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Abstract— The difficulty of autonomous free-flight of a fixed-
wing UAV is trivial when compared to that of takeoff and
landing. There is an even more marked difference when
deciding whether or not a UAV can capture or recapture a
certain trajectory, since the answer depends on the operating
ranges of the aircraft. A common example of requiring this
calculation, from a military perspective, is the determination
of whether or not an aircraft can capture a landing trajectory
(i.e., glideslope) from a certain initial state (velocity, position,
etc.). As state dimensions increase, the time to calculate the
decision grows exponentially. This paper describes how we
can make this decision at flight time, and guarantee that
the decision will give a safe answer before the state changes
enough to invalidate the decision. We also describe how the
computations should be formulated, and how the partitioning
of the state-space can be done to reduce the computation time
required. Flight testing was performed with our design, and
results are given.

I. I NTRODUCTION

The history of aviation has seen a gradual increase in
the automation provided to fly an aircraft. The prevalence
of computerized autopilots and other such technologies in
commercial airliners, as well as recent emergence of fly-by-
wire aircraft, seems to suggest that much of the automation
has emerged in the past few decades with the advent of the
digital era.

However, it will surprise many readers to learn that the
first automatic fixed-wing aircraft landing actually took
place on August 23, 1937. This pre-World War II proof of
concept was accomplished mainly because of the ingenuity
and hard work of several driven military personnel, as well
as a competent electronics engineer. Most importantly—as
far as this paper is concerned—it was accomplished on a
clear runway where it was the only expected landing.

A. Motivation

This historical example shows that the technology to land
one fixed-wing aircraft (plane) without pilot interaction is
simply an implementation matter. However, when managing
dozens of planes (or more) with differing flight character-
istics, landing times, fuel constraints, etc., the clear path
to implementation is not evident. Automated versions of
flight controllers for this task are still not ready for wide
deployment.

Between the large problem of managing the arrival and
landing of large quantities of planes (we will call this
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Fig. 1. Demonstration landing scenario. The safe-set of operation (a)
exists relative to the desired point of landing on the virtual runway (f). At
some point (b) a vector-off maneuver is requested by the ground control
to simulate a problem with landing, and the aircraft departs the glideslope
in three physical dimensions, as well as velocity, pitch, and roll.. At some
point (c) following that the command to land (if possible) is given. At this
point the aircraft (d) will continue to vector-off (if landing is unsafe) or
will issue commands to recapture the glideslope at some point (e).

Pmany), and the small problem of landing one plane (Pone),
there is the problem of landingthe next plane (Pnext).
ThePnext problem stems from the requirement that while
planepi is landing, planepi+1 is already on its glideslope1.
Assuming that there is enough spacing between the planes
(i.e., Pmany has been solved), then each plane’sPone

solution is sufficient to land that plane. However,Pnext

emerges as a problem when some fault occurs during or
directly after the landing ofpi, affecting the ability ofpi+1

to use the runway to land.
So, what doespi+1 do now? Ground controllers (solving

the Pmany problem) will usually instructpi+1 to vector-
off, i.e., fly back around to the end of the queue of landing
planes (or fly a holding pattern) and try to land again.
However, occasionally the disruption on the runway will
be solvedbefore the pi+1 plane has turned around, but
after it has already left the glideslope. The question then
becomes,canpi+1 recapture the glideslope?2 If it can, then
the time to land the queue of planes does not increase, and
the situation is optimal.

This is the motivation for the experiment we explain in
this paper. It extends from the need for improvement in the

1The glideslope is the angle of descent, velocity, and attitude of the
plane as it “glides” in for its landing

2It is important to note that the calculation to recapture the glideslope is
not the same class of problem as determining whether the current state lies
on the glideslope, which is used to close the loop in a landing controller.
Our problem is the real-time calculation to determine whether the landing
controller may be safely invoked.



operability of UAVs during landing operations—especially
in a military context, where high-risk maneuvers are more
likely to be employed. During maneuvers to land on a
carrier (or in any hostile environment) one major input to
a human-driven controller (i.e., a pilot) when solving this
recapture problem is the experience of that pilot in similar
situations—whether encountered in a simulator or in the
field. The pilot of an aircraft will decline to land in certain
situations if the pilot’s internal feasibility analysis (driven
largely by experience and instinct) suggests that it would
be too dangerous. Note that the use of the pilot’s instinct
is more common in a military, rather than commercial,
context.

One difficulty with substituting a computer-driven con-
troller for a human controller when solvingPnext is that
the computer controller does not have the vast experience
or dependable natural instinct of a trained human pilot.
Attempting to substitute the human with the computer
could be disastrous if the computer were not capable of
determining whether a planned sequence of maneuvers
would exceed the aircraft’s safe flight constraints—possibly
resulting in loss of the aircraft and damage on the ground.
Any controller that is used during flight, then, must be
aware of the boundaries of the aircraft, and should plan
to stay within those regions at all times. Since the state of
the aircraft is changing at all times, any decision cannot be
made over a period of seconds; rather, the period should
be milliseconds, since the window of opportunity to land
safely may close during the time in which the decision is
made.

B. Solution

In this paper, we detail our solution to this problem, and
our description of the computer-driven controller that im-
plements the solution. Further, we justify that this solution
is safe for all situations, and that it is feasible to do in real-
time (that is, the decisions can be make in flight, on board
the plane).

One situation that depends heavily on the pilot’s expe-
rience is the recapture of the glideslope during a landing
sequence where a vector-off command has been issued
by ground control. If the state of the runway prevents
landing (e.g., debris or stalled aircraft) when an aircraft
is on approach, then the ground control will command
the approaching aircraft to vector-off. At this point, the
aircraft will leave the glideslope and conduct a missed
approach procedure. If, however, the runway state improves
to allow landing, the ground control can issue a clear/back-
to-approach command to the aircraft, alerting it that if it
deems a landing is possible, then it is cleared to land.

With the computer-driven controller, at this point one
of two mutually exclusive events occurs. If the controller
determines that it is feasible to land (i.e., that a set of
maneuvers exists that does not exceed the safety constraints
of the aircraft, and recaptures the glideslope to allow a
landing) then it completes those maneuvers. If the controller

does not have a set of maneuvers allowing for a safe
landing, then the aircraft will continue the missed approach
protocol.

C. Background: Safe Sets

We developed key methodologies and technologies from
the theory of hybrid systems and control for the off-line
computation of safe-sets using a variant of reachability
analysis, followed by online approaches to the computation
of feasible control laws for rendering the safe sets invariant,
that is staying within the domain of the safe set. Using
these technologies, we have the ability to calculate safe sets
offlineand follow controller design characteristicsonline in
order to provide more options to the controller while not
sacrificing the safety of the aircraft.

Safe setsare used to determine whether at some point in
the future, t = tn, that the system will be in a certain
state (e.g., pass through a point, or be operating at a
certain velocity). The safe set (see Fig. 2) is the union
of all possible states of the system (within some time,
or operational, frame) and determination of safety can be
gained by checking to see if the desired (or undesired)
current or future state lies within this set. The two basic
kinds of safe set calculations, forward and backward, are
discussed below.

1) Forward Reachable Sets:A forward reachable set is
a forward-looking set (from some point in time,t = t0) that
involves the calculation or approximation of all future states
of the system (up to some timet = tN ). Calculation of
these safe sets is computationally intensive, and in general
is not suitable for online calculation, even in a soft real-
time scenario. This is due to the inherently complex nature
of exploring all possiblefuture states of the system. This
scales exponentially with the size of the system state and is
therefore impractical to use for any system of size larger
than 3 or 4 dimensions, even with offline calculations
for evaluation of controller performance (see [1] for more
information on the use of forward reachable sets).

2) Backward Reachable Sets:A backward reachable set,
conversely, is a backward-looking set (from some point in
time, t = tN ) that calculates or approximates allprevious
states of the system (until timet = t0). Calculation of
these safe sets is also impractical at runtime, for the same
reasons as forward reachable sets. However, there is an
underlying difference between the backward and forward
reachable sets, which makes one more useful than the other
for our particular problem. This is described in detail in the
next section (see [2] for more information on the use of
backward reachable sets).

II. D ESIGN

As with any complex problem, the design of the solution
can significantly decrease (or increase) the complexity of
its implementation. In our case several restrictions on the
problem guided our solution significantly.
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(a) x, z projection of 3-dimensional safe set.
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(b) y, z projection of 3-dimensional safe set.

Fig. 2. An example of a safe set. The “narrow” portion of the cone is the initial set of states, with the flare representing the expanding set of possible
states that extend from this initial state set.
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(a) The[0, 3) nautical mile portion of thex, z, θ statespace
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(b) The [3, 10) nautical mile portion of thex, z, θ statespace

Fig. 3. The two “halves” of thex, z, θ statespace. Because of the relative smoothness of the[0, 1) and [1, 3) statespaces, we were able to optimize
the lookup table by keeping these two spaces in the same safe set, resulting in a bipartition rather than a tripartition of the state spaces.

1) The decision whether to recapture the glideslope must
be absolutely safe. Therefore, the time required to
calculate the decision must not invalidate the safety
of that decision.

2) The zone of possible landing states does not change
in time or space. Therefore, it may be assumed
stationary for the entire experiment.

The use of forward reachable sets to solve this problem is
somewhat näıve, since the motion of the plane requires a
constant update to the possible set of forward states, and
the “ideal” state is completely motionless. This realization
makes backward reachable sets an excellent choice. In order
to calculate the backward reachable set, we used a Toolbox
of Level Set Methods [3], which has been used to solve
many reachable set problems [4] (see [5], [6] for more

information on level-sets).

A. Dimensions of the controller

The validation of the safety of the aircraft is bounded by
the behavioral limits of the aircraft, as well as the required
glideslope and the physical location of the runway. The
physical limits of the aircraft are the maximum descent rate
(żdrop), minimum velocity (vmin), maximum rate of change
of pitch (θ̇max), and maximum turn rate (̇ψmax). Combined
with the three spatial dimensions (x, y, andz), this creates
an analysis in six dimensions (sinceżdrop is not an input,
but a constraint).

The control input for the aircraft is an open loop autopi-
lot. This controller allows changes to be made to the rate
of change of altitude, rate of change of turn, and velocity.
The rate of change of altitude and turn, in conjunction with
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(c) The[3, 10) nautical mile portion of thex, y, ψ statespace

Fig. 4. The three portions of thex, y, ψ statespace. The proximity partitions “connect” logically where thex values are the same. In this figure, we
see that the (a) set visualization is enhanced to a disproportionate level, making it seem unlikely that these partitions fit together. However, when each
is scaled at the same level, the pieces fit together.

the current velocity, gives the calculated values forθ̇ and
ψ̇.

In order to reduce the complexity required, some safe
approximations can be made. The first is that the airspeed
can remain within an acceptable range during the recapture
of the glideslope. This allows the velocity to be treated
as constant throughout, reducing the number of dimensions
from six to five.

A second approximation, which does not result in any
loss of accuracy, is that any dimension of the input con-
trol vector can be changed orthogonally to the others.
That is, changes tȯθ will not changeψ̇. This guarantee
was provided by the open-loop controller. This allows
the remaining five dimensions to be separated into two
three dimensional problems ([x, y, ψ], [x, z, θ]) with one
overlapping dimension (x position in our case). Reducing
the dimensions of the problem is important, given the
exponential computational costs.

B. Code generation

The methods used to compute backward-reachable sets
are in their infancy, and exist as academic programs rather

than deployable toolsets. As such, it becomes necessary to
convert the results of the calculations into the appropriate
technological space (e.g., lookup tables in C++).

Part of the composure of this problem required that the
calculations results produced in MATLAB be transformed
into C++ for integration into the avionics controller. The
development of a code generator to ease this integration
provided a dimensionally-independent method to rapidly
and automatically produce the required lookup tables which
can be seamlessly integrated into a framework that allows
queries for safety.

C. Addressing computational complexities

Level-set computational methods are quite complex, and
are in general infeasible for large dimensional problems
(e.g., 7 dimensions or more). However, the landing scenario
can be formulated in 5 dimensions, resulting in a total time
calculation of about 30 seconds for 10 nautical miles of
approach, once we had done some partitioning of the state
space and approach distance.

1) Proximity partitioning: We divided the 10
nautical mile approach into 3 contiguous sections:



[0, 1), [1, 3), [3, 10]. Because this 10 nautical mile distance
is sufficiently far from the landing zone, there is no need to
do calculations on the same scale as, say, 300-ft out. Thus,
we were able to run fine-grained calculations (e.g., very
small “pixels”) for the nearest section, and increase the
pixel-size as we got further from the landing zone. Overlap
between the sections mitigated safety critical decisions on
the cusp of one of the sections.

2) State space partitioning:As previously described, the
state space was partitioned into two 3-dimensional spaces
(with one overlapping dimension). At runtime, the lookups
of the reachable sets scale well, allowing for real-time
lookups of less than 10-ms per query (total size of the
lookup table is around 7-MB). Because the state space was
partitioned, we actually had to do two lookups per check
and guarantee that both lookups gave the same answer. If
there was any discrepancy in the answer, the overall result
was guaranteed to be false (i.e., it is not safe to recapture).

D. Real time decisions

By reformulating the problem as a computation within
the backward reachable set, then it becomes possible to
store the safety calculations as an encoded set of values into
which lookups can be done, resulting in drastically reduced
complexity in determining safety.

Additionally, by showing that switching between reach-
able sets can be performed, it becomes possible to store a
large set of reachable sets which represent multiple safety
or other calculations that can be important in complex
situations. Thus, additional constraints (including roaming
objectives, such as a moving target) can be instituted into
the query engine as additional safe sets.

III. E XPERIMENT

The implementation of our solution was tested in our lab,
as well as simulated by Boeing using hardware in the loop
(HWIL) testing. Finally, the avionics implementation and
decision controller was flown in a capstone demonstration
on a Boeing T-33 trainer jet in June, 2004, at Edwards Air
Force Base. In this section we describe the final capstone
demonstration, and the results and analysis we performed
with the resulting data.

A. Description

To perform the capstone demonstration we implemented
the controller and decision algorithms as a component of
the Open Control Platform (OCP). We chose C++ as our
implementation language due to speed advantages, as well
as the ability to have arbitrarily large arrays optimized for
performance at compile time. Our T-33 demonstration air-
craft was flown under pilot control to a particular waypoint,
where the autonomous controller took over and began to
land on a virtual runway several thousand feet in the air3.

3The virtual runway was used to allow us to focus on the problem
of glideslope recapture in reducing the complexity through not requiring
control of landing gear and not actually performing the landing.

A successful landing was achieved by passing through some
waypoint (with some bounds for error) at a certain velocity
with a certain attitude. Fig. 1 provides a visualization of the
overview of the experiment.

The demonstration of concept was then carried out in the
following set of steps:

1) In order to simulate an accident on the runway, the
ground control issues a vector-off command during
descent onto the runway, at which time the aircraft
departs the glideslope, changing its state vector in
every dimension. The aircraft then proceeds from
this time as if it were going to perform a go-around
maneuver, as described in [7].

2) After some time the ground control issues a revised
command to land if possible.

3) The decision algorithm examines the current state
of the aircraft and determines whether it is safe to
recapture the glideslope.

4) If determined to be safe, the controller will issue
commands to recapture the glideslope; if unsafe, the
controller stays on its current course of go-around
maneuver.

B. Results

While the demonstration itself was scripted, the time-
liness of the issuance of commands was left up to the
discretion of the experiment controller (in our case, a
VIP who was overseeing the capstone demonstration). The
experiment was run twice in our case, once resulting in
an “unsafe” result, the other resulting in a “safe” landing.
In analysis of the results, we determined that the “unsafe”
result was actually indicative of an inability to land with
the current abilities of the controller, and not a negative
response due to an uncertain result.

These results are encouraging, given the relatively small
amount of effort required to develop the entire system and
implement it into the OCP framework (using academic off-
the-shelf tools such as MATLAB, and the Toolbox for Level
Set Methods the total development time was less than 4
person-months).

IV. CONCLUSIONS

A. Benefits

The proof of concept shown in this paper, including the
demonstration that showed feasibility, has many possible
uses and advantages over human- and instinct-based landing
decisions. The safety of the ground and vehicle is increased,
due to the following reasons.

• reduced stress and decision load for the pilot
• aircraft training less of a factor than before (due to set

calculations for individual aircraft dynamics)
• hyper-accurate safe set calculations possible, reducing

the risk to the pilot

The design also lends itself to an execution framework
that is aircraft-independent.



• it allows for pilots to be trained on one aircraft, but
familiar with the procedure on all aircraft

• the computational intensity would be the same for all
aircraft (given that the lookup tables are the same size)

• integration strategies can be more uniform, given the
common execution framework, across aircraft

In addition, the level of autonomy is increased for UAVs.
• multiple versions of safe sets increase the effectiveness

of the autonomy of the aircraft (in the long term)
• no violation of the operational parameters of the air-

craft
• multiple safe sets that can be interchanged to allow

modified risk acceptability due to times of war, emer-
gency, or hazardous conditions

The benefits for rapid online calculations required is also
attractive.

• the ability to generate lookup tables that may be
queried in hard real-time

• lookup/calculation only required at decision points
(rather than continuously generating trajectories to
satisfy possible safety decisions)

• for multiple definitions of safety, it becomes infeasible
to do N concurrent trajectory generations at each
timestep, whereas N lookups into (an albeit, large)
memory-based tables is attractive

• additional computational cycles are available for other
portions of the avionics controller

The most important advantage is that safety can be
guaranteed. While still in its proof of concept phase, we
expect that this technology will be transitioned into UAVs
when they are transitioned into a common technology, as
opposed to their current state of applied research.

B. Commercial Applicability

Some discussion is merited on the applicability of this
technique for commercial aircraft. We do not suggest that
such a motivating scenario is sufficient in the commercial
sector, since the scenario itself is less frequent than in the
military case. However, we do expect that some decisions
made in commercial flight control (either on the ground, or
in the air) that require heavy calculations may be immedi-
ately answered as “no” to err on the side of caution, and
in their cases the same technique of offline calculation and
online lookup may be applicable to those decisions. Since
our experience and motivations are not in the commercial
sector, and we have not researched any such problems in
that arena, we defer to experts in that field to comment on
applicability or future research.

C. Future Work

The future work of this research revolves around in-
creasing the speed at which new safe sets can be created.
Although the set generation time is generally speedy, the
compilation of the final executable is not. However, this
may not be necessary if textual or binary lookup tables
can be accessed as files (a feature not available to us in
our implementation). Another solution to this problem is
to generate already compiled object files from the LSM
Toolbox output, rather than C++ files that would need to be
compiled.

Finally, a future area of research is the automatic gen-
eration of the safe sets from the flight and safety char-
acteristics of a generic aircraft. At this time, a translation
of the operating bounds of the aircraft is required, but the
possibility exists to automate this for wider deployment of
the technology.
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