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Abstract

Objective: Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brain’s large-scale

neuronal circuits. However, most EEG applications fail to capitalize on all of the data’s available information, particularly that concerning

the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called

inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain

at every moment in time can be accurately localized.

Methods and Results: Here, we review the different EEG source localization procedures applied during the last two decades.

Additionally, we detail the importance of those procedures preceding and following source estimation that are intimately linked to a

successful, reliable result. We discuss (1) the number and positioning of electrodes, (2) the varieties of inverse solution models and

algorithms, (3) the integration of EEG source estimations with MRI data, (4) the integration of time and frequency in source imaging, and (5)

the statistical analysis of inverse solution results.

Conclusions and Significance: We show that modern EEG source imaging simultaneously details the temporal and spatial dimensions of

brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical

neurosciences.

q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Distributed neuronal networks assure correct functioning

of the human brain (Mesulam, 1998). Inhibitory and

excitatory feedforward and feedback processes are the

basic mechanisms of interaction between different modules

of these networks (Bullier, 2001). Localizing the different

modules of the functional network implicated in a given

mental task is the principal aim of functional neuroimaging

studies. A large body of research, using positron emission

topography (PET) and functional magnetic resonance

imaging (fMRI), has been devoted to this aim (Cabeza and

Nyberg, 2000). However, these methods are not the most

suitable for addressing the question of when during the

mental task the different modules become active and hence in

what processing step(s) each module is involved. Nor can

they readily answer the important questions of sequential

versus parallel activation, feedforward versus feedback

processes, or how information is ‘bound’ together to form

unified percepts.

In order to investigate such temporal properties of brain

circuits, methods that directly measure neuronal activity in

real time are needed. Electro- and magneto-encephalography

(EEG, MEG) offer this possibility by measuring the electrical

activity of neuronal cell assemblies on a submillisecond time

scale. Unfortunately, these techniques face the problem that

the signals measured on the scalp surface do not directly

indicate the location of the active neurons in the brain due to

the ambiguity of the underlying static electromagnetic

inverse problem (Helmholtz, 1853). Many different source

configurations can generate the same distribution of

potentials and magnetic fields on the scalp (for a review see

Fender (1987)). Therefore, maximal activity or maximal

differences at certain electrodes do not unequivocally

indicate that the generators were located in the area

underlying it. However, and as will be discussed in further
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detail below, the converse holds: different scalp topographies

must have been generated by different configurations of brain

sources. Capitalizing on this fact, a first step in defining

whether and when different neuronal populations were

activated over time or between experimental or pathological

conditions is to identify differences in scalp topographies.

Spatial enhancement algorithms, such as current source

density calculations or deblurring (Babiloni et al., 1996;

Gevins et al., 1991; He et al., 2001; Nunez, 1981) can help for

this purpose.

While the analysis of the scalp potential or magnetic field

distribution is the precursor for source localization, it does

not provide conclusive information about the location and

distribution of the sources. The only way to localize the

putative electric sources in the brain is through the solution

of the so-called inverse problem, a problem that can only be

solved by introducing a priori assumptions on the generation

of EEG and MEG signals. The more appropriate these

assumptions are the more trustable are the source esti-

mations. During the last two decades different such

assumptions have been formulated and implemented in

inverse solution algorithms. They range from single

equivalent current dipole estimations to the calculation of

three-dimensional (3D) current density distributions. Each

approach uses different mathematical, biophysical, statisti-

cal, anatomical or functional constraints.

Several reviews on EEG/MEG source imaging exist, that

explain in detail the formal implementation of the a priori

constraints in the different algorithms (Baillet et al., 2001;

Fuchs et al., 1999; George et al., 1995; Gonzalez Andino

et al., 1999; Grave de Peralta Menendez and Gonzalez

Andino, 1998; Hämäläinen et al., 1993; He and Lian, 2002;

Michel et al., 1999a). While these rather mathematically

oriented reviews are of utmost importance for the specialist

in inverse solutions, the practical user might be more

interested in a summary of the critical requirements for

successful source localization. In fact, electromagnetic

source imaging should involve many more analysis steps

than applying a given source localization algorithm to the

data. Each step should be carefully considered and selected

on the basis of the information one would like to obtain from

the measurements. The judgment on the validity of the

results presented in a given study should be based on all

these points, and not only on the choice of the inverse

solution algorithm, because they are intimately linked. This

review therefore not only discusses inverse solution

algorithms, but also critical issues in steps preceding and

following source estimation, such as the number and

positioning of electrodes (including the reference electrode)

and the determination of relevant time points or periods for

source localization. We also discuss how the source

estimations can be integrated with MRI and how one can

go beyond simple pictures of inverse solutions by analyzing

source localizations statistically.

This review concentrates on EEG recordings, though

most of the aspects discussed here similarly concern

MEG. Similarities and differences between EEG and MEG

have been discussed elsewhere (e.g. Anogianakis et al.,

1992; Liu et al., 2002; Malmivuo et al., 1997; Wiskwo

et al., 1993; see also discussion in Barkley and

Baumgartner (2003)).

EEG source imaging is not only used in cognitive

neuroscience research, but has also found important

applications in clinical neuroscience such as neurology,

psychiatry and psychopharmacology. In cognitive neuro-

science, the majority of the studies investigate the temporal

aspects of information processing by analyzing event

related potentials (ERP). In neurology, the study of sensory

or motor evoked potentials is of increasing interest, but the

main clinical application concerns the localization of

epileptic foci. In psychiatry and psychopharmacology, a

major focus of interest is the localization of sources in

certain frequency bands. While the issue of source

localization is similar for these different applications, the

pre-processing of the data is somewhat different.

2. Number and positioning of the electrodes

This section discusses some of the basic questions

regarding the recording of the data for EEG source imaging.

It concerns the number and the distribution of the electrodes

on the scalp and the spatial normalization of the individual

potential maps for group averages. We will show that

localization precision of epileptic sources drastically

increases from 31 to 63 electrodes and also, though less

drastically, from 63 to 123 electrodes. We also give an

example that illustrates the importance of uniformly

covering the scalp surface in order to correctly reconstruct

the potential field, which is a prerequisite for correct source

localization. We also discuss a point that in our opinion is

irrelevant, but that is often cited as major problem of EEG:

the choice of the reference electrode. We will show that the

spatial configuration of the scalp potential map, and thus

the localization of the sources in the brain, is independent of

the position of the reference electrode.

2.1. Effect of the number of electrodes

on source localization

A crucial practical question concerns the number of

electrodes that are required for reliable EEG source

imaging. Theoretically, a more correct sampling of the

spatial frequencies of the scalp electric fields should lead to

a better resolution of the topographic features. Using

simulations as well as tests on real data, several authors

showed that interelectrode distances of around 2–3 cm are

needed to avoid distortions of the scalp potential distribution

(Gevins et al., 1990; Spitzer et al., 1989; Srinivasan et al.,

1996, 1998). However, still missing was a direct and

systematic evaluation of the effects of the number of

electrodes on source localization precision. For this reason,
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we addressed whether using more electrodes, first in the case

of simulated single dipoles and later in the case of interictal

discharges in epilepsy, would improve source estimation

results (Lantz et al., 2003a). For the simulations, 9 different

electrode configurations of between 25 and 181 channels

were chosen. Using a simple three-shell spherical head

model (see Section 4.2), the potential maps for single

dipoles in each of 1152 solution points in the sphere were

calculated for the different electrode configurations. Differ-

ent source localization algorithms were then applied to these

potential maps, and the goodness of the localization was

expressed in terms of the percentage of sources localized

with zero dipole localization error. These simulations

revealed that the influence of the number of electrodes on

source localization precision is not linear. The precision

increased from 25 to around 100 electrodes and then

reached a plateau (Fig. 1). With the linear inverse solution

EPIFOCUS (see Section 3.2), a nearly perfect localization

was already achieved with 68 electrodes. This is due to the

fact that this particular inverse solution, by default, assumes

a single dominant source and thus has advantages over the

other solutions in this type of simulation. The validity of

dipole localization error for the evaluation of distributed

inverse solutions will be discussed further in Section 3.3.

In the case of interictal discharges from 14 patients with

partial epilepsy in whom the epileptic focus was unequi-

vocally identified, EEG was recorded with 123 channels and

down-sampled to 63 and 31 electrodes. EPIFOCUS was

used in combination with a realistic head model derived

from each patient’s own MRI (the SMAC algorithm, see

Section 4.2), which was then applied to the individual spikes

using the different electrode densities. In these cases,

localization precision was calculated from the distance

between the estimated source maximum and the actual

epileptogenic lesion. This analysis revealed a significant

increase of the localization precision from 31 to 63

electrodes in 9 of the 14 patients, and from 31 to 123

electrodes in 11 of the 14 patients. Thus, while the 31-

channel recordings were clearly insufficient for adequate

source localization, the difference between 63 and 123

channels was minimal, confirming the simulation results

described above. However, we would caution the reader that

the conclusion drawn from this study is likely only valid for

the strong, focal sources analyzed in these patients, as well

as for a source localization procedure that implicitly

assumes such a single focal source. The simulation study

described before would suggest that fully distributed inverse

solutions benefit from a larger number of electrodes,

provided that noise (which increases with increased

numbers of electrodes as a consequence of the ill-

conditioned character of the inverse problem) is adequately

accounted for.

In view of the obvious requirement of small inter-

electrode distances for both the correct mapping of the

electric field as well as the correct reconstruction of the

sources, it has been proposed that a concentration of

electrodes above the area of interest can solve the spatial

aliasing problem (Spitzer et al., 1989; Srinivasan et al.,

1998). This might be correct when the analyses are limited

to those of waveforms. However, source localization

procedures require uniform sampling of the full head

surface and, by extension, the electric activity of the brain

propagating to the scalp. The result of inverse solutions with

non-uniform sampling of the potential field can lead to

drastically wrong results, as shown in Fig. 2. Here, the P1

component of the visual evoked potential is localized

progressively more frontally the fewer frontal electrodes are

measured. When the number of electrodes is limited, a

possible compromise can be to sample the potential field in

a non-uniform way, i.e. to cover the whole head but increase

electrode density in the regions of expected steepest

potential gradients (Benar and Gotman, 2001).

Since both, simulations as well as experimental studies

clearly indicate that at least 60 if not more equally

distributed electrodes are needed to correctly sample the

scalp electric field that is submitted to the source

localization procedure, EEG source imaging studies with

the conventional 21 channel EEG recordings have to be

Fig. 1. Effects of the number of electrodes on dipole localization error

(DLE) examined by different inverse solution algorithms with simulated

data. There was a uniform distribution of 181 electrodes over a spherical

surface that were down-sampled to montages ranging from 25 to 166

electrodes while keeping their distribution as uniform as possible. The lead

field matrix was computed for each electrode configuration using a three-

shell spherical head model with an equally spaced grid of 1152 solution

points. Surface potentials were computed for dipolar sources at each of

these grid points. These simulated surface potentials were subsequently

localized using 4 different inverse solution algorithms: Minimal Norm

(MN), Laplacian weighted Minimum Norm (LORETA), Local Autore-

gressive Average (LAURA) and EPIFOCUS. The percentage of sources

with a DLE of less than 2 grid points are plotted for each electrode

configuration and each inverse solution algorithm. This number increases

non-linearly with increasing number of electrodes, reaching a plateau at

around 100 electrodes for the fully distributed inverse solutions. For the

linear inverse solution EPIFOCUS, which assumes a single dominant

extended source, minimal localization error is already found with around 50

electrodes.
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interpreted with extreme caution. It is not to be expected

that different inverse solutions are less sensitive to spatial

under-sampling. If the topographic features are not

adequately sampled, none of the inverse solutions can

retrieve the sources that would have generated these

features. While studies in healthy subjects with high

resolution EEG systems is nowadays relatively common

(and inexpensive), it has repeatedly been argued that such

Fig. 2. Effects of the electrode distribution on the source estimation. The Laplacian weighted minimum norm algorithm (LORETA) in a three-shell model was

applied to group-averaged ðN ¼ 12Þ ERP data in response to a centrally presented reversing checkerboard at the peak of the P100 component. Localization was

first performed on the original configuration of 46 equally distributed electrodes (leftmost panels). We then conducted this analysis on the data where an

increasing number of frontal electrodes were excluded, whereas the sampling of the occipital lobe remained the same (central 3 panels). Note that the source

maximum was found in the frontal lobe when only the 19 most occipital electrodes were considered. However, when we down-sampled the montage to a set of

19 equally distributed electrodes, the source maximum was again found occipitally. Thus, a complete sampling of the electric potential is required for source

imaging with distributed inverse solutions.

Fig. 3. The effect of the location of the reference electrode on the EEG scalp topography. Top row: Planar projection of the potential maps of a 128-channel

ERP at an arbitrary time point. The 4 maps are recalculated against different reference positions as indicated above. All maps are shown using an identical color

scale and are displayed from a top view with the nose upwards and left ear leftwards. The different reference locations change the color coding of the maps.

However, they do not change the map topography. This is illustrated in the lower row. Here, the same maps are drawn using equipotential lines, rather than

color shading. As can be easily seen, the equipotential lines and thus the topography or landscape of the map remain exactly the same. Only differences in

scaling can appear. Thus, the topographic analysis of EEG and ERP as well as the source localization are reference-independent.
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recordings are not feasible for clinical use because of the

lengthy procedure to apply a large number of electrodes

(Baumgartner, 2000; King et al., 2000; Rosenow and

Lüders, 2001). Today, this argument is simply no longer

valid. There are now several systems available that allow

very fast electrode application and provide excellent signal

quality (Lantz et al., 2003a,b; Michel et al., 2004a; Murray

et al., 2004a; Praamstra and Oostenveld, 2003; Suarez et al.,

2000; Tucker, 1993).

2.2. The choice of the reference

The question of the correct reference electrode has been

intensively debated in the literature (Desmedt et al., 1990;

Gencer et al., 1996; Junghöfer et al., 1999; Pascual-Marqui

and Lehmann, 1993; Tomberg et al., 1990) and the

‘reference-problem’ has been taken as a major disadvantage

of EEG versus MEG (Pataraia et al., 2002; Wikswo et al.,

1993; Williamson et al., 1991). While the reference indeed

heavily influences waveform analyses, it is actually

completely irrelevant for the analysis of topographic maps

and for source localization as long as the reference is

correctly included in the model. This is because

the configuration of the scalp topography is independent

of the reference electrode (Fender, 1987; Geselowitz, 1998;

Lehmann, 1987). As Geselowitz put it “The choice of a

particular reference electrode, and hence the amplitude

assigned to a contour, does not change in any way the

biophysical information contained in the potential distri-

bution. It does not in any way change the relation between

source and potential, except for an additive constant of no

physical significance” (Geselowitz, 1998, p. 132). The

reference only changes the zero line. The equipotential lines

remain exactly the same, and the landscape remains

unaffected (Fig. 3). Therefore, any analysis method that

considers the spatial distribution of the EEG or ERP is

completely reference-independent (Lehmann, 1987). This

of course also concerns the conversion of scalp potentials

into sources in the brain (Fender, 1987). The quasi-

stationarity that underlies the inverse solution algorithms

assumes that the net source in the head is zero. The

reference adds a constant potential to the recording at every

electrode at any instant, leading to a non-zero net source. In

order to avoid this violation of the quasi-stationarity, the

data matrix has to be centered, i.e. the constant has to be

removed. Interestingly, this mathematically corresponds to

the calculation of the average reference of the surface

potential (Lehmann and Skrandies, 1980). Thus, the average

reference is usually automatically calculated in the source

localization software. Therefore, if one objective of the

researcher is to conduct a series of analyses on a data set that

ultimately include source imaging, he/she might consider

using the average reference throughout for the sake of

consistency (e.g. Murray et al., 2004a for a recent example

of such a step-wise approach).

2.3. Electrode positions and interpolation algorithms

Incorrect assumptions about the positions of the electro-

des on the scalp can also lead to inaccurate source

localization. For practical reasons, MRI scans of each

subject with MRI-visible capsules at all electrode positions

(Rodin et al., 1997; Wang et al., 1996) are usually not

feasible. Measuring the exact 3D electrode positions with a

digitizer is more practical. This procedure provides a means

for taking into account inter-individual variations in

electrode positions (Towle et al., 1993; Tucker, 1993).

However, studies that directly evaluated the dipole

localization error induced by electrode misplacements

showed that the localization error is small and might be

negligible compared to the error induced by noise (Khosla

et al., 1999; Van Hoey et al., 2000; Wang and Gotman,

2001). Likewise, currently used electrode caps/nets con-

serve electrode spacing and positions (provided they are

placed appropriately on the head in the first place). In such

cases, the measurement of some landmarks might be

sufficient to reconstruct the positions of the rest of the

electrodes (De Munck et al., 1991; Le et al., 1998).

Another practical issue concerns the treatment of

artifact-contaminated channels due to poor electrode-scalp

contact or amplifier malfunction. In principle, these ‘bad’

electrodes can simply be omitted in the source localization

calculation. However, this is only possible if source

localization of individual subjects’ data is performed. If

data are averaged over conditions or over subjects, the

missing electrodes must be interpolated to assure the same

number of samples for each electrode. In addition, group-

averaged data require normalization to the same electrode

configuration before averaging (Picton et al., 2000). Such

normalization is also needed when source reconstructions

on head models with standard electrode positions are used to

which the original data (measured on different positions)

have to be interpolated (Scherg et al., 2002).

There are two widely used classes of interpolation

procedures: nearest neighbor and the spline methods

(Fletcher et al., 1998; Perrin et al., 1990; Soufflet et al.,

1991). In nearest neighbor interpolation algorithms, the

unknown values are computed as a weighted average of the

potential data of the neighboring electrodes with weights

that are dependent on the Euclidian distance between the

neighboring site and the point to estimate. Within the class

of spline interpolation methods, thin plate spline (Perrin

et al., 1987) and spherical spline (Hassaina et al., 1994;

Perrin et al., 1989) algorithms can be differentiated. The thin

plate spline minimizes the bending energy of an infinite flat

sheet passing through given data. Spherical splines use

minimal bending energy in deforming the spherical surface

to pass through a finite number of known points.

The quality of these different interpolation techniques

has typically been investigated in terms of their ability to

reconstruct given EEG maps using cross-validation criteria

to estimate the interpolation error of a known potential
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(Fletcher et al., 1998; Perrin et al., 1989; Soong et al., 1993;

Soufflet et al., 1991). In general, spline interpolations

behaved better than nearest neighbor interpolations. Within

the spline algorithms, Soufflet et al. (1991) found better

performance of thin plate splines as compared to spherical

splines, whereas Perrin et al. (1989) reported marginally

better performance of spherical splines in regions not well

covered by electrodes.

3. The choice of the inverse model

This section will give an overview on some of the

currently available source localization algorithms. Gener-

ally speaking, these algorithms try to most optimally explain

the scalp potential field by intracranial sources. The

fundamental problem of EEG/MEG source reconstruction

is the ambiguity of the electromagnetic inverse problem

(Helmholtz, 1853). That is, a given electric potential or

magnetic field recorded at the scalp can be explained by the

activity of infinite different configurations of intracranial

sources. Only by introducing a priori assumptions about the

sources and the volume conductor can the inverse problem

be solved (Fender, 1987). These a priori assumptions are

crucial, since they determine whether the solution is limited

to only explaining the data or if the solution actually gives

neurophysiological information about where the signals

were generated in the brain. Unfortunately, the reality of

how the signal was generated is not known. It is therefore up

to the user to decide whether or not the constraints used in a

given inverse solution are physiologically plausible. In the

following sections, we will list some of the currently used

inverse solutions and we will try to explain the assumptions

that each of these inverse solution incorporates. As will

become clear, the reason why new methods are continu-

ously developed is mainly that new knowledge of how

signals are generated is continuously incorporated as a priori

constraints. Thus, the source localization problem is not yet

solved, since not all information about signal generation is

yet known.

3.1. Overdetermined (dipolar) models

The basic a priori assumption underlying dipolar model

is that a small number of current sources in the brain can

adequately model the surface measurements. To warrant a

unique solution, the number of unknown parameters has to

be less than or equal to the number of independent

measurements (i.e. electrodes). The best location of these

limited number of sources is found by computing the

surface electric potential map generated by these dipoles

using a certain forward model (i.e. how a dipole at a given

position and orientation propagates signals to the scalp) and

comparing it with the actual measured potential map. This

comparison is usually based on calculating the (average)

squared error between the two maps. The solution with

optimal (i.e. minimal) squared error is accepted as best

explaining the measurements (thus the term ‘least-square

source estimation’). Since an exhaustive scanning through

the whole solution space with any possible location and

orientation of the sources is very demanding and nearly

impossible if more than one dipole is assumed, non-linear

optimization methods based on directed search algorithms

are usually used (Uutela et al., 1998). A general risk of these

methods is that they can get trapped in undesirable local

minima, resulting in the algorithm accepting a certain

location because moving in any direction increases the error

of the fit (Grave de Peralta Menendez and Gonzalez Andino,

1994). The complexity of the directed search algorithms and

the problem of local minima both increase with the number

of dipoles. Thus, the maximal number of independent

sources, which can be reliably localized for a given time

point, is lower than what would be theoretically possible.

Decoupling the estimation of the linear and non-linear

parameters of the dipoles can reduce the complexity and

help in identifying the absolute minimum in multiple source

modeling (Mosher et al., 1992). However, it would be

incorrect to assume that the mathematically absolute

minimum is the ’correct’ solution. Among all solutions

compatible with the data, the global minimum solution is at

best only slightly more likely than the others. It would thus

be presumptuous to automatically equate a ’correct’

solution with the absolute minimum of the residual sum of

squares.

In order to increase the number of dipoles that can be

fitted, Scherg and collaborators proposed incorporating the

temporal domain in the dipole fitting procedure (Scherg and

von Cramon, 1986). This spatiotemporal multiple source

analysis technique (implemented in the BESA software)

fixes the dipole locations over a given time interval and then

uses the whole block of data in the least square fit. The

fitting then results in time-varying modulation of the

amplitude of each of these dipoles. As with all dipole

models, the crucial issue in the spatiotemporal model is to

assume the correct number of dipoles. Two approaches are

proposed in the software (see Scherg et al., 1999): (1) The

whole period is analyzed at once with an increasing number

of sources. New sources are added as long as the explained

variance considerably increases. (2) The period is analyzed

sequentially and new dipoles are added for each additional

time window if further activity remains unexplained. The

second approach is exemplified in detail in the study of Foxe

et al. (2003). This study illustrates how important the a

priori knowledge about the number and possible location of

the sources is and how much user intervention and user

decision is needed in this step-wise approach. These issues

have been discussed in several simulation and experimental

studies (Achim et al., 1991; Cabrera Fernandez et al., 1995;

Miltner et al., 1994; Zhang and Jewett, 1993, 1994).

The key question that the user of overdetermined source

models has to solve is thus to obtain the correct estimates of

the number of sources. Most often the choice is based on
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expectancies based on physiological knowledge. For

example, short-latency evoked potentials or epileptic

activity is assumed to be generated by a fairly limited

number of simultaneously active sources. However, even in

these cases, new data on fast feedforward streams or rapid

propagation of brain responses, and on parallel activation of

primary and secondary sensory areas would question the

appropriateness of this assumption. For example, several

electrophysiological studies in primates (Bullier, 2001;

Fabre-Thorpe et al., 1998; Schroeder et al., 1998)

and intracranial ERP studies in humans (Blanke et al.,

1999; Seeck et al., 1997; Thut et al., 2000b) indicate fast and

parallel activation of different brain areas outside the visual

cortex at very early latencies (for a review see Michel et al.

(2004b)). Also in epilepsy, interictal activity can propagate

very rapidly, leading to activation of multiple or widely

distributed sources at the peak of the surface spike

(Huppertz et al., 2001b; Lantz et al., 2003b; Scherg et al.,

1999). Thus, rejecting dipoles that are not within the

expected areas or that are explaining only a small amount of

additional variance, might not always be justified.

Several studies have proposed to define the number of

dipoles based on other functional imaging data such as PET

or fMRI (Foxe et al., 2003; George et al., 1995; Korvenoja

et al., 1999; Menon et al., 1997). However, this is not

without risk given the fact that the relationship between

hemodynamic changes measured with fMRI and the

electrophysiological changes measured with EEG/MEG is

not yet well understood (Devor et al., 2003; Logothetis et al.,

2001). Mismatch between the two measures can be expected

due to several plausible reasons. For example, fMRI

activation can be seen in ‘closed field’ areas, i.e. in areas

where the electrical neuronal activity pattern is such that the

total current cancels out and is this invisible to surface EEG.

On the other hand, EEG sources can be found without

corresponding fMRI signal enhancement due to suscepti-

bility artifacts or, more importantly, due to the thresholding

of fMRI data where weak or short-lasting activities might

not reach the significance level (for a discussion see Vitacco

et al., 2002). This problem is particularly crucial when using

fMRI not only to select the number of dipoles but also to

actually fix their position to be localized on the maxima of

the BOLD response and then using the spatiotemporal

dipole model to reveal the time course of the activity of

these areas (Korvenoja et al., 1999; Menon et al., 1997;

Murray et al., 2002). More promising are approaches where

the EEG/MEG source modeling is done independent and

where the comparison with fMRI is used to select more

likely source distributions among the possible ones (Ahlfors

et al., 1999; Liu et al., 1998).

A third alternative for defining the number of active

sources is to use the available mathematical approaches that

aim to identify the optimal number of dipoles over a given

data period automatically. For that purpose, Mosher adapted

a scanning technique used in radar-technology to isolate

signal from noise. The method, called multiple signal

classification (MUSIC) is based on an eigenvalue decompo-

sition of the data to identify the underlying components (the

signal space) in the time series data (Mosher et al., 1992).

The whole brain volume is then scanned for those source

locations that contribute to the signal space. Once these

sources are found, the time courses of their moments are

determined in the same way as for the spatiotemporal

multiple source analysis described above. Some short-

comings of the MUSIC algorithm with respect to correlated

sources in the presence of noise as well as the application to

realistic head models has led to improvements upon the

original algorithms (RAP-MUSIC; Mosher and Leahy,

1998). Additional spatiotemporal decomposition

approaches to define the source space have been proposed

based on principle (Koles and Soong, 1998) or independent

(Kobayashi et al., 2002) component analysis, which provide

an estimator of the minimum number of dipoles.

3.2. Underdetermined (distributed) source models

In view of the intrinsic problem that the exact number of

dipole sources generally cannot be determined a priori,

methods that do not need this a priori assumption have

received increased attention. These so-called distributed

source models are based on reconstruction of the brain

electric activity in each point of a 3D grid of solution points,

the number of points being much larger than the number of

measurement points on the surface. Each solution point is

considered as a possible location of a current source, thus

there is no a priori assumption on the number of dipoles in

the brain (provided the grid of solution points is sufficiently

large). The task to solve is to find a unique configuration of

activity at these solution points that explains the surface

measurements. Unfortunately, an infinite number of distri-

butions of current sources within this 3D grid of solution

points can lead to exactly the same scalp potential map. This

means that the inverse problem is highly underdetermined.

This underdetermined nature of the source model further

necessitates the application of different assumptions in order

to identify the ‘optimal’ or ‘most likely’ solution. The

distributed inverse solutions that have been proposed in the

literature differ in their choice and implementation of these

constraints. Some are purely mathematical, some incorpor-

ate biophysical or physiological knowledge and others even

incorporate findings from other structural or functional

imaging modalities. It is important to emphasize that any

such constraint is only valid if source distributions fulfilling

these restrictions are more likely to occur than other

distributions. In other words, the validity of the a priori

constraint defines the validity of the inverse solution.

Conceptually, each point in the solution space can be

thought of as an equivalent dipole. However, in contrast to

equivalent dipole solutions, these ‘dipoles’ of distributed

inverse solutions have fixed positions. Only their orientations

and strengths vary. Consequently, equations describing

distributed inverse solutions are linear, meaning that a matrix
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can be constructed that linearly relates the measured data to

the estimated solution. This means that linear distributed

inverse solutions have the property that the 3D current

estimate (under the given constraint) exactly reproduces the

measured data, i.e. the explained variance is always 100%. In

practice, however, regularization parameters are usually

introduced to account for the noise in the data, and thus the

resulting source distribution does not fully explain the

measured data. If the regularization parameter is properly

based on the noise estimation, the unexplained part of the data

should actually correspond to this noise. The regularization

operator provides stability to the solution, such that small

variations in the data do not lead to large variations in the

source configuration. In the following, some (but not all) of

the proposed linear inverse solutions are briefly explained.

3.2.1. Minimum Norm

The general estimate for a 3D brain source distribution in

the absence of any a priori information is the Minimum

Norm (MN) solution (Hämäläinen and Illmonemi, 1984,

1994). It only assumes that the 3D current distribution

should have minimum overall intensity (smallest L2-norm).

The method gives a unique solution in the sense that only

one combination of intracranial sources can have both the

lowest overall intensity and at the same time exactly fit the

data. However, the restriction that the overall intensity

should be as low as possible is not necessarily physiologi-

cally valid. For example, there is no proof that the solution

with the second lowest overall amplitude is not actually the

correct one. The algorithm thus punishes solutions that give

strong activation of a large number of solution points, i.e. it

favors weak and localized activation patterns. Conse-

quently, the MN algorithm favors superficial sources,

because less activity is required in superficial solution

points to give a certain surface voltage distribution. In

consequence, deeper sources are incorrectly projected on

the surface, which can lead to erroneous interpretations.

3.2.2. Weighted minimum norm

In order to compensate for the tendency of the Minimum

Norm solution to favor superficial sources, different

weighting strategies have been proposed. The simplest

possible weighting is based on the norm of the columns of

the lead field matrix (Lawson and Hanson, 1974). In the

PROMS solution proposed by Greenblatt (1993), the

covariance data matrix is used to construct a weighting

function within the source space. Regularized location-wise

normalization has been proposed by Fuchs et al (1994). In

the FOCUSS (Focal Underdetermined System Solution)

algorithm, Gorodnitsky et al. (1995) proposed to iteratively

change the weight according to the solutions estimated in

previous step, leading to a non-linear solution. Grave de

Peralta Menendez and Gonzalez Andino, 1998 proposed to

impose the physical constraint that the currents are bounded

to the brain volume and thus that the radial components

should go to zero when approaching the surface of the brain

(radially weighted minimum norm solution, RWMN).

While these different depth weighting strategies overcome

the problem of the surface-restricted MN algorithm, it has to

be kept in mind that these weightings are based on purely

mathematical operations without any physiological basis

that would justify the choice of the weights.

3.2.3. Laplacian weighted minimum norm (LORETA)

Additional constraints can be added to the depth

weighting. A well-known example is the Laplacian

Weighted Minimum Norm algorithm (implemented in the

LORETA software, Pascual-Marqui et al., 1994). The

particular constraint in this case is that the method selects

the solution with a smooth spatial distribution by minimizing

the Laplacian of the weighted sources, a measure of spatial

roughness. Since smoothness is not uniquely defined for

vector fields, different definitions of smoothness (Mitiche

et al., 1988) will produce different optimally smoothed

solutions and thus the term ‘smoothest’ is unfortunate. The

physiological reasoning underlying this constraint is that

activity in neurons in neighboring patches of cortex is

correlated. While this assumption is basically correct, it has

been criticized that the distance between solution points and

the limited spatial resolution of EEG/MEG recordings leads

to a spatial scale where such correlations can no longer be

reasonably expected (Fuchs et al., 1994; Hämäläinen, 1995).

Indeed, functionally very distinct areas can be anatomically

very close (e.g. the medial parts of the two hemispheres).

Without taking such anatomical distinctions explicitly into

account, the argument of correlation as physiological

justification for the LORETA algorithm should be taken

with caution. Consequently, and because of this assumption

of correlation over relatively large distances, LORETA

generally provides rather blurred (‘over-smoothed’) sol-

utions that can include the two hemispheres or different lobes

(Fuchs et al., 1999; Grave de Peralta and Gonzalez, 2000;

Trujillo-Barreto et al., 2004).

3.2.4. Local autoregressive average (LAURA)

This distributed inverse solution attempts to incorporate

biophysical laws as constraints in the minimum norm

algorithm. According to the electromagnetic theory

described in the Maxwell equations, the strength of the

source falls off with the inverse of the cubic distance for

vector fields, and with the inverse of the squared distance for

potential fields (see also Section 3.2.8 below). The method

thus assumes that the activity will fall off (or regress)

according to these physical laws when you move away from

the source. LAURA integrates this law in terms of a local

autoregressive average with coefficients depending on the

distances between solution points (therefore the name

LAURA; Grave de Peralta and Gonzalez, 2002; Grave de

Peralta et al., 2001, 2004a). The autoregressive average thus

determines the activity at each point that cannot be estimated

from the data alone. Consequently, the activity at one point
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depends upon two contributions: one fixed by the biophysical

laws and another free to be determined from the data.

In the implementation that we applied in our recent

evoked potential studies (see Section 5.1.1) we incorporated

the local autoregressive average with homogenous

regression coefficients in all directions within the whole

solution space. Anatomical details could be incorporated at

this level of the modeling by varying the regression

coefficients. Also, instead of applying the same coefficients

to each individual Cartesian component of the primary

current density vector (3D vector field), dependencies

between the dipole moments could be taken into account

(Grave de Peralta et al., 2004a).

3.2.5. EPIFOCUS

EPIFOCUS (Grave de Peralta and Gonzalez, 2002;

Grave de Peralta et al., 2001) has mainly been developed for

the analysis of focal epileptic activity where a single,

dominant source with a certain spatial extent (determined by

the data) can be assumed (Lantz et al., 2001a, 2003a,b;

Michel et al., 2004a). It is a linear inverse method that scans

the solution space (i.e. the total number of solution points)

and calculates the current density vector by projecting the

scalp potential data on each solution point. The results of

this estimate (i.e. the modulus of the vector) can be

interpreted (up to a scale factor) as the probability of finding

a single source at each specific point. Because of its

simplicity, this technique is particularly well suited for

realistic (MRI based) head models. It is however better to

limit its use to cases where a single dominant source can be

assumed since it might fail if several sources at different

places are simultaneously active. However, one important

difference from the dipole model is that in later case the

dipole approach will regularly yield a source with all the

strength confined to one point located at the center-of mass

of the distribution. With EPIFOCUS it is, in contrary,

possible to visualize an activity with a certain spatial

distribution, and still retrieve the maximum within this

distributed activity.

As the MUSIC method and the non-linear single dipole

localization method, EPIFOCUS searches for focal sources

in the 3D solution space. However, in contrast to the

MUSIC method, it does not require a certain time period of

EEG for the analysis (i.e. a covariance matrix) but can rather

be applied to instantaneous potential maps. EPIFOCUS also

avoids the non-linear optimization algorithm used in the

equivalent dipole localization methods. This considerably

facilitates the localization in realistic head models, where

the source space (gray matter) is a discrete set of scattered

points. Both simulations as well as analyses of real data

have demonstrated a remarkable robustness of EPIFOCUS

against noise (Grave de Peralta et al., 2001). This is a

consequence of the fact that this is a pseudo solution in

which the reconstructed map does not need to fully

reproduce the observed data.

3.2.6. Beamformer

Beamforming approaches, originating from radar and

sonar signal processing, have recently been applied to the

analysis of (mainly MEG) signals (Gross et al., 2001;

Sekihara et al., 2001; Van Veen and Buckley, 1997). A

specific non-linear form of the beamformer is implemented

in the algorithm called Synthetic Aperture Magnetometry

(SAM; Robinson and Vrba, 1999). Like other linear filtering

approaches (Hauk et al., 2002), SAM can be considered as a

spatial filtering of the data to discriminate between the

signals that arrive from a region of interest and those

originating from other points. They can thus be interpreted

as a source scanning procedure that can estimate source

changes over time for any arbitrary voxel (Barnes and

Hillebrand, 2003; Taniguchi et al., 2000). Beamformer

approaches aim to estimate the activity at one brain site by

minimizing the interference of other possible simultaneous

active sources. For that, the selected estimator optimizes a

goal function that represents the ratio between activity and

noise at the target point. This function may contain the a

priori information available about the source and the data as

described for example by the covariance matrices. It has

been postulated that SAM does not suffer from the same

limitations as the linear inverse solutions (Vrba and

Robinson, 2001). Unfortunately, this claim is not entirely

true. The method is actually divided into two steps. First, the

sources are linearly estimated using an optimal direction

that is a priori defined. Second, the result is normalized by

the noise power (pseudo Z). Splitting the algorithm in these

two steps makes clear that, as for any linear estimator

(whatever the selected direction is), other simultaneously

active sources will influence the amplitude estimation of the

target point. As will become clear below, it means that a

resolution kernel can be associated to the estimation in the

target point. This resolution kernel predicts the influence of

the other simultaneously active sources on the target point.

Therefore, the beamforming approaches have the same

basic limitations as the other linear inverse solutions. The

second step in the approach is just a post-processing of the

linear inverse solution and can in principle be applied to all

the methods described above. The idea of normalization as a

second step in the inverse solution has also been used by

Dale et al. (2000) and by Pascual-Marqui (2002) in the

sLORETA method. In contrast to these alternatives that

yield non-linear estimators, we proposed in Grave de Peralta

et al. (2004b) the inversion of the resolution matrix to

improve the performance of linear solutions.

3.2.7. Bayesian approaches

The Bayesian approach is a statistical method to

incorporate a priori information into the estimation of the

sources. It can result in linear or non-linear estimators. Even

if the non-linear implementations result in complex

mathematical problems, it is probably the more promising

one, because it allows for a more detailed description of the

anatomical and/or functional a priori information. The types
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of a priori information that have to date been incorporated in

this approach include information on the neural current

(Schmidt et al., 1999), the sparse focal nature of the sources

(Phillips et al., 1997), combined spatial and temporal

constraints (Baillet and Garnero, 1997) as well as strategies

to penalize ghost sources (Trujillo-Barreto et al., 2004).

3.2.8. Alternative source models

The above described methods are all estimating the 3D

distribution of the current density vectors (the vector fields).

We recently proposed to change this source model, based on

the following consideration: The total microscopic current

emerging in biological tissue can be decomposed into two

terms, a primary neurophysiologically driven (active) current

and the volume or secondary current. The primary current is

induced by ionic flow between intra- and extra-cellular space

of the active neurons. The volume current refers to the

passive currents that manifest as the electrical response of the

media to compensate for charge accumulation at specific

sites driven by the active currents. It has been shown that on

the macroscopic level measured by EEG (as well as MEG)

only the volume currents are measured and not the active

current (Plonsey et al., 1982). Importantly, since the

microscopic volume currents dominate primary currents,

the currents perceived by EEG and MEG are ohmic.

Based on these neurophysiological considerations, we

formulated a source model (called ELECTRA) that is

implicitly only estimating ohmic currents (Grave de Peralta

Menendez et al., 2000). ELECTRA is not an inverse

solution, but rather a source model in which the generators

of the scalp maps are the intracranial potentials instead of

the 3 components of a dipole at each solution point. The

advantage of using this source model is that the inverse

problem is better conditioned, i.e. the number of unknowns

is reduced by a factor of 3. This obviously increases the

spatial resolution for the same amount of data even though

the solution is still non-unique. Based on the ELECTRA

source model, regularization strategies such as MN, WMN,

LORETA, LAURA and any others can then be applied

(Grave de Peralta et al., 2004a).

On the basis of this new source model different physical

magnitudes can be estimated, such as the current source

density (He et al., 2002), or the potential distribution (Michel

et al., 1999a; Morand et al., 2000). Estimating the potential

distribution actually corresponds to non-invasive estimation

of the local field potential (LFP). Therefore, direct compari-

son with intracranial recordings can be made (Michel et al.,

1999a; Thut et al., 2000b, see Section 5.1.2).

3.3. Evaluation and comparison of inverse solutions

In view of the many different existing source localization

methods, the potential user is confronted with the question

of how trustable these solutions are, and which one should

be chosen. While this is of course the most crucial question,

there is no direct answer to it. The problem with

the evaluation of inverse solutions (dipole models or

distributed source models) is the difficulty of obtaining

evidence about the true location of the sources. There is no

clear established gold standard that would allow judging the

goodness of the result of the different inverse solutions. As

discussed above, other functional imaging methods such as

fMRI cannot be used as a gold standard as long as the spatial

and temporal relation between electrical and haemodynamic

responses are not known.

Most commonly, source localization algorithms are

evaluated and compared through simulations with artificial

data. These studies are based on the following basic method:

a dipole is placed in the (modeled) brain, the forward

solution of the scalp potential distribution is calculated, the

source localization procedure is applied to this map, and

the distance of the estimated source to the true source is

measured. In the case of distributed inverse solutions, the

distance between the source maximum and the simulated

source is usually taken as a measure of error. Scanning

through the whole source space reveals the so-called

average dipole localization error (see also Fig. 1). This

approach has its undoubted value in evaluating the behavior

of dipolar models. It has, for example, been used to evaluate

the variability in localization precision between different

regions of the brain where larger errors for basal sources as

compared to sources of more superior locations have been

found (Cuffin, 2001; Cuffin et al., 2001; Kobayashi et al.,

2003). Such simulations were also used to evaluate the

dependency of equivalent dipoles on source depth (Yvert

et al., 1996), on the noise level (Achim et al., 1991;

Vanrumste et al., 2002; Whittingstall et al., 2003), on the

number of recording electrodes (Krings et al., 1999; Yvert

et al., 1996), and on the head model (Cuffin et al., 2001;

Fuchs et al., 2002).

The dipole localization error in simulated data is also

often used to evaluate the accuracy of distributed inverse

solutions and to compare a newly proposed method to those

that have been presented before. Usually, simple spherical

head models are used in these simulated comparisons.

Pascual-Marqui (1999) used the dipole localization error to

compare MN, column weighted MN, LORETA, and some

rather general classes of inverse solutions (Backus and

Gilbert and WROP). The smallest localization errors were

obtained for LORETA. Laehy et al. (1996) compared MN,

WMN, LORETA, and the Bayesian solution and found best

localization precision for the Bayesian method if the sources

had sparse focal characteristics. Recently, a new variant of a

Bayesian model was presented by Trujillo-Barreto et al.

(2004) and was compared to the unconstrained and a

cortical constrained version of LORETA. Higher localiz-

ation precision for deep sources and (more importantly)

much higher spatial resolution was shown with the Bayesian

approach as compared to both LORETA versions. Grave de

Peralta and Gonzalez (2002) compared MN, RWMN,

LORETA, LAURA and EPIFOCUS. Due to the intrinsic

assumption of single sources, EPIFOCUS behaved best in
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these single source simulations, followed by LAURA.

Radially weighted MN and LORETA were comparable.

Phillips et al. (2002) compared a simple WMN, LORETA,

and a WMN that imposes constraints derived from other

imaging modalities. They showed a strong noise-depen-

dency of the LORETA algorithm. If no noise regularization

was applied, LORETA was not able to provide any proper

localization, even for data with a high signal-to-noise ratio.

Unfortunately, these comparisons are not of great value

for judging the goodness of the distributed linear inverse

solutions. Since the argument for using distributed inverse

solutions is precisely that they can retrieve multiple active

sources, the dipole localization error is the most ‘unnatural’

test for them (Grave de Peralta Menendez and Gonzalez

Andino, 1998). For example, in Michel et al. (1999a)

we showed that LORETA gives a correct, though blurred,

reconstruction when one single point is active and all others

are zero. However, just adding a constant value to all

sources in the solution space makes the LORETA algorithm

fail. This is due to the general fact that all simultaneously

active sources affect the estimation of the activity in one

point, a situation that the dipole localization error does not

consider. Such simulations can thus not predict how a

distributed inverse solution deals with the reciprocal

influences of simultaneously active sources.

The appropriate way to evaluate and compare linear

distributed inverse solutions would be the so-called

resolution matrix (Backus and Gilbert, 1970; Grave de

Peralta Menendez and Gonzalez Andino, 1999; Grave de

Peralta Menendez et al., 1996; Lütkenhöner and Grave

de Peralta, 1997; Menke, 1989). The rows of the resolution

matrix (the so-called resolution kernels) give direct infor-

mation about how all other active sources influence the

reconstruction of a source at a given point. From these

resolution kernels, different figures of merit can be derived to

evaluate the behavior of distributed inverse solution in the

presence of simultaneous sources, such as the source

visibility and identifiably (Grave de Peralta Menendez

et al., 1996), or the cross-talk metric (Liu et al., 1998,

2002). In addition, the resolution kernels provide a general

framework to design and construct inverse solutions with

optimal resolution (WROP method; Grave de Peralta

Menendez et al., 1997). While Liu et al. (2002), used the

resolution kernels to compare EEG and MEG, Grave de

Peralta Menendez and Gonzalez Andino (1998) used this

framework to evaluate different inverse solutions. The MN,

LORETA and an averaged solution were compared. This

comparison revealed that (a) all solutions systematically

underestimated the dipole moment or strength, (b) LORETA

and the average solution were better than the MN in terms of

their capability to localize the position of a single source, (c)

all solutions behaved similarly in the presence of simul-

taneously active sources.

The conclusion from these simulation studies on dis-

tributed inverse solutions is that their basic limitation is the

incorrect estimation of the source strength. This limitation

might lead to ghost and lost sources in the instantaneous map

reconstruction as well as to maxima reflecting no underlying

source. This limitation might be alleviated, however, by

introducing posterior analysis of the reconstruction in the

temporal domain invariant to factor scales (Grave de Peralta

et al., 2004a) or that aim to rectify a posteriori the estimated

strength (Dale et al., 2000; Vrba and Robinson).

Mathematical simulations or measurements on phantom

heads have their undoubted value, but they cannot really

mimic the complex distribution and interaction of active

sources as it is probably the case in reality. Thus, the more

challenging test of inverse solution algorithms is their

behavior in real data where the most dominant sources are

known with very high probability. This is offered in the case

of epileptic activity in patients where the focus localization is

known from other independent sources (i.e. the pre-surgical

evaluation methods including intracranial recordings if

needed). Several studies actually applied inverse solutions

to epileptic data, both dipole localization methods (e.g. Boon

et al., 2000; Ebersole, 1997, 2000a,b; Krings et al., 1998;

Merlet and Gotman, 1999) as well as distributed inverse

solutions (e.g. Fuchs et al., 1999; Huppertz et al., 2001a,b;

Lantz et al., 2003a,b; Michel et al., 1999a; Seri et al., 1998;

Waberski et al., 2000). These studies repeatedly showed that

inverse solutions could correctly define the epileptogenic

zone. Thereby, the localization precision on sublobar level

depends on several factors such as the number and position of

electrodes, the head model, the signal-to-noise ratio as well

as the inverse model applied. Using 123-channel recordings

and EPIFOCUS on the SMAC-transformed individual MRI,

we recently showed in a prospective study of 44 patients that

the epileptic focus could be localized correctly on the lobar

level in more than 90% of the cases, and on a sublobar level

with the maximum laying within the resected zone in 79%

(Michel et al., 2004a).

In an attempt to directly evaluate different inverse

solutions on real data, different groups applied different

source localization algorithms to interictal data of two

epileptic patients that they received from the Editor of the

Journal of Clinical Neurophysiology (Ebersole, 1999a).

Three independent groups analyzed the data without

knowing anything about the possible focus location

(Fuchs et al., 1999; Michel et al., 1999a; Scherg et al.,

1999 ). The data only contained the 27-channel recordings

of an averaged spike for each patient, the position of the

electrodes, and the MRI of the patients. Even with this low

number of electrodes, the spatiotemporal dipole model as

well as most of the distributed (linear and non-linear)

inverse solutions led to correct localizations of the spikes

and their propagation pattern, as confirmed by the

intracranial recordings (Ebersole, 1999b). Differences

were mainly seen in the amount of blurring and the retrieval

of basal temporal lobe sources. Of course, the low number

of electrodes that were used in these examples also

contributed to a limited spatial resolution of the source

estimations (see Section 2.1).
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A general comment should be made with regard to the

use of epileptic activity to demonstrate and evaluate source

localization precision. The finding that a given source

analysis procedure localizes a spike within an anatomical

lesion, or in a region in which subsequent depth electrodes

show spiking or seizure onset, is only indirect evidence that

the source location depicts the epileptic source (we do not

know for sure if the spike is generated in the lesion, if

seizures and spikes have the same generator, if the depth

spikes are the same events as those recorded on the scalp).

More solid evidence is obtained in cases where surgical

removal of the area indicated as the epileptic focus by the

inverse solution renders the patient seizure free. In these

cases, however, the extent of the surgical resection

(sometimes major parts of a lobe), often makes it difficult

to judge the spatial accuracy that actually was obtained with

the inverse solution. The only direct proof that the source

localization results are both valid and accurate is the direct

comparison of the source model to the intracerebral field

through simultaneous intra- and extracranial recordings.

Several such studies in epileptic patients have shown a good

correlation between the intracranial source and the inverse

solution results but have also demonstrated some inherent

limitations, especially concerning the localization of

activity confined to deep temporal structures (Lantz et al.,

1996, 1997, 2001a; Merlet and Gotman, 1999, 2001).

4. Integration of EEG source imaging with MRI

The ultimate goal of modern EEG source imaging is the

localization of the EEG sources in anatomically defined

brain structures so that direct comparison with other

imaging methods, with lesion studies, or with intracranial

recordings can be made. Most of the commercial and freely

available software packages provide this possibility. Most

often, it is mainly applied for visualization purposes. More

recently, this information has been used to define the

coordinates of the sources in terms of Brodmann areas or in

Talairach coordinates and to draw conclusions about the

anatomical/functional structures that were active. The

accuracy of these locations depends crucially on two

aspects (1) The head model initially selected to compute

the inverse solution and (2) The inverse solution itself.

4.1. EEG–MRI co-registration

A prerequisite to be able to define the inverse solution

results within the structural MRI is the co-registration

between these two imaging modalities, i.e. the EEG space

and the MRI space. This step requires that electrode positions

are matched to the scalp surface defined by the MRI using

some transformation (rotation and translations) operations.

These parameters are usually obtained by measuring some

‘common’ landmarks during both the EEG as well as the MRI

acquisition. Most commonly, MRI-visible markers are

placed on the skin that correspond to the position of the

electrodes and/or some fiduciary landmarks (e.g. nasion,

inion, pre-auricular points, and vertex). These points are

similarly measured during the EEG recording using a 3D

digitizer. From such information, the transformation par-

ameters can be determined for projecting the EEG sources

into anatomical coordinates and displaying them on the MRI

(Dieckmann et al., 1998; Lagerlund et al., 1993; Merlet et al.,

1996; Scherg et al., 1999; Seri et al., 1998; Towle et al., 1993;

Yoo et al., 1997). In order to avoid the labor-intensive

measurement of the electrodes and fiduciary landmarks on

every subject, many studies use one single template MRI

(such as the MNI brain from the Montreal Neurological

Institute) and assume a standard electrode coordinate system.

In this case, pre-defined translation parameters are used to

match the EEG to the MRI space. Individual differences in

head size and electrode positions are thereby ignored, leading

to a limited accuracy with regard to the anatomical precision

of the source locations.

4.2. Head models

An important issue with respect to EEG–MRI co-

registration is the selection of the head model for the inverse

solution calculation. The head model determines the way the

sources located at given brain sites produce the measure-

ments on the scalp. It includes the electromagnetic

(permeability’s and conductivities) and geometrical (shape)

properties of the volume within which the inverse solutions

are calculated. Mathematically, these properties are

expressed in what is called the lead field matrix. To solve

the inverse problem, this lead field matrix is multiplied with

the estimated sources (the current density vector) to produce

the scalp potentials (the forward solution). The distance

between these predicted scalp potentials and the measured

potentials is the basis for finding the generators. Therefore,

an accurate head model is essential for the solution of the

inverse problem. The simplest and still most often used head

model is the spherical model. Spherical head models with

uniform conductivity properties allow an analytical solution

of the forward problem and are thus fast and easy to calculate.

However, the head is not spherical and its conductivity is not

spatially uniform. Source localization accuracy is limited

when using this model. Incorporations of different conduc-

tivity parameters in multishell spherical head models (Ary

et al., 1981; Berg and Scherg, 1994; deMunck and Peters,

1993; Zhang and Jewett, 1993) and consideration of local

anisotropies (De Munck et al., 1988; Zhang, 1995) can

ameliorate the accuracy to a certain degree.

Several comparative studies have shown that accurate

lead field computation can—for sources in most parts of the

head—only be achieved by using realistic volume con-

ductor models (see e.g., Cuffin, 1990, 1993, 1996; Meijs

et al., 1987; Menninghaus et al., 1994; Hämäläinen and

Sarvas, 1989; Roth et al., 1993; Stok, 1987; Thévenet et al.,

1991; Yvert et al., 1995). However, it is worth noting that
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most of these studies have been performed for single dipole

localization and that similar analysis for distributed inverse

solutions are largely missing. The most popular techniques

for realistic head modeling are the BEM (boundary element

method) and the FEM (finite element method). The BEM

(Hämäläinen and Sarvas, 1989) uses triangulations of the

interfaces between compartments of equal isotropic con-

ductivities as a geometric model. In contrast, the FEM

(Bertrand et al., 1991; Miller and Henriquez, 1990; Yan

et al., 1991) tessellates the whole volume and allows

therefore to consider individual anisotropic conductivities

for each element. In practical terms this implies that

contrary to the BEM model, the FEM model can take

skull-breaches and anisotropies into account. However,

since detailed anatomical information about tissue conduc-

tivities is rarely available (Hoekema et al., 2003), the

advantages of the FEM model are not yet fully exploited.

The generation of realistic geometric models is not a

trivial task, since it implies the segmentation of the MRI

including the interfaces between the different head compart-

ments (including the skull the contrast of which is not

readily distinct with standard T1 weighted MRI). In

addition, the tessellations have to fulfill several require-

ments in terms of the element size, smoothness and inter-

compartment distances in order to avoid instabilities of the

algorithms. Although an automatic procedure has been

described by Fuchs et al. (2001), which is able to complete

the whole realistic lead field computation on an standard PC

in a few minutes, the computational ease of spherical head

models still makes them the most used model to describe the

lead field. This is particularly the case for most of the

available software packages using single or multiple dipole

fitting. Even if realistic source models are included in the

software, they are seldom used when dipole modeling is

selected. The reason is that the non-linear search of the

dipole positions relies on iterative algorithms (see Section

3.1). This means that for each update of the dipole positions

or change of the input data, the forward problem has to be

resolved according to the new estimated parameters. This

procedure, depending on the complexity of the head model,

may still take a significantly long time to converge. While

these issues of computational load are becoming less

relevant with increasing computer power, some recent

studies reported that differences between spherical and

realistic models for single dipole localization decrease with

increasing noise in the data (Van Rumste et al., 2002;

Zanow and Peters, 1995).

Because of the obvious shortcomings of spherical head

models on the one hand and the complexity of realistic head

models on the other hand, efforts have been made over

recent years to combine the computational efficiency of

spherical head models with more realistic and accurate

descriptions of the head shape. Huang et al. (1999) proposed

a sensor-weighted overlapping-sphere (OS) head model for

rapid calculation of more realistic head shapes. The volume

currents associated with primary neural activity were used

to fit spherical head models for each individual MEG sensor

such that the head is more realistically modeled as a set of

overlapping spheres, rather than a single sphere. Compari-

sons of the OS model, the BEM, and the multishell spherical

model showed that the OS model has accuracy similar to the

BEM but is orders of magnitudes faster to compute. Ermer

et al. (2001) extended this model to EEG with improve-

ments in localization accuracy and speed similar to those

obtained for MEG.

As an alternative to the above described head models, we

proposed in Spinelli et al. (2000) a spherical head model

with anatomical constrains (SMAC). In this approach a

best-fitting sphere is calculated for the individual head

surface derived from the segmented MRI. Homogeneous

transformation operators are then calculated that transform

the MRI to a sphere. Consequently, the inverse problem can

be calculated analytically (using a spherical model), but the

solutions are directly calculated for this (though slightly

deformed) MRI. The major advantage (besides the simpli-

city of the calculation) is the fact that it directly allows

excluding areas (within a sphere) that are not expected to

contribute to the solution, such as white matter or lesions as

illustrated in Fig. 4.

4.3. Definition of the solution space

Another important issue in EEG source imaging

concerns the selection of the solution space within which

the sources are allowed. For dipole solution algorithms, this

refers to the space that is included in the non-linear search

procedure. For distributed inverse solutions, it refers to the

distribution of the fixed solution points. In most of the

simple spherical head models, the whole volume within a

certain radius of the sphere (excluding the space between

the scalp and the brain) is accepted as solution space. Thus,

white matter, ventricles and deep structures are all allowed.

In realistic head models (using BEM, FEM or SMAC), the

MRI is taken into account to restrict the solution space to

structures where putative EEG sources can actually arise

(i.e. the gray matter of the cortex and some well-defined

deep structures with or without the cerebellum). The

optimal selection of such a restricted solution space has to

be based on the segmentation of the MRI into gray and

white matter. If this is done on the basis of a general head

model (such as the MNI brain described above), individual

variances are not considered. The use of the subject’s proper

MRI is ultimately needed in clinical cases where lesions or

deformations are present. Only by using the patient’s own

MRI can such areas be excluded from the solution space

(see also Fig. 4).

It is noteworthy that a realistic gray matter selection

generally leads to a non-continuous solution space. This

poses particularly severe problems for dipole models with

their non-linear iterative search algorithms. In such

scattered solution space, the definitions of gradients and

steepest descent directions are obviously undefined,
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impeding the use of the standard mathematical solutions.

On the other hand, distributed linear source models with

their fixed location of solution points are straightforward

to apply to non-homogeneous volumes, since the

positions of the dipoles remain fixed. Also, other

methods such as MUSIC and RAP-MUSIC (see Section

3.1) can be implemented in non-homogenous models.

In conclusion, if spherical head models without any

anatomically defined restrictions of the solution space are

used, the EEG–MRI co-registration cannot guarantee that

the estimated sources will appear at reasonable positions

(e.g. gray matter and not the ventricles). Such images

should therefore be carefully interpreted as a mere

illustrative picture without actual anatomical precision.

This is especially the case for dipolar models. An

erroneous impression of high anatomical precision may

be given when point-like sources are displayed on the

MRI, while the fact that these dipoles represent the

center of mass of the actual source distribution is

sometimes ignored. It can thus happen that this center

of mass will be localized deeper in the subcortical white

matter or superficial in the subarachnoid space. In these

cases, the orientation of the dipoles and knowledge about

the cortex geometry in this region has to be used to

properly conclude about the anatomical area within the

gray matter that is represented by this ‘white matter’

dipole (Ebersole, 2000a).

5. Incorporating time and frequency in source imaging

While the high temporal resolution is considered as the

most important advantage of EEG/MEG measures, it carries

the side effect of greatly increasing the amount of data

collected, and consequently of introducing a temporal

dimension to the data analysis procedures. As such,

experimenters must devise methods for determining the

relevant events within a continuous time series of data to

which source analysis will be applied. Some of these

methods are heavily influenced by the experimenter,

whereas others are more driven by the data themselves.

For example, these ‘relevant events’ can be selected a priori

by searching for electrodes with potential peaks, either in

evoked potentials (components) or in epileptic data (spike

Fig. 4. Source localization in an anatomically defined spherical head model. (A) Illustration of the SMAC procedure (Spinelli et al., 2000). The MRI data are

spatially transformed to the best fitting sphere by homogeneous transform operations. The back and front of the head are compressed, whereas the temporal

lobes are stretched. (B) Illustration of the distribution of the solution points on the gray matter of the spherically transformed MRI of a single patient. A

horizontal slice at the level of the patient’s right frontal lesion is shown, illustrating that no solution points are defined within the lesion. (C) Averaged spike of

this patient recorded from 123 electrodes, showing maximal potentials at right frontal electrodes. (D) Results of the application of the EPIFOCUS inverse

solution to the averaged spike shown in C, displayed on the patient’s MRI. Maximal source strength is observed in the vicinity of the lesion. (E) SMAC-

transformed post-operative MRI of the patient allows subsequent and direct comparison between the location of the estimated source and the resected area (see

Michel et al. (2004a) for details).
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maximum). They can be defined automatically as a segment

of stable map topography, leading to a temporal parceling of

the data into functional microstates. Alternatively to the pre-

selection of relevant time points or periods, source

localization methods can be applied to each time point

and the temporal dynamics can directly be studied in the

source space. Finally, the high temporal sampling of the

activity also allows one to study the behavior of the sources

in different frequencies by applying frequency transform-

ation algorithms and source localization in the frequency

domain. In this section we discuss some of the strategies that

are used to deal with the temporal information that

EEG/MEG measures provide.

5.1. Definition of components

In ERP research, a large number of studies rely on the

‘component approach’ to define the time point or period of

interest for source localization. This approach has a long

tradition in ERP waveform analysis where components are

defined as peak and troughs of the waveforms at certain

channels. The same approach is also used for the analysis of

interictal epileptic activity, where the peak of a spike at

certain electrodes is selected. This approach was reasonable

at a time when electrode montages sparsely sampled the

electrical field at the scalp. However, with the development

and widespread use of multichannel systems, this approach

is far less tenable. Concerning ERPs, different scalp sites

have different peak latencies (and thus several generators),

particularly for prototypical components (for detailed

discussion see Skrandies, 2003; see also e.g. Foxe and

Simpson, 2002; Murray et al., 2002; Picton et al., 2000). In

order to circumvent this problem, the peaks of the Global

Field Power (GFP, spatial root mean squared across all

electrodes; Lehmann and Skrandies, 1980) are sometimes

selected. GFP has the advantage of being a global measure

of the electric field at the scalp, which is aided by the

increased number of electrodes used, and is furthermore not

biased by the experimenter’s selection of a limited number

or distribution of electrodes. A further strategy is the use of

fixed time windows around certain ‘traditional’ components

or around epileptic discharges and to average the activity

over this period. The inverse solution is then applied to the

mean map over this period.

In terms of source estimation, it is important to note that

calculating an inverse solution from a mean map over time

assumes that similar source(s) have been active and that

therefore the mean of the maps is a good representation of the

individual maps. This is a delicate assumption and minimally

requires proof that the scalp topography is indeed indis-

tinguishable and stable over the analyzed period. Interpret-

ation of a mean topography (and the sources estimated from

it) is impossible if the potential distribution changed during

the averaged period (Picton et al., 2000). Such topographical

changes have been shown for both long-lasting potentials

such as the contingent negative variation (CNV) (Cui et al.,

2000; Rohrbaugh and Gaillard, 1983) or the Bereitschaft-

spotential (Cui et al., 1999), as well as for the very early

sensory evoked potential such as the visual C1 component

(Foxe and Simpson, 2002) and the period of an epileptic

spike (Huppertz et al., 2001a; Lantz et al., 2003b). Therefore,

source localization of averaged maps over the long period of

sustained potentials (e.g. Kounios et al., 2001) or over the

whole C1 period (Di Russo et al., 2002) without verifying

map stability is not without risk. It can lead to artificial maps

and thus to artificial sources. This principle also holds when

comparing experimental conditions. If fixed time windows

are used and the sources within these windows are compared

between conditions, it has to be assured that the map

topographies are stable over the period in both conditions.

Simple latency shifts can result in coverage of a stable

‘component’ in one condition, but an inclusion of two

different components with different map topographies, and

by extension generator configurations, in the other. The

spatiotemporal pattern analysis or ‘segmentation’ approach

described in Section 5.1.1 solves this problem.

5.1.1. Microstate segmentation

An alternative to the direct analysis of the temporal

dynamics of the estimated sources is to select time periods

of interest for source analysis on the basis of the scalp

potential maps. The basic idea underlying this approach is

that different map topographies directly indicate different

sources in the brain. By using statistical approaches that

allow one to define when map topographies differ over time

or between experimental conditions, periods where different

sources in the brain are to be expected can be defined with

minimal user-bias. A simple way to compare map

topographies is to calculate the so-called Global Dissim-

ilarity (Lehmann and Skrandies, 1980). It is obtained by

calculating the square root of the mean of the squared

differences between all corresponding electrodes, once

these two maps have been recalculated against the average

reference and normalized to unitary strength (i.e. divided by

its own GFP). It is inversely related to the ‘spatial

correlation’ between two maps (Brandeis et al., 1992).

Global Dissimilarity ranges from values of 0 (map

homogeneity) to 2 (map inversion). Using this measure, it

is thus possible to quantify the stability of the maps over

time and define the period over which map averages could

be made (Fig. 5). It is likewise possible to use this measure

to statistically compare scalp topographies between exper-

imental conditions while maintaining EEG’s temporal

resolution (Murray et al., 2004a).

A striking observation when looking at this sequential

dissimilarity curve of EEG and evoked potential data is that

it always shows periods of several tens of milliseconds with

very low values (i.e. similar topographies) interrupted by

brief peaks (i.e. topography changes). When directly

looking at the map series, it can be seen that the maps

indeed remain stable during the periods of low dissimilarity

and only increase and decrease in strength (as indicated by
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increasing and decreasing GFP). The topography then

abruptly changes (often, but not always, during a period

of low GFP) to again remain in a new stable configuration

(Fig. 5). Dietrich Lehmann and collaborators proposed that

each of these obvious periods of stable electric field patterns

represents a functional microstate of the brain or ‘mind-

state’ during information processing (Lehmann, 1987). The

mean duration of the microstates of around 80–120 ms

(Koenig et al., 2002) is comparable with other reports on

epochs of perceptual frames and suggests that these

segments of near-stable brain activity are needed for

conscious experience (John, 2002; Lehmann et al., 1998).

Aside from this functional interpretation, the practical

consequence of this observation in human EEG and ERP

data is that it permits the summarization of the data by a

series of time periods that are each described by a certain

Fig. 5. Spatio-temporal ERP analysis. (A) Potential map series from an ERP in response to a reversing checkerboard and shown at 4 ms intervals. (B) Result of the

spatial cluster analysis applied to the map series shown in A. A cross-validation procedure identified six maps as optimally explaining the whole data set. (C) Plot

of the Global Dissimilarity (GD) for the ERP shown in A, which is a general measure of topographic similarity between two maps, here between maps of

successive time points. High values indicate time points where the topography changes drastically. Colored areas under this curve denote the periods over which

the above defined cluster maps best explained the data. Note that each of these maps is present for a certain time period (a functional microstate, Lehmann &

Skrandies, 1980), and that transition from one stable topography to another generally corresponds to peaks of the Global Dissimilarity. (D) Plot of the Global Field

Power (GFP) for the ERP shown in A, a measure of map strength. The segments defined by the cluster analysis are again indicated with colours under the curve.

Note that map transitions generally appear during periods of low GFP and that these time points correspond to peaks in the Global Dissimilarity curve shown in B.

(E) Distributed linear inverse solution (LAURA) of each of the six cluster maps. Only the sources in the posterior part of the head are shown here. While the most

dominant activity is confined to the visual cortex during the first 80 ms (though other weaker sources are already present elsewhere), strong temporal and parietal

sources are found already during the P100 segment. Feedback mechanisms might come into play at later periods with re-activation of the visual cortex.
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distinct map topography. Since different map configurations

must have been produced by different configuration of

active (though multiple) sources in the brain, the reduction

to such segments provides a means for defining the different

activation patterns that can reliably be detected on the scalp

surface. A statistical method based on k-means spatial

cluster analysis and a cross-validation criterion has been

proposed to define the optimal number of maps that best

explain the whole data set and the time period during which

they appear (Pascual-Marqui et al., 1995). By using fitting

procedures based on spatial correlation analysis, a statistical

method to define strength, duration, onset and offset of each

of these maps and their specificity for different experimental

conditions became possible (Pegna et al., 1997; for a review

see Michel et al., 2001). Recently, a similar idea of

component-definition has emerged (Spencer et al., 2001).

However, we would note that the Principal Component

Analysis that they propose has in fact been utilized in ERP

research for precisely this purpose for quite some time

(Skrandies, 1989).

Source localization applied to these segmentation maps

is thus based on the statistical proof that the electric fields

were different (and thus generated by different source

configurations). Also, the method readily justifies the

averaging over the period that given segmentation map

was present because the maps were not significantly

different. Temporal segmentation based on map topogra-

phies and subsequent source localization has been success-

fully applied in studies of visual and auditory perception

(Ducommun et al., 2002; Khateb et al., 2000; Morand et al.,

2000; Pegna et al., 1997, 2002), visuo-motor interactions

(Thut et al., 1999, 2000a), language (Khateb et al., 2001,

2003; Ortigue et al., 2004), multisensory integration

(Murray et al., 2004a,b), memory functions (Schnider

et al., 2003) and for the definition of the primary ictal and

interictal epileptic focus (Lantz et al., 2001b, 2003b) (for

reviews see Michel et al., 1999b, 2001, 2004b).

5.1.2. Estimation of intracranial activation curves

The two above-described methods determine relevant

time points or time periods based on the waveform or on the

spatial characteristics of the electric fields and apply source

analysis to these selected maps only. The alternative

approach is to apply source localization to each time point

and analyze the temporal dynamics of the source waveforms

in the 3D-solution space.

The spatiotemporal multiple source analysis technique of

Scherg and Von Cramon (1986) discussed in Section 3.1 in

principle takes this approach. The basic idea is to estimate the

strength of responses at a discrete number of user-defined

equivalent current dipoles for each time point of a series of

scalp potentials. This yields so-called source waveforms for

each dipole that can themselves be analyzed in a like manner

to surface waveforms (i.e. in terms of amplitude and latency).

While this approach carries assumptions regarding the

number and orientation of intracranial generators, it benefits

from a capacity to provide information on the (possible)

succession of activity across a network of brain areas, as well

as the likely possibility of multiple recursive volleys of

activity in one or multiple brain areas. This is particularly

important for questions of sequential versus parallel and

feedforward versus feedback brain processes. Indeed, this

approach has been applied to the investigation of the visual

(e.g. Di Russo et al., 2002; Foxe et al., 2003; Martinez et al.,

2001; Murray et al., 2002; Simpson et al., 1995), auditory

(e.g. Riedel and Kollmeier, 2003), and somatosensory (e.g.

Buchner et al., 1995; Thees et al., 2003; Waberski et al.,

2002) systems. While these studies provided several

important proposals concerning the temporal properties of

neuronal networks, it has to be kept in mind (see Section 3.1)

that the user defines the number of sources that will present

these networks and that this definition is not always

necessarily correct (Achim et al., 1991; Miltner et al., 1994).

By using distributed inverse solutions, activation curves

can in principle be calculated for each voxel (solution point)

in the brain without an a priori decision about the areas that

are expected to be active. Such millisecond-by-millisecond

inverse solutions can be performed on averaged evoked

potentials as well as on single sweeps. The latter approach

has repeatedly been proposed by the group of Liu and

Ioannides using magnetic field tomography (Ioannides et al.,

2000; Laskaris et al., 2003; Liu et al., 1999). This single trial

analysis is particularly appealing because it allows one to

assign statistical significance to the activation at each time

slice for each solution point in a single subject. This is done

by statistically comparing the activation curve with the

activation of this voxel during a baseline period. Of course,

care has to be taken with regard to the number of statistical

tests that are performed (No. of solution points £ time). A

pre-selection of regions and time periods of interest can

reduce this problem (e.g. regions of interest defined by the

maxima found in the inverse solution of the averaged data

(Ioannides et al., 2000)).

In principle, the application of distributed inverse

solution on each time point of the spontaneous activity

attempts to perform intracranial recordings non-invasively,

i.e. it attempts to estimate the activation curve that would be

measured when placing an electrode within the brain. This

is, however, only partly the case with the conventional

inverse solutions that estimate dipole strength in the brain.

Direct intracranial recordings do not measure dipoles but

they measure local field potentials. Searching for steep

potential gradients or phase inversions allows one to make

inferences on source locations. As introduced in Section 3.2,

we developed an alternative source model (ELECTRA) that

directly estimates local field potentials from the surface

data. This inverse solution approach is particularly suited to

estimate the temporal behavior of the activity in different

regions because the scale independent waveshape analysis

of potentials circumvents one basic limitation of distributed

inverse solutions, which is the uncertainty in estimating

source amplitudes (Grave de Peralta et al., 2004a).
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In previous studies, we have compared these estimated local

field potentials with direct intracranial recordings in

epileptic patients and could demonstrate close resemblance

of the real measured and the estimated potential waveforms

(Michel et al., 1999a; Thut et al., 2000b).

Single sweep analysis using the ELECTRA approach has

also been used in a recent study that evaluated possible

correlations between pre-stimulus activity and reaction time

to the stimulus (Gonzalez Andino et al., 2004). Based on

previous primate studies, we suggested correlations between

pre-stimulus frequency oscillations (particularly in the

Gamma range) and reaction time (Engel et al., 2001). To

study such frequency oscillations we transformed the scalp

EEG traces of each single sweep of each subject to

intracranial potentials at 4024 discrete voxels homoge-

neously distributed on the gray matter. We then performed

wavelet-based time-frequency analysis (see also Section

5.2) for each gray matter point for the pre-stimulus period of

300 ms. Finally, correlation analysis was performed

between the reaction times and the energy for each

frequency, solution point, and subject. This analysis

revealed significant correlations in more than the 85% of

the subjects between the energy in the gamma band (above

30 Hz) and reaction time mainly in right frontal and parietal

brain areas, areas that have previously been identified as

belonging to an alerting attention network. This example

illustrates the possibilities that are in our hands with these

new distributed inverse solutions to study intracranial time-

frequency activations non-invasively.

5.2. EEG source imaging in the frequency domain

In clinical applications, many researchers are interested in

localization of sources for different frequency bands, since

spectral analysis of the EEG has been proven to provide

important information on pathologies related to sleep

disorders, epilepsy, psychiatric diseases and psychopharma-

cological substances (Dumermuth and Molinari, 1987). With

the use of multichannel EEG systems, topographic maps of

the power distribution in certain frequency bands have

become popular and have been proposed as a method to

quantify normal and pathological brain states (the so-called

qEEG; Duffy et al., 1981; John et al., 1977). The obvious next

step has consisted of attempts to localize these different EEG

rhythms. Unfortunately, source localization procedures

cannot directly be applied to power maps, because a)

power maps represent squared potential values and thus

polarity information given by the phase angles is lost, and b)

power maps are reference-dependent (Lehmann, 1987).

However, methods exist that allow for source analysis in

the frequency domain. We proposed one such approach that

we called FFT Approximation (Lehmann and Michel, 1990).

The FFT Approximation calculates the Fast Fourier Trans-

form (FFT) over a certain time epoch for each channel and

then uses the complex values of all electrodes to calculate the

first principal component map for each frequency point.

These maps keep polarity information and can thus be

subjected to source localization algorithms. Subsequent

studies extended the method by showing that direct methods

for frequency-domain source localization on the basis of

covariance matrices are possible (Lütkenhöner, 1992;

Tesche and Kajola, 1993; Valdes et al., 1992). In several

experimental and clinical studies these techniques have been

used to localize the sources of the different frequency bands

(Michel et al., 1992), to assess spectral changes related to

different mental states (Harmony et al., 1995; Isotani et al.,

2001; Lehmann et al., 1993; Tsuno et al., 2002), to define

EEG changes in psychiatric and neurological patients

(Dierks et al., 1993a,b, 1995; Huang et al., 2000; Lubar

et al., 2003; Michel et al., 1993), to characterize effects of

psychopharmacological agents (Frei et al., 2001; Kinoshita

et al., 1994; Michel et al., 1995) or to define the dominant

frequency and its sources at onset of an epileptic seizure

(Blanke et al., 2000; Lantz et al., 1999).

An interesting alternative to the FFT-based source

localization is the source analysis applied to the time-

frequency representation of the signal. The time-frequency

representation (TFR; Lin and Chen, 1996) has two major

advantages as compared to the conventional FFT. First, the

TFR does not assume the signals are stationary over time

and can thus be applied to non-stationary EEG periods.

Second, TFR have much higher time resolution, allowing

the tracing of frequency changes in the subsecond range.

This allows frequency source analysis of short-lasting

paroxysmal activities such as spikes, K-complexes and

evoked responses. Sekihara et al. (1999) presented an

approach for time-frequency source localization that was

based on the application of the MUSIC algorithm (see

Section 4.1) to the average of the time-frequency matrix

over pre-selected regions of interest. Using computer

simulations, they showed that the method allows estimating

the locations of neural sources from each time-frequency

component for given regions. We recently proposed an

alternative method that consists in a generalization of the

FFT Approximation to the TFR and calculation of a

distributed linear inverse solution (ELECTRA, see Section

3.2) to each time-frequency point (Gonzalez Andino et al.,

2001). Using computer simulations as well as applying it to

data of epileptic seizures indicate that this method allows for

a more spatially confined source localization, because the

potential pattern specific for certain time-frequency pairs

are simpler than those appearing at single time points but for

all frequencies (Fig. 6). In addition, noise and signals can

potentially be better separated in the time-frequency

domain. This is restriction-free in contrast with approaches

based on principal or independent component analysis.

6. Post-processing of EEG source images

While clinical EEG source imaging studies typically

apply source localization algorithms to the individual
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patient’s data, most experimental studies limit source

localization to only the group-averaged data in order to

illustrate putative sources at certain time points/periods

(using spatiotemporal models) or their activation sequence

over time. In this case, no indication about the statistical

reliability of these sources or their correspondence to the

actual source locations in the individual subjects is

provided.

By applying the source localization algorithm to

the recordings of each individual subject in a group study,

statistical analyses can be performed. When using single

dipole localization algorithms, statistical tests can be applied

to the dipole location along each of the 3 Cartesian axes.

This allows conclusions about possible significant shifts of

the dipole source in one or several directions (e.g. Dierks

et al., 1995; Lehmann et al., 1993; Michel et al., 1992, 1995).

Fig. 6. Time-frequency analysis of an epileptic seizure. (A) 29-channel broadband (1–30 Hz) EEG of the beginning of a secondary generalized partial seizure.

Details of the patient are reported in Seeck et al. (1998). Subsequent intracranial recordings suggested a left frontal focus. (B) (top) Sequential Potential maps

during the time period marked in A are shown at 8 ms intervals. That framed in blue was subjected to the LAURA distributed linear inverse solution (bottom).

Note the topographic variability of these maps and the extended medial fronto-parietal sources observed for this map. (C) Time frequency energy plot of the

seizure shown in (A). High energy is observed at seizure onset with a frequency starting at ,10 Hz that decreases to ,7 Hz as the seizure evolves. (D) (top)

Potential maps for the 9 Hz component during the same time period as in (B). Note the topographic stability of these maps, though with variation in polarity, which

contrasts the varied scalp topography of the broadband EEG shown in (B). The map framed in blue was subjected to the LAURA distributed linear inverse solution

(bottom). Source imaging of this specific frequency yielded sources that were focal to the left frontal lobe (see Gonzalez et al. (2001) for details).
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Even if the single dipole itself may not adequately or

accurately represent the actual sources in case of distributed

activation patterns, a statistically significant shift of the

‘center of gravity’ of all sources due to an experimental

manipulation or due to a certain drug or disease can provide

indications of a change of the global activity distribution

within the brain. Whether this analysis also allows

interpretation about the brain areas that have been differently

activated depends on the reliability of the single source

assumptions. If the only conclusion were that source

configuration changed, we would note that such information

could readily be determined from topographic analyses of

the scalp-recorded data described above in Section 5.1.1. In

this case, the source estimation would not provide additional

interpretational power or neurophysiological information.

With the use of distributed inverse solutions, statistical

analyses similar to the ones proposed for other tomographic

functional images can be applied. In fMRI studies, the so-

called statistical parametric mapping (SPM) method is most

commonly used. After spatially normalizing the individual

fMRI images to a standard brain, a t test between two

conditions for each voxel or region of interest is performed

to determine areas of significant response differences.

Several studies have applied a similar statistical procedure

to the tomographic maps derived from the distributed

inverse solution of each subject. A detailed step-wise

description of SPM-type statistics for tomographic EEG

source images is given in Park et al. (2002). It includes

source estimation on the individual BEM-modeled MRI,

image reconstruction, Gaussian smoothing, spatial normal-

ization, intensity normalization and statistical parametric

mapping. Using this complex method, the authors could

demonstrate reductions of the mismatch negativity in

schizophrenic patients as compared to healthy controls in

the left superior temporal and inferior parietal gyrus. A

simpler way for comparison of 3D source images is

normalizing the maps to a standard head shape configuration

using spherical spline interpolation (see above), solving the

inverse solution for this general head model using the same

solution space for all subjects, and then performing t test

statistics for each voxel of the solution space (e.g. Fallgatter

et al., 2003; Kounios et al., 2001; Michel et al., 2004b;

Murray et al., 2004a). Similar to the analysis of fMRI data,

an important question concerns the adjustment of

Fig. 7. Statistical analysis of distributed inverse solutions. The top panels show the group-averaged ðN ¼ 7Þ ERPs in response to a face recognition task with

waveforms from the 41 electrodes superimposed. Subjects discriminated initial and repeated face presentations (see Seeck et al. (1997) for details). The middle

panel shows the scalp topography of these group-averaged data for the 40–90 ms period. Spatial cluster analysis further revealed a significant difference in

scalp topographies accounting for responses to initial and repeated face presentations during this 40–90 ms period at an individual subject level. The bottom

panel displays the LAURA inverse solution of these group-averaged scalp topographies maps. These reveal maximal activity in the occipital lobe. However,

the mean of differences of the individual inverse solutions revealed main differences in right frontal and left fronto-parietal regions during this early period. The

statistical analysis using voxel wise t tests of the individual inverse solutions revealed that the right frontal difference was significantly more active for novel as

compared to repeated faces. Thus, while occipital activity dominates during this early period, the statistical analysis reveals subtle, but significant differences in

frontal areas between the two conditions (see Michel et al. (2004b) for details).
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the statistical results to an appropriate significance criterion.

The correction for multiple tests has to be based on the

number of independent measures. In EEG source imaging,

this is not the number of voxels (solution points). Rather, the

number of electrodes on the scalp constitutes the number of

independent measures. Therefore, the P-values should be

corrected by the number of electrodes (Grave de Peralta

et al., 2004a; Murray et al., 2004a).

The statistical analysis of the distributed inverse solution

maps is straightforward. It has several advantages as

compared to the inverse solution maps of the group-

averaged data. For one, group-averaged data can be

dominated by source maxima that are identical in two

experimental conditions (for example, the occipital sources

in early visual components). Consequently, weak, but

consistent differences in other areas risk being overlooked

or ignored due to thresholding. Secondly, distributed inverse

solutions can produce spurious sources, particularly when

applied to noisy data. Strong regularization operators must

often be applied. However, such spurious sources usually do

not survive statistical analysis due to their inconsistency

across subjects. Thus, the unresolved and delicate issue of

regularization when calculating the distributed inverse

solution can be minimized through such statistical analysis.

Finally, with paired data, the relevant information bears on

the within subject differences rather than the separate

averages over the conditions. These important aspects are

shown in Fig. 7. It compares the ERP of two conditions

(novel vs. repeated faces; see Seeck et al., 1997) at a time

period between 40 and 90 ms, identified as being rep-

resented by statistically different map topographies (for

details, see Michel et al. (2004b)). The mean maps over this

time period as well as the difference map between the two

conditions suggest a more left lateralized negativity for

novel as compared to repeated faces. The distributed inverse

solutions of the mean maps revealed dominant sources in

the primary visual cortex for both conditions. No other

sources were apparent when thresholding the data on these

dominant activities. However, the sum of the difference

between the inverse solutions of each subject for this time

period revealed a right frontal positivity and a left fronto-

parietal negativity. A paired t-test for each of the nodes

showed the right frontal difference to be significant. Thus,

the statistical analysis of the inverse solution revealed

differnces in brain areas that are not visible in the mean

images of each of the conditions.

7. Conclusion

EEG source imaging has made tremendous progress in

recent years to provide statistically based neurophysiologi-

cal interpretations of scalp recordings. To achieve such

requires that researchers abandon ambiguous waveform

analyses and the phenomenological description of grapho-

elements. Instead, comprehensive analyses of the electric

field at the scalp must be conducted that serve as the basis

for estimating the sources underlying these fields. Many

recent publications using new source analysis techniques

have shown that this approach allows one to consider the

temporal and spatial dimension of brain activity simul-

taneously. There is no doubt that this will lead to important

new insights into the properties of cerebral neural networks.

In addition to the progress in analysis tools and data

interpretability, multichannel EEG systems have become

readily affordable for nearly all clinical and research

laboratories. However, a potential risk of this ease-of-

access to the equipment is that it may not be paralleled by

researchers fully understanding or appropriately applying

these analysis tools. As a result, EEG as a field of research

may become divided between those who apply only a

minimal level of analysis and those who fully capitalize on

the interpretational power of the technique.

Several pre-processing steps must be carefully con-

sidered and conducted, particularly in light of the extent of

experimenter bias that has historically weakened EEG

analyses. These start with the proper selection of the

electrode montage (both for recordings and subsequent

analyses) and the measurement of their location (including

the reference). They continue with the selection of the time

point, time period, or the frequency window. The selection

of the inverse solution is, of course, the most important step.

While we are extremely hesitant to proclaim a particular

source localization algorithm as ‘the best’, we would

emphasize distinctions among different approaches in

terms of their a priori constraints and assumptions and

would favor those that are heavily influenced by physio-

logical principles over those that are heavily influenced by

the experimenter (either directly or through the implemen-

tation of particular mathematical constraints). This is

particularly important when realistic head models and

displays of the sources on MRI images are used. While

such images are as seductive as those of other functional

imaging techniques (Ebersole, 1999b), they cannot simply

be considered as the unequivocal truth. Such notwithstand-

ing, recent work has shown that they may indeed be more

warranted than traditionally thought. The spatial resolution

of EEG, often considered as its biggest limitation, might

actually closely approach that of standard (spatially

smoothed) fMRI results. The combination of high resolution

EEG, modern inverse solution approaches, realistic head

shape models, and proper post-processing techniques are

already leading to the use of EEG as a true neuroimaging

procedure. Future research will probably be devoted to even

more reasonable definitions of a priori constraints based on

anatomical, physiological, and biophysical knowledge, in

conjunction with the incorporation of information from

other imaging modalities. This particularly concerns the

more detailed incorporation of anatomical information in

the physical models such that functional differences of

anatomically close areas are taken into account. Another

line of research that might be promising is the combination
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of diffusion tensor imaging and EEG source localization.

Showing direct cortical connections between areas might

strengthen interpretation of the temporal succession of

activity seen in the source analysis. Likewise, information

about functional connectivity could be incorporated as a

priori information in inverse solutions that take temporal

aspects directly into account. Indeed, the inclusion of the

temporal dynamics of brain activity in the inverse models is

still largely missing, even though the temporal resolution of

the EEG is the major advantage as compared to other

functional imaging modalities.

In view of the current status of the field reviewed here

and the promising future trends, there is no question that

EEG and ERP source imaging is rapidly replacing

conventional analyses of EEG and ERP traces and the

search for peaks and troughs in these waveforms.
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Hämäläinen M, Sarvas J. Realistic conductor geometry model of the human

head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng

1989;36:165–71.
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