconnect  member
function, which is a blocking service request. The service being requested is that DPCL establish a
connection to all processes within the indicated application. This function does not return control to
the caller until the requested service has either succeeded or failed.

app1.bconnect();

A second method of connecting to the process uses a non-blocking service request. In this case the
request is sent but control is returned immediately to the caller. The function does not wait until the
request succeeds or fails. Instead, a callback function is provided that will process the acknowledge-
ment of success or failure when it arrives.
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int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

app1.connect(cb, (GCBTagType)tag);

Each of these examples requests a connection to the processes included in theApplication
objectapp1 . The service request may fail if the host does not exist or is unreachable, if the requested
process identifier does not correspond to an existing process on that host, or if the process exists but
the user does not have the necessary access privileges to connect to the process.

If the request succeeds the end-user-tool may request additional services that affect the processes,
such as installing and activating probes.

2.3.2.5 Disconnect from an Application

When an end-user-tool has finished with an application it may release the resources associated with
the connection by disconnecting from the application. This may be done with a blocking or a non-
blocking service request. The simplest approach is to use theApplication::bdisconnect
member function, which is a blocking service request. The service being requested is that DPCL
release a connection to all processes within the indicated application. This function does not return
control to the caller until the requested service has either succeeded or failed.

app1.bdisconnect();

A second method of disconnecting from the application uses a non-blocking service request. In this
case the request is sent but control is returned immediately to the caller. The function does not wait
until the request succeeds or fails. Instead, a callback function is provided that will process the
acknowledgement of success or failure when it arrives.

int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

app1.disconnect(cb, (GCBTagType)tag);

Each of these examples requests that the end-user-tool disconnect from the process indicated in the
Process  objectp. The service request may fail if process is not connected.

2.3.3 Creating New Application Programs
To be provided in a later release.

2.3.3.1 Create an Application

2.3.3.2 Start a New Application

2.3.3.3 Restart an Application

2.3.4 Application Control Functions
To be provided in a later release.
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2.3.4.1 Suspend an Application

2.3.4.2 Resume an Application

2.3.4.3 Signal an Application

2.3.4.4 Attach to an Existing Application

2.3.4.5 Detach from an Application

2.3.4.6 Terminate an Application

2.3.5 Application Memory Functions
To be provided in a later release.

2.3.5.1 Read Application Memory

2.3.5.2 Write Application Memory

2.3.6 Application File Operations
To be provided in a later release.

2.3.6.1 Remote File Open

2.3.6.2 Remote File Close

2.3.6.3 Remote File Read

2.3.6.4 Remote File Write

2.3.6.5 Remote File Seek

2.4 Navigating Application Source Structure
Source structure is a concept that applies to individual processes. This means that parallel applica-
tions must expand and navigate the source structure on a process by process basis. Single program,
multiple data (SPMD) applications have an advantage that the expansion need take place with only
one process, but a tool may still wish to treat each process differently and thus needs the ability to
operate on a process by process basis.

2.4.1 Obtaining the Program Source Object
When an end-user-tool connects with an application or process it requests the structure of the applica-
tion as part of the connection process. Since applications may be very large, the initial structure
requested is a very coarse view. Essentially it is the list of modules or source files in the application.
This is done to avoid excessive delay and memory use when dealing with large applications. The pro-
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gram source object may be obtained through theSourceObj::get_program_object  member
function. This is shown in the next example.

Process p;

SourceObj pgm = p.get_program_object();

One may examine the program object to determine the number of modules it contains with the
SourceObj::child_count  member function. Source objects representing each of the modules
may also be obtained with theSourceObj::child  member function. The name of the module
may be obtained with theSourceObj::module_name  member function. For example,

int count = pgm.child_count();

for (int i=0; i < count; i++) {

SourceObj mod = pgm.child(i);

cout << mod.module_name() << endl;

}

prints the names of all the source files from the program.

2.4.2 Expanding the Source Structure
In order to view the structure of a given source file one must expand the source file using the
SourceObj::bexpand  orSourceObj::expand  functions. These functions expand the source
file into functions and data objects, and functions within a source file are expanded into its finer con-
trol structure. The degree to which functions can be expanded is heavily dependent upon which com-
piler and compiler options are used to compile the application program. The source structure is
gathered from the executable and high degrees of compiler optimization severely reduce the amount
of information available within the executable.

An individual process is required to expand the source structure. The process must be connected.

The simplest approach to expand the structure of a source file is to use theSourceObj::bexpand
member function, which is a blocking service request. The service being requested is that DPCL
expand the source structure for a specified file. This function does not return control to the caller until
the requested service has either succeeded or failed.

mod.bexpand(p);

A second method of expanding the source structure uses a non-blocking service request. In this case
the request is sent but control is returned immediately to the caller. The function does not wait until
the request succeeds or fails. Instead, a callback function is provided that will process the acknowl-
edgement of success or failure when it arrives.



Introduction to DPCL Concepts Draft

7/13/98 Copyright 1998 by IBM Corp. chapter2.chp 25

int tag = ...;

void cb(GCBSysType s,GCBTagType t,GCBObjType o,GCBMsgType m);

mod.expand(p, cb, (GCBTagType)tag);

Each of these examples requests that the end-user-tool expand the source structure using the process
indicated in theProcess  objectp. The service request may fail if the process is not connected.

The following example starts with a program object, gets the first child (which is a module), expands
it, then prints the names of the functions contained within the module.

Process p;

SourceObj pgm = p.get_program_object();

SourceObj mod = pgm.child( 0 );

assert ( mod.src_type() == SOT_module );

mod.bexpand( p );

int count = mod.child_count();

for (int i=0; i < count; i++) {

SourceObj func = mod.child(i);

cout << func.get_demangled_name() << endl;

}

2.4.3 Selecting and Identifying Instrumentation Points
Instrumentation points are locations in the program instruction stream where instrumentation code
(probes) may be placed. Probes are executed any time the program executes that part of the code, for
as long as the probes are in place. Instrumentation points represent locations in the program that, in
some sense, are reasonably “safe” to insert new code. Examples of such locations are function entry,
function exit, and call sites to other functions.

Instrumentation points are obtained from source objects at the function level or lower using the
point  or all_point  functions. Both functions accept an integer index value as an input value and
return an instrumentation point as the result. The index must be in the range of 0 to
point_count ()-1 or 0 toall_point_count ()-1, respectively. The difference between the two
functions is thatpoint  gives access to instrumentation points that are only tied to the given source
object. In contrastall_point  gives access to all instrumentation points associated with the given
source object and all of its lower levels in the source object hierarchy.

SourceObj func = ...;

assert ( 0 <= i && i < point_count() );

InstPoint ipt = func.point(i);



Introduction to DPCL Concepts Draft

7/13/98 Copyright 1998 by IBM Corp. chapter2.chp 26

One may query instrumentation points for different attributes, such as the instrumentation point type,
location type, source object container, and approximate line number in source. The instrumentation
point type is a value that reflects whether the instrumentation point represents a function entry point, a
function exit point, a function call site (where another function is called),etc. The available values are
contained within theInstPtType  enumeration data type. They may be obtained through the
get_type  member function.

The instrumentation point location type reflects whether the instrumentation will come before the
point in question, after the point in question, or replace it altogether. An instrumentation point repre-
sents a single instruction or a small collection of instructions in the instruction stream. Instrumenta-
tion at a point includes a branch instruction to the instrumentation site so the amount of work that can
be done in the instrumentation is not limited to the number of instructions that are replaced within the
instruction stream. When instrumentation is placed before or after a point, the replaced instructions
are executed as part of the instrumentation code. The location type is represented by theInstPtLo-
cation  enumeration data type. It may be obtained using the functionget_location .

The source object container is simply the source object that originally generated the instrumentation
point. When the instrumentation point is retrieved using thepoint  function, the result of the
get_container  function will always match the invoking object. When the instrumentation point
is retrieved using theall_point  function, the result ofget_container  may not. For example,
consider the following code fragment.

SourceObj func = ...;

InstPoint pt = func.point(i);

SourceObj sop = pt.get_container();

InstPoint apt = func.all_point(j);

SourceObj soap = apt.get_container();

In this code fragmentsop , the container source object ofpt , the instrumentation point, will always
matchfunc , the source object originally used to retrieve the instrumentation point. This is so
because the functionpoint  was used, andpoint  may only retrieve instrumentation points that are
immediately contained within a source object. In contrast,soap  andfunc  may or may not match
depending on whether the instrumentation point obtained was contained within the source object
func  or a child object. If the instrumentation point is contained withinfunc  they would match. If it
is contained within a child offunc  they would not match.

The functionget_line  queries the instrumentation point for its approximate location in source
code. Code transformations that take place in the optimization phases of compilers rearrange the pro-
gram in many complicated ways. Loop fusion, fission, and splitting, common sub-expression elimina-
tion, invariant code motion, and many other transformations create a complicated relationship
between the source code the programmer wrote and the instruction stream that is actually executed by
the machine. For this reason it is often difficult to determine precisely what line or lines of source
code were responsible for creating a particular instruction in the program. Even so, this is not to say
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that a good approximation cannot be obtained.get_line  returns the best approximation available.

2.4.4 Selecting Application Data
To be provided in a later release.

2.5 Instrumentation in an Application’s Instruction Stream
Instrumentation of an application comes in three forms. One may create instrumentation that is time
activated, that is, it is activated by the expiration of an interval timer. One may execute an Inferior
Remote Procedure Call (IRPC). IRPCs are pieces of code that are executed exactly once then
removed. The process is stopped wherever it happens to be executing. The IRPC is then installed
inside the application, executed, and removed. Afterwards the process resumes execution where it
was stopped. Periodically activated instrumentation is described in Section 2.9, “Periodically Acti-
vated Instrumentation (Phases)” on page 33. IRPCs are described in Section 2.10, “Single Execution
Instrumentation (IRPCs)” on page 33.

The third kind of instrumentation is that which is placed at a particular location within the application
process and executed whenever that part of the application is executed. This form of instrumentation
is the topic of this section. It requires the creation of simple instruction sequences, calledprobe
expressions, that serve as the instrumentation code. Probe expressions may perform conditional con-
trol flow, integer and pointer arithmetic, bit-wise operations, and call functions. When complicated
instrumentation is needed, such as iteration, recursion, or manipulating complex data structures, one
may call a function written in a standard language such as C to perform the complex operations.

2.5.1 Creating a Probe Expression
One of the most important notions to understand is that probe expressions within the end-user-tool are
data structures. They are data structures that represent executable segments of code when they are
installed and activated within an application. To make it easier to create the desired data structures the
common operators have been overloaded in such a way that expressions involving probe expressions
and operators almost always create new data structures, rather than executing the expression locally
on the client. For example,

ProbeExp pe3 = pe1 + pe2;

creates a data structure that represents the addition of the subexpressionspe1  andpe2 . The addition
is not executed in the end-user-tool, where the above statement may be found. Instead the above
expression is formed into a data structure that may later be installed and activated within a process.
Once the probe is activated, if the application executes the instruction at the instrumentation point, the
probe will be executed and the addition will be performed at that time.

Probe expressions are like statements and expressions in a procedural language like C. There are no
input parameters nor return values, because they are not functions. They are segments of code that
operate within their own context so they need not interfere with the hosting application, but they also
share some portions of the application’s context so they can gather needed information and influence
the application’s behavior when desired.
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The vast majority of the operators in C++ have been defined for probe expressions to create data
structures rather than be executed directly within the end-user-tool. This includes arithmetic operators
(+, - , * , / , %), bit-wise operators (<<, >>, ~, ^ , &, | ), relational operators (<, >, ==, != , <=, >=),
logical operators (&&, || , ! ), assignment operators (+=, -= , *= , /= , %=, <<=, >>=, ^= , &=, |= ),
increment and decrement operators (++, -- ), and dereference operators (* , [] ). There are two nota-
ble exceptions. Whenever any of the listed operators are used with probe expressions, they create a
new probe expression data structure that represents the same operation as if it were executed within a
C program using integer or pointer operands.

There are two important omissions to the above list of operators. They are simple assignment (=) and
the unary address operator (&). The assignment operator cannot be overloaded without causing simple
expression manipulation to become unwieldy. Secondly, the unary address operator cannot be over-
loaded because it is used in passing arguments to functions that use call-by-reference. So these two
operators retain their original semantics. “a = b ” performs an assignment of probe expressionb into
probe expressiona within the end-user-tool. “&a” takes the address of the probe expression objecta
within the end-user-tool. Neither operator creates a new probe expression.

Simple assignment and the unary address operators have other functions that create appropriate probe
expressions. For assignment the member function is calledassign . For the unary address operator
the member function is calledaddress .

ProbeExp pea = pe1.assign(pe2);

This example assigns the value computed by the probe expressionpe2  into the storage location indi-
cated bype1 . The expressionpea  then represents that assignment. The next example shows how one
might build an expression that represents taking the address of an object.

ProbeExp peb = pe.address();

There are additional functions that create probe expressions although they do not have corresponding
operators associated with them. Examples arecall , ifelse  andsequence . call  allows one to
call a function from within a probe expression.ifelse  allows one to perform conditional control
flow within the probe expression.sequence  allows one to chain multiple expressions together,
much like a semicolon or comma operator does in C.

As mentioned before, the equality operator (==) is defined to create a new probe expression. That
means some other function must be used to determine whether two probe expressions are the same.
That function is calledis_same_as .

Probe expression operands may be constants, other probe expressions, or data objects. Data objects
may be application data variables, temporary probe stack objects, or persistent probe data objects.
Data objects are described in more detail in Section 2.6, “Probe Data” on page 30.

2.5.2 Installing a Probe Expression
Probe expressions when they reside within the end-user-tool are passive data objects. In order to exe-
cute them as code they must be first installed within an application process, then the installed probes
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must be activated. Activated probes have the ability to send data back to the end-user-tool, so the end-
user-tool must be prepared for that.

Probe installation requires four pieces of data. It requires the probe expression to be installed, the
location where the expression is to be installed, a callback function to handle data sent by the probe
expression, and a tag field for the callback function. The installation procedure returns a special probe
handle for each probe expression that is installed. Probe handles may be used to identify the probe,
which is needed to activate, deactivate, and remove probes from a process.

The installation interface also allows multiple probe expressions to be installed within a process at a
time. If one probe expression fails to install, the interface does not install any probes for that call. This
allows a tool to create a series of related probes that depend upon each other. For example, a pair of
probes might turn a timer on and off. Either probe would be useless without the other, and in fact if
for some region of code only one of the probes were installed it might produce inaccurate or inconsis-
tent data. The general form is

Process p = ...;

p.binstall_probe(count, pe, ip, cb, tag, ph);

wherepe  is an array of probe expressions,ip  is an array of instrumentation points,cb  is an array of
pointers to callback functions that will process any data sent from probes,tag  is an array of tags that
will be used when the callback is activated,ph  is an array of probe handles that serve as identifiers for
the probes, andcount  is the number of elements in each array.

A second method of installing probes uses a non-blocking service request. In this case the request is
sent but control is returned immediately to the caller. The function does not wait until the request suc-
ceeds or fails. Instead, a callback function is provided that will process the acknowledgement of suc-
cess or failure when it arrives.

Process p = ...;

p.install_probe(count, pe, ip, cb, tag, ackcb, acktag, ph);

ackcb  andacktag  are the acknowledgement callback function pointer and tag, respectively. While
most of the other fields are arrays,ackcb  andacktag  are single values.

2.5.3 Activating a Probe Expression
After a set of probes have been installed in an application they remain passive objects until they are
activated. Activation links the probes into the application code so that when the application executes
the instrumentation point, the instrumentation is automatically executed as well. The probe expres-
sions must have been previously installed, and therefore may be identified by their probe handles.

Probe activation has both blocking and non-blocking interfaces. The blocking interface is the simpler
of the two.

p.bactivate_probe(count, ph);

The non-blocking interface is very similar.
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p.activate_probe(count, ph, ackcb, acktag);

ackcb  andacktag  are the acknowledgement callback function pointer and tag, respectively.

2.5.4 Deactivating a Probe Expression
Once a probe has been installed and activated in an application process it is possible to suspend the
probe without removing it completely. This saves time and effort when the probe is to be temporarily
suspended and later restarted. Probe deactivation has both blocking and non-blocking interfaces. The
blocking interface is shown first.

p.bdeactivate_probe(count, ph);

The non-blocking interface is very similar.

p.deactivate_probe(count, ph, ackcb, acktag);

ackcb  andacktag  are the acknowledgement callback function pointer and tag, respectively.

Both functions accept an array of probe handles as an input argument.

2.5.5 Removing a Probe Expression
Two major benefits of dynamic instrumentation are that instrumentation may be added when it is
needed, and that it may be removed when it is no longer needed. Instrumentation that has been
installed may be removed whether it is active or has been deactivated. Once it is removed it must be
re-installed in order to use it again. Probe removal has both blocking and non-blocking interfaces. The
blocking interface is shown first.

p.bremove_probe(count, ph);

The non-blocking interface is very similar.

p.remove_probe(count, ph, ackcb, acktag);

ackcb  andacktag  are the acknowledgement callback function pointer and tag, respectively.

2.6 Probe Data
Probes, like most programming vehicles, typically require both scratch space for data and data that
persists from one invocation to the next. In high level languages they may be described as automatic
or stack space, and static or global space. DPCL offers similar concepts. Specifically, DPCL allows
one to dynamically allocate persistent data on an application or on a process-by-process basis. Allo-
cated data may have initial values specified at the time of allocation. Once data is allocated it may be
used within probe expressions, passed to functions, and used in various ways within the instrumenta-
tion. This type of allocation is dynamically managed by the end-user-tool, but it behaves like global
data to the probe expression that uses it. Temporary scratch data is also available to probe expres-
sions. DPCL maintains its own stack space where it stores temporary data and the actual parameters
in function calls.
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2.6.1 Persistent Data
Probe persistent data is allocated and deallocated explicitly from the end-user-tool. One may use
either aProcess  or anApplication  object as the invoking object for the operation. Persistent
data allocation has both blocking and non-blocking interfaces. The blocking interface is shown first.

ProbeExp pd1 = p.bmalloc(Ais_int32, (void*)&it, st);

ProbeExp pd2 = p.bmalloc(Ais_int32, (void*)&it, ps, st);

The non-blocking interface is very similar.

ProbeExp pd3 = p.malloc(Ais_int32, (void*)&it, cb, tg, st);

ProbeExp pd4 = p.malloc(Ais_int32, (void*)&it, ps, cb, tg, st);

cb  andtg  are the acknowledgement callback function pointer and tag, respectively.

In these examplesAis_int32  represents the data type of the object to be allocated. In this case it is
the 32-bit integer concrete data type. Other types and sizes may be allocated as well.it  is the initial
value of the object. Immediately after allocating the object the object will be set to the value indi-
cated. If a null pointer is passed in the initial value of the object is zero.st  is a special status value
that indicates whether the request was successful (in the blocking case), or at least successfully
requested (in the non-blocking case).

Data deallocation has similar blocking and non-blocking interfaces.

p.bfree(pe);

p.free(pe, callback, tag);

Daemon processes track the persistent data used by every probe expression. When data is deallocated,
all probes that depend on the existence of that data are immediately removed.

2.6.2 Temporary Data
Probe temporary data is allocated automatically each time the probe expression is executed, and deal-
located when the probe expression completes. Temporary data does not require an explicit service
request through aProcess  orApplication  object, as is required for persistent data. Instead, new
stack objects are created as probe expressions within the end-user-tool, and may be included within
other probe expressions as part of the local data structure. When the probe expression is installed
within the application process, the various references to stack objects are resolved to determine how
much stack space is needed and where the stack data is to be allocated. The interface is as follows:

ProbeExp pe = Ais_int32.stack((void*)&init_val);

This example generates a reference to a new stack variable with a data type of 32-bit signed integer.
Its initial value is stored ininit_val . If a null pointer is passed as an argument, an initial value of
zero is used. When any reference to this stack variable is included within a probe expression, the dae-
mon will assign a location on the stack at the time the expression is installed, and space will be allo-
cated at the time the expression is executed.
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2.6.3 Probe Data Types
To be provided in a later release.

2.6.3.1 Creating Data from Built-in Probe Data Types

2.7 Passing Messages from Probes to Tools
Once the probe expression is installed and executed, to be useful it needs to be able to communicate
data back to the client. DPCL provides a “send” function for this purpose. The send function needs to
know what data to send, how large the data is, and to whom it is to be sent. The data to be sent takes
the form of a character pointer, the size is an integer value that reflects the number of bytes to be sent,
and the addressee is a special probe message handle that identifies the client and callback that are to
receive the message.

2.7.1 Probe Message Send Function
In order to send a message from a probe expression to a client callback one must include a call to the
functionAis_send  as part of the expression. This may be done as follows.

ProbeExp args[3];

args[0] = Ais_msg_handle;

args[1] = msg;

args[2] = int32(msg_size);

ProbeExp pe = Ais_send.call(3, args);

This example sends a message whose reference is stored in the probe expressionmsg, and whose size
is stored in the end-user-tool variablemsg_size . The expressionpe  must be included as part of the
probe expression when it is installed into the application or process.

2.7.2 Probe Message Handles
Probe message handles are data structures that contain the “address” of the message recipient. In
DPCL it is possible to have many end-user-tools connected to many daemons. The significant aspect
of this is that one daemon manages connections to potentially many clients, and each client may have
multiple callbacks that receive data. Each time a probe expression is installed within a process a new
probe handle is created with all the information necessary to route messages from the probe to the
correct client and callback function.

In order to include references to message handles in probe expressions there is a symbol of type
ProbeExp , Ais_msg_handle , that represents a reference to the message handle for that particu-
lar probe expression. Although the reference is the same for all probe expressions within the end-
user-tool, when the daemon installs the probe expression it recognizes and changes the reference to
the correct value for the new probe expression.
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2.8 Probe Modules
To be provided in a later release.

2.8.1 Loading and Removing Probe Modules

2.8.2 Probe Module Functions

2.8.3 Probe Module Data

2.8.4 Probe Module Data Types

2.8.4.1 Creating Data from User-Defined Probe Data Types

2.8.5 Selecting Functions, Data and Data Types in a Module

2.9 Periodically Acti vated Instrumentation (Phases)
To be provided in a later release.

2.9.1 Phase Functions

2.9.2 Phase Data

2.9.3 Application Signal Handlers

2.10 Single Execution Instrumentation (IRPCs)

2.11 Security

2.11.1 Unsecure Authentication

2.11.2 DCE Authentication
To be provided in a later release.
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Glossary

a.out.

Abstract syntax tree.

Acknowledgement.

Activating a probe.

Application.

Application process.

Argument. Seefunction argument.

Asynchronous.

AST. Seeabstract syntax tree.

Authentication.

Begin-phase function. Seephase begin function.

Blocking functions.Seeblocking service requests.

Blocking service requests.

Callback.

Callback function. Seecallback.

Class member function. Seemember function.

Class method.Seemember function.

Client. The AIX process which executes the end-user-tool built upon the API.

Client machine.The machine that executes the client.

Client process. Same asclient.

Conditional control flow.

Control flow.

Daemon.

Data polymorphism.

Deacitivating a probe.

Distributed name server.

DNS. See distributed name server.
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Encryption.

End user tool.

Executable image.

Function argument.

Function parameter.

Inferior remote procedure call (IRPC).

Instruction stream.

Instrumentation.

Instrumentation point.

Intrusiveness.

IRPC. Seeinferior remote procedure call.

Light-weight inferior remote procedure call.

Member function.

Message handle.

Negative acknowledgement.

Non-blocking functions.

Non-blocking service requests.

One-shot instrumentation. Seeinferior remote procedure call.

Parallel application.

Persistent data.

Phase.

Phase begin function.

Phase end function.

Phase iteration function.

Polymorphism.

Positive acknowledgement.

Probe.

Probe activation.
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Probe data.

Probe data type.

Probe deactivation.

Probe expression.

Probe function.

Probe module.

Probe type.

Process.

Process ID.

Process identifier.

Program source object.

Pseudo-synchronous.

Root source object. Seeprogram source object.

Serial application.

Server. One of the daemon processes.

Server machine. Any machine that executes daemon processes.

Server process. Same asserver.

Shared memory.

Signal.

Signal handler.

Single execution instrumentation. Seeinferior remote procedure call.

Single program, multiple data.

Snippet.

Source object.

SPMD. Seesingle program, multiple data.

Stack data.

Super daemon.

Task ID.
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Task identifier.

Trampoline.


