Proceedings

Third Annual Federated
Laboratory Symposium on
Advanced Telecommunications/

Information Distribution
Research Program (ATIRP)

February 2-4, 1999
College Park, MD

98-22

DYNAMIC ELGAMAL PUBLIC KEY GENERATION WITH
TIGHT BINDING-

R. Poovendran, M. S. Corson, J. S. Baras

Institute for Systems Research,
University of Maryland at College Park
College Park, MD 20742
e-mail: {radha, corson, baras}@isr.umd.edu

ABSTRACT

We present a new distributed, group ElGamal public key
generation algorithm which also permits maintenance of a
group-specific, dynamic, individual ElGamal public key in-
frastructure. We parameterize the group with a time-varying
quantity that serves as a distributed mechanism for control-
ling key generation privilege. Our scheme can be viewed as
an alternative to polynomial schemes where, at the time of
the secret construction step, there has to be a third party
or a black bozx to combine the shares. Also, in polynomial
schemes, ot the time of combining, the individual shares
of the secret have to be revealed to the third party. In
our scheme, the common secret can be generated without
ever ezposing the individual shares constructing it. We note
that many of the recently proposed distributed key manage-
ment [2-4] schemes need such group keys for certification
and signing purposes.

INTRODUCTION

In this paper, we present a key generation algorithm that
allows mutually-suspicious members to generate individual
ElGamal public keys, and to jointly generate a group ElGa-
mal public key. This algorithm is based on a non polyno-
mial concept, first presented in [1], that demonstrates the
feasibility of allowing mutually-suspicious parties to gener-
ate a common key. The keys are generated in a dynamic
(i.e. time-varying) manner, and every member contributes a
share (i.e. a secret) in generating the group key. The result-
ing key system is a dynamic, bi-level (individual and group),
group-contained public key infrastructure. We show how
to protect the shares of the individual members involved in
generating the keys. We also show how the generation of the
public keys of individual members can be tied to the group
key generation procedure. In terms of security features,
the new scheme has at least the same level of guarantees
as the basic ElGamal approach and—because of the nature
in which we generate the keys—embeds non-cryptographic

“Prepared through collaborative participation in the Advanced
Telecommunications/Information Distribution Research Program
(ATIRP) Consortium sponsored by the U.S. Army Research Labo-
ratory under the Federal Research Laboratory Program, Cooperative
Agreement DAALQ1-96-0002”

security features into it, further enhancing security. For ex-
ample, breaking the group key for all key updates in our
method is at least equivalent to breaking n different ElGa-
mal keys. Breaking the group public key alone does not
allow the attacker to get access to any future keys.

BASIC IDEA BEHIND OUR SCHEME

Our scheme enables a set of n specific, mutually suspicious,
members to generate a common shared secret such that each
member contributes equally to the common secret without
ever having to reveal it to any other member. The only way
to extract the individual share of a member without his/her
consent is for all the remaining members to collude and also
use the information contained in the current common secret.

Our scheme consists of the following ideas:

1. Providing individual members with a dynamic padding
that helps to hide the individual shares.

2. Making sure that the padding parameters for every
member are different.

3. Making sure that the padding parameter is not de-
rived from any functions, such as one-way hashes.

4. Each member can locally generate its pads at each
iteration.

5. All the participating members can, after combining
the hidden or padded shares of other members, use a
group binding parameter that is dynamic, and locally
computed to remove the net effect of the pads without
ever being able to know the individual shares of other
members.

In order to use such a padding mechanism, we need to make
sure that the padding will lead to perfect secrecy or Shan-
non secrecy, as long as the pads and the individual shares
are chosen independently and uniformly over the valid pa-
rameter range with appropriate modulo arithmetic opera-
tion. Onme important feature of this condition is that the
bit length of the pads should be same as the bit length
of the individual secrets. Once this condition is satisfied,
adding a pad to the secret will lead to another uniformly

471

distributed random number of same bit length which will
also be independent of the pads and the individual shares.
Hence, other members who receive the hidden shares will
not be able to decompose it to obtain the pad or the true
share of a member.

The condition that all the members be able to generate
the common shares locally and still remove the effect of
the pad may appear non-feasible at first glance since we
are not defining the pads to be derived from any standard
cryptographic functions such as hashes. We note that use
of any such function will lead to problems since, (1) if the
padding function is known to any other member, in order
to remove the padding effect at any time the member also
needs to know the input parameters to the hash function
used and hence, nothing can be hidden from any member,
(2) if an external attacker collects enough ciphers and suc-
ceeds in breaking the secret and obtains the inputs to the
hash function at one time, he/she will know it for all other
times.

Hence, the padding function should not have any structure.
However, every valid member must be able to remove the
cumulative effect of the padding and use only the shares to
generate the new common secret. In order to achieve this
goal, each member should be able to locally compute an ap-
propriate group parameter that will, when suitably applied,
nullify the effect of the cumulative padding effect. This pa-
rameter should be such that it is, dynamically updated at
each common secret update step, locally computed by each
member and not transmitted except at the time of initial-
ization, able to remove only the cumulative effects of all
the pads. Furthermore, to prevent any participating mem-
ber from stealing the secrets of other members, the group
parameter should never be able to remove the padding ef-
fect when applied to the combined share that is generated
by combining contributions from less than n members.

This paper shows how these goal are actually achievable.
Apart from the mathematics presented, the necessary algo-
rithm can be summarized for iteration j for a member index
i as follows:

e generate new individual shares

e combine it with the individual dynamic pad to gener-
ate hidden shares

e exchange hidden shares of all the members securely

e compute the new common secret with the pads by
combining all the hidden shares

o use the group binding parameter to remove the cumu-
lative effect of padding.

e use the new common secret to locally update the padding

and the group parameter.

PROPERTIES OF THE NEW KEY
GENERATION SCHEME

The following notation is used to describe the different quan-
tities used in the algorithm:

@;,;: The one-time pad of the ith member at the jth key
update iteration.

6;: The pad binding parameter at the jth key update
iteration.

{Ki,K;'}: Public key pair of the member i. This pair
is assumed to be updated appropriately to key the
integrity and confidentiality of any communication
transaction by and with member :.

FK; j: The Fractional Key (FK) of the ith member at the
jth key update iteration.

HFK; ;: The hidden FK (HFK) of the ith member at the
jth key update iteration.

SK;: The group Shared Key (SK) at the jth key update
instance.

A — B: X: Principal A sends principal B a message X.
Our message format is {{T}, M, j, Msg}Kgl }kr, where

e T;: a real-valued, wallclock time stamp gener-
ated by member i.

e M: denotes the mode of operation with “I” for
Initialization mode, “G” for key Generation mode,
and “R” for key Recovery mode.

j: integer-valued, denotes the current iteration
number.

e Msg: the message to be sent.
e K3': Denotes the private key of the sender S.
e Kp: Public key of the receiver.

In developing the new key scheme, we note that the follow-
ing properties are desirable for a multiparty key generation
scheme:

¢ A FK contributed by a participating member should
have the same level of security as the group SK.

¢ A single participating member, without valid permis-
sions, should not be able to obtain the FK of another
member.

¢ If a FK-generating member has physically failed, been
compromised or removed, the remaining FK-generating
members should be able to jointly recover the FK of
the failed member (this requires not majority voting
but total participation).

472

We note that the first property simply states that the dis-
tributed key generation scheme has to be such that each
FK space has at least the same size as the final secret key
space. Hence, each member may generate FK of different
size but, when combined, they lead to a fixed length shared
secret.

The second property has to do with the need for protection
of individual FKs that is desired due to the absence of a
centralized key generation scheme. In the current scheme,
every member performs an operation to hide its FK such
that, when all the hidden FKs (HFK) and the group param-
eter are combined, the net result is a new secret key. We
note that even if a HFK is known, the problem of obtaining
the actual FK or the secret key needs further computation.
We will describe the requirements of the FK concealment
mechanism in the next section.

If a contributing member physically fails, becomes compro-
mised, or has to leave the multicast group, then it becomes
necessary to replace the existing member with a new mem-
ber. Hence, the newly-elected member should be able to
securely recover the FK generated by the replaced member.
We note that the requirement that an individual member
acting alone not be able to obtain the FKs of other con-
tributing members is similar to protecting individual pri-
vate keys in the public key crypto systems.

DESCRIPTION OF THE MULTIPARTY KEY
GENERATION SCHEME

The following is a list of assumptions regarding the algo-
rithm, some of which may appear rather abstract at first
glance:

o There exist a commutative operator ® which forms a
commutative group, also commonly known as Abelian
group, when operating on the set of keys.

o It is computationally difficult to perform crypt-analysis
on a cryptographically-secure random key by search
methods if the key length is sufficiently large.

o The keys are all L bits in length, and all members
know this length.

¢ The number of participants in generating the secret
key is fixed as n (where n may be a function of ®).

o There is a mechanism for certifying the members par-
ticipating in the key generation procedure, for se-
curely exchanging the quantities required in the al-
gorithm and for authenticating the source of these
quantities.

e Every member has the capability to generate a
cryptographically-secure random number, or a fresh
quantity, of length at least L bits.t

With the assumptions above, we note that the key manage-
ment scheme consists of three major parts:

1. Initialization—consisting of member selection, and se-
cure initial pad and binding parameter generation and
distribution;

2. Key Generation—an iterative process consisting of
fractional, hidden and shared-key generation; and

3. Key Retrieval—required only in the case of a member
node failure or compromise.

INITIALIZATION ALGORITHM

A Group Initiator (GI) first selects a set of n FK-generating
members, and the GI may be one of these members (how it
occurs is not specified and is application-dependent). The
GI then either (1) contacts a Security Manager (SM)—a
third party who is not a FK-generating member—who gen-
erates the initial pads and the binding parameter and dis-
tributes them to the members, or (2) initiates a distributed
procedure among the group members to create these quan-
tities without the aid of a third party. We will focus on only
the SM based initialization.

THIRD PARTY-BASED INITIALIZATION

The initial pads and binding parameter are distributed to
each member i, fori=1,...,n, as

SM — i {{Tsm, I, 1,21, 01 } g1}k,

where o, —its initial one-time pad—is computed such that
011® @2,1©@ ---@ any =6;.

By cryptographically secure, we mean that the generated keys
are not in set of weak keys for the intended encryption/decryption
algorithm. For example, if the generated key is such that if all bits
are ones or all are zeros, then that key may be the easiest first guess
of an attacker. Main idea is to make sure that the key has the highest
possible entropy and hence the highest possible amount of randomness
in its bits.

473

KEY GENERATION ALGORITHM

The key generation algorithm is an iterative process de-
picted in Figure 1. Each iteration j requires as input (in-
dicated as step (0) in the figure) a set of one-time pads
a;j, ¢ = 1,...,n, and the binding parameter #;, which
are obtained from the initialization algorithm for iteration
j = 1, and from the preceding iterations for j > 1. For
simplicity we choose ® = modp, where p is a large odd
prime with p — 1 having very large prime factors.

o ” @%. @FK”.
o, FI%—-—» HFK',J_ SK ; T
4 L Oe1
iteration j —)]
0) 1 2) 3) 5)

Figure 1. Iteration and mappings of the key generation
algorithm

The iterative key generation algorithm consists of the fol-
lowing steps (1)-(5):

1. For ¢ = 1,...,n, a member ¢ randomly picks up a
number FK :Jl with 0 < FK; jl < p—2 and generates

FK;; = of % Here, (FK;},FK;;) is an individ-

ual ElGamal public key pair for the member 1 at time
update j.

2. For i = 1,...,n, a member ¢ generates a quantity
HFK;; = (a;; + FK;;)modp, and then all mem-
bers securely exchange the HFKs and their public FK
asvVi<Im<n,l#m,

P —m: ({11, G, 5, HF K15, FK15} pre1 | YPkom, o1

3. Once the exchange is complete, each member com-
putes the #;;; as .
fir1 =((p—n—23)8; + ¥ ;=) HFK;;)mod (p—1).
= GK;,}I = 0]'+1
GKjs = a® it = [T FK,,; = [T a5,

4. If the resulting group key pair is cryptographically-
insecure for a particular application, all members can
repeat steps (1) - (3) creating a new high quality key

pair.
5. For i = 1,...,n, a member ¢ computes the iteration
update as

aij+1 = (GK;' + FK;})modp.

The steps (1) - (5) present the computational steps for gen-
erating the keys at each update. At the end of step (5), we

have the group private key for the current iteration. We
note the following additional features of the key scheme:

e Although all the members have each HF K;; ;, obtain-
ing the FKj; or a;j41 of another member involves
search in the L-dimensional space, and obtaining their
correct combination involves (n — 1) searches in IL-
dimensional space. Hence, even if a fellow member
becomes an attacker, that rogue member faces nearly
the same computational burden in obtaining the set
of n FKs as an outside crypto analyst; i.e. trust is not
unconditional.

e For such an outside attacker, breaking the system re-
quires either a search in a L-dimensional space to get
8, or in n L-dimensional searches to break individual
secrets of all the members. Access to all n HFKs is
alone insufficient to permit an attacker to determine
the secret key; for that, the attacker must also possess
the current binding parameter § which is time-varying
and never transmitted.

CHOICE ON THE NUMBER OF MEMBERS

Regarding the choice of the number of members, clearly,
the choice of n = 2 is not appropriate for such a scheme.
Although choosing n = 3 does not instantly expose a secret
pad a; when a participating member becomes an attacker
(i.e. a rogue), the following attack—called fractional attack
(FA)—is feasible.

Lemma: When ® is an & function, independent of how non-
trivial the bit-length of the key is, choosing n = 3 permits
a FA.

Proof: Assume that the time instant at which one member
i (1 =1 or 2 or 3) becomes a rogue is j. At this time the
members have values of ay,; = HFK, ; @ HF K3 j, az j =
HFK3’j$HFK1,j, Q35 = HFKl’jGBHFKz,j. Every mem-
ber also has access to the current 8;, and their own FK; ;
({ =1, 2, 3). At this stage, obtaining the o component
of any other member is as computationally intensive as an
outside attacker trying to obtain 6;,. However, if a mem-
ber, say i = 1, is compromised and releases its secret a4 ;,
then each of the other members can use this and compute
FKl’]' = al,j®0]'. Since the 9j+1 = FKl,jQFKz,j@FK;;,j,
each member can now compute the other non-rogue mem-
ber’s FK as well.

This leads to the following

Corollary: When © is an @ function, independent of how
non-trivial the bit-length of the key, the minimum number
of members to prevent a FA by a single rogue member for
the multiparty key scheme is 4.

474

VERIFIABLE SECRET SHARING FOR KEY
GENERATION SCHEME

Since there are multiple entities involved in key genera-
tion, it becomes important to have a mechanism to verify
if the parameters exchanged do contribute to the generated
shared key. The verification steps have to be followed at
(1) SM-based group initialization, (2) Distributed Group
initialization, (3) 6-generation iteration and (4) key recov-
ery.

SM-based Initialization

In the case of the SM-based scheme, each member i needs
to make sure that the SM uses non-trivial values for its a; ;
and ;. Since each member needs to protect its individual
pad value, one method for openly checking correctness of
the pads is to generate a public value that will enable all the
key generating members to check their correctness without
revealing the actual value of the individual pads. Such a
verification technique falls under the category of Verifiable
Secret Sharing (VSS) [5, 6].

If one wants to check if the individual initial pads o;,; given
by the security manager are “good”, the scheme given below
can be used.

1. SM member generates (@;,, 6’;) = (g*i1, ¢%) and sends
the result to all the members (g is the generator of the
group and we assume that it is difficult to perform the
discrete logarithm within the time of interest).

. Each member i can privately verify that g% = g% =
[GZr @i = g% and &;; = g™+, where failure (in-
equality) means that some or all of the given pads
don’t correspond to the given 6.

CONCLUSIONS AND FUTURE WORK!?

We have presented a distributed, group ElGamal public
key generation algorithm which also permits maintenance
of a group-specific, dynamic, individual ElGamal public
key infrastructure, by using the concept of fractional keys,
first introduced in [1]. We parameterize the group with a
time-varying quantity that serves as a distributed mecha-
nism for controlling key generation privilege. We also noted
that the new scheme forces the attacker to break n keys
to have access to the future group keys update process.
Our scheme can be viewed as an alternative to polyno-
mial schemes where at the last step there has to be a third
party or a black box to combine the secret. In polynomial
schemes, at the time of combining, the individual shares of

1“The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government.

the secret have to be revealed to the third party. In our
scheme the secret can be extracted without revealing the
individual shares constructing it. Fundamentally, in the
polynomial scheme, if a third party has access to all the
shares, the third party can uniquely reconstruct the secret.
Such is not the case in our scheme; the third party not
only needs the individual shares but also the group binding
parameter.

REFERENCES

[1] R. Poovendran and S. Corson and J. Baras, “A Dis-
tributed Shared Key Generation Procedure Using Fractional
Keys”, Proceedings of the MILCOM98, OCT, 1998, Boston
MA.

[2] H. Harney, C. Muckenhirn, “GKMP Architecture”, RFC
2093, July 1997.

[3] H. Harney, C. Muckenhirn, “GKMP Specification”, RFC
2094, July 1997.

[4] A. Ballardie, “Scalable Multicast Key Distribution”, RFC
1949, May 1996.

[5] P. Feldman, “A Practical Scheme for Non-Interactive
Verifiable Secret Sharing”, Proc. of IEEE Fund. Comp.
Sci., 427-437, 1987.

[6] T. P. Pedersen, “Non-Interactive and Information-Theoretic

Secure Verifiable Secret Sharing”, Advances in Cryptology -
CRYPTO, LNCS 576:129-140, 1991.

475

