

Abstract—In this paper we share our experience with

designing and offering a senior undergraduate course on
Embedded Systems Software in the Department of Computer
Science at the Hong Kong University of Science and Technology.
We give a detailed overview of the course, some reflections on
our experience with the first offering of the course, followed by
some discussion on the students’ views of the course.

I. INTRODUCTION
MBEDDED systems have been experiencing tremendous
growth and deployment, especially with the availability of

ever-expanding number of intelligent and complex devices
with diverse capabilities. The added complexity in turn
emphasizes the need for formal approaches in design and
development of these devices. While embedded systems
design draws upon knowledge from several traditional areas
of study such as system specification, modeling and analysis;
computer architecture and micro-architecture; as well as
compilers and operating systems, it adds its own twists and
new constraints on these areas that need to be addressed afresh
[9]. Several universities have started offering courses on
embedded system design. See for example the list maintained
by Vahid [11]. While most of the courses concentrate on the
hardware aspects of embedded systems, there is still paucity
of courses dedicated especially to software aspects of
embedded systems.

In this paper, we describe our experience in designing and
offering a course specifically concentrating on the software
requirements and design for embedded systems. We describe
the details of the course including the list of topics, the hands-
on laboratory exercises and some reflections on the experience
with the first offering of the course. We also give a brief
account of the students’ perception and opinions on the
course. A related course on Embedded System Design is
offered in the Department of Electrical Engineering. This
latter course concentrated more on the hardware aspects of
embedded systems including interfacing, system on a chip
design and field programmable gate array approach to
implementing custom embedded systems.

Jogesh K. Muppala is with the Dept. of Computer Science, The Hong

Kong University of Science and Technology, Clearwater Bay, Kowloon,
Hong Kong, (e-mail: muppala@cs.ust.hk).

.

The paper is organized as follows. Section 2 reviews some
of the background for the course. Section 3 provides the
details of the course. Section 4 reflects on the students’
opinions. Finally we give conclusions in Section 5.

II. BACKGROUND
Most early embedded systems were implemented using

custom-built hardware and software. However, with the
growing complexity of embedded systems, system designers
are increasingly resorting to the use of a commercial off the
shelf embedded hardware, coupled with a real-time operating
system (RTOS) kernel to provide a user-friendly API for
software design, development and deployment. Thus
traditional computer science areas such as compilers,
operating systems, software engineering, modeling and
simulation, and formal languages like UML are being
increasingly used in the embedded system design and
deployment process.

Many universities are beginning to offer courses on
embedded systems [11]. Most such courses are hardware
oriented, covering topics such as System on Chip (SoC)
design, FPGA, and VLSI aspects of hardware design.
Similarly most textbooks devoted to Embedded Systems tend
to concentrated mostly on the hardware aspects of embedded
systems. The increasing software component of embedded
systems nowadays has generated interest in formal study of
embedded software. We describe our experience in designing
and offering one such course specifically designed to address
all the aspects of embedded software.

Some universities typically offer courses on real-time
systems where some of the topics that we include in our
course are covered. Typically topics in real-time OS like
scheduling are covered in such courses. Similarly many
universities have courses on software engineering, but not
necessarily with emphasis on embedded systems.

Many of the advanced topics are usually offered in graduate
courses. However, these focus on current research topics in
the area and tend to be more theoretical in nature. On the other
hand, our course is targeted at undergraduate students. Hence
the emphasis is more on practical topics.

III. THE COURSE
In this section we give the details of our course, including

Experience with an Embedded Systems
Software Course

Jogesh K. Muppala, Senior Member, IEEE

E

29

the course structure and list of course topics, the hands-on
laboratory exercises, and textbooks. We also reflect on our
experience with the first offering of the course.

A. Course Topics and Structure
The course was designed with particular emphasis on the

software aspects of embedded systems. The list of topics
covered in the course is given in Table 1. The students were
first given a comprehensive overview of embedded systems,
their characteristics and design constraints. Three major areas
that were emphasized in the course were: (i) embedded
software development, (ii) real-time and embedded operating
systems (RTOS), and (iii) embedded software engineering.

In embedded software development, the students were
introduced to the ideas of cross-platform development
including host based embedded software development and
embedded target environments, integrated development
environments, interrupts and interrupt handling, and
embedded software architectures.

Real-time OS concentrated on reviewing the basics of
operating systems, and also introducing the specific
constraints imposed by real-time requirements. Task
scheduling topics including rate monotonic scheduling, the
priority inversion problem and its solution were covered. Task
synchronization issues including the use of semaphores and
events were covered. Inter-task communication mechanisms
including message queues, mailboxes and pipes were covered.
Memory management issues including dynamic memory
management, memory leak and dangling pointer problems
were covered. Several example RTOS were also introduced in
the course. As a simple and efficient real-time kernel, the
µc/OS-II was first introduced. Three full-fledged real-time OS
viz., Windows CE, Embedded Linux and VxWorks were
introduced. Three other OS, specifically targeted at the mobile
environment, including Java 2 Micro Edition (J2ME),
Symbian OS and Palm OS were covered. Although J2ME is
not a true OS, but rather a portable virtual machine, it was
given specific coverage because of its widespread usage.

Embedded software engineering was the most diffuse area
to cover. We leveraged on the existing techniques from
software engineering and briefly covered several topics
including embedded software development, software
development lifecycle, software development models,
including the waterfall model, the spiral model, rapid
application development model, object-oriented approaches.
Sufficient coverage was also given to software testing.
Universal modelling language (UML) was introduced as an
important formal method for software engineering, and its use
in the different parts of the software development lifecycle
was illustrated. We also concentrated on specific techniques
for testing, verification and validation for embedded systems.

Designing an undergraduate course on embedded systems
software poses several interesting challenges. The course must
be designed with a suitable balance of both theoretical and
practical issues. The theoretical coverage gives the necessary
foundation for the students in the area, while the practical

training is essential to impart them some useful real-world
skills and aid in retaining their interest in the course.

Table I: List of Course Topics

1. Introduction

• Introduction to Embedded Systems

• Examples of Embedded Systems

• Embedded System Characteristics
2. Embedded Systems Architecture

• Hardware Fundamentals: Processors, Memory, Bus, etc.

• Software: OS, Application Software
3. Embedded Software Development

• Hosts and Targets
4. Interrupts

• Introduction to Interrupts

• Interrupt Handlers and Interrupt Service Routines
5. Embedded Software Architectures
6. Real-Time Operating Systems (RTOS)

• Review of Operating Systems Basics
o Tasks, Processes and Threads
o Task Scheduling: Rate Monotonic Scheduling,

Priority Inversion
o Task Synchronization and Coordination
o Intertask Communication
o Memory Management

• Example RTOS: µC/OS-II, Windows CE, VxWorks,
Embedded Linux, Java 2 Micro Edition, Symbian OS,
Palm OS

7. Embedded Software Engineering

• Basics of Software Engineering

• Software Engineering Models

• Unified Modeling Language (UML)

• Software Testing
8. Testing and Debugging Embedded Systems

B. Textbooks and References
Embedded systems software development, as a field, is

fairly recent with not a significant amount of formal
techniques and approaches described in the literature. Hence
we found that there is paucity of suitable books covering the
complete set of topics that were chosen to be covered in our
course. Thus we had to resort to using several different
sources for gathering the material to be covered in the course.

Most formal textbooks available in the market are oriented
towards the hardware aspects of embedded systems. See for
example [12]. This book does give some software aspects, but
mostly from the hardware perspective. Wolf [6] is another
book that gives a more balanced hardware/software view, but
still hardware oriented.

Simon [1] was one of the first books to concentrate more on

30

software aspects of embedded systems. It introduces the field
with a running example, and some concepts are well
explained. Kamal [2] is a recent book in this area which tries
to give a balanced overview of both hardware and software.
Lewis [7] also concentrates more on the software aspects,
especially for a beginner in the area with limited programming
experience. The treatment of the language aspects and
memory management are very good.

Two books that introduce the area with several interesting
working projects in different areas of embedded software
development are [3][5]. These books are very useful for a
practical approach to embedded software development, but
need to be supplemented on the theoretical aspects by material
from other sources.

Books on real-time systems [13][14][15][16][17] are good
sources for information especially related to the real-time
aspects including RTOS, scheduling etc. However they often
do not present the topics from an embedded systems
perspective. One book that gives a good overview of both the
areas is [4], but it is not available in the international market.
This book is designed more as a primer for those who already
are into software development. Another good book that
presents the real-time concepts with embedded systems in
mind is [16].

In our course, we used [1][2]as the primary textbooks, and
supplemented with material drawn from [3][4][5][6][7]. Also,
materials about specific real-time OS were drawn from
various websites dedicated to the specific RTOS. Details and
links can be found on the course website [8].

C. Hands-on Laboratory Exercises
The hands-on laboratory component concentrated mainly

on the use of several real-time OS and integrated development
environments. We did not have a dedicated embedded systems
laboratory set up by the time the course was offered. So a
general purpose teaching laboratory equipped with standard
PCs was used for the laboratory exercises. We are currently in
the process of setting up a dedicated embedded systems
laboratory where suitable embedded development kits and
access to various RTOS and integrated development
environments would be available.

The majority of the labs were organized around the
Microsoft Windows Embedded software including Platform
Builder 4.2 and Windows CE. Students were introduced to the
Platform Builder IDE, Visual Studio environment including
the Embedded Visual C++ and “.NET” compact framework.
Then the students did several laboratory exercises which were
aimed at illustrating several RTOS concepts including threads,
task scheduling, task synchronization, and memory
management, including memory leaks.

Students were also exposed to the µC/OS-II kernel, and the
Symbian OS and Nokia Series 60 platform. The Java 2 Micro
Edition (J2ME) platform was also introduced through Sun
Java Wireless Tookit and NetBeans IDE 4.0.

The laboratory exercises were mainly aimed at exposing
students to different environments for embedded software

development and also prepare them for designing and
implementing the course projects.

D. Course Projects
The course project was an important part of the student

assessment, in addition to quizzes and examinations. Students
formed teams of up to 3 students per team and proposed their
own project based on their interest. The students had about 2
months to develop their idea, propose the project, design and
implement it. Students were encouraged to apply the software
engineering principles learnt in the course during the design
and implementation of the project, starting from requirements
analysis to final implementation and testing.

The students were very enthusiastic and proposed and
implemented interesting projects. The project topics ranged
from a Bluetooth based positioning system implemented on
Pocket PCs, a multi-player paper, rock and scissors game
implemented using J2ME, an Internet based chat client
implemented using J2ME, and a multimedia center
implemented using J2ME. One group enhanced µC/OS-II by
implementing support for addressing the priority inversion
problem. They implemented support for the priority
inheritance protocol.

E. Reflections on the Course
The first offering of our course provide a rich source of

interesting experiences to reflect upon and make choices and
adjustments for the future offerings of the course. We will
first reflect on the three major areas that we covered in the
course and some observations from our experience in teaching
them. Embedded software development was one of the most
unique aspects of this course that distinguishes it from other
courses. This topic while quite practical has some interesting
theoretical aspects to be covered. Emphasis was put on
explaining cross-platform development including issues
related to cross-compilation, host-based development and
target deployment.

The RTOS section shared some overlap with a standard
operating systems course. We leveraged on the fact that all the
students have already had taken an specific course dedicated
to operating systems earlier, and minimized the overlap by
only providing a quick overview of the typical OS related
material. Greater emphasis was put on real-time scheduling
and memory management issues from an embedded systems
perspective.

As already mentioned, Embedded Software Engineering
posed the greatest challenge for teaching in this course.
Software engineering is more geared towards large scale
software projects. There is lack of suitable case studies
illustrating the use of software engineering techniques in
embedded software development. The relatively recent
adoption of these techniques in the embedded software
engineering field is partly the cause of this scarcity.
Furthermore, the adoption of formal techniques like UML is
fairly new in this area. The UML framework is too general to
be adopted directly for embedded software. There has been

31

several recent efforts to introduce the concepts of real-time
and timeliness into UML. But most of these are in the research
stage. There is lack of suitable case studies or meaningful
examples to illustrate the use of UML in embedded software
development. We scoured the literature to find some simple
examples, but this area needs to be explored further.

Several interesting issues arose before, while and after
offering the course. Some of these issues arose from our own
reflections, while others were in response to opinions
expressed by our colleagues. Here we discuss some of these
issues. The embedded community can perhaps address some
of these issues.

One major issue was whether the embedded software
techniques covered in this course merits a separate course,
rather than being covered as part of existing courses on
specific topics. For example, many of the RTOS concepts can
easily be covered in a course on operating systems. Similarly,
cross-compilation and cross-platform development can be
covered in a compiler course. Similarly, embedded software
engineering techniques can easily be covered in a software
engineering course. While it is certainly useful to include
discussion on embedded systems related issues in the specific
courses, a detailed coverage may not be feasible. In our
opinion, it is appropriate to have an integrated course where
all the related topics are covered. Care must be taken to avoid
significant overlap with the other courses. Where feasible,
some of the related courses can be included as pre-requisites
so that students already have sufficient background in specific
topics.

Another major issue that we grappled with in designing this
course is how to balance the course content between
theoretical aspects and practical skills. Our approach was to
give sufficient emphasis on practical skills through hands-on
laboratory exercises, while ensuring that the related theoretical
areas are also emphasized. Wherever feasible, the theoretical
concepts were reinforced with related laboratory exercises.
This area being relatively new is still deficient in generic
techniques that can be covered. So a greater emphasis on
specific platforms and solutions may be needed in the interim.

This brings us to another related issue, i.e., whether the
course is best taught using a single platform (e.g., Windows
CE, VxWorks, Embedded Linux), or whether more
concentration should be given to the generic concepts and
approaches. We adopted the latter approach, while still
ensuring adequate coverage of specific platforms.

Another issue is how to balance the coverage between
hardware and software. In particular, how much of the low-
level techniques should be covered in the course. We opted to
limit our hardware coverage to generic techniques and
hardware platforms and not get into very specific hardware. A
discussion on interfacing followed by detailed discussion on
device driver design and implementation would be beneficial.
In this area, complete isolation of the students from the
underlying hardware is neither feasible nor desirable.

IV. STUDENTS
As already mentioned the course was designed as a senior

undergraduate course. In the first offering of the course, most
of the students were in their second year or third year (final
year) of their undergraduate education at the university. It
must be noted that the Hong Kong higher education system is
based on a three year bachelor’s degree program. Students
entering the university are at the sophomore level of a typical
US university. Thus students in the second and third year at
the university here are equivalent to students in their junior
and senior year of a 4-year bachelor’s degree at a typical US
university.

A. Background
Not surprisingly, most of the students taking the course

(almost 99%) were doing their bachelor’s degree in computer
engineering. There were just a couple of students doing their
bachelor’s in computer science, although the course was
designed to attract students with both computer science and
computer engineering background. Students in their final year
of study made up approximately 60% while students in their
second year made up the remaining 40% of the enrollment in
the course.

Two undergraduate courses were listed as prerequisites for
our course, viz., Computer Architecture, and Principles of
Systems Software (Operating Systems). Most students
enrolled in the bachelor’s programs in computer science or
computer engineering at our university typically take these
two courses by the time they have completed the first semester
of the second year of their study. Since these two courses
provide the necessary background required for introducing
embedded systems, we had to devote only a short time at the
beginning of our course to review the relevant materials
before delving into the topics of our course.

B. Student Feedback
Overall the course was well received by the students. At the

end of the semester, a comprehensive survey of the students’
opinions was carried out in order to assess how well the
course met the students’ expectations. The results of the
survey indicated that the students were quite satisfied with the
course. Some suggestions for improvement were given which
are noted below:
1. Most students expressed interest in having more hands-on

labs that currently available. They especially wanted to
have experience with dedicated hardware and embedded
development platforms, rather than the general purpose
PC. This will be addressed in the future offerings of the
course because we are setting up a dedicated Embedded
Systems laboratory equipped with suitable hardware and
software, including embedded development platforms.

2. The topics that attracted the most interest among the
students were embedded development, and RTOS. The
least popular topic was software engineering, perhaps
because of lack of demonstrative case studies.

3. Most students expressed that the coverage of the RTOS
should be limited to an in-depth coverage of only two or

32

three major ones, rather than an overview of several
RTOS. Their preference was to concentrate on Windows
CE, Embedded Linux and VxWorks.

4. Students also wanted more coverage on interfacing,
especially with emphasis on device-driver development.
Future offerings of the course will include more emphasis
on these topics.

5. Some students expressed the opinion that some of the
topics had overlap with other related courses that they had
taken, and hence suggested that the overlap should be
minimized. This was especially true for software
engineering which is covered in detail in another course
dedicated to the topic.

6. UML was not well appreciated because of the short time
devoted to cover it. This is related to our observation
earlier that lack of suitable case studies hampers the
proper coverage of UML. This issue can be addressed by
including meaningful case studies, especially
demonstrating the application of UML in embedded
software development.

V. CONCLUSIONS
In this paper we discussed our experience in designing and

offering a senior undergraduate course on Embedded Systems
Software. The course was described in detail and some
reflections on our experience in teaching the course are
included.

Our experience offers only one point of reference for
academics interested in designing and offering similar
courses. It is our hope that this experience sharing can
contribute towards further sharing of views and experience
from academics worldwide. In the longer term, a broader
consensus on the teaching of Embedded Systems in the
academia can thus be attained.

ACKNOWLEDGMENT
The author wishes to thank the Dept. of Computer Science

at HKUST and especially the Dept. Head for encouraging the
development of this course. We also thank Microsoft for
supporting the course under the Windows Embedded
Academic Program (WEMAP) by providing us access to
Windows CE software.

REFERENCES
[1] D. E. Simon, An Embedded Software Primer, Addison-Wesley, 1999.
[2] R. Kamal, Embedded Systems: Architecture, Programming and Design,

McGraw-Hill, 2003.
[3] K.V.K.K. Prasad, Embedded/Real-Time Systems: Concepts, Design and

Programming, Dreamtech Press, New Delhi, India, 2003.
[4] S. V. Iyer and P. Gupta, Embedded Realtime Systems Programming,

Tata McGraw-Hill, New Delhi, India, 2004.
[5] Dreamtech Software Team, Programming for Embedded Systems:

Cracking the Code, Wiley, 2002.
[6] W. Wolf, Computers as Components: Principles of Embedded

Computing System Design, Morgan Kaufmann, 2001.
[7] D. W. Lewis, Fundamentals of Embedded Software, Prentice Hall, 2002.
[8] COMP 355: Embedded Systems Software Website:

http://www.cs.ust.hk/~muppala/comp355/.
[9] Design Automation Conference 2000, Embedded Systems Education

Panel, 37th Design Automation Conference, Los Angeles, CA, USA,
Jun. 2000.

[10] B. Hemingway, W. Brunette, T. Anderl and G. Borriello, The Flock:
Mote Sensors Sing in Undergraduate Curriculum, Computer, 37 (8),
Aug. 2004, 72-78.

[11] F. Vahid, Embedded Courses in Universities,
http://www.cs.ucr.edu/~vahid/courses/es_others.html.

[12] F. Vahid and T. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, 2002.

[13] H. Kopetz, Real-time Systems, Kluwer, 1997.
[14] C. M. Krishna and K. G. Shin, Real-time Systems, Mc-Graw Hill, 1997.
[15] J. Liu, Real-time Systems, Prentice Hall, 1st ed., 2000.
[16] Q. Li and C.Yao, Real-Time Concepts for Embedded Systems, CMP

Books, 2003.
[17] G. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, Second Edition, Springer,
2004.

33

