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Abstract. Several results involving d(n!) are obtained, where d(m) denotes the

number of positive divisors of m. These include estimates for d(n!)/d((n − 1)!),

d(n!)− d((n− 1)!), as well as the least number K with d((n+K)!)/d(n!) ≥ 2.

§1 Introduction

Let as usual d(m) denote the number of positive divisors of m. We are interested
here in problems involving d(n!). There seem to exist only a few results in the
literature on this subject, one of which is the result of G. Tenenbaum [13] that

∑
1≤j≤d(n!)

(
dj+1

dj
− 1
)α
¿α 1

for any fixed α > 1, where 1 = d1 < d2 < · · · < dm = n! are the divisors of n! (and
so m = d(n!)).

We note that the divisor function can at least occasionally be large, since by a
classical result of Wigert, one has

(1) log d(m) ≤ log 2 logm
log logm

+O

(
logm

(log logm)2

)
,

with equality holding if m = p1p2 · · · pr, where r → ∞, and pr is the r-th prime
number. Our first goal is to obtain an asymptotic formula for log d(n!), showing
that it is ∼ c0 log(n!)/(log log(n!))2, where c0 is an explicit constant approximately
equal to 1.25775.

We next are concerned with the function d(n!)/d((n − 1)!). We show that this
is well approximated by 1 + P (n)/n, where P (n) is the largest prime factor of n.
From this we are able to find the limit points of the sequence d(n!)/d((n− 1)!).

Let K = K(n) denote the least number with d((n+K)!)/d(n!) ≥ 2. We are able
to show that infinitely often K(n) is abnormally large, namely that K(n)/ log n is
unbounded. The method of proof involves the Erdős-Rankin method for showing
that there are sometimes abnormally large gaps between the primes. On the other
hand we show that K(n) cannot be too large: it is < n4/9 for all sufficiently large
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numbers n. The proof comes from the circle of ideas, begun by Ramachandra, for
showing that short intervals contain integers with large prime factors.

Finally we consider the function D(n) = d(n!) − d((n − 1)!). In particular we
consider “champs” for this sequence, namely numbers n with D(n) > D(m) for all
numbers m smaller than n. We show that primes and the doubles of primes are such
champs, we show on the prime k-tuples conjecture that there are infinitely many
other champs, and we show on the Riemann Hypothesis that the set of champs has
asymptotic density zero.

§2 An approximate formula for d(n!)
Our first aim is to express d(n!) in terms of elementary functions. If [x] denotes
the integer part of x, then

n! =
∏
p≤n

pwp(n), where wp(n) :=
[
n

p

]
+
[
n

p2

]
+
[
n

p3

]
+ · · · ,

hence

log d(n!) =
∑
p≤n

log(wp(n) + 1)

=
∑

p≤n3/4

log(wp(n) + 1) +
∑

n3/4<p≤n
log(wp(n) + 1) =

∑
1

+
∑

2

,(2)

say. Since wp(n) < n
∑
j p
−j = n/(p− 1), we have∑

1

<
∑

p≤n3/4

log
(

1 +
n

p− 1

)
¿ log n

∑
p≤n3/4

1¿ n3/4.

Now note that in Σ2 we have wp(n) = [n/p], since [n/pk] = 0 for k ≥ 2. Therefore
by the prime number theorem we have∑

2

=
∫ n

n3/4
log
([n
x

]
+ 1
)
dπ(x)

=
∫ n

n3/4

log
([
n
x

]
+ 1
)

log x
dx+

∫ n

n3/4

log
([
n
x

]
+ 1
)

log x
dR(x) = I1 + I2,

say, where (see e.g. [2] or [7]) R(x) = O(xe−
√

log x). Since log
([
n
x

]
+ 1
)

is a non-
increasing function of x in [1, n] we obtain, on integrating by parts,

I2 ¿ ne(−1/2)
√

logn.

The main contribution to log d(n!) comes from

I1 =
∫ n

n3/4

log
([
n
x

]
+ 1
)

log x
dx = n

∫ n1/4

1

log([t] + 1)
t2 log

(
n
t

) dt
=

n

log n

K∑
k=0

1
logk n

∫ n1/4

1

log([t] + 1)
t2

logk t dt+O

(
n

logK+2 n

)

=
n

log n

K∑
k=0

ck

logk n
+O

(
n

logK+2 n

)
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for any fixed integer K ≥ 0, where

(3) ck =
∫ ∞

1

log([t] + 1)
t2

logk t dt.

In particular,

c0 =
∫ ∞

1

log([t] + 1)
dt

t2
=
∞∑
k=2

∫ k

k−1

log k
dt

t2
=
∞∑
k=2

log k
k(k − 1)

≈ 1.25775.

Thus we have proved

Theorem 1. For any fixed integer K ≥ 0 and ck given by (3) we have

d(n!) = exp

{
n

log n

K∑
k=0

ck

logk n
+O

(
n

logK+2 n

)}
.

Let m = n!. Then by Stirling’s formula one has logm = n log n− n+ O(log n),
which gives

log n = log logm+O(log log logm), n =
logm

log logm

(
1 +O

(
log log logm

log logm

))
.

Therefore we obtain from Theorem 1 that

log d(m) =
c0 logm

(log logm)2

(
1 +O

(
log log logm

log logm

))
,

which may be compared with (1).

§3 The function d(n!)/d((n− 1)!)
We now note another consequence of Theorem 1. It implies that d(n!)/d((n−1)!)→
1 as n → ∞ on a set of asymptotic density 1. We can show more. We begin with
the following lemma.

Lemma 1. Let S(n) denote the sum of the prime factors of n where they are
summed with multiplicity. Then for every integer n ≥ 1,

1 +
S(n)
2n
≤ d(n!)
d((n− 1)!)

≤ 1 +
2S(n)
n

.

Proof. For the upper bound, we have

d(n!)
d((n− 1)!)

=
∏
pa||n

wp(n− 1) + 1 + a

wp(n− 1) + 1

=
∏
pa||n

(
1 +

a

wp(n− 1) + 1

)
≤ exp

∑
pa||n

a

wp(n− 1) + 1

 .(4)
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We have for any prime p dividing n that [(n−1)/p] = n/p−1. Thus, wp(n−1)+1 ≥
[(n− 1)/p] + 1 = n/p, and so

(5)
d(n!)

d((n− 1)!)
≤ exp

∑
pa||n

a

n/p

 = exp(S(n)/n).

But clearly S(n) ≤ n for every natural number n, so that exp(S(n)/n) ≤ 1 +
2S(n)/n, which completes our proof of the upper bound in the lemma.

For the lower bound, we have

d(n!)
d((n− 1)!)

=
∏
pa||n

(
1 +

a

wp(n− 1) + 1

)
≥ 1 +

∑
pa||n

a

wp(n− 1) + 1
.

But wp(n − 1) + 1 < 1 + (n − 1)
∑
j p
−j = 1 + (n − 1)/(p − 1) ≤ 2n/p (the last

inequality easily proved for all integers p, n with 2 ≤ p ≤ n). Thus we have the
lower bound in the lemma.

We are now ready to prove the following theorem.

Theorem 2. Let P (n) denote the largest prime factor of n. Then

d(n!)
d((n− 1)!)

= 1 +
P (n)
n

+O

(
1

n1/2

)
.

Proof. Let Ω(n) denote the number of prime factors of n, counted with multiplicity.
Then S(n) ≤ P (n)Ω(n) ≤ P (n) log2 n. First suppose that p = P (n) ≤ n1/2 and
q = P (n/p) ≤ n1/3. Then S(n) = p+ S(n/p) ≤ p+ q log2 n¿ n1/2. Next suppose
that p ≤ n1/2 and n1/3 < q ≤ p. Then S(n) = p + q + S(n/pq) ≤ p + q + n/pq ≤
3p ¿ n1/2. Thus, if P (n) ≤ n1/2, then S(n) ¿ n1/2, and so the theorem follows
from the lemma in this case.

Now suppose that p = P (n) > n1/2. Writing n = mp, we have wp(n) = [n/p] =
m, wp(n− 1) = m− 1, so that from (4),

d(n!)
d((n− 1)!)

=
m+ 1
m

∏
qb||m

(
1 +

b

wq(n− 1) + 1

)
.

By the calculations in the proof of the lemma we have

1 ≤
∏
qb||m

(
1 +

b

wq(n− 1) + 1

)
≤
∏
qb||m

(
1 +

b

n/q

)
≤ exp

∑
qb||m

bq

n


= exp

(
S(m)
n

)
≤ exp

(m
n

)
≤ 1 +

2m
n
≤ 1 +

2
n1/2

.

This completes the proof of the theorem.
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Corollary 1. The set of limit points of the sequence d(n!)/d((n− 1)!) consists of
the number 1 and the numbers 1 + 1/m, where m is a natural number.

From Theorem 2 it is straightforward to get asymptotic estimates, or even as-
ymptotic expansions, for the average order of d(n!)/d((n−1)!), or any fixed positive
or negative power of this fraction. For example, such results follow from the circle
of papers that includes [3].

For a positive integer k, let Fk(n) = d((n+ k)!)/d(n!). Then

Fk(n) = F1(n+ 1)F1(n+ 2) · · ·F1(n+ k).

It follows from Theorem 2 that for fixed k, the average order of Fk(n) is 1. Indeed,
from Theorem 2,

(6) 1 ≤ Fk(n) ≤ exp

(
1
n

k∑
i=1

P (n+ i) +O

(
k

n1/2

))
.

Let u(m) denote the number of positive integers n < m with n ≤ x and n+k ≥ m.
Then u(m) ≤ k. It follows that∑

n≤x

k∑
i=1

P (n+ i) =
∑
m

u(m)P (m)

≤ k
∑

m≤x+k

P (m)¿ kx2/ log x = o(x2).

Thus, on average,
∑k
i=1 P (n + i) = o(n), and for all n, we have this sum ¿ kn.

Hence our assertion follows from (6). This argument can be used to show that
if k = k(n) varies with n in such a way that k(n) = o(log2 n), then the normal
order of Fk(n) is 1. That is, Fk(n) ∼ 1 as n tends to ∞ through a set of integers
of asymptotic density 1. It is also possible to show via (6) that if c > 0 is fixed
and k = k(n) ∼ c log n, then the normal order of Fk(n) is g(c), where g(c) > 1 is
a number that depends on c. These results may well be true too for the average
order, but the proof is likely to be harder.

§4 The least K with d((n+K)!)/d(n!) ≥ 2
Let K = K(n) denote the least positive integer with FK(n) ≥ 2. That is, d((n +
K)!) ≥ 2d(n!). If n + 1 is prime, then K(n) = 1. From Theorem 1 it seems that
one should compare K(n) with log n. In fact, this theorem immendiately implies
that the average order of K(n) is ³ log n. One might ask about the maximal order
of K(n). The following two results show that K(n) < n4/9 for all large numbers n
and that K(n)/ log n is unbounded.

Theorem 3. Recall that S(n) denotes the sum of the prime factors of n, with
multiplicity. Let f(n) denote the least number such that

f(n)∑
i=1

S(n+ i) > n.

For each number ε > 0 there are infinitely many integers n for which

f(n) ≥ (1/4− ε) logn log logn log log log logn/(log log logn)3.

We first show the connection of Theorem 3 to the maximal order of K(n).
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Corollary 2. For infinitely many natural numbers n we have

K(n) > log n
log logn log log log logn

9(log log logn)3
.

In particular, K(n)/ log n is unbounded.

Proof of the Corollary. From the theorem, there are infinitely many pairs n, K with
K > (1/9) logn log logn log log log logn/(log log logn)3 and with

∑K
i=1 S(n + i) ≤

1
2n. It follows from (5) that

d((n+K)!)
d(n!)

< exp

(
K∑
i=1

S(n+ i)
n+ i

)
< exp

(
1
n

K∑
i=1

S(n+ i)

)
≤ exp

(
1
2

)
< 2.

Thus, K(n) > K and the corollary is proved.

Proof of Theorem 3. Let u denote a large number and let M = M(u) denote the
product of the primes in the interval [log2 u, u]. Let ε > 0 be arbitrary and fixed.
By the Erdős–Rankin argument, for all sufficiently large numbers u, depending on
the choice of ε, there is a residue class A mod M , such that (A+ i,M) > 1 for each
integer i with

1 ≤ i ≤ L := (1/2− ε/4)u log u log log log u/(log log u)3.

Indeed, it suffices to show that for each prime p|M there is a residue class ap mod p,
such that for each integer i with 1 ≤ i ≤ L, there is a prime p|M with i ≡ ap mod p.
The numbers ap can be chosen as follows: for y := u(1−ε/4) log log log u/ log log u < p ≤
u/ log log u, we choose ap = 0. The number of integers i in [1, L] that are not
congruent to 0 modulo any of these primes p is ∼ L log log u/ log u (using de Bruijn
[1]). Next, for the primes p with log2 u ≤ p ≤ y, we choose ap sequentially in
such a way that for each p we have as many as possible remaining integers in [1, L]
congruent to ap mod p. The number of remaining integers i in [1, L] that are still
not covered by any of the residue classes ap mod p for log2 u ≤ p ≤ u/ log log u is,
by Mertens’ theorem, less than or asymptotically equal to

2 log log u
log y

· L log log u
log u

=
2

1− ε/4 ·
L(log log u)3

(log u)2 log log log u
=

1− ε/2
1− ε/4 ·

u

log u
.

It follows from the prime number theorem that for u sufficiently large, there are
fewer residual values of i left unsieved in [1, L] than there are primes p in the
remaining interval u/ log log u < p ≤ u, so even if we use these primes to remove
just one value of i each, we will succeed in covering the entire interval [1, L] as
claimed.

For any integer l ≤ u3, let N(l) denote the number of pairs i, j of integers with
1 ≤ i ≤ L, M/2 ≤ j ≤M , and (jM +A+ i)/l is prime.
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Lemma 2. We have uniformly for l ≤ u3,

N(l)¿ LM log u
ϕ(l)u log log u

+
(l,M)M log u
ϕ(l)u log log u

.

Proof. Let k = l/(l,M). First consider the case (l,M) ≤ L. For l to divide
jM + A + i, we must have i ≡ −A mod (l,M). There are ¿ L/(l,M) values of
i ∈ [1, L] for which this holds. Fixing one of these, for l to divide jM + A + i,
we must have j in a fixed residue class mod k. So the number of such j values in
[M/2,M ] for which jM +A+ i is a prime, is, by the sieve,

¿ M/k

log(M/k)
· Mk

ϕ(Mk)
¿ M

ϕ(k) logM
· M

ϕ(M)
¿ M

ϕ(k)u
· M

ϕ(M)
,

where we have used log(M/k) ∼ logM ∼ u and ϕ(Mk) ≥ ϕ(M)ϕ(k). Now
M/ϕ(M) ³ log u/ log log u, and multiplying by the number of possible i values,
we get

N(l)¿ L

(l,M)
· M log u
ϕ(k)u log log u

≤ LM log u
ϕ(l)u log log u

.

Now consider the case (l,M) > L. Then there is at most one value of i ∈ [1, L] for
which l can divide jM +A+ i. Thus again using the sieve, we have

N(l)¿ M/k

log(M/k)
· Mk

ϕ(Mk)
¿ M log u

ϕ(k)u log log u
≤ (l,M)M log u
ϕ(l)u log log u

.

This completes the proof of the lemma.

We now return to the proof of the theorem. We are going to show that

(7)
∑

M/2≤j≤M

∑
1≤i≤L

S(jM +A+ i) = o(M3)

as u →∞. Note that for j ∈ [M/2,M ] and i ∈ [1, L], we have jM + A+ i ³ M2.
If we show (7) it will follow that for u large there is some number j ∈ [M/2,M ]
with

∑
1≤i≤L S(jM +A+ i) < jM +A, so that f(jM +A) > L, and the theorem

follows.
Let S(n) = S1(n) +S2(n), where S1(n) is the sum of the prime factors of n that

are bigger than n/u3, while S2(n) is the sum of the smaller prime factors of n. Note
that S2(n)¿ (n/u3) logn. Thus

∑
M/2≤j≤M

∑
1≤i≤L

S2(jM +A+ i)¿
∑

M/2≤j≤M

∑
1≤i≤L

M2

u3
log(M2)¿ LM3

u2
= o(M3),

as u→∞. Thus it suffices to show

(8)
∑

M/2≤j≤M

∑
1≤i≤L

S1(jM +A+ i) = o(M3)



8 PAUL ERDŐS, S. W. GRAHAM, ALEKSANDAR IVIĆ AND CARL POMERANCE

as u → ∞. If S1(jM + A + i) > 0, then jM + A + i = Pl, where P is prime and
l < u3. By the choice of A, we have (l,M) > 1, so that l ≥ log2 u. Thus, by the
lemma, we have∑
M/2≤j≤M

∑
1≤i≤L

S1(jM +A+ i)

=
∑

log2 u≤l<u3

∑
M/2<j<M

∑
1≤i≤L

(jM+A+i)/l is prime

jM +A+ i

l

¿
∑

log2 u≤l<u3

∑
M/2<j<M

∑
1≤i≤L

(jM+A+i)/l is prime

M2/l =
∑

log2 u≤l<u3

N(l)M2/l

¿
∑

log2 u≤l

(
LM3 log u

lϕ(l)u log log u
+

(l,M)M3 log u
lϕ(l)u log log u

)

¿ LM3 log u
u log2 u log log u

+
∑
d|M

∞∑
v=1

dM3 log u
dvϕ(dv)u log log u

¿ LM3

u log u log log u
+
∑
d|M

M3 log u
ϕ(d)u log log u

¿ LM3

u log u log log u
+

M3 log2 u

u(log log u)2
= o(M3),

as u→∞. This proves (8) and the theorem.

Theorem 3 shows that sometimes f(n), and hence K(n), can be abnormally
large. We now show that they cannot be too large.

Theorem 4. Let f(n) be as in Theorem 3. If n is sufficiently large, then f(n) <
n4/9.

The theorem is an immediate consequence of the following lemma.

Lemma 3. Let x be a sufficiently large positive real number, let c = 4/9, and
δ = 1/10000. Then the number of primes p such that p divides some m in the
interval (x, x+ xc] and p > x1−c+δ is À xc.

To see how the Theorem follows from the Lemma, note that if we take g(n) =
n4/9, then

g(n)∑
i=1

S(n+ i) ≥ n5/9+δR,

where R is the number of primes p > x5/9+δ that divide some integer in the interval
(n, n+ f(n)]. By the Lemma, RÀ n4/9, so

g(n)∑
i=1

S(n+ i) > n

for n sufficiently large. Therefore, f(n) ≤ g(n).
Lemma 3 also has consequences for our function K(n) defined before Theorem

3. We have the following result.
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Corollary 3. For all sufficiently large numbers n, we have K(n) < n4/9.

Indeed, from Lemma 1 we have

d((n+ [n4/9])!)
d(n!)

>
∏

1≤i≤n4/9

(
1 +

S(n+ i)
2(n+ i)

)
> 1 +

1
2

∑
1≤i≤n4/9

S(n+ i)
n+ i

> 1 +
1

3n

∑
1≤i≤n4/9

S(n+ i) ≥ 1 +
1

3n
n5/9+δ[n4/9] > 2,

for all sufficiently large numbers n. Thus, we have the corollary.

Proof of Lemma 3. For most of the argument, we shall assume only that c is a real
number with c < 1/2; only at the last step will we specialize to c = 4/9. Our proof is
an adaptation of K. Ramachandra’s proof [10] that the greatest prime factor of the
product of the integers in the interval (x, x+ x1/2] exceeds x15/26, for x sufficiently
large. Ramachandra’s exponent has been improved by a series of authors; see the
references in [9]. The current best exponent is 0.723, and it is due independently
to Hong-Quan Liu [9] and Jia Chaohua [8]. It is very likely that our exponent of
4/9 can be improved by using ideas from these papers, but, for reasons of brevity,
we do not consider these possible improvements here.

In the initial stage, we follow an argument due to Chebyshev (cf. [6], Chapter
2). We begin by observing that

xc log x+O(xc) =
∑

x<m≤x+xc

logm

=
∑

x<m≤x+xc

∑
d|m

Λ(d) =
∑
d

Λ(d)N(d)(9)

where

(10) N(d) =
∑
d|m

x<m≤x+xc

1,

and Λ is von Mangoldt’s function; i.e., Λ(d) = log p if d = pa for some prime p and
0 otherwise. We decompose the last sum in (9) as∑

d

Λ(d)N(d) =
∑
d≤xc

Λ(d)N(d) +
∑

p≤xc<pa
N(pa) log p+

∑
p>xc

∑
a≥1

N(pa) log p

= Σ1 + Σ2 + Σ3,(11)

say. From the trivial estimate N(d) = xc/d+O(1), we get

Σ1 = xc
∑
d≤xc

Λ(d)/d+O(xc) = cxc log x+O(xc).

If pa > xc, then N(pa) ≤ 1, and N(pa) = 0 if pa > 2x > x+ xc. Therefore

Σ2 ≤
∑
p≤xc

∑
a≤log(2x)/ log p

1¿
∑
p≤xc

log x
log p

¿ xc.
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Combining (9) and (11) together with the above estimates for Σ1 and Σ2 gives

(12) Σ3 = (1− c)xc log x+O(xc).

Since we wish to get prime factors p with p > x1−c+δ, we write

(13) Σ3 =
∑

xc<p≤x1−c+δ

∑
a≥1

N(pa) log p+
∑

x1−c+δ<p

N(p) log p = Σ4 + Σ5,

say. Here, δ is a small positive constant that will be chosen later. In our notation
for Σ5, we have used the fact that if c < 1/2 then (1 − c) > 1/2; consequently, if
p > x1−c and N(pa) 6= 0, then we must have a = 1.

Our objective is to show that Σ5 À xc log x for some value of c. We do this by
using Selberg’s upper bound sieve to give an upper bound for Σ4. We will split
the range of summation in this sum into subintervals of the form v < pa ≤ ev;
accordingly, it is convenient to define

T (v) =
∑
xc<p

v<pa≤ev

N(pa).

Now we let z = z(v, x) be a parameter to be chosen later; for now, we assume only
that z ≤ xc. Suppose that we have real numbers λd with λ1 = 1 and λd = 0 if d > z
or if d is not squarefree. Then

T (v) ≤
∑

v<m≤ev
N(m)

∑
d|m

λd

2

.

Upon expanding the square, we obtain

(14) T (v) ≤
∑
k,l

λkλl
∑

v<m[k,l]≤ev
N(m[k, l]).

We expect that the inner sum is about xc/[k, l]. Accordingly, we wish to choose the
λk’s to minimize the bilinear form

∑
k,l λkλl[k, l]

−1 subject to the restraints λ1 = 1
and λk = 0 if k > z. ¿From the theory of the Selberg sieve (cf. [6], pp. 8ff.), it is
known that this conditional minimum is ≤ (log z)−1. Using this choice of λk and
writing ρd =

∑
[k,l]=d λkλl, we see that (14) may be re-written as

(15) T (v) ≤
∑
d<z2

ρd
∑

v/d<m≤ev/d
N(md).

For future reference, we note also that the minimizing choice of λk satisfies |λk| ≤
µ2(k) ([6], equation 18); therefore

(16) ρd ≤ µ2(d)τ3(d),



ON THE NUMBER OF DIVISORS OF n! 11

where τ3(d) denotes the number of ways of writing d as a product of three ordered
factors.

Now let ψ(w) = w − [w]− 1/2. The inner sum in (15) may be written as∑
v/d<m≤ev/d

N(md) =
∑

v/d<m≤ev/d

(
xc

md
− ψ

(
x+ xc

md

)
+ ψ

( x

md

))

=
xc

d
+O

(
xc

v

)
+

∑
v/d<m≤ev/d

(
ψ
( x

md

)
− ψ

(
x+ xc

md

))
.

This together with the bound
∑
k,l λkλl[k, l]

−1 ≤ (log z)−1 and (16) gives

(17) T (v) ≤ xc

log z
+O

(
xcv−1z2 log2 z

)
+R1 −R2,

where
R1 =

∑
d<z2

ρd
∑

v/d<m≤ev/d
ψ
( x

md

)
,

and R2 is the corresponding sum with x replaced by x+ xc.
We use the theory of exponent pairs to estimate R1 and R2. Assume that (k, l)

is an exponent pair with k 6= 0 and l 6= 1. (In our application, we will use only
the exponent pairs B(0, 1) = (1/2, 1/2), AB(0, 1) = (1/6, 2/3) and A2B(0, 1) =
(1/14, 11/14).) ¿From Lemma 4.3 of [5], we see that

Ri ¿
∑
d<z2

τ3(d)
(
xk/(k+1)d−l/(k+1)v(l−k)/(k+1) + v2x−1d−1

)
¿ xk/(k+1)v(l−k)/(k+1)z2(1+k−l)/(k+1) log2 z + v2x−1 log3 z

for i = 1 and 2. Now we choose z to make the first term in the above estimate
< xc/(log x)2; in other words, we choose z to satisfy

z2+2k−2l = vk−lxc(k+1)−k(log x)−4(k+1).

With this choice of z, the above estimates give

T (v) ≤θ(u, k, l)x
c

log x
+O

(
xc log log x

log2 x

)
+O

(
v2 log3 x

x

)
+O

(
x(2c+2ck−cl−k)/(1+k−l)

v1/(1+k−l)(log x)(2+2k+3l)/(1+k−l)

)
,(18)

where u = log v/ log x and

θ(u, k, l) =
2(1 + k − l)

c+ ck − k + ku− lu .

Now if v ≤ x(1+c)/2(log x)−5/2, then the second error term in (18) is ¿ xc/ log2 x.
We also note that if v ≥ xc, then the third error term is

¿ xcx(c−1)k/(1+k−l)(log x)−(2+2k+3l)/(1+k−l) ¿ xc(log x)−2.
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Therefore, if
xc ≤ v ≤ x(1+c)/2(log x)−5/2,

then our bound for T (v) may be simplified to

(19) T (v) ≤ θ(u, k, l)xc

log x
· (1 +O(ε(x))) ,

where, for brevity, we have written ε(x) for (log log x)/ log x.
Now we are ready to bound Σ4. Let

V = {ejxc : 0 ≤ j and ejxc ≤ x1−c+δ},

so that
Σ4 ≤

∑
v∈V

log(ev)T (v).

We now set
α =

1 + 17c
18

and β =
1 + 5c

6
.

For xc ≤ v ≤ xα, we will use the exponent pair (1/14, 11/14). For xα < v ≤ xβ ,
we use (1/6, 2/3), and for xβ < v ≤ x1−c+δ, we use (1/2, 1/2). We assume that
1− c+ δ < (1 + c)/2, so that for x sufficiently large, x1−c+δ ≤ x(1+c)/2(log x)−5/2

and (19) holds. We find that

Σ4 ≤ I(c)xc(log x)(1 +O(ε(x))),

where

I(c) =
∫ α

c

uθ(u, 1/14, 11/14)du+
∫ β

α

uθ(u, 1/6, 2/3)du+
∫ 1−c+δ

β

uθ(u, 1/2, 1/2)du.

Henceforth, we specialize to the choice of c = 4/9 and δ = .0001. Now a lengthy
but straightforward computation shows that 4/9+I(4/9) < 0.9998 . . . . We conclude
from (12) and (13) that if x is sufficiently large, then∑

x5/9+δ<p

N(p) log p > 0.0002x4/9 log x.

This completes the proof of Lemma 3.

§5 The differences d(n!)− d((n− 1)!)
We now turn our attention to the function

D(n) := d(n!)− d((n− 1)!).

Thus, D(n) is the number of divisors of n! that are not divisors of (n − 1)!. It is
easy to assess the average order of D(n), since the sum of D(n) for n ≤ x is exactly
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d([x]!). We may also find the average order of logD(n). Indeed, from Theorem 2,
we have

D(n) = d((n− 1)!)
(

d(n!)
d((n− 1)!)

− 1
)

= d((n− 1)!)
(
P (n)
n

+O

(
1

n1/2

))
.

Thus, logD(n) = log d((n− 1)!) +O(log n), and so the average order of logD(n) is
essentially the same as the average order of log d(n!). In fact, we have immediately
from Theorem 1 that there are numbers d0, d1, . . . such that

∑
2≤n≤x

logD(n) =
x2

log x

K∑
k=0

dk

logk x
+O

(
x2

logK+2 x

)

for any fixed positive integer K. Note that the coefficient of the main term, d0, is
c0/2 ≈ 0.6289.

We shall call a natural number n a champ if D(n) > D(m) for all natural
numbers m < n. Thus a champ is entirely analogous to the concept, introduced
by Ramanujan [11], of a highly composite number. This is an integer n with
d(n) > d(m) for all natural numbers m smaller than n.

We have the following elementary result.

Theorem 5. For each prime p, both p and 2p are champs.

Proof. We have

D(p) = d(p!)− d((p− 1)!) = d((p− 1)!) ≥ d(m!) > D(m)

for every m < p. Thus, p is a champ.
Note that for every positive integer m we have D(m) ≤ d(m!)/2. Indeed, we

note that there are two kinds of divisors of m!: those that divide (m−1)! and those
that don’t. There are at least as many divisors of the first kind as of the second
kind, since if d is a divisor of the second kind, then d/m is a divisor of the first
kind. Thus, D(m), the number of divisors of the second kind, is at most d(m!)/2.
Now say p is an odd prime. We have

D(2p) = d((2p)!)−d((2p−1)!) >
3
2
d((2p−1)!)−d((2p−1)!) =

1
2
d((2p−1)!) ≥ D(m),

for every positive integer m < 2p. Thus, 2p is a champ. To conclude the proof of
the theorem, it remains to note that 4 is a champ.

Theorem 5 suggest two natural questions. The first is if there are any, or infinitely
many, champs n which are not of the form p or 2p. The second is if, in some sense,
most of the champs are of the form p or 2p, or at least to decide if the set of champs
has asymptotic density 0.

On the first question, we first note that yes indeed, there are champs other than
the prescribed forms of Theorem 5. The least such champ is 8. Marc Deleglise
computed all of the champs up to 500 and found that there are 30 of them that are
not of the form p or 2p. These exceptional champs are all of the form mp where p
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is a prime ≥ P (m) and m is 3, 4, 5, 6 or 7. In particular with m = 3 we have the
champs 3p for p = 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 53, 73, 79, 83, 97, 101, 109, 139
and 149. For m = 4 we have the champs 4p for p = 2, 7, 13, 31, 47 and 107. For
m = 5 we have the champs 5p for p = 5 and 13. For m = 6 we have the champs
6p for p = 11 and 13. Finally we have the champ 7p for p = 11. It is not trivial to
compute these numbers, since the values of D(n) get large quickly. For example,
when n is the largest champ below 500, namely the prime 499, the value D(499)
has 61 decimal digits. We warmly thank Dr. Deleglise for permitting us to include
this summary of his interesting calculations.

It is reasonable to conjecture that there are infinitely many champs not of the
form p, 2p. In fact, this conjecture follows from the prime k-tuples conjecture. For
example, it is relatively easy to show that if q, r are primes with 2q + 1 = 3r, then
3r is a champ. And of course, the prime k-tuples conjecture implies that there are
infinitely many such pairs of primes q, r. (In fact, whenever q and r are primes
with 2q < 3r and such that there are no primes in the interval [2q, 3r], then 3r is a
champ. It may be not hopeless to show unconditionally that such pairs of primes
q, r occur infinitely often.) Similar arguments can show that for each fixed positive
integer m, there are infinitely many champs that are m times a prime. In fact it
may be that for each m there is a positive density of primes p with mp a champ.

We also conjecture that the set of champs has asymptotic density zero. It is very
annoying that we cannot seem to prove this. We can at least show the following
conditional result.

Theorem 6. Assuming the Riemann Hypothesis, the set of champs has asymptotic
density zero.

Proof. We first show the following unconditional result: If P (n) ≤ n/ log3 n and
there is a prime in the interval (n − 1

3 log3 n, n], then n is not a champ. Indeed,
suppose n is a champ and P (n) ≤ n/ log3 n. Let m = [n − 1

3 log3 n]. Since n is a
champ,

d((n− 1)!) = d(m!) +D(m+ 1) +D(m+ 2) + · · ·+D(n− 1)

< d(m!) + (n− 1−m)D(n) ≤ d(m!) +
1
3
D(n) log3 n.

By Theorem 2, d(n!) ≤ (1 + log−3 n + O(n−1/2))d((n − 1)!), so that D(n) ≤
(log−3 n + O(n−1/2))d((n − 1)!). It follows that if n is sufficiently large, D(n) ≤
3
2 (log−3 n)d((n− 1)!), and so

d((n− 1)!) < d(m!) +
1
3
· 3

2
d((n− 1)!),

that is, d((n − 1)!) < 2d(m!). Since d(p!) = 2d((p − 1)!) for a prime p, it follows
that there are no primes in the interval (m,n]. This proves our assertion.

Thus, the set of non-champs contains the intersection of the set of (sufficiently
large) n with P (n) ≤ n/ log3 n and the set of n for which there is a prime in
the interval (n − 1

3 log3 n, n]. The number of n up to x not in the first set is
O(x log log x/ log x), unconditionally, so that the first set has asymptotic density 1.
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It follows from a theorem of Selberg [12] that if the Riemann Hypothesis holds,
then the second set also has asymptotic density 1. This concludes the proof of the
theorem.

From a conjecture of H. Cramér we have that for n sufficiently large, the interval
(n − 1

3 log3 n, n] always contains a prime. If this holds, then the above argument
gives that the number of champs up to x is¿ x log log x/ log x. On the other hand,
clearly the number of champs up to x is À x/ log x. We are unsure what function
to suggest for the true order of magnitude for the counting function of the champs.

We close finally with the following conjecture. Show that the asymptotic density
of the set of integers n with D(n + 1) > D(n) is equal to 1/2. We can show that
this conjecture is equivalent to the conjecture that the asymptotic density of the
set of integers n with P (n+ 1) > P (n) is 1/2. It follows by the method of [4] that
the set of integers n with D(n) > D(n+ 1) has positive lower density and an upper
density that is less than 1. In particular, the upper density of the set of champs
is < 1.
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E-mail address: aleks@ivic.matf.bg.ac.yu

C. Pomerance, Department of Mathematics, University of Georgia, Athens, GA
30602, USA

E-mail address: carl@ada.math.uga.edu


