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1 Introduction

This paper is a relatively non-technical review of the pricing of credit swaps, a
form of derivative security that can be viewed as default insurance on loans or
bonds. Credit swaps pay the buyer of protection a given contingent amount
at the time of a given credit event, such as default. The contingent amount
is often the difference between the face value of a bond and its market value,
paid at the default time of the underlying bond. This special case defines a
“default swap.” In return, the buyer of protection pays an annuity premium
until the time of the credit event, or the maturity date of the credit swap,
whichever is first.
Other key credit derivatives include

• Total-return swaps, which pay the net return of one asset class over
another. If the two asset classes differ mainly in terms of credit risk,
such as a treasury bond versus a corporate bond of similar duration,
then the total-return swap is a credit derivative.

• Collateralized debt obligations, which are typically tranches of a struc-
ture collateralized by a pool of debt, whose cash flows are allocated,
according to a specified proritized schedule, to the individual tranches
of the structure.

• Spread options, which typically convey the right to trade bonds at given
spreads over a reference yield, such as a treasury yield.

Credit swaps are perhaps the most popular, currently, of the above types
of credit derivatives. As opposed to many other forms of credit derivatives,
payment to the buyer of protection in a credit swap is triggered by a con-
tractually defined event, that must be documented.

2 The Basic Credit Swap

The basic credit-swap contract is as follows. Parties A and B enter into
a contract terminating at the time of a given credit event, or at a stated
maturity, whichever is first. A commonly stipulated credit event is default
by a named issuer, say Entity C, which could be a corporation or a sovereign
issuer. There are interesting applications, however, in which credit events
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may be defined instead in terms of downgrades, events that may instigate
(with some uncertainty perhaps) the default of one or more counterparties,
or other credit-related occurrences.2 There is some risk of disagreement over
whether the event has in fact occurred. In valuing the credit swap, we will
ignore this documentation or enforceability risk.
In the event of termination at the designated credit event, Party A pays

Party B a stipulated termination amount, possibly contingent. For example,
with the most common form of credit swap, called a default swap, A would
pay B, if termination is triggered by the default of Entity C, an amount that
is, in effect, the difference between the face value and the market value of a
designated note issued by C.
In compensation for what it may receive in the event of termination by

a credit event, Party B pays Party A an annuity, at a rate called the credit-
swap spread, or sometimes the credit-swap premium, until the maturity of
the credit swap, or termination by the designated credit event.
The cash flows of a credit swap are illustrated in Figure 2. The payment

at the default time τ , if before maturity T , is the difference D = 100− Y (τ)
between the face value, say 100, and the market value Y (τ) of the designated
underlying note at τ . The credit-swap annuity coupon rate is denoted U .
In some cases,3 the compensating annuity may be paid as a spread over

the usual plain-vanilla (non-credit) swap rate. For example, if the 5-year
fixed-for-floating interest-rate swap rate is 6 percent versus LIBOR, and if
B is the fixed-rate payer in the default swap, then B would pay a fixed
rate higher than the usual 6 percent. If, for example, B pays 7.5 percent
fixed versus LIBOR, and if the C-issued note underlying the default swap
is of the same notional amount as the interest rate swap, then in this case
we would say that the default-swap spread is 150 basis points. If B is the
floating-rate payer on the interest rate swap, then B would pay floating plus

2At a presentation at the March, 1998 ISDA conference in Rome, Daniel Cunnigham
of Cravath, Swaine, and Moore reviewed the documentation of credit swaps, including
the specification of credit event types such as “bankruptcy, credit event upon merger,
cross acceleration, cross default, downgrade, failure to pay, repudiation, or restructuring.”
The credit event is to be documented with a notice, supported with evidence of public
announcement of the event, for example in the international press. The amount to be paid
at the time of the credit event is determined by one or more third parties, and based on
physical or cash settlement, as indicated in the confirmation form of the OTC credit swap
transaction, a standard contract form with indicated alternatives.
3Discussions with a global bank indicated that of over 200 hundred default swaps,

approximately 10 percent were combined with an interest-rate swap.
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Figure 1: Credit Swap Cash Flows

a spread in return for the usual market fixed rate on swaps, or in effect would
receive fixed less a spread. It is not necessarily the case that the theoretical
default-swap spread would be the same in the case of B paying fixed as in B
paying floating. In general, combining the credit swap with an interest rate
swap affects the quoted credit swap spread, because an interest-rate swap
whose fixed rate is the at-market swap rate for maturity T , but with random
early termination, does not have a market value of zero. For example, if the
term structure of forward rates is steeply upward sloping, then an at-market
interest rate swap to maturity T or credit event time, whichever is first, has
a lower fixed rate than does a plain-vanilla at-market interest-rate swap to
the maturity T . A credit spread of 150 basis points over the at-market plain
vanilla swap rate to maturity T therefore represents a larger credit spread
than does a credit swap, without an interest rate swap, paying a premium of
150 basis points.
Apparently, for corporate names underlying, it is not unusual to see de-

fault swaps in which the payment at default is reduced by the accrued portion
of the credit-swap premium. We will briefly consider this variation below.
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In short, the classic credit swap can be thought of as an insurance con-
tract, under which the insured agent pays an insurance premium in return
for coverage against a loss that occurs at a credit event.
There are in effect two pricing problems:

1. At origination, the standard credit swap involves no exchange of cash
flows, and therefore (ignoring dealer margins and transactions costs),
has a market value of zero. One must, however, determine the at-
market annuity premium rate U , that for which the market value of
the credit swap is indeed zero. This at-market rate is sometimes called
the market credit-swap spread, or simply the credit-swap premium.

2. After origination, changes in market interest rates and in the credit
quality of the reference entity C, as well as the passage of time, typically
change the market value of the default swap. For a given credit swap,
with a stated annuity rate U , one must determine the current market
value, which is not generally zero.

When making markets, the former pricing problem is the more critical.
When hedging or conducting a mark-to-market, the latter is relevant. So-
lution methods for the two problems may call for similar capabilities. The
latter problem is more challenging, generally, as there is less liquidity for
off-market default swaps, and pricing references, such as bond spreads, are
of relatively less use.

The next section considers simple credit swaps. The following sections
consider extensions. We will not consider more “exotic” forms of credit
swaps, such as first-to-default swaps, for which the credit event time τ is the
first of the default times of a given list of underlying notes or bonds, with
a payment at the credit event time that depends on the identity of the first
of the underlying bonds to default. For example, the payment could be the
loss relative to face value of the first bond to default.
We will assume throughout that the credit swap counterparties A and B

are default free, so as to avoid here the pricing impact of default by counter-
parties A and B, which can be treated by the first-to-default results in Duffie
(1998b).
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3 Simple Credit-Swap Spreads

For this section, we assume that the contingent payment amount specifed in
the credit swap is the difference D = 100− Y (τ) between the face value and
the market value Y (τ) at the credit event time τ of a note issued by Entity
C, at the time of the credit event.
We will explain the pricing in stages, adding complications as we go.

3.1 Credit-Swap Spreads: Starter Case

Our assumptions for this starter case are as follows.

1. There is no embedded interest-rate swap. That is, the default swap is an
exchange of a constant coupon rate U paid by Party B until termination
at maturity or by the stated credit event (which may or may not be
default of the underlying C-issued note.) This eliminates the need to
consider the value of an interest-rate swap with early termination at a
credit event.

2. There is no payment of the accured credit-swap premium at default.

3. The underlying note issued by C is a par floating rate note (FRN) with
the maturity of the credit swap. This important restriction will be
relaxed.

4. It is costless to short the underlying FRN, for example through a re-
verse repurchase agreement, or “repo.”4 That is, we suppose for now
that one can enter into a reverse repo, receiving the general collateral
rate (GCR), repeatedly rolling the open repo position overnight to any
desired date.

5. There exists a default-free FRN, with floating rate Rt at date t. The
coupon payments on the FRN issued by C (C-FRN) are contractually
specified to be Rt + S, where the spread S is fixed. In practice, FRN

4Under the repo contract, for a given term and repo rate, one receives the C-issued FRN
as collateral on a loan with the repo counterparty, and returns the collateral at the end of
the term of the repo. At term, one also receives the principal of the loan plus interest at
the specified repo rate. The specific collateral is on special if the associated repo rate is
below the general collateral rate, which can be thought of as the riskless interest for the
specified term. See, for example, Duffie (1996).
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spreads are usually relative to LIBOR, or some other benchmark float-
ing rate that need not be a pure default-free rate. There is no difficulty
for our analysis if the pure default-free floating rate Rt and the refer-
ence, say LIBOR, rate Lt differ by a constant. One should bear in mind
that the short-term treasury rate is not a pure default-free interest rate,
because of repo specials and the “moneyness” of treasuries5 or tax ad-
vantages of treasuries. A better benchmark for risk-free borrowing is
the term general collateral rate, which is close to default-free, and has
typically been close to LIBOR, with a slowly varying spread to LIBOR,
in US markets. For example, suppose the C-FRN is at a spread of 100
basis points to LIBOR, which in turn is at a spread to the general
collateral rate which, while varying over time, is approximately 5 basis
points. Then, for our purposes, an approximation of the spread of the
C-FRN to the default-free floating rate would be 105 basis points.

6. There are no transactions costs, such as bid-ask spreads, in cash mar-
kets for the default-free or C-issued FRN. In particular, at the initiation
of the credit swap, one can sell, at its market value, the underlying C-
FRN. At termination, one can buy, at market value, the C-FRN.

7. The termination payment given a credit event is made at the immedi-
ately following coupon date on the underlying C-issued note. If not,
there is a question of accrued interest, which can be accomodated by
standard time-value calculations shown below.

8. The credit swap is settled, if terminated by the stated credit event, by
the physical delivery of the C-FRN in exchange for cash in the amount
of its face value. (Many credit-swaps are cash-settled, and as yet neither
physical nor cash settlement seems to be a predominant standard.)

9. Tax effects can be ignored. If not, the calculations to follow apply after
tax, using the tax rate of investors that are indifferent to purchasing
the default swap at its market price.

With these assumptions in place, one can “price” the credit swap, that
is, compute the at-market credit-swap spread U , by the following arbitrage

5Treasuries are often useful as a medium of exchange, for example in securities trans-
actions that are conducted by federal funds wire, or for margining services. This conveys
extra value.
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argument, based on a synthesis of Party B’s cash flows on the credit swap.

Figure 2: Synthetic Credit Swap Cash Flows

One can short the par C-issued FRN for an initial cash receivable of, say,
100 units of account, and invest this 100 in a par default-free FRN. One
holds this portfolio through maturity or the stated credit event, whichever is
earlier. In the meantime, one pays the coupons on the C-FRN and receives
the coupons on the default-free FRN. The net paid is the spread S over the
default-free floating rate on par C-FRNs.
If the credit event does not occur before maturity, then both notes mature

at par value, and there is no net cash flow at termination.
If the credit event does occur before maturity, then one liquidates the

portfolio at the coupon date immediately after the event time, collecting
the difference D = 100− Y (τ) between the market value of the default-free
FRN (which is par on a coupon date) and the market value of the C-FRN.
(Liquidation calls for termination of the short position in the C-FRN, which
involves buying the C-FRN in the market for delivery against the short, say
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through the completion of a repo contract.)
As this contingent amount D is the same as that specified in the credit

swap contract, the absence of arbitrage implies that the unique arbitrage-
free at-market credit-swap spread U is S, the spread over risk-free on the
underlying floating-rate notes issued by C. (Combining the above strategy
with A’s cash flows as the seller of the credit swap results in a net constant
annuity cash flow of U−S, until maturity or termination. We must therefore
have U = S if there is no arbitrage for A or B, and no other costs.)
This arbitrage, under its ideal assumptions, is illustrated in Figure 2.

3.2 The Reference Par Spread for Default Swaps

We can relax the restrictive assumption that the underlying note has the
same maturity as the credit swap, provided the credit swap is in fact a
default swap. In that case, the relevant par spread S for fixing the credit
swap spread is that of a possibly different C-issued FRN which is of the same
maturity as the credit swap, and of the same priority as the underlying note.
We call this the “reference C-FRN.” Assuming absolute priority applies at
default, so that the underlying note and the reference note have the same
recovery value at default, the previous arbitrage pricing argument applies.
This argument works, under the stated assumptions, even if the underlying
note is a fixed-rate note of the same seniority as the reference C-FRN.
There are some cautions here. First, there may often be no reference

C-FRN. Second, absolute priority need not apply in practice. For example,
a senior short-maturity FRN and a senior long-maturity fixed-rate note may
represent significantly different bargaining power, especially in a reorganiza-
tion scenario at default.

3.3 Adding Repo Specials and Transactions Costs

Another important and common violation of the assumptions in the previous
“starter case” is the ability to freely short the reference FRN issued by C
(“C-FRN”). A typical method of shorting securities is via a reverse repo
combined with a cash sale. That is, through a reverse repo, one can arrange
to receive the reference note as collateral on a loan to a given term. Rather
than holding the note as collateral, one can immediately sell the note. In
effect, one has then created a short position in the reference note through
the term of the repo.
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In many cases, one cannot arrange a reverse repo at the general collateral
rate (GCR). Instead, if the reference note is “scarce,” one may be forced to
offer a repo rate that is below the GCR in order to reverse in the C-FRN as
collateral. This is called a repo “special.” (See, for example, Duffie (1996).)
Moreover, one may expend resources in arranging the repo (especially if the
C-FRN is rare or otherwise difficult to obtain). In addition, particularly with
risky FRNs, there may be a substantial bid-ask spread in the market for the
reference FRN at initiation of the repo (when one sells) and at termination
(when one buys).
Suppose that one can arrange a term reverse repo collateralized by the

C-FRN, with maturity equal to the maturity date of the credit swap. We also
suppose that default of the collateral triggers early termination of the repo
at the originally agreed repo rate. (This is the case in many jurisdictions.)
The term repo special is the difference Y between the term general col-

lateral rate (GCR) and the term specific collateral rate for the C-FRN. In
order to short the C-FRN, one would then effectively pay an extra annuity
of Y , and the default-swap spread would be approximately S + Y .
If the term repo does not necessarily terminate at the credit event, this

is not an exact arbitrage-based spread. Because the probability of a credit
event well before maturity is typically small, however, and because term repo
specials are often small, the difference may not be large in practice.6

For the synthesis of a short position in the credit swap, one purchases
the C-FRN and places it into a term repo in order to capture the term repo
special.
If there are also transactions costs in the cash market, then the credit-

swap broker-dealer may incur risk from uncovered credit-swap positions, or
transactions costs, or some of each, and in principle may charge an additional
premium. With two-sided market making and diversification, it is not clear
how quickly these costs and risks build up over a portfolio of positions. We
will not consider these effects directly here. In practice, for illiquid entities,
the credit-swap spread can vary substantially from the reference par FRN
spread, according to discussions with traders.
We emphasize the difference between a transactions cost and a repo spe-

cial. The former simply widens the bid-ask spread on a default swap, in-
creasing the default-swap spread quoted by a broker-dealer who sells a credit

6If the term repo rate applies to the credit-swap maturity, then S+Y is a lower bound
on the theoretical credit-swap premium.
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swap, and reducing the quoted default-swap when a broker-dealer is asked
by a customer to buy a default swap from the customer. A repo special,
however, is not itself a transaction cost; but rather can be thought of as an
extra source of interest income on the underlying C-FRN, effectively chang-
ing its spread relative to the default free rate. The existence of substantial
specials, which raise the cost of providing the credit swap, do not necessarily
increase the bid-ask spread. For example, in synthesizing a short position in
a default swap, one can place the associated long position in the C-FRN into
a repo position and profit from the repo special.
In summary, under our assumptions to this point, a dealer can broker a

default swap (that is, take the position of Party A) at a spread of approxi-
mately S + Y , with a bid-ask spread of K, where

1. S is the par spread on a “reference” floating-rate note issued by the
named entity C, of the same maturity as the default swap, and of the
same seniority as the underlying note.

2. Y is the term repo special on par floating-rate notes issued by C, or
otherwise an estimate of the annuity rate paid, through the term of the
default swap, for maintaining a short position in the reference note to
the termination of the credit swap.

3. K reflects any annuitized transactions costs (such as cash-market bid-
ask spreads) for hedging, any risk premium for un-hedged portions of
the risk (which would apply in imperfect capital markets), overhead,
and a profit margin.

In practice, it is usually difficult to estimate the effective term repo spe-
cial, as default swaps are normally of much longer term than repo positions.
There have apparently been cases in which liquidity in a credit-swap has been
sufficient to allow some traders to quote term repo rates for the underlying
collateral by reference to the credit-swap spread!

3.4 Payment of Accrued Credit-Swap Premium

Some credit swaps, more frequently on corporate underlying bonds, specify
that the buyer of protection must, at default, pay the credit-swap premium
that has accrued since the last coupon date. For example, with a credit swap
spread of 300 basis points and default one third of the way though the current
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semi-annual (say) coupon period, the buyer of protection would receive face
value less recovery value of the underlying, less one third of the semi-annual
annuity payment, which is 0.5% of the underlying face value.
For reasonablly small default probabilities and inter-coupon periods, the

expected difference in time between the credit event and the previous coupon
date is approximately one half of the length of an inter-coupon period. Thus,
for pricing purposes in all but extreme cases, one can think of the credit swap
as equivalent to payment at default of face value less recovery value less one
half of the regular default swap premium payment.
For example, suppose there is some h > 0 that is the risk-neutral Poisson

mean arrival rate of the credit event. Then one estimates a reduction in
the at-market credit-swap spread for accrued premium, below that spread S
appropriate without the accrued-premium feature, of approximately hS/(2n),
where and n is the number of coupons per year of the underlying bond. For
a pure default swap, S is smaller than h because of partial recovery, so
this correction is smaller than h2/(2n), which is negligible for small h. For
example, at semi-annual credit swap coupon intervals and a risk-neutral mean
arrival rate of the credit event of 2% per year (or 200 basis points), we have
a correction of under 1 basis point for this accrued premium effect.

3.5 Accrued Interest on the Underlying Notes

For purposes of the synthetic arbitrage calculation described above, there is
a question of accrued interest payment on the default-free floating rate note.
The typical credit swap specifies payment of the difference between face

value without accrued interest and market value of the underlying note. The
above described arbitrage portfolio (long default-free floater, short default-
able floater), however, is worth face value, plus accrued interest on the default-
free note, less recovery on the underlying defaultable note. If the credit event
involves default of the underlying note, then the previous arbitrage argument
is not quite right.
Consider, for example, a one-year default swap with semi-annual coupons.

Suppose the LIBOR rate is 8 percent. The expected value of the accrued
interest on a default-free note at default is thus approximately 2 percent
of face value, for small default probabilities. Suppose the annualized risk-
neutral mean arrival rate of the credit event is 4 percent. Then there is a
reduction in market value of the credit swap to the buyer of protection of
roughly 8 basis points of face value, and therefore a reduction of the at-market
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credit-swap spread of roughly 8 basis points.
More generally, for credit swaps of any maturity, and with relatively small

and constant risk-neutral default probabilities and relatively flat term struc-
tures of default-free rates, the reduction in the at-market credit-swap spread
for the accrued-interest effect, below the par floating rate-spread plus ef-
fective repo special, is approximately hr/(2n), where h is the risk-neutral
Poisson arrival rate of the credit event, r is the average of the default-free
forward rates through credit-swap maturity, and n is the number of coupons
per year of the underlying bond. Of course, one could work out the effect
more precisely with a term structure model, as mentioned below.

3.6 Approximating the Reference Floating-Rate Spread

If there is no available par floating rate note of the same credit quality, whose
maturity is that of the default swap, then one could attempt to “back out”
the reference par spread S from other spreads. For example, suppose that
there is an FRN issued by C of the swap maturity, and the same seniority
as the underlying, that is trading at a price p, which is not necessarily par,
and paying a spread of Ŝ over the default-free floating rate. Let A denote
the associated annuity price, that is, the market value of an annuity paid at
a rate of 1 until the credit-swap termination (its maturity, or default of the
underlying note, whichever is first).
For reasonably small credit risk and interest rates, A is close to the

default-free annuity price, as most of the market value of the credit risk
of a FRN is associated in this case with potential loss of principal. We will
return below to consider a more precise computation of A.
As the difference between a par and a non-par FRN with the same matu-

rity is the coupon spread (assuming the same recovery at default), we have

p− 1 = A(Ŝ − S),
where S is the implied par spread. Solving for the implied par spreads, we
have

S = Ŝ +
1− p
A
.

With this, we can estimate the reference par spread S.
If the relevant price information is for a fixed-rate note issued by C of the

reference maturity and seniority, then one can again resort to the assumption
that its recovery of face value at default is the same as that of a par-floater of
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Figure 3: Term structures of bond and default-swap spreads.

the same seniority. (This is again reasonable on legal grounds in a liquidation
scenario.) One can again attempt to “back out” there reference par floating
rate spread S.
Spreads over default-free on par-fixed-rate and par-floating-rate notes are

approximately equal.7 Thus, if the only reference spread is a par fixed spread
F , then it would be reasonably safe to use F in place of S in estimating the
default-swap spread.

7The floating-rate spread is known theoretically to be slightly higher with the typical
upward-sloping term structure, but the difference is typically on the order of 1 basis point
or less on a 5-year note per 100 basis points of yield spread to the default-free rate. Again,
see Duffie and Liu (1997) for details.
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For example, Figure 3 shows a close relationship between the term struc-
tures of default-swap spreads and par fixed-coupon yield spreads for the
same credit quality.8 Some of the difference shown in Figure 3 between the
default default-swap spread and the par fixed-coupon yield spread is in fact
the accrued-interest effect discussed in the previous sub-section.
If the reference pricing information is for a non-par fixed-rate note, then

we can proceed as before. Let p denote the price of the available fixed-rate
note, with spread F̂ over default free. We have

p− 1 = A(F̂ − F ),
where A is again the annuity price to maturity or default, whichever is first.
With an estimate of A, we thus obtain an estimate of the par fixed spread
F , which in turn is a close approximation of the par floating-rate spread S,
which is the quantity needed to compute the default-swap spread.
It is sometimes said that if the underlying is a fixed-rate bond, then the

reference par floating-rate spread may be taken to be the asset-swap spread.
The usefulness of this assumption is considered in the last section of this
note.

4 Estimating Hazard Rates and Defaultable

Annuity Prices

The hazard rate for the credit event is the arrival rate, in the sense of Poisson
processes. For example, a constant hazard rate of 400 basis points represents
a mean arrival rate of 4 times per 100 years. The mean time to arrival,
conditional on to arrival to date t, remains 25 years, for any t.
This section contains some intermediate calculations that can be used to

estimate implied hazard rates and the annuity price A described above. For
small hazard rate h, the probability of defaulting during a time period small

8This figure is based on an illustrative correlated multi-factor Cox-Ingersoll-Ross model
of default free-short rates and default arrival intensities. The short-rate model is a 3-factor
CIR model calibrated to recent behavior in the term structure of LIBOR swap rates. The
risk-neutral default-arrival intensity model is set for an initial arrival intensity of 200 basis
points, with 100% initial volatility in intensity, mean-reverting in risk-neutral expectation
at 25% per year to 200 basis points until default. Recovery at default is assumed to be
50% of face value. For details, see Duffie (1998b). The results depend on the degree of
correlation, mean reversion, and volatility among short rates and default arrival intensities.
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length ∆, conditional on survival to the beginng of the period, is approxi-
mately h∆.

4.1 The Case of Constant Default Hazard Rate

We begin by supposing that default occurs at a risk-neutral constant hazard
rate of h. This implies that default occurs at a stopping time that, under
“risk-neutral probabilities,” occurs at the first jump time of a Poisson process
with intensity h. We let

• ai(h) be the value at time 0 of receiving one unit of account at the i-th
coupon date in the event that default is after that date.

• bi(h) is the value at time 0 of receiving one unit of account at the i-th
coupon date in the event that default is between the (i− 1)-th and the
i-th coupon date.

Then
ai(h) = e

−(h+y(i))T (i),

where T (i) is the maturity of the i-th coupon date and y(i) is the continu-
ously compounding default-free zero-coupon yield to the i-th coupon date.
Likewise, under these assumptions,

bi(h) = e
−y(i)T (i)(e−hT (i−1) − e−hT (i)).

The price A of an annuity of one unit of account paid at each coupon
date until default or maturity T = T (n), whichever comes first, is

A(h, T ) = a1(h) + · · ·+ an(h).
The value of a payment of one unit of account at the first coupon date after
default, provided the default date is before the maturity date T = T (n), is

B(h, T ) = b1(h) + · · ·+ bn(h).
Now, we consider a classic default swap:

• Party B pays Party A a constant annuity U until maturity T or the
default time τ of the C-FRN.
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• If τ ≤ T , Party A pays Party B, at τ , 1 unit of account minus the value
at τ of the C-FRN.

Now, suppose that the loss of face value at default carries no risk pre-
mium9 and has an expected value of f .
Then, given the parameters (T, U) of the default-swap contract, and

given the default-risk-free term structure, we can compute the market value
V (h, f, T, U) of the classic default swap as a function of any assumed default
parameters h and f , to be

V (h, f, T, U) = B(h, T )f − A(h, T )U.
The at-market default swap spread U(h, T, f) is obtained by solving V (h, f, T, U) =
0 for U , leaving

U(h, T, f) =
B(h, T )f

A(h, T )
.

For more accuracy, one can easily account for the difference in time be-
tween the credit event and the subsequent coupon date. At small hazard
rates, this difference is just slightly more than one half of the inter-coupon
period of the credit swap, and can be treated analytically in a direct man-
ner. Alterntatively, a simple approximate adjustment can be made by noting
that the effect is equivalent to the accrued-interest effect in adjusting the par
floating rate spread to the credit-swap spread. As mentioned previously, this
causes an increase in the implied default-swap spread that is on the order of
hr/(2n), where r is the average of the inter-coupon default-free forward rates
through maturity. (For a steeply slope forward-rate curve, one can obtain a
better approximation.)
Estimates of the expected loss f at default and the risk-neutral hazard

rate h can be obtained from the prices of bonds or notes issued by the entity
C, from risk-free rates, and from recovery data10 for bonds or notes of the
same seniority.
For example, suppose that some, possibly different, C-FRN sells at a

price of p, has a maturity of T̂ , and has a spread of Ŝ. Suppose the expected

9Recovery risk is sometimes viewed as reasonably diversifiable, and relatively unrelated
to the business cycle. No rigorous test of these hypotheses are available.
10Sources include annual reports by Moody’s and Standard and Poors for bonds, and
Carey (1998) and sources cited therein for loans. The averages reported are typically by
seniority.
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default loss, relative to face value, is f̂ . Under the above assumptions, by
purchase of a risk-free floater and shorting a C-FRN (with no repo specials),
we have a portfolio with market value

1− p = A(h, T̂ )Ŝ +B(h, T̂ )f̂ .
This equation can be solved for the implied risk-neutral hazard rate h.
Provided the reference prices of notes used for this purpose are near par,

there is a certain robustness here associated with uncertainty about recovery,
as an upward bias in f results in a downward bias in h, and these errors
(for small h) approximately cancel each other when estimating the mark-
to-market value V (h, f, T, U) of the default swap. For this robustness, it is
better to use a reference note of approximately the same maturity as that of
the default swap.
If the note issued by C that is chosen for price reference is a fixed-rate

note, with price p, coupon rate c, expected loss at default relative to face
value of f̂ , and maturity T̂ , then we would use the relationship

p = A(h, T )c+B(h, T̂ )(1− f̂),
in order to estimate the risk-neutral hazard rate h.
In order to check the sensitivity of the model to relative choice of intensity

and expected recovery, one can use the intuition that the coupon yield spread
S of a fixed-rate bond is roughly the product of the mean default intensity
and the fractional loss of value at default. This intuition can be given a formal
justification in certain settings, as explained in Duffie and Singleton (1997).
In the same multi-factor CIR setting for interest rates and default intensities
that we considered in Figure 3, we plot in Figure 4, for various par 10-year
coupon spreads (S), at each assumed level w = (1− f) of expected recovery
of face value at default, the risk-neutral mean (set equal to initial) default
intensity h implied by the term-structure model, and that mean intensity
implied by the approximation S = fh.
As one can see, up to a high level of fractional recovery spread S, the

effects of varying h and f are more or less offsetting in the fashion suggested.
(That is, if one over-estimates f by a factor of 2, then for a given refer-
ence coupon rate, one will underestimate h by a factor of roughly 2 using
even a crude term structure model, and the implied par-coupon spread will
be relatively unaffected, meaning that the default swap-spread is also rela-
tively unaffected.) This approximation is more accurate for maturities of less
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than 10 years. The degree to which the approximation works poorly at high
spreads is mainly due to the fact that par spreads are measured on a bond-
equivalent yield (semi-annual compounding) basis, while the mean intensity
is measured on a continuously compounding basis.
If there are multiple reference notes with maturities similar to that of

the underlying default swap, then one could, for example, average their im-
plied hazard rates, or discard outliers and then average, or use non-linear
least-squares fitting, or conduct some similar pragmatic estimation proce-
dure. There may, however, be important differences based on institutional
effects that affect relative recovery. For example, in negotiated workouts, one
investor group may be favored over another for bargaining reasons.
Default swaps seem, at least currently, to be a benchmark for credit

pricing. For example, it is sometimes the case that the at-market default-
swap quote U∗ is available, and one wishes to estimate the implied risk-
neutral hazard rate h. This is obtained from solving U(h, T, f) = U∗ for
h. This market-implied risk-neutral hazard rate is denoted H(U∗, f, T ) for
future purposes. As suggested above, the model result depends more or
less linearly on the modeling assumption for the expected fractional loss at
default. Sensitivity analysis is suggested if the objective is to apply the
intensity estimate to price an issue that has substantially different cash-flow
features than that of the reference default swap.

4.2 The Term Structure of Hazard Rates

If the reference credit pricing information is for maturities different than
that of the credit swap, it is advisable to estimate the term structure of
hazard rates. For example, one could assume that the hazard rate between
coupon dates T (i − 1) and T (i) is h(i). In this case, given the vector h =
(h(1), . . . , h(n)), we have (assuming equal inter-coupon time intervals) the
more general calculations

ai(h) = e
−(H(i)+y(i))T (i),

where

H(i) =
h1 + · · ·+ hi

i
,

and
bi(h) = e

−y(i)T (i)(e−H(i−1)T (i−1) − e−H(i)T (i)).
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With these changes in place, all of our previous results apply. As there is
a well established dependence of credit spreads on maturity, it is wise to
consider the term structure when valuing credit swaps or inferring default
probabilities from credit swap spreads.
When information regarding the shape of the term structure of hazard

rates for the reference entity C is critical but not available, it may be prag-
matic to assume that the shape is that of comparable issuers. For example,
one might use the shape implied by Bloomberg par yield spreads for firms of
the same credit rating and sector, and then to scale the implied hazard rates
to match the pricing available for the reference entity. This is ad hoc, and
subject to the modeler’s judgement.
A more sophisticated approach would be to build a term-structure model

for a stochastically varying risk-neutral intensity process h, as in Duffie
(1998a), Duffie and Singleton (1995), Jarrow and Turnbull (1995), or Lando
(1998). Default-swap pricing is reasonably robust, however, to the model of
intensities, calibrated to given spread correlations and volatilities, according
to tests conducted by the author. For example, Figure 5 shows that default
swap spreads do not depend significantly on how much the default arrival
intensity h is assumed to change with each 100 basis-point change in the
short rates. The effect of volatility of default risk on default-swap spreads
becomes pronounced only at relatively high levels of volatility, as indicated
in Figure 7. For this figure, the volatility is measured in the usual sense
(percentage standard deviation), but at initial conditions, for a CIR style
intensity model. (These figures are based on the same illustrative model
used as a basis for Figure 3.) The effect of volatility arises essentially from
Jensen’s inequality.11

Even the general structure of the defaultable term-structure model may
not be critical for determining default-swap spreads. For example, Fig-
ure 6 shows par-coupon yield spreads for two term-structure models. One
(“RMV”) assumes recovery of 50% market value at default, based on Duffie
and Singleton (1995). The other (“RFV”) assumes recovery of 50% of face
value at default. They have the identical CIR-model for short rates and

11The risk-neutral survival probability to term T for a risk-neutral intensity process h

is, under standard regularity assumptions, given by E∗
[
exp
(
− ∫ T

0
h(t) dt

)]
, where E∗

denotes risk-neutral expectation. See, for example, Lando (1998) for a survey. Because
exp( · ) is convex, more volatility of risk-neutral intensity causes a higher risk-neutral
survival probability, other things equal, and thus narrower credit spreads.
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intensities used in all of our previous illustrations, with the same parame-
ters and initial conditions. Despite the difference in recovery assumptions,
with no atempt to calibrate the two models to given prices, the implied term
structures are rather similar. With calibration to a reference bond of matu-
rity similar to that of the underlying bond, the match of credit-swap spreads
implied by the two models would be closer. (This does not, however, address
the relative pricing of callable or convertible bonds with these two classes of
models.)
Some remarks follow.

• The risk-neutral hazard-rate h need not be the same as the hazard-
rate under an objective probability measure. The “objective” (actual)
hazard rate is never used here.

• Even if intensities are stochastic, the previous calculations apply if
intensities are independent (risk-neutrally) of interest rates. In this
case, we simply interpret hi to be the rate of arrival of default during
the i-th interval, conditional only on survival to the beinning of that
interval. This “forward default rate” is by definition deterministic.
This idea is based on the “forward default probability,” introduced by
Litterman and Iben (1991).

• If the notes used for pricing reference are on special in the repo market,
an estimate of the “hidden” term repo-specialness Y should be included
in the above calculations, as an add-on to the floating-rate spread Ŝ
or the fixed rate coupon c, when estimating the implied risk-neutral
hazard rate h.

• If necessary, one could use actuarial data on default incidence for com-
parison firms, and adjust the estimated actual default arrival rate
ĥ by a multiplicative corrective risk-premum factor, estimated cross-
sectionally perhaps, to incorporate a risk premium.12

• If one assumes “instant” payment at default, rather than payment at
the subsequent coupon date as assumed above, then the factor bi(h) is

12Multiplicative factors are preferred to additive factors, based on general economic
considerations and the form of Girsanov’s Theorem for point processes, as in Protter
(1991). For information on the pricing of notes at actuarially implied default rates, see
for example Fons (1994). Fons does not, however, provide an estimate of default arrival
intensity.
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replaced by
b∗i (h) = e

−(y(i−1)+H(i−1))T (i−1)ki(h(i)),

where

ki(hi) =
h(i)

h(i) + ϕ(i)
(1− exp [−(h(i) + ϕ(i))(T (i)− T (i− 1))]) ,

is the price at time Ti−1, conditional on survival to that date, of a claim
that pays one unit of account at the default time, provided the default
time is before T (i), and where ϕi is the instantaneous default-free for-
ward interest rate, assumed constant between T (i− 1) and T (i). This
can be checked by noting that the conditional density of the time to
default, given survival to T (i − 1), is p(u) = e−hiuhi over the inter-
val [T (i− 1), T (i)]. For reasonably small inter-coupon periods, default
probabilities, and interest rates, the impact of assuming instant recov-
ery, rather than recovery at the subsequent coupon date, is relatively
small.

5 The Role of Asset Swaps

An asset swap is a derivative security that can be viewed, in its simplest
version, as a portfolio consisting of a fixed-rate note and an interest-rate swap
that pays fixed and receives floating, to the stated maturity of the underlying
fixed-rate note. The fixed rate on the interest-rate swap is conventionally
chosen so that the asset swap is valued at par when traded.
It should be noted that the net coupons of the interest-rate swap are

exchanged through maturity even if the underlying note defaults and its
coupon payments are thereby discontinued.
Recently, the markets for many fixed-rate notes have sometimes been less

liquid than the markets for the associated asset swaps, whose spreads are thus
often used as benchmarks for pricing default swaps. In fact, because of the
mismatch in termination with default between interest-rate swap embedded
in the asset swap and the underlying fixed-rate note, the asset-swap spread
does not on its own provide precise information for default-swap pricing. For
example, as illustrated in Figure 8, it is not the case that a synthetic credit
swap can be created from a portfolio consisting of a default-free floater and
a short asset swap.
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The asset-swap spread and the term structure of default-free rates can,
however, together be used to obtain an implied par floating-rate spread, from
which the default-swap spread can be estimated.
For example, suppose an asset swap is at a quoted spread Ŝ to the default-

free floating rate. For the following, we ignore repo specials and transactions
costs, but these can easily be added. Suppose the stated underlying fixed
rate on the note is C and the at-market default-free interest-rate swap rate is
C∗. Then the interest-rate swap underlying the asset swap is an exchange of
floating for C − Ŝ. We can compute the desired par fixed-rate spread F over
the default-free coupon rate of the same credit quality from the relationship
implied by the price of a portfolio consisting of the asset swap and a short
position in a portfolio consisting of a par fixed-rate note of the same credit
quality as the underlying C-issued fixed rate note combined with an at-market
interest rate swap. This portfolio is worth

1− 1 = 0 = A(C − F + C∗) + A∗(C∗ − C + Ŝ), (1)

where A is the defaultable annuity price described above, and A∗ is the
default-free annuity price to the same maturity. All of C,C∗, Ŝ and A∗ are
available from market quotes. Given the defaultable annuity price A, which
can be estimated as above, we can therefore solve this equation for the implied
par fixed-rate spread F . We have

F = C − C∗ − A
∗

A
(C − Ŝ − C∗).

This implied par rate F is approximately the same as the par floating-rate
spread S, which is then the basis for setting the default-swap spread. For
small default probabilities, under our other assumptions, the default-swap
spread S and the par asset-swap spread are approximately the same.
To assume that the asset-swap spread is a reasonable proxy for the

default-swap spread is dangerous for premium or discount bonds, as illus-
trated in Figure 9, which shows the divergence between the term structures
of asset swap spreads for premium (coupon rate 400 basis points over the par
rate), par, and discount (coupon rate 400 basis points under the par rate)
bonds. This figure is based on the same defaultable term structure model
that was used as a basis for Figure 3.
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Figure 4: For fixed ten-year par-coupon spreads S, dependence of mean
intensity h implied by assumed expected fractional recovery w of face value
at default. The dashed lines are the approximation h = S/(1− w).
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Figure 5: Default swap spread (2-year), varying expected response of default
intensity to change in short default-free rate.
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mean intensity θh = 200 bp, mean reversion rate of κ = 0.25, and an initial
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Figure 7: Term Structure of default-swap spreads, varying intensity volatility.
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Figure 8: Failed attempt to synthesize a credit swap from an asset swap.
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Figure 9: Term structures of asset-swap spreads. The premium coupon rates
400 bps above par, discount coupon rates 400 bp below par.
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