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Abstract. We introduce Fair Zero-Knowledge, a multi-verifier ZK sys-
tem where every proof is guaranteed to be “zero-knowledge for all veri-
fiers.” That is, if an honest verifier accepts a fair zero-knowledge proof,
then he is assured that all other verifiers also learn nothing more than
the verity of the statement in question, even if they maliciously collude
with a cheating prover.

We construct Fair Zero-Knowledge systems based on standard complex-
ity assumptions (specifically, the quadratic residuosity assumption) and
an initial, one-time use of a physically secure communication channel
(specifically, each verifier sends the prover a private message in an enve-
lope). All other communication occurs (and must occur) on a broadcast
channel.

The main technical challenge of our construction consists of provably
removing any possibility of using steganography in a ZK proof. To over-
come this technical difficulty, we introduce tools —such as Unique Zero
Knowledge— that may be of independent interest.

1 Introduction

A New Worry A traditional zero-knowledge proof enjoys two crucial properties,
soundness and zero knowledge, each guarding the interests of mutually cautious
parties. Soundness protects the verifier: a malicious prover has practically no
chance to convince the verifier of a false statement. Zero knowledge protects the
prover: a malicious verifier has practically no chance of learning anything about
the statement in question beyond the fact that it is indeed true.

A new threat emerges, however, when there are multiple verifiers. In such a
situation, a malicious prover may collude with some of the verifiers by gener-
ating proofs that convey additional information to them while remaining zero-
knowledge to all others. Indeed, an honest verifier that accepts a ZK proof of a
given theorem learns nothing more that the verity of the theorem statement in
question, but can he be sure that the same holds for his “colleagues?”

Notice that the traditional definition of a zero-knowledge proof is orthogonal
to the above concern. Let us illustrate this point by constructing the following
(somewhat artificial) NIZK proof system, (P’,V’) —which uses as a subroutine
(P, V), the original NIZK proof system of [BSMP91].



P’ initially chooses (PK,SK), the public and secret key of a uniquely de-
cryptable public-key cryptosystem. Later on, whenever it receives as an input
a member x of a NP-language L together with a witness w for x € L, P’
first computes w’, an encryption of w relative to PK, and then outputs a
proof string ©' which consists of (1) PK, (2) w', and (3) a NIZK proof —
according to (P, V) and some common reference string o— of the statement
“there is a decryption key corresponding to PK (i.e., SK) such that after
decrypting w' with said key, one obtains a witness for x € L.”

Clearly each such 7’ is accepted by (and is zero-knowledge for) all honest verifiers.
But, a malicious prover P’ may, without notice, ensure that it is “much more
informative” for some colluding verifiers. There are very subtle ways for him to
accomplish this, but the simplest one consists of having P’ provide each colluding
verifier with SK, so that each subsequent 7’ reveals the corresponding witness
w in its entirety to each colluding verifier!

A New Goal We wish to build a multi-verifier zero-knowledge system that is
provably fair. That is, we wish to guarantee that whenever an honest verifier
accepts a fair ZK proof, then he is assured that all other verifiers too (whether
honest or colluding with a malicious prover) learn nothing more than the ver-
ity of the statement in question. In other words, we wish to extend the zero-
knowledgeness property of a ZK system to protect also the Verifier(s) and not
just the Prover!

A Motivating Example In repeated auctions of similar items,' it may be desirable
that all bids in an individual auction (including the winning bid) remain secret in
subsequent ones. This goal appears to be a golden opportunity for encryption and
zero-knowledge proofs, but special care must be taken. The following example
illustrates.

A closely-watched auctioneer possessing a public encryption key PK
sells a series of n lithographs from the same etching by repeating the fol-
lowing two-step process, once for each lithograph. First, the bidders pub-
licly announce their individual bids encrypted with PK ; second, the auc-
tioneer proves in zero knowledge who the winner of the current lithograph
is. At the very end, the auctioneer privately collects all right amounts
from the winners.

Using zero-knowledge proofs in Step 2 aims at providing the minimum amount
of knowledge enabling the bidders to decide whether they should continue bid-
ding in subsequent auctions. At a superficial level, this aim seems to be achieved:
First, if the auctioneer is honest, then standard zero-knowledge proofs guarantee
that no additional bid information is leaked prematurely. Second, even if the auc-
tioneer were dishonest, by virtue of being closely-watched he could not use any
“side channels” to divulge additional bid information to a selected subset of the

L A well-studied problem in economics



bidders. A better analysis, however, shows that our new worry naturally arises
in this setting: no matter how closely watched, a dishonest auctioneer might use
the ZK proof itself as a mechanism to leak bid information to a colluding bidder
(thus giving him an advantage in later rounds).

In sum, a standard ZK proof of who is winner of an individual auction is not
enough here: what is really needed is a Fair ZK proof!

Fair Zero Knowledge Syntactically, Fair ZK is a two-phase process. The first
phase consists of a pre-processing protocol, where various quantities (e.g., public
keys) are established, and private channels are (seemingly necessarily) used.
The second phase consists of a proving protocol, where it is imperative that the
Prover be restricted to communicate via broadcast only. (Were a malicious prover
connected to some colluding verifiers via private channels during the proving
phase, it would be impossible to prevent the selective dissemination of witness
information!) In a sense, Prover and Verifiers might execute the preprocessing
phase on Earth, but for the proving phase, Prover is sent to the moon from
where anything he says is heard by all Verifiers.

Semantically, Fair Zero Knowledge guarantees that, for any NP-theorem that
(1) has a single witness and (2) is chosen after preprocessing ends, the prover
cannot undetectably communicate anything more than the truthfulness of the
theorem in question to any verifier, no matter what arrangements they might
have made beforehand.

Postponing for a moment a discussion of our “unique-witness constraint,”
notice that Fair Zero Knowledge does not provide any guarantees for theorems
whose witnesses are known beforehand to the prover. In this case, the (to be)
prover could have already divulged witness information to anyone he wanted, and
protocol designers have no responsibility for what happens before the protocol
starts!

A bit more precisely, assume that, for a unique-witness NP-language L and
forall t =1,2,..., (a) x; € L is chosen on-line and its statement made public,
and (b) w;, the witness of z;, is privately given to the Prover. Then, Fair ZK
enables the Prover to prove to a set of verifiers that every x;, individually and
in order, indeed belongs to L, so that

1. When the Prover is honest, no set of malicious verifiers can learn anything
more than the mere sequence of statements “x; € L and it is the ith theorem;”

and
2. No dishonest prover can convey any knowledge other than x; € L to any

colluding verifier —no matter how much information they secretly share up

2 In this abstract we wish to keep the notion of Fair ZK as simple as possible. In the
final version, however, we shall allow colluding verifiers to have prior partial infor-
mation y about a proven theorem z, and extend Fair ZK to ensure that they cannot
get any knowledge from the proofs beyond y and z’s truthfulness. The difficulty
of doing this right lies in the fact that a malicious prover himself may know some
other information z about x beforehand, including what information y some verifiers
know.



to the last round of pre-processing— without being detected by all honest
verifiers.

We are actually able to construct a non-interactive version of Fair ZK un-
der physical-channel and standard complexity assumptions. Namely, under the
quadratic residuosity assumption, there exists a Fair ZK proof system whose
prover —after a pre-processing protocol in which he receives an envelope from
each verifier— proves every theorem x; non-interactively by broadcasting a proof
string ;.

Technical Challenges There are two obstacles in constructing Fair ZK.

The first, and main obstacle is preventing steganography. The prover of any
zero knowledge proof must be probabilistic, and this very probabilism ushers
in the ability for a malicious prover to communicate with colluding verifiers
over “subliminal channels.” That is, a malicious prover can use the probabilism
of a ZK proof to convey steganographically, to a subset of verifiers, witness
information about any NP theorem —even one chosen after he has been “sent
to the moon.” For example, in the above repeated-auction process, all theorems
are of the type “the winner of the current auction is bidder X”, and thus are
generated after the prover (i.e., the auctioneer) starts being closely watched. Yet,
a malicious auctioneer may agree beforehand with a subset of colluding bidders
on a way to encode the actual amount of the highest bid in the bits he broadcasts
in the corresponding ZK proof.? In fact, as early as 1987, Desmedt, Goutier and
Bengio [DGBS87] illuminated this problem by showing that a particular zero-
knowledge protocol due to Fiat and Shamir can easily be used as a perfect
subliminal channel. More generally, Langford, Hopper, and von Ahn [NHVA02]
show that whenever there is entropy, steganographic communication —provably
undetectable by honest parties— always exists.

Perhaps surprisingly, in light of their result, we show how to provably prevent
steganography in our context. In our approach, we construct a novel type of ZK
system, uniZK, in which the prover’s probabilism is confined to a preprocessing
stage after which not only is he made totally deterministic, but his determinism
is actually made universally verifiable. Very roughly, in a uniZK system the
prover first establishes a suitable public key, so that, for any NP-theorem x
having a single witness, it is universally verifiable that there exists a single ZK
way to prove x that is acceptable by an honest verifier. Such “unique provability”
therefore provably bans steganography from uniZK proofs.

Note that in our application we need wverifiable determinism, and not just
determinism. Naively, one might consider constructing a uniZK system by re-
placing the probabilistic prover of any NIZK system with one who chooses a short
random seed for a pseudo-random function [GGMS&6] and acts deterministically
ever after. However, while this would be conceptually simple to do, it would also
be impossible for an efficient verifier to check that the prover indeed behaved
in such a fashion instead of flipping new coins for each proof. Thus, an honest

3 For example, a naive approach is to make the first 20 bits of the proof the same as
those of the winning bid.



verifier may not be convinced that a malicious prover is not steganographically
conveying additional witness information to colluding verifiers. In sum, prover
determinism might be easy, but verifiable prover determinism is not!

After so overcoming steganography, a second obstacle remains in building
Fair Zero Knowledge. While, in a uniZK system, knowledge of the prover’s pub-
lic key ensures that there is only one acceptable proof, knowledge of the cor-
responding secret key may enable anyone to read off the entire witness from
such a proof! Thus, we must ensure that the prover is the only one possessing
knowledge of his secret key. If the generation of his public-secret key pair were
totally up to him, however, this would be impossible, because the prover and his
accomplices may agree on which public-secret keys he will choose. Instead, we
show how to generate and distribute the prover’s keys by a protocol involving
all verifiers so that, as long as there is one honest verifier, then only the prover
will know the resulting secret key. It is in this subprotocol that we make a single
use of a physically secure communication channel: namely every verifier sends
to the prover a single message in an envelope. After this, all communication (in
the prover-key-generation subprotocol and in all subsequent uniZK proofs) is via
broadcast.

More on Preprocessing Our protocol and even our definition of Fair ZK includes
preprocessing. The reason for this is that Zero Knowledge, as any secure protocol,
requires randomness and (as discussed above) any amount of entropy enables
undetectable steganography, which defeats fairness. We prove, however, that we
can confine the necessary entropy “somewhere” where it actually is “innocuous.”
Such a place is our preprocessing stage: though steganography could be rampant
there, it also useless because the theorems to be proved in ZK have not been
chosen yet, and thus no information about their proofs can be conveyed at that
stage. But neither can it be conveyed afterwards, because all communication is
via broadcast and verifiably unique!

More On Envelopes Usage of a physically secure channel is crucial to our pre-
processing. In our application, it is unclear how to simulate these channels by
an “encrypt-and-broadcast” process, since such methodology must start with
the prover choosing a suitable encryption key, and he could always choose a key
whose corresponding secret key is already known to his accomplices. In such
a case, any message sent encrypted to the prover by an honest verifier will be
understood by a dishonest one, defeating the very reason for encrypting it. By
delivering a message to the prover in an envelope, however, honest verifiers are
guaranteed that the message will indeed remain secret to any malicious verifier,
thus “dividing the state of knowledge of the prover from that of the verifier” at
a specific moment of the protocol. (The protocol must then ensure —e.g., via
“steganography-free broadcasting” — that these divided states of knowledge will
indeed continue to remain so!)

But if physically secure channels must be used, why envelopes rather than
traditional private channels? The point is that traditional private channels are
“bidirectional.” We instead need to prevent a malicious prover, after receiving



a private message M from an honest verifier along a physically secure channel,
from forwarding M to a colluding verifier along another, similar channel. Thus,
we require mono-directional channels from the verifiers to the prover. Envelopes
in our protocol are just good (and well known!) examples of mono-directional
physically secure channels. Let us remark that, since envelopes may be more
inconvenient than broadcasting in many a setting, it is a feature of our protocol
that envelope communication is confined to a single round!

More on Witness Uniqueness Let us now explain why we define Fair ZK for NP-
languages whose members have a unique witness. We allow a Fair ZK proof to
depend (via an underlying uniZK proof) on the given input witness w. Thus, if
the prover knows two or more witnesses for x € L, he can have “a multiplicity of
Fair ZK proofs to choose from,” which would again enable steganographic com-
munication. For instance, the NP-complete language of 3-colorability appears to
be unsuitable for Fair ZK proofs as we define them, because from any coloring
of a graph one can immediately compute 5 more colorings by just permuting the
three colors!

Note, however, that our unique NP-witness requirement is often automati-
cally satisfied in cryptographic applications. This is so because underlying com-
plexity problems (e.g., integer factorization, discrete logarithm, etc.) often have
unique solutions, and appropriate NP reductions can be used so as to “preserve
such uniqueness.” For example, the desired ZK proofs of our motivating example
are for unique-witness languages, because all bids are encrypted by means of a
uniquely decryptable cryptosystems.

More generally, Fair ZK actually applies to computationally unique-witness
languages, that is, to languages for which it is hard for the prover to generate a
second witness from a first one. (For example, this encompasses statements which
refer to most computationally binding commitment schemes.) In sum therefore,
this enlarged constraint is very mild in a cryptographic setting, making Fair ZK
widely applicable.

Notice, that while Fair ZK is quite meaningful when applied to NP-languages
having computationally unique witnesses, uniZK can be meaningfully defined
for all NP-languages.* Thus, in the next section we define uniZK for all NP-
languages, and then, in Section 3, we define Fair ZK only for those languages
having computationally unique witnesses.

2 Unique Non-interactive Zero-Knowledge

We define Unique Non-interactive Zero-Knowledge (uniZK) proofs as special
types of NIZK proofs. Thus, we begin this section with a review of NIZK, and
then proceed to give a precise formalization and construction of uniZK.

4 Essentially, as we shall see, “ any witness efficiently maps to a uniZK proof, and vice
versa.”



NIZK, in a Nut Shell An NIZK proof system [BFMS88] [BSMP91] for a NP-
language L consists of a pair of efficient algorithms, a prover P and a verifier V,
and a public, random string, o, called the reference string. When proving that
the statement “x is a member of L”, it is assumed that P is also privately given a
witness w for € L. The proof process is extremely simple: P computes a single
string 7 (for proof), m = P(x,w, o), and sends it to V. The verifier, on inputs
x, o and proof string 7 accepts or rejects, without having to reply to P (hence,
non-interactively). This process can be repeated, with the same reference string,
for an unbounded number of theorems (i.e., members of L).

Semantically, an NIZK satisfies the usual ZK properties of Completeness,
Soundness and Zero Knowledgeness. In this non-interactive setting, complete-
ness means that, for every reference string and every genuine member of L,
the verifier accepts all honestly generated proofs. soundness means that, for
most reference strings, no acceptable “proof” n* exists for any x* ¢ L. Zero-
Knowledgeness means that there exists an efficient simulator S that first gen-
erates a reference string ¢’ and then, for any sequence of theorems, z;, o, ...,
(and without any witness information) generates strings 7,75, ..., such that
the sequence o', 7], 75, ... is indistinguishable from the sequence consisting of
a random reference string followed by the proofs that an honest prover would
generate for the same theorem sequence —with the proper witness information!

The construction of [BSMP91] actually satisfies (but does not claim) a
stronger notion of Zero Knowledgeness, that was put forward in [FL.S90]. Namely,
the simulator S (rather than being given the sequence of theorems x1, xo, ... up-
front) must produce each string m; knowing theorem z; but not future ones.
(Thus, although we adopt this stronger notion of zero knowledgeness for uniZK,
we can base our uniZK construction on the NIZK system of [BSMP91].)

Adding Verifiably Unique Provability to NIZK As anticipated in the Introduc-
tion, we wish to define uniZK for all NP-languages (rather than for those having
computationally unique witnesses). We do so by demanding that, for any x € L,
any prover —honest or malicious— “may produce a single uniZK proof for every
witness he knows.” How can this be formalized?

The easiest way would be demanding that, every x € L, no matter how many
witnesses it may have, has a single uniZK proof. Unfortunately, no such uniZK
system may exist. (We certainly do not know how to construct one.)

A second way might be demanding the existence of a unique uniZK proof
for each NP-witness. Unfortunately, relative to our steganography-free goals,
such a definition may not be sufficiently meaningful, because it leaves open the
possibility for a malicious prover to choose from a multiplicity of uniZK proofs
by “rewriting” then. Assume that an efficient, malicious prover P’ were given a
witness w of a theorem x belonging to an NP-language L with computationally
unique witnesses. Then, w would be the only witness of z € L known to P/, and
by Completeness, P’ could certainly produce one uniZK proof, 7. But now, if
from 7, one could also compute additional uniZK proofs for x € L, P’ could
compute a multiplicity of uniZK proofs for & € L from a single witness!



We thus formalize uniZK by demanding that (for most reference strings o
and public keys PK) the honest algorithm P forms an easy-to-invert bijection
between the witness set of z € L (denoted W) and the set of acceptable uniZK
proofs (denoted ITpg (z,0)). This captures the notion that any prover “can only
produce a single uniZK proof for any witness he knows:” his ability to produce
multiple uniZK proofs from a single witness can solely originate from his ability
of producing multiple witnesses from a single one.

To complete our formalization, we must handle the case of a cheating prover
who posts an invalid public key PK*; that is, a key that does not pass a proper
inspection of a honest verifier. In this case, it is reasonable for the verifier to
reject any subsequent proof: after all, he knows for certain that the prover is
malicious! Therefore, our definition requires that either the set of acceptable
proofs IIpg«(x,0) is empty, or else there exists a secret key SK* such that
P(z,-,0,SK*) forms an efficient bijection from W, to IIpk~(z,oc). For this to
be meaningful, however, such SK* should be unique, that is, there must be a
function sk (possibly hard to compute) mapping any “reasonable looking” public
key PK* to the right SK*.

In sum, our definition states that unless Il pk+ (x, o) is empty, P(z, -, o, sk(PK™*))
forms an efficient bijection from W, to IIpg+(z,0).

2.1 Formal Definition

Let L be an NP language, and Ry, be its corresponding, polynomial-time relation.
We say that a sequence of pairs of strings, (z1,w1), (2, ws),..., is a theorem-
witness sequence for L if each z; € L and w; € Ry (x;). Below we use the notion
of [GMR89,BSMP91], as summarized in Appendix A.

Definition 1. A triple of efficient algorithms, (G, P,V'), where P is determin-
istic, is a unique non-interactive zero-knowledge (uniZK) proof system for an NP-
language L if there exists a positive constant ¢ and a negligible function p such
that the following properties are satisfied:

Completeness: ¥ theorem-witness sequences (x1,wy), (T2, ws), ... for L, and for
all k > 2

o [(PE.SK) — GOY): o {011 7, = Play w0 5K |
Ty = P(x2,w2,0,8K,2)...: \,V(x;,0, PK,m;,i) =1 o

Soundness: Yk > 2 and ¥V algorithms P*
Pr [0 — {0,1}*"; (¥, PK* ,7* i) — P*(0) : 2* ¢ LAV (0,2*, PK*,7*i) = 1} < u(k)

Zero-Knowledgeness: 3 an efficient algorithm S such that ¥V theorem-witness
sequences (x1,w1), (X2, w3),... for L, the following two ensembles are computa-
tionally indistinguishable:



(PK,SK) «+ G(1%);0 « {0,1}*"; 7y = P(21,w1,0,SK,1);
my = P(ag,wq,0,SK,2)... : (0,PK m,m,...) .
(PK/NS’K/’OJ) — S(lk)v 7Ti — S(SK/axhl);
my — S(SK',22,2),...: (0!, PK',m},m5,...) [,

Uniqueness: 3 a deterministic function sk(-) and an efficient deterministic al-

gorithm P~' such that Vx € L, ¥i > 0, and YPK* € {0,1}*,
o —{0,1}*; (|Ipg-(z,0)] >0) =
Pr P(o, @, sk(PK*),i) : Wy 23 ITh o (m,0) A | > 1— (k)
P~ Yo,z sk(PK*),i) : Hby.(z,0) w,

where W, = {w : w € Rr(z)} and Hbpe. (v, 0) = {7 : V(z,0, PK',7,i) = 1}.

2.2 Constructing uniZK

We can construct a uniZK system based on the hardness of the quadratic resid-
uosity problem|[GM84], for Blum integers, by modifying the protocol of Blum,
De Santis, Micali and Persiano [BSMP91]. °

Theorem 1. If quadratic residuosity is hard, then there exist uniZK systems
for 3SAT.

Proof Sketch: We define G and P below, and present the verification algo-
rithm, V', in Appendix C.

The key generator, G(1*), produces a public key consisting of a randomly
selected k-bit Blum integer, x, and a quadratic non-residue, y mod z. We denote
the tuple (z,y) as a proving pair. The secret key consists of the factorization of
x.

Let (a1,...,am) be a tuple of k-bit integers that have Jacobi symbol 1
mod x. If (by,...,b,) is tuple of bits then we say that (a1,...,a,) has type
(b1,...,by) if each a; is a square mod z if and only if b; is 0. If (¢1,...,¢p) is
a tuple of k-bit integers then we say that (ay,...,a,) and (c1,...,¢y) have the
same type if a; is a square mod z if and only if ¢; is a square mod .

A prover who knows the factorization of x can prove that the tuple (a1, ..., am)
has type (b1, ..., by) by providing, for each i, a square root of a;4* mod z. Simi-
larly, a prover can prove that (aq,...,a,) and (c1,. .., ¢y) have the same type by
providing, for each i, a square root of a;¢; mod z. To make these proofs unique,
whenever the prover provides a square root, he provides the Jacobi-symbol 1
square root which is less than n/2. (Since z is a Blum integer, there is

rejects any proof in which a different square root is provided.

for the single theorem case. Let 3-SAT be the language of satisfiable boolean
3-CNF formulas. Let ¢ € 3 — SAT be a theorem with m clauses and variables
v1,...,U, and let w be a satisfying assignment for ¢.

® We can also make a uniZK system for CIRCUIT-SAT by combining the single-theorem
protocol of Damgéard [DAM92] with the multi-theorem techniques of Blum, De Santis,
Micali and Persiano.



. Break the reference string into two parts, p and 7 where |p| = 16k3 and
|T| = 64k*n + 48k3m.

. Parse p into k-bit integers; skip any values that are greater than x or have
Jacobi symbol —1.

. Prove that each of the remaining k-bit integers in p has either type 0 or type
1 by giving a square root mod z or a square root of it times y mod z. As
in [BSMP91], this proves that (z,y) is a properly-formed proving pair, that
is, that = is a Blum Integer and y is a quadratic non-residue mod .

. Parse 7 into k-bit integers as in Step 2.

. Acquire n pairs of k-bit integers such that each pair is either of type (1,0) or
type (0, 1). To do this, parse a section of 7 as 8kn pairs. Then for each pair
(s,t) (in order) either give a square root of st mod x and discard the pair or
give a square root of sty mod x and select the pair. Once n pairs have been
selected, discard any remaining pairs.

. Now define a value u; corresponding to each variable v; in ¢ as follows: let
u; be the quadratic residue in the ith pair acquired in Step 5 if v; is false in
w, and to the non-residue in the pair otherwise.

. Let vg, ve and vy be the three variables that appear in clause j of ¢. For each
clause j of ¢, form a triple (aj,b;,c;) where a; is equal to ug if vq appears
non-negated in the clause or to the product of uy and ¥y mod x otherwise.
The values b; and c; are analogously defined.

. Parse the remaining portion of 7 as 8k%m triples of k-bit integers. Among the
jth set of 8k triples, select 8 triples that all have different types as follows:
within a set of 8k? triples, inspect each triple in order and either select it
or provide a proof that it is of the same type as a previously selected triple.
If at the end, 8 triples have been selected, then either all 8 triples are of
different types, or one type did not occur within the set at all. In the former
case, prove that one of the selected triples has type (0,0,0) and discard it.
Denote the remaining 7 selected triples as ((a}, ﬁjl, 'yjl), el (a;, JT, fy;))

. Finally, for each j, show that for some 1 <t <7, (a;,b;,c¢;) is of the same

type as (af, 35,7%). Note, this proves that the clause is satisfied since the

identified triple (o, 8;,,) is not of type (0,0,0).

As in [BSMPO1], we transform the single theorem system to a multiple

theorem one by breaking the random string into three pieces, p, 71 and 5. We

use p to prove that (zg, o) in a proper proving pair® . This is done exactly as in
Step 3. At this point, g and yo can be used with 75 to prove the first theorem as
in the single theorem case (starting from Step 4 since the correctness of (xg, yo)
has already been established).

At this point, our construction diverges from [BSMP91]. Originally, for the
second theorem, the prover in [BSMP91] randomly selects completely new prov-
ing pairs (20, Yoo) and (zo1,y01) and then uses (zg,yo) and 71 along with the
single theorem system to prove the auxiliary theorem, “(zoo,yo0) and (o1, yo1)

5 We have changed notation from (z,) above to (20, %o) in order to match the notation
from [BSMP91]



are properly formed proving pairs.” ” This approach, however, does not work
in our setting because selecting new random values after posting the public key
compromises the Uniqueness property.

To circumvent this difficulty, we add a seed, s, for a pseudo-random function
f [GGMS6] to the prover’s secret key, and a perfectly binding commitment to s
to the prover’s public key. Now whenever the prover in [BSMP91] is instructed
to prove that

“(@0by...b;05 Y0by ...b;0) and (Top, ...b;1, Yob,...b;1) are properly formed prov-
ing pairs”

our prover instead proves that

“(20b,...b,05 Yoby ...b;0) and (Top,..b;1,Yob,...b;1) are generated using the
BDMP honest prover algorithm with coins f(0b; ...b;)”

Observe that this auxiliary theorem is an NP-statement whose length is a fixed
polynomial in k£ and can therefore be proven using the single theorem uniZK
system with a sufficiently long 7;. This assures both that (Zos,...b;0, Y0b;...b;0)
and (Zop,...b;1, Yoby...b;1) have the necessary properties and also that the prover
had no choice in selecting these values (given his public key).®

We can also extend our system to work for theorems of arbitrary size by using
techniques similar to those in [BSMP91]. Let ¢ be an arbitrarily long formula
and let (Z,§) be the next proving pair in the tree construction described above.
First, use (Z,¢) to complete steps 4 through 7. Observe that we cannot continue
with step 8 because 75 is not long enough to accommodate all of the clauses of
¢. Instead, for each clause, we form the NP-statement

In clause j of ¢, the triple (a;, b, ¢;) contains one non-residue mod &.

Note that the length of this statement is fixed and independent of the size of
¢. Therefore, by making 7, sufficiently long, we can prove each of these statement
as separate theorems using the successor pairs of (&, §) as per the multi-theorem
construction. Note that the prover has no choices to make since the form of the
statement and the order in which they are proven are fixed by the statement ¢.

Security Properties The proof that this scheme is complete, sound, and zero-
knowledge closely follows the corresponding proofs in [BSMP91].

In order to sketch the Uniqueness for the single theorem case, we first define
the secret key extraction function, sk(), to take in a proving pair PK = (x,y)
and return the factorization of x. Next we observe that if PK is not properly

" In general, [BSMP91] describes a tree structure in which (l’oblu.bi,yoblmbi) is used
to certify (zop,...6;0, Y0b,...b;0) and (Tov,...b;1,Yob,...»;1) Which are then used to prove
the b1 ...5;0™ and by ...b;1"" theorems.

8 Note here that we need to use a commitment scheme with only a single valid de-
commit message (to assure that the prove does not have a choice in selecting the

witness for the auxiliary theorem).



constructed, then with overwhelmingly high probability over the choice of ran-
dom string, the verifier will reject any proof (because of soundness in Step 3),
and therefore ITpk (0, ¢) will be empty and uniqueness is automatic.

Therefore, we restrict attention to the case when PK is properly formed.
First we observe that P (with auxiliary inputs o, ¢ and the factorization of z) is
a deterministic function and that by completeness it maps W, into IIpk(a, ¢).
We then put forward an efficient algorithm P~! (with the same auxiliary inputs)
and show that it is the inverse of P. Finally, we show P and P~! are bijections
by proving that P~ is an injection.

In the following we refer to the portion of m generated by step I in the honest
prover algorithm as m7. Let P~! on input © € IIpx (0o, ) inspect the portion
76, use the factorization of  to determine the quadratic character (mod z) of
U1, ..., Uy, and output the corresponding assignment w. Note by inspection of
step 6 P! returns the exact assignment that was used to generate m, so P~ is
the inverse of P.

All that remains to be shown is that P~! is injective. We do this by showing
that if 7% # 7 = P(0, ¢,w,sk(PK)) and yet P~1(o, ¢, 7*,sk(PK)) = w then
7* & pk (o, ¢). The standard case analysis for this portion of the proof appears
in Appendix C.

This completes our proof of uniqueness in the single-theorem case. The only
difference in the multi-theorem case is that 7 and 7* might use different pairs
(x,y) # (*,y*) to prove theorem . This means that (z*,y*) is not the output
of the honest prover algorithm with coins specified by the commited seed in the
prover’s public key. In this case, by the soundness of the single-theorem proof
system, the verifier will reject any auxiliary proof certifying (z*,y*). O

Remark: Choosing The Right NP-Complete Problem. We deliberately
choose 3SAT (over, say, 3-Colorability) because, in order to satisfy the Unique-
ness property, our multi-theorem construction requires a reduction from general
NP-statements to 3-SAT formula which preserves the number of witnesses (in
our case, one to one). Notice that even parsimonious reductions for 3-colorability
map one witness to six possible colorings.

Remark: Choosing The Right Complexity Assumption. There are several
NIZK systems based on the more general assumption that trap-door permuta-
tions exist (e.g., [FLS90] and [KP98]). Adapting such systems to admit Unique
proofs, however, seems to require substantially new techniques.

3 Fair Zero-Knowledge Proofs

Informally, the goal of Fair ZK is to be a ZK proof system which remains se-
cure even when the prover maliciously colludes with some subset of the verifiers.
This goal is embodied by the four properties of completeness, soundness, zero-
knowledgeness, and fairness. Completeness states that if the prover and all veri-
fiers are honest, than all true theorems are provable. Soundness states that even
if a (computationally unbounded) dishonest prover collaborates with malicious
verifiers during the set-up stage, no honest verifier will accept a false theorem.



Zero knowledgeness states that even if all verifiers are malicious, they are unable
to extract from the prover any extra information except that x; is true and it
is the ith theorem. Zero knowledgeness is formalized by the existence of an effi-
cient simulator S that generates the same view that the malicious verifiers would
have seen had they interacted with the honest prover about the same sequence of
theorems (without seeing the corresponding witnesses). Importantly, S succeeds
even if it is given each theorem one at a time (without knowing what future
theorems might be). Fairness states that, as long as an honest verifier accepts
all of the theorems, then, no matter how a dishonest prover might collude with
a set of malicious verifiers, no verifier learns anything other than “z; is true and
it is the ith theorem.” This is again formalized via a second simulator S* that
generates the same views that the malicious verifiers would have seen if they
interacted with the dishonest prover. Again, S* succeeds even though it is given
the sequence of theorems one at at time. As far as we know, this is the first
use of the simulator paradigm to protect the secrets of one dishonest party from
another dishonest party.

Remarks

1. The primary difficulty with simulating a dishonest prover is that the prover
has a witness, and the simulator does not! Clearly, if the prover decides to
cheat and output the witness (or some partial information about it) in lieu of
a valid proof, there is no hope for a simulator to produce indistinguishable
transcripts. Thus, the best one can hope for is to require that simulated
proofs are indistinguishable from real proofs conditioned on the event that
an honest verifier accepts all the real proofs.

2. It is crucial to the applicability of Fair ZK that it applies to an unbounded
sequence of theorems. And it is this feature that prevents us (at least for now)
from relying on general cryptographic assumption. In particular, “single-
theorem” Fair ZK can be achieved without number-theoretic assumptions
by suitable modifying [DMP91].

3. In order to guarantee that no verifier gets additional knowledge about theo-
rem x;, an honest verifier must monitor all “utterances” of the prover as soon
as he hands him an envelope in the preprocessing phase. In particular, the
honest verifier must also monitor the first ¢ — 1 proofs : If all honest verifiers
are “out to lunch”, a dishonest prover may send sk to her accomplices!

4. The order in which a sequence of theorems is proven must be fixed. Giving
the prover freedom to choose this order provides yet another opportunity for
steganography. (Achieving Fair ZK requires us to run a tight ship!) However,
the prover may receive all theorems and witnesses, if available, immediately
after completing the setup protocol successfully.

3.1 Formal Definition

A setup protocol is a protocol, (P, V1, ...,Vy), with a distinguished ITM P, the
prover (referred to as player 0), and n ITMs, V1, ..., V,, the verifiers (respectively



referred to as players 1 through n). All players in this protocol exchange message
via broadcast; in addition the verifiers may also send messages in envelopes and
the prover also receives messages in envelopes. Each execution e of the setup
protocol produces a common public output pk € {0,1}* U {L} and a secret
output sk for the prover.

In an execution e of this protocol with security parameter 1%, we denote
by VIEW;(e) the triple (1%, p;, M;), where p; is the random tape for player i
and M; is the set of messages received by player ¢ during the execution. If
T = (a,b,...) is a sequence of players, then denote by VIEWr(e) the sequence of
views (VIEW,(e), VIEW,(e), .. .).

"
We denote by (pk, sk), e — (P RN VN Vp) the random variable obtained

by uniformly and independently selecting a random tape p; for each player i,
executing the setup protocol with security parameter 1¥ and random tapes p;’s,
and outputting the so generated execution e, with its corresponding outputs pk
and sk.

Definition 1 (Fair Zero Knowledge) Let L be a (computationally) unique-
witness language® A Fair zero-knowledge proof system for L consists of (1) a
setup protocol, (P, Vi,...,Vm); (2) an efficient deterministic proving algorithm
P, (3) an efficient verification algorithm V', and a negligible function, u, such
that the following properties are satisfied:

Completeness ¥V theorem-witness sequences (x1,w1), (r2,ws), ... for L and Vk €
zZt,

(pk, k), e — (P Vi, Vi)

Ty < P(ml,wl,sk‘,l); T < P($2,w2,8k,2);
: N\, Vs, mi, pk,i) =1

Pr > 1 — (k)

Soundness ¥ P*,Vi*, ... V" | V5 1,..., V.5, ¥V sufficiently large k € Z,

k
(pk*,sk*),e «— <P* 41_>‘/1*’ L. .,‘/itl,‘/i, iikkl?' . ,V;>,
(z*,7*,1) « P*(VIEWg(e)) < (k)
caxt g L AN V(et, n*pk*i) =1

Pr

Zero-Knowledgeness ¥V efficient ITMs Vi*,..., V>, 3 an efficient algorithm S

» Vnos

such that V' theorem-witness sequences (x1,w1), (T, wa), ... for L,

9 A computationally unique-witness language is one in which, given a witness w for
a statement x € L, it is hard to produce a new witness for the same statement.
As mentioned in the introduction, an example would be a computationally binding
commitment.



k
(pk, o, VIEW) — S(1F); (pk, sk),e — (P sV, ... V),
T < S(xlaOé?l);
g — S(x2,0,2);... :
pk, VIEW, 21,71, T2, T2 . ..

w1 — P(x1, w1, sk, 1);
7y «— P(x9,wa, sk,2); ... :
k pk,VIEWL,__m(e),xl,m,:ﬂg,7r2...

Qo

Fairness V efficient P*,Vi*,... . V" |, Vi ,..., VY, 3 an efficient S* such that
V theorem-witness sequences (xy1,w1), (X2, ws),... for L, the following two en-
sembles are computationally indistinguishable:
(pk*, o, VIEW) « S*(1%);
’/TT — S*(zla Q, 1)7 ’/T; — S*(x% Q, 2); v
: pk*, VIEW, 21, 7], 2,75 . ..

k
(pk*, sk*), e — (P* —— Vi, Ve L Vi Vi Vi,

7w — P*(x1,wn, sk*,1); w5 — P*(x2,ws, sk*,2); ...
: pk*,VIEW1,...,¢—1,z’+1,...,n(6)75'3177TTa T2, Ty

3.2 Constructing Fair ZK

Our goal is to defeat steganographic attacks by using uniZK. However, we can-
not allow the prover to pick his own secret key (since he might share it with a
verifier beforehand). Therefore, we need to incorporate randomness from all of
the verifiers during the selection of a prover secret key. We show that if we allow
the prover to receive a single envelope from each verifier during the preprocess-
ing, that we can transform any UniZK system into a Fair zero-knowledge proof
system.

Theorem 2. The existence of a uniZK proof system implies a fair zero knowl-
edge proof system consisting of a preprocessing phase during which each verifier
sends the prover a single envelope.

A sketch of this proof is in Appendix B.

Corollary 1 Under the Quadratic Residuosity assumption, there exists a fair
zero knowledge proof system consisting of a preprocessing phase during which
each verifier sends the prover a single envelope.

This result follows directly from Theorem 2 and Theorem 1.
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A Notation

We shall follow, verbatim, [BSMP91] and [GMRS8]. A function u(-) from non-
negative integers to reals is called negligible if for every constant ¢ > 0 and
all sufficiently large n, u(n) < n=¢ An efficient algorithm is a probabilistic
algorithm running in expected polynomial time. If S is a probability space,
then “x < S” denotes the probabilistic algorithm consisting of choosing an
element z at random according to S and returning x. If p is a predicate, then
the notation “z < S|p(z)” denotes the assignment consisting of choosing an
element = at random according to S, and returning the first = such that p(x) is
true. Let Sq,So, ... be probability spaces, then the notation Pr[z, « S1; z2 «—

So; ...t p(x1,%2,...)] denotes the probability that the predicate p(x1,z2,...)
is true after the ordered execution of the assignments z; < Sy; xo «— S7; ... If
S, T, ... are probability spaces, the notation {z «— S;y «— T;--- : (z,y,---)}

denotes the new probability space over {(z,y,---)} generated by the ordered
execution of the assignments x < S, y «— T,---.

B Proof Sketch of Theorem 2

— Pre-processing Phase:



1. The players engage in a simulatable coin-flipping protocol which is se-
cure against an unbounded Prover to generate a reference string, o. For
example, in order to generate a single bit, the prover uses a perfectly
binding commitment scheme to commit to a random bit. Then all the
verifiers broadcast (in turn) a commitment of a randomly chosen bit,
then decommit the bits in the opposite order, and finally the prover de-
commits her bit. The output is defined as the xor of all opened bits. This
can be repeated sequentially to generate longer reference strings.

2. The players partially execute the secure function evaluation protocol
from [GMW87] with privacy threshold set to n — 1 in order to compute
the following n-valued function:

Prover’s output  Verifiers’ outputs

F(E,...,&):{ SKuzk ,PKuzk,...,PKuzk}

That is, the function produces a private output for the prover consisting
of a uniZK secret key, and produces the corresponding uniZK public key
as the output for all of the verifiers.

The GMW protocol is executed until all of the players have shares of
each of the output values, but have not yet sent each other these shares.

3. All of the shares for the verifiers’ outputs are broadcast to all parties.
Note that there is no need to encrypt these shares as all of the verifiers
have the same output values. As in the original GMW protocol, all par-
ties use interactive zero-knowledge proofs in order to prove to all other
parties that the share they have broadcast is correctly computed.

4. In the final round all verifiers send their shares of the prover’s output
as well as all random coins that they used during pre-processing to the
prover using an envelope channel.

5. The prover runs the honest verifier algorithm to verify that the shares
sent by the verifiers were computed correctly. It then computes its private
output, namely the SK, ., by combining the shares. At this point, the
prover has unique knowledge of a uniZK secret key, and all parties have
a corresponding uniZK public key and a reference string, o.

— Proof Phase:
In the proof phase, the prover can prove any number of theorems by using
the uniZK prover algorithm with secret key SK, ., and reference string, o.
The verifiers use the corresponding uniZK verifier algorithm with public key
PK, ;. and random string o to verify each proof. As soon as a single proof
fails to verify, the verifiers are instructed to reject all subsequent proofs.

Soundness Proof. For soundness, we must show that any prover who manages to
cheat against a set of verifiers either breaks the correctness property of the coin
flipping protocol, or breaks the soundness property of the uniZK system, both of
which are unconditionally secure. Assume that the output from the coin-flipping
protocol is truly random. In this case, the prover’s algorithm for cheating can be
used without modification to break the soundness of the uniZK system. Note,
even if the Prover breaks the correctness of the SFE, thereby generating the



uniZK keys of her choice, this does not allow the Prover to break soundness
since the uniZK system is sound, even when the prover chooses his key after
seeing the reference string.

Zero-knowledge Proof. To prove that the system satisfies zero-knowledge, we
must construct a simulator that produces Fair ZK transcripts for a set of theo-
rems.

The Fair ZK simulator S works as follows:

1. First run the uniZK simulator in order to generate a reference string o* as
well as a public and private key, PKunizk and SKunizk-

The goal is to now manipulate the coin-flipping protocol and the secure
function evaluation in order to produce ¢* and PKnizKk-

2. Use the simulator for the coin-flipping protocol in order to generate a tran-
script with output o*.

3. Begin running the secure function evaluation protocol. At any point during
which S is required to send a message on behalf of any party, write the
message to the transcript as an honest party would.

4. During the last step when each party broadcasts its share of the public
output and proves that it was formed correctly, S uses it ability to rewind
the malicious parties in order to do two things. First, it learns the shares
of each of the malicious parties by proceeding honestly. It then rewinds the
malicious parties, and broadcasts shares on behalf of the honest parties to
force the public output to be PKnizk- Finally, by rewinding, it simulates
the zero-knowledge proofs that the broadcast shares are correct.

5. The envelopes that are sent from the malicious parties are opened and the
random coins inside are used for verification. Upon failure, S aborts.

6. S now uses the uniZK simulator in order to generate the proofs for the
sequence of theorems that arrive using its key SKunizx and o*.

In order to prove that the transcripts produced by this Simulator are indis-
tinguishable from those of a real execution, we first note that the transcript for
the coin-flipping protocol is generated by a simulator and thus indistinguishable.
During the SFE portion of the protocol, all of the steps are identical until Step 4.
During the last two steps, S is using another simulator to generate indistinguish-
able transcripts for a zero-knowledge proof. Therefore, any distinguisher of the
Fair ZK protocol’s transcripts can be trivially used to break the zero-knowledge
property of the proof used in this step. Since the envelope traffic is not part of
the view of the verifiers, it does not matter what is sent in them. Therefore, the
verifiers have no information about the SK,zk since they have no information
about the Prover’s share. Therefore, any distinguisher between the key produced
by S and the key produced in a real execution can be used to break the uniZK
simulator.

Similarly, the proof strings are henceforth produced by the uniZK simulator
and therefore any distinguisher can also be used (in a straightforward reduction)
to break the uniZK simulator.



Fairness The same simulator used to prove the zero-knowledge property also
proves the Fairness property. The only difference is that the simulator must use
the Prover algorithm in order to generate all of the Prover messages during the
pre-processing stage. Note that during pre-processing the simulator is able to
directly run the malicious prover algorithm because until a witness is given to
the prover, the prover has no secrets which the simulator does not know. This
step ensures that any secret agreements between the Prover and any malicious
set of verifiers reflect themselves during the simulated transcripts (and therefore
maintain indistinguishability with real executions).

Once the envelopes are sent to the Prover, the verifiable uniqueness property
of the uniZK system gaurentees that for each theorem either the prover gives
the single acceptable uniZK proof (which can be simulated) or she sends any
other string in which case the honest verifier rejects. In the former case, fairness
is guaranteed by the indistinguishability of uniZK. In the later case, fairness is
vacuous because the honest verifer rejects.

C uniZK Security Proof
Verifier algorithm

1. Run the honest-prover algorithm as per step 1, 2,4 and 7 to generate my, w4, 77
and verify that the corresponding proof string parts are equivalent. Also ver-
ify that every root given in the proof string has Jacobi symbol 1 and is less
than n/2. Reject if not.

2. As per [BSMP91], verify 73, which is the proof that (z,y) is well-formed.

3. Verify 5 by making sure that each pair is handled, and that the proof string
contains a proper root of the pair.

4. Verify mg by checking that for each set of triples, the prover has handled the
pairs in order, and that each of the proofs given between triples is sound.
Finally, verify that the opened pair is of type (0,0,0)

5. For each clause, verify the proof that it is associated with one of it’s remain-
ing seven selected triples.

Case Analysis for Uniqueness Proof

Case analysis is used to establish that if 7* # 7 = P(0,¢,w, sk(PK)) and
yet P~1(0, ¢, 7%, sk(PK)) = w then 7* ¢ IIp (0, ¢). Suppose the first point at
which 7 and 7* differ is portion 7;. For all cases, except for I = 8, the proof is
straightforward based on the Verifier’s algorithm.

For case I = 8, we argue that the sub-proof used to show that two triples
are of the same type is sound. This follows directly from the fact that (x,y) is
properly formed.

Because the sub-proof is sound, then 7* cannot select two triples of the same
type. This follows, because with high probability over the choice of 7, all 8 types
appear in every set of 8k? triples. Therefore, if 7* selects two triples of the same
type, then some type, say (1, 1, 1) without loss of generality, is not selected. Since
w.h.p., the type (1,1, 1) appears in the set, the Verifier rejects 7* since 7* cannot
prove that (1,1, 1) is similar to a previously selected triple.



Therefore, 7* must select all 8 types. If 7 and 7* select the same 8 triples,
then the argument that 7* is rejected is exactly the same as in Step 3 since
both proofs must contain the same sequence of sub-proofs that certain triples
are of the same type and must also contain the same square roots of the selected
(0,0,0)-type triple.

If 7 and 7* are selecting different triples, then either 7* must contain a false
proof, or 7* does not select 8 different types. Observe that both proofs must
select the first triple. Now, if 7w selects a triple that 7* does not , then 7* must
give a false proof that this triple was the same as a previously selected one, and
we have already argued that the Verifier rejects such proofs. On the other hand,
if 7* selects a triple not selected by 7, then 7* cannot contain 8 different types,
and we have already argued that the Verifier rejects in this case as well.
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