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ABSTRACT

We present a criterion to generate audible summaries of
music recordings that optimally explain a given track with
mutually disjoint segments of itself. We represent audio
as sequences of beat-synchronous harmonic features and
use an exhaustive search to identify the best summary. To
demonstrate the merit of this approach, we evaluate the cri-
terion and show consistency across a collection of multiple
recordings of different works. Finally, we present a fast
algorithm that approximates the exhaustive search and al-
lows us to automatically learn the hyperparameters of the
algorithm for a given track.

1. INTRODUCTION

One of the classic motivations in the field of music infor-
matics is facilitating the navigation of massive digital mu-
sic collections by human users. Research in this area aims
to develop computational methods of organizing and re-
trieving music recordings —tracks— in the spirit of reduc-
ing the amount of effort necessary to find desired content.
Ultimately, the user must listen to any unfamiliar track to
validate the search results, making the process consider-
ably time consuming.

In digital music storefronts and other kinds of large col-
lections, the traditional solution is to represent a full track
with a single, identifiable excerpt. Known as audio thumb-
nailing, much effort has been invested into the develop-
ment of automatic systems to these ends; for a partial re-
view, we refer to [1, 2, 6, 7]. For some popular music that
is highly repetitive in nature, these methods perform well
in identifying useful thumbnails. Regardless, representing
a full track with a single excerpt presents one unavoidable
deficiency: the defining characteristics of a track are rarely
concentrated in one specific section.

Recognizing this shortcoming, we motivate an alterna-
tive approach to classical thumbnailing that instead creates
a short, listenable audio summary, capturing both the most
unique and representative parts of a track. Specifically, this
paper presents a novel audio summary criterion and an effi-
cient method of automatically generating these summaries
from real music recordings. The criterion is maximal for
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the set of segments that best explain the overall track while
simultaneously exhibiting minimal overlap between them.
Via examples and an experimental study we show how this
measure yields good audio summaries. Furthermore, we
show that it is possible to automatically select the optimal
number and length of the selected subsequences specific to
a given recording.

The remainder of this paper is organized as follows:
Section 2 addresses the topic of feature representation. Sec-
tion 3 defines the music summary criterion and showcases
the measure in practice. Section 4 details a heuristic ap-
proximation to the exhaustive evaluation over the free pa-
rameters. Section 5 presents a systematic evaluation of the
feature representation, heuristic solution and effect of au-
tomatically learning hyperparameters. Finally, we discuss
our conclusions and observations for future work in Sec-
tion 6.

2. FEATURE REPRESENTATION

The goal of developing an appropriate representation is to
capture the information relevant to a given task while dis-
carding unnecessary attributes. With this in mind, we de-
scribe the method of transforming time-domain audio sig-
nals into beat-synchronous sequences of harmonic features
from which audio summaries can be identified.

2.1 Beat-Synchronicity

As a preprocessing stage, a recording is first analyzed by
a beat tracking algorithm adapted from [3] for subsequent
beat-synchronous feature extraction. In the interest of mit-
igating octave errors and producing consistent feature se-
quences across a variety of content, we impose constraints
on the range of possible tempi the system can track. This is
achieved by the following modification: periodicity anal-
ysis of the novelty function ∆n is computed at N log2
spaced frequencies per octave over the range [1 : 8] Hz,
producing the tempogram T as defined in [3]. This time-
frequency representation is then wrapped to a single tempo
octave of N bins and the most likely tempo path is ex-
tracted via the Viterbi decoder. In lieu of static transition
probabilities, the transition probability matrix ptrans is de-
fined as an identity matrix I of rank N convolved with a
1-D, 0-mean Gaussian window N , where the standard de-
viation σn is parameterized by the relative amplitude of the
maximum tempogram as a function of time n, as follows:



ptrans[n] = IN ∗ N
(
µ = 0, σn =

max(|T [n]|)
µ|T [n]|

)
(1)

This has the desirable effect of allowing the tempo es-
timator to adapt when the pulse strength is high, but resist
change when the tempo becomes ambiguous. To find the
best tempo octave to unwrap the path into, we analyzed
a histogram of the chord durations contained in publicly
available chord annotations 1 . Having found that approxi-
mately 95% of the chord durations are greater than 0.5 sec-
onds in duration, we select 2Hz as a natural upper bound
and map the optimal path through the single octave tem-
pogram into the range of 60-120 BPM. At this stage, the
remainder of the implementation follows the reference al-
gorithm.

2.2 Harmonic Representations

Conventional approaches to harmonic analysis tasks in mu-
sic informatics are predominantly built upon the use of
chroma features, and we continue that tradition here. We
also explore the use of tonal centroids, or Tonnetz features,
as a mid-level harmonic representation. Introduced for the
purpose of detecting harmonic change by Harte et al [4],
the intuition for this decision is motivated as follows. First,
typical distance metrics fail to capture musical significance
between chroma vectors. In a pitch class representation,
for example, the L2 distance between a C major triad and
a C] triad is equal to the distance between either triad and
the notes B, B[, and A. Additionally, chroma behaves like
a mass function and it is not immediately apparent how to
best measure the distance between these vectors. A Ton-
netz representation, however, provides a geometric inter-
pretation of pitch collections where distance is better de-
fined as a musical and an Euclidean sense.

To compute both harmonic feature variants, we apply
the constant-Q transform to a frame of audio over the range
of 110–1760 Hz with 12 bins per octave, producing a pitch
vectorX . The length of the analysis window is determined
by the longest filter, and is set to 0.45 seconds. Inspired
by [5], a modified pitch vector Y is produced by standard-
izing the log-coefficients log(λX) and half-wave rectify-
ing the result. The λ scale factor is heuristically set to
1000, but values within an order of magnitude in either
direction produce similar results. Chroma features are de-
rived from Y by wrapping onto a single octave and scaling
by the L2 norm, and Tonnetz features are computed iden-
tically to the method presented in [4].

2.3 Feature Quantization

It is computationally advantageous to quantize the feature
space into a finite number of discrete values. We perform
vector quantization by clustering the feature space via K-
means and replacing each feature vector by its cluster’s
centroid. The pairwise distances between centroids are
precomputed to accelerate distance calculations between

1 https://github.com/tmc323/Chord-Annotations

symbolic feature sequences (see Section 3). Though larger
values ofK more faithfully reproduce the original features,
this might result in an intractable process due to computa-
tion limitations as we see in subsection 3.3.

3. DEFINING AN AUDIO SUMMARY CRITERION

Structure and repetition are fundamental characteristics of
a musical work, and an audio summary should retain the
minimum number of distinct parts that are necessary to
describe it. Therefore, a good summary criterion actu-
ally synthesizes two opposing notions: we seek to lose as
little information as possible, while avoiding overlap be-
tween chosen segments. A summary is defined as the set
Γ = [γN

1 , . . . , γ
N
P ] of P , N -length subsequences that max-

imizes a function Θ over a feature sequence S of length
M , where ∃m s.t. sN

m = γN
i ,m ∈ [1 : M ], sN

m ∈ S, and
i ∈ [1 : P ].

3.1 Compression Measure

The goal of describing a sequence in terms of itself with a
minimal loss of information is fundamentally a data com-
pression problem. Building upon this idea, we define a
compression measure C(Γ|S) that quantifies the extent to
which Γ explains a given S, defined as follows:

C(Γ|S) = 1− 1
PJ

P∑
i=1

J∑
m=1

||γN
i , s

N
m||2 (2)

This measure can be interpreted as a normalized, convo-
lutive Euclidean distance, such that there are J = M−N+
1 element-wise comparisons between a givenN -length sub-
sequence γN

i and all J N -length subsequences sN
m ∈ S.

All distances, taken directly from the precomputed pair-
wise matrix discussed in Subsection 2.3, are then averaged
over the J rotations and P subsequences in Γ. Intuitively,
the compression measure equals 1 when Γ = S and 0 when
Γ 6⊆ S.

3.2 Disjoint Information Measure

In addition to determining how well Γ describes S, it is
necessary to also measure the amount of information shared
between each pair of subsequences in a set. Conversely, a
disjoint information measure I(Γ) seeks to quantify the
uniqueness of each subsequence in Γ relative to the rest,
defined as follows:

I(Γ) =

 P∏
i=1

P∏
j=i+1

Dmin(φ(γN
i ), φ(γN

j ))

 2
P (P−1)

(3)

We achieve shift-invariance by mapping a sequence of
features γN

i to a sequence of shingles ρK
i with length K =

N−L+1 where a shingle is defined as the stacking ofL ad-
jacent feature frames into a single feature vector. The func-
tion φ returns the shingled version of a subsequence. A
modified Euclidean distance function Dmin then measures
the intersection between sequences of shingles, returning
the average minimum distance between the uth shingle in



Figure 1. Search space for C, I and Θ (left, middle, and right respectively) for P = 2 subsequences in the first half of a
performance of the Mazurka Op. 30 No. 2. Black lines split part A and B. Circles mark the maximum value. Each position
in the matrices correspond to a 8-beat subsequence.

ρK
i and all v shingles in a different subsequence ρK

j , de-
fined as follows:

Dmin(ρK
i , ρ

K
j ) =

(
K∑

u=1

minv(ρi[u]− ρj [v])2
)1/2

(4)

There are two important subtleties that must be observed
when calculating this measure. First, distances between
shingles are defined by the element-wise L2 norm based
on the same pairwise distance matrix as before. Addition-
ally, I(Γ) is a geometric mean and only produces large
values when all pairwise distances are also large; any small
distance in the product forces the overall measure toward
zero.

3.3 Criterion Definition and Calculation

Having established measures of compression and disjoint
information for some Γ, we capture both of these traits by
defining a single criterion Θ as follows:

Θ(C, I) =
2CI
C + I

(5)

Noting that C and I are constrained on the interval [0,1]
and converge to one when optimal, computing the criterion
as a harmonic mean enforces the behavior that its value is
only large when both measures are as well.

It is worthwhile at this point to make the observation
that this criterion can —at least theoretically— be evalu-
ated at every unique combination of subsequences Γ over
an entire sequence S. The output of this exhaustive cal-
culation is a P dimensional tensor where each axis is of
length J , and the best summary is given simply by the
argmax of the resulting data structure. From here on-
ward, we use optimal criterion Θmax to refer to the ab-
solute maximum of this tensor, as would be found through
a naı̈ve, exhaustive search of the space. Note that for large
J and P however, evaluating every cell in this tensor be-
comes computationally intractable and efficient approxi-
mations are necessary (see Section 4).

3.4 Case Example

Here we illustrate the behavior of the audio summary cri-
terion by analyzing by the first half of Frédéric Chopin’s
Mazurka Op. 30 No. 2, which exhibits a well-defined AB
structure. For the sake of demonstration, we select a sub-
sequence length of N = 8 and define P = 2 such that
an exhaustive evaluation of Θ produces a J × J matrix.
The result of computing C, I and Θ over all pairs of sub-
sequences is shown in Figure 1.

The compression measure C is shown in the left-most
matrix of Figure 1. This measure quantifies the extent to
which a set Γ explains the overall track independent of
any correlation between subsequences. The optimal C in
this matrix corresponds to the two subsequences at beat in-
dices (48, 59) in the B-B quadrant. These subsequences
correspond to repetitions of the same part, making the in-
formation in Γ redundant.

The center matrix in Figure 1 corresponds to the disjoint
information measure I. This measure captures the degree
of uniqueness between subsequences in Γ. It is clear from
the plot that the measure behaves as expected: repeated
subsequences in the same section (in quadrants A-A or B-B)
produce significantly lower values of I than subsequence
pairs in A-B, where the highest I is found.

Finally, the previous two matrices combine to yield a
third, the criterion Θ. In the example the maximum value
of C corresponds to repetitions of the same part, thus mak-
ing I to be small and forcing the overall Θ to also be small.
Similarly, the position of the maximum value of I at the
boundary between A and B results in a low C value, again
producing a smaller Θ. In this example, Θ is maximized
by the combination of subsequences in A,B that best bal-
ance the two criteria by capturing the midsections of each
part.

4. APPROXIMATING THE OPTIMAL SOLUTION

As mentioned in the previous section, naı̈ve calculation
of the optimal criterion can, in certain scenarios, become



computationally inefficient, impractical, or worse. More
specifically, an exhaustive evaluation and parallel search
of the full Θ tensor of size (J/2)P would result in an algo-
rithm of complexity O((JN log J)P ). In this section, we
present a heuristic approach that approximates the optimal
solution using a much faster implementation.

4.1 Heuristic Search Algorithm

The main idea behind the fast approach is to assume that
the most relevant parts of a song will most likely be uni-
formly spread across time. The pseudocode is found in Al-
gorithm 1. The method EquallySpaced() initializes all P
subsequences into equally spaced time indices and stores
them in the array Υ. We then iterate over the P subse-
quences, fixing all of them except the Pi being processed.
We use a sliding window, operating over the region be-
tween the endpoint of the previous subsequence and the
start of the next one, to find the best local music criterion
θ by calling the function ComputeCriterion(). At every
iteration we check if the sliding window is within the cor-
rect bounds with the method CheckBounds(), and if it is,
we update the best index υ in Υ. Finally, the summary Γ
is obtained by concatenating the subsequences at the time
indices in Υ. This operation is done inside the method Get-
SubseqsFromTimeIdxs().

Algorithm 1 Heuristic Approach
Require: S = {s1, . . . , sM}, P,N
Ensure: Γ = {γN

1 , . . . , γ
N
P }

Υ← EquallySpaced(S, P,N)
for i = 1→ P do
θ ← 0
for j = 1→M do

if CheckBounds(Υ) then
Θ← ComputeCriterion(S,Υ, N, P )
if Θ > θ then
θ ← Θ; υ ← j

end if
Υ[i]← j

end if
end for
Υ[i]← υ

end for
Γ← GetSubseqsFromTimeIdxs(S,Υ)
return Γ

The complexity in time of this algorithm is O(PMJ),
which makes it linear with respect to P . This approach im-
proves the efficiency dramatically and let us explore differ-
ent hyperparameter values of P and N , as we will see in
subsection 5.4.

5. EVALUATION

We now proceed to evaluate multiple facets of the audio
summary criterion. We begin by reviewing the dataset
used for evaluation before presenting three different exper-
iments.

5.1 Methodology

In our experimentation, we use a collection of solo pi-
ano music compiled by the Mazurka Project 2 , comprised
of 2914 tracks corresponding to different recorded perfor-
mances of 49 Mazurkas. For clarity, we use piece or work
when referring to a Mazurka, and reserve track or perfor-
mance to describe an instance of the work as audio. The
motivation for using this dataset is to leverage the sev-
eral performances of a single work to measure the con-
sistency of our criterion. Additionally, this collection con-
tains 301 tracks with human-annotated, ground truth beat
times, which allows us evaluate the impact of beat track-
ing on various dimensions of performance. It also provides
the added benefit that Chopin’s Mazurkas are notoriously
difficult to beat-track via computational means [3].

5.2 Parameter Sweep & Selection

In the interest of selecting a feature space with which to
proceed, an experiment is designed to sweep across the
range of free parameters to identify the optimal configu-
ration. There are three questions to address: Is automatic
beat tracking sufficient? Do chroma and Tonnetz features
perform equivalently, or is one preferable? Does perfor-
mance vary significantly as a function of codebook size?

These three decisions can be resolved by observing how
the optimal criterion behaves across various performances
of the same work, comparing between ground truth and es-
timated beat annotations. Intuitively, a satisfactory audio
summary of the same piece would persist across recorded
versions, so the summaries themselves should be substan-
tially similar.

For those 301 recordings with ground truth beat annota-
tions, we stratify the tracks into five folds for cross valida-
tion such that all but one are used to train the quantizer and
the remaining hold-out is reserved as a test set. Sweeping
across the two beat annotation sources (ground truth, auto-
matic), two harmonic representations (chroma, Tonnetz),
and three codebook sizes (50, 100, 200) produces 12 pos-
sible feature space configurations (see Table 1). Summary
sets Γ are identified by exhaustively computing Θmax over
all possible combinations of subsequences, where segment
length N and number P are fixed at 16 and 4, respectively.
Additionally, a stride parameter ofN/2, analogous to a hop
size in frame based audio processing, is applied to make
the exhaustive search more computationally tractable.

To measure the degree to which summaries of the same
work (intra-class distance) are closer than those from other,
dissimilar works (inter-class distance), the pairwise dis-
tances between summaries of tracks in each fold are com-
puted and the values are treated as empirical distributions
of these two classes. The Fisher ratio, defined by (6),
provides an estimate of the separation between intra- and
inter-class summary distances.

Fratio =
µintra − µinter

σ2
intra + σ2

inter

(6)

2 http://www.mazurka.org.uk



k GT-C GT-T A-C A-T
50 3.64 3.97 2.71 3.89

100 3.84 4.29 2.68 4.20
200 4.09 4.74 2.87 4.45

Table 1. Parameter Sweep. GT: Ground Truth, A: Auto-
matic, C: Chromagram, T: Tonnetz

Intuitively, higher values ofFratio indicate distinct, well-
localized distributions where ‘similar’ items cluster togeth-
er, and translates to more consistency across performances.
Table 1 shows the results of sweeping free parameters in
the feature space. There are a few important observations
to make about these results. First, a Tonnetz representa-
tion produces consistently better results than chroma fea-
tures. Additionally, Tonnetz features computed from au-
tomatically extracted beat times only marginally trail their
ground truth equivalent. Finally, the codebook size K has
a non-trivial impact on performance and is positively cor-
related. Therefore, we can conclude that Tonnetz-features
computed with a beat tracking front-end are the best choice
going forward, and that the parameter K should be large
and ultimately based on practical limitations of the imple-
mentation.

5.3 Heuristic Approximation

We evaluate the performance of the heuristic approach by
comparing the summaries it produces with the optimal so-
lution obtained through exhaustive computation. A second
comparison is made with the expected performance a ran-
dom algorithm, obtained by averaging across all results ob-
served in the course of computing Θmax. This establishes
the upper (optimal) and lower (random) bounds of perfor-
mance and allows us to determine where on this continuum
our heuristic solution lives. We measure the discrepancy
between the optimal Θmax, random Θrand, and heuristic
Θheur solutions by computing the averaged Mean-Squared
Error (MSE) across all tracks in the full dataset. To account
for local variance resulting for a given track, we normalize
the range of Θ such that Θmax = 1 and Θmin = 0. The
normalized MSE can be expressed formally as follows:

MSE(Θ) =
1
S

S∑
i

(1−Θi)2 (7)

Here, a normalized Θmax is always equals 1, Θ rep-
resents a vector of normalized criteria obtained by some
search strategy, and S is the number of songs in the Mazurka
data set.

Setting the hyperparameters to P = 4 and N = 16,
the MSE of the random baseline is approximately 21%,
whereas our heuristic approximation is nearly two orders
of magnitude better, achieving a MSE of slightly over 1%.
It is evident from this contrast that the heuristic search
very closely approximates the results of exhaustive com-
putation, significantly outperforming the random baseline.
Therefore we offer the preliminary conclusion that the heu-

ristic approach is a sufficient approximation, allowing a
more thorough exploration over the space of hyperparam-
eters.

5.4 Automatically Selecting Hyperparameters

Having gained the efficiency to perform a search across
hyperparameters P and N , we can compute Θmax for dif-
ferent combinations and define the maximum over this set
as the optimal summary. In this experiment we explore 9
pairs of P ∈ [2 : 5] and N ∈ [16 : 64] (constraining
N to powers of two), avoiding (P,N) combinations such
as (5, 64) or (2, 16) that would produce summaries that
are too long or short, respectively. These ranges incorpo-
rate prior musical knowledge, as there are typically a small
number of distinct parts in a work and meter is predomi-
nantly binary. It is worthwhile to mention though the best
choice of P and N is signal-dependent and that, in reality,
there is no universally optimal combination for all music.

In light of this, the combination of P and N that yields
Θmax for a given track provides another statistic that should
persist across multiple performances of the same work, as
structure and meter are generally invariant to interpreta-
tion. We evaluate the criterion further by measuring con-
sistency of the optimal (P,N) pair using the entire Mazurka
dataset, and provide qualitative examples of the observed
behavior.

5.4.1 Quantitative Evaluation

A consistency distribution resulting from a sweep across
combinations of P and N is given in Figure 2. The x-
axis represents the proportion of performances for a given
Mazurka that produces the most frequent (P,N) pair at
Θmax, where a value of 1 indicates complete agreement
and 0 complete disagreement. The y-axis represents the
number of works that produce a given consistency value,
and there are 49 in total.

As illustrated by the plot, there is very high consistency
(≥ 90%) for more than half of the data set, resulting in
an average consistency of 87%. This shows that our cri-
terion is able to capture high-level information about the
structure of a work across various performances, validat-
ing its capacity to produce informative audio summaries.
Despite a high average overall, it is of special interest to
qualitatively analyze the Mazurkas that yield different op-
timal configurations of the hyperparameters.

5.4.2 Qualitative Evaluation

Importantly, Figure 2 fails to capture is the degree of con-
trast between Θmax and values for other combinations of
P andN . Upon closer inspection, we find that the structure
of some works is not clearly defined leading to multiple,
equally reasonable interpretations. This manifests explic-
itly in the data, leading to more than one (P,N) with large
Θ values. One such instance of multiple interpretations
occurs for Op. 7 No. 2. The form of this work is ABCA,
but– depending on performance – parts B and C can be
interpreted as one longer part, resulting in an ABA struc-
ture. Consequently, 62% of these performances produced



Figure 2. Evaluating consistency across different perfor-
mances of the same song for the entire Mazurka data-set

a Θmax for P = 2, while 31% of performances occurred
at P = 3.

The other primary cause of inconsistency is due to tempo
modulations and the resulting errors and artifacts caused
by the beat tracker. An example of this is Op. 41 No. 1,
producing the lowest consistency ratio of 49%. Here we
observe a lack of well-defined onsets and liberal rhythmic
interpretations, both within and between performances. This
causes the beat tracker to behave erratically, producing mis-
aligned feature sequences that ultimately yield Θmax val-
ues for different pairs of (P,N).

Alternatively, Op. 24 No. 3, which exhibits a clear ABA
structure and a more stable tempo, achieves 100% consis-
tency for P = 2 andN = 32. The more noteworthy obser-
vation though is that this particular piece is in a ternary me-
ter. Therefore a better summary would likely be obtained
with N being a power of 3, and exploring other values of
N could potentially improve consistency.

6. DISCUSSION & CONCLUSIONS

We have presented a novel audio summary criterion and
established the merit of this approach through data-driven
evaluation and qualitative inspection. We have illustrated
how our criterion consistently produces informative sum-
maries that capture both meaningful harmonic and high-
level structural information. Finally, we have presented a
heuristic approach capable of producing audio summaries
that closely approximates the absolute maximum.

Complementary to the main body of work itself, the
unexpected observation that Tonnetz features definitively
yield better results warrants discussion. One possible ex-
planation, as Tonnetz features live in a continuous-valued
geometric space, is that any beat estimation errors result
in a smooth interpolation of the feature space. Chroma
features, acting as a time-varying probability distribution,
cannot resolve timing errors in the same way. As a result,
a beat tracker does not need to be perfect to be useful given
a suitable feature representation.

As part of future work, we identify the potential of au-
dio summaries to be used for various application where
the data needs to be time normalized. More related to this
work, the next logical step would be to explore the use of
variable length subsequences to generate summaries. Fi-
nally, several example summaries are made available on-
line 3 .
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