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Abstract

Several important machine learning problems can be modeled andl so&/eemidefinite programs.
Often, researchers invoke off-the-shelf software for the assadagtimization, which can be inappropriate
for many applications due to computational and storage requirementss fraper, we introduce the use of
convex perturbations for semidefinite programs (SDPs). Using a plartigerturbation function, we arrive
at an algorithm for SDPs that has several advantages over existingdgeeb: a) it is simple, requiring
only a few lines of MATLAB, b) it is a first-order method which makes it scalable, c) it can easily &xplo
the structure of a particular SDP to gain efficiency (e.g., when the @nisinatrices are low-rank). We
demonstrate on several machine learning applications that the progdgseithm is effective in finding fast
approximations to large-scale SDPs.

1 Introduction

There has been a rapid rise in the use of semidefinite progiragnim the machine learning community
over the last few years. Problems such as nonlinear dimeal#tip reduction [24, 18], learning kernel ma-
trices [12], maximum margin matrix factorization [19], gtaclustering [13], and many others have been
formulated and solved as semidefinite programs (SDPs).thefthelf software, such asSumi [17] or
DSDP [2], are commonly used for solving these problems. &lseftware packages are effective in finding
high-accuracy SDP solutions, though it is difficult to sjpdize them for particular SDPs and the scalability
of these methods makes them restrictive for large probldrusthermore, it is often the case for machine
learning applications that high-accuracy solutions aftenegessary, especially if the solution of the SDP is
only an intermediate goal in the overall machine learnirabf@m (e.g., metric learning for nearest-neighbor
classification [23]).

In this paper we introduce convex perturbations for sermidefiprogramming and characterize their
relation to the unperturbed original. In particular, iratef minimizingTr(CX) subject to constraints oX,
we minimizeTr(CX) — e log det(X). We show that for an appropriate> 0, solving the perturbed problem



for anye < z yields a solution to the original problem—in fact, it yieldseimaximum determinant solution.
Subsequently we exploit the strict convexity of the pentarproblem to developsamplefirst-order algorithm
based on Bregman projections. Our algorithm scales well thie size of the data and may be preferable to
off-the-shelf software, especially for large-scale irgpuf\ pleasant benefit of our algorithm’s simplicity is
that it can be implemented with only a few lines oAML.AB code. Furthermore, it is easy to take advantage
of the problem structure, particularly when the consteaare low-rank or the cost matrix is sparse. Being a
first-order approach, our method is more suitable for prokleshere low to medium accuracy solutions are
acceptable, e.g., in large-scale machine learning prabl®¥e illustrate our method by applying it to varied
problems in machine learning: maximum variance unfoldi24j [ min-balanced cut [13], and large-margin
nearest neighbor metric learning [23].

1.1 Related Work

Perturbation: The idea of adding a scaled perturbation functiefi(z), to the objective bears a close
connection to Tikhonov regularization and exact penaltsnge Mangasarian and Meyer [15] analyzed non-
linear (including convex and non-convex) perturbationslifeear programs, and our extension to SDPs is
inspired by their work. In [14], Mangasarian developed ditieht method for linear programming based on
a quadratic perturbation, and characterized the solutidheoperturbed problem as the ledgtnorm solu-
tion to the original linear program. In a similar vein, we cigterize the solution of our perturbed problem
as the maximum determinant solution to the original SDPeDtblevant references related to perturbations
include the work of Ferris and Mangasarian [9] who extendpireurbation results of [15] to general convex
programs by applying them to linearizations of the latteserig [21] includes several relevant references and
also discusses perturbations by separable nonlineaidasde.g.f(z) = >, #7); in contrast, our perturba-
tion functionf (X) = — log det(X) is non-separable in the entriesXf More recently, Friedlander and Tseng
[10] discussed perturbations for general convex prograrmerein they also discuss necessary and sufficient
conditions for the solution of the perturbed problem to belatn to the original problem.

Algorithms. Interior point (IP) methods are amongst the most populdmtiggies for solving SDPs, espe-
cially after [1, 16] demonstrated their applicability. Theftware package EbuMi implements an IP code
for SDPs, and is currently the method of choice for small talion® scale problems. The perturbation func-
tion f(X) = —log det(X) is the log-barrier used by many interior point SDP solveesyéver, fundamental
differences exist between our approach and IP methods. We #e perturbed problem as a constrained
optimization problem with a fixed, whereinonly positive-definiteness is enforced via the log-det barrier
(the other constraints are tackled differently). In costiréP methods recast the original problem as an un-
constrained problem with varying, whereinall the constraints are enforced via appropriate logarithmic
barriers.

In addition to second-order IP methods, the nonlinear pnogning approach of Burer and Monteiro [4]
and the spectral bundle method of Helmberg and Rend| [11papailar for solving SDPs. Our method
presents a new approach that is simpler than existing tg@ohgsj both conceptually, as well as from an
implementation perspective—surprisingly, without sacirifiy too much accuracy. For additional details and
references on semidefinite programming, we refer the reaad2p, 22].

2 Problem Formulation
A standard formulation for semidefinite programming (SDP) i

min  Tr(CX)

subjecttoTr(A;X) <b;, 1<i<m P)
X >=0.



Problem (P) is a convex optimization problem, and as meatqureviously, for simplicity and scalability
we wish to develop a first-order method for solving largelesgaioblems. The key insight that enables us
to develop a first-order method is the introduction of a #{riconvex perturbation to (P). Formally, instead
of (P) we propose to solve

min  Tr(CX) — elog det(X)

subject toTr(A;X) <b;, 1<i<m (PT)
X =0,
wheree € [0, 2] is some pre-specified constant, af(k) = — log det(X) is the perturbation function. Note

that other perturbation functions such|ag|2 or Tr(X log X) can also be considered, but initially we restrict
our attention to the log-det perturbation. This pertudnatirings in two crucial advantages: i) it makes the
problem strictly convex, thereby permitting us to adapt ecessive projections technique for an efficient
solution, and ii) it enables our algorithm to easily enfopositive-definiteness of because- log det(X) is

a “natural” barrier function for positive definite matrices

Remark: We solve the constrained optimization problem (PT) diseloyl successively enforcing each linear
inequality constraint. The positive-definiteness coistiia implicitly enforced by the log-det term. Interior
Point methods instead the following problem (or equivdletiite dual formulation thereof)

min  Tr(CX) — & logdet(X) — % > log([Tr(AX) — bil4),
i=1

wheree; and~; are varied according to a prescribed schedule. In the lasit, —» oo, these methods are
guaranteed to return a solution lying strictly in the imbef the feasible set. From this formulation it is easy
to see that IP methods can become computationally demawndtieg the number of constraints is very large,
a difficulty that our method is able to circumvent by goingotigh the constraints one by one.

2.1 Analysis
To analyze the relationship between (P) and (PT) consi@cioifowing auxiliary problem:

min  f(X) = —logdet(X)
subject toIr(A; X) < b;, 1<1i<m, (AUX)

Tr(CX) <6, X =0,
whered is the minimum value achieved by (P) (assuming it has a balimi@imum). Problem (AUX)
optimizes the convex perturbatigi{X) over the set of optimal solutions of (P). This relation istatized
by Theorem 2.1 below (adapted from [15]), which applies tbamdy f(X) = — log det(X), but also to other
convex perturbation functions such A&<) = 1||X||2 and f(X) = Tr(Xlog X).

Theorem 2.1. Let S # () be the set of optimal solutions of (P). Further, assume that f is differentiable on
S, strong duality holds for (P), and that (AUX) has a KKT point. Then, thereexistsan X € S andanz > 0,
such that for each ¢ € [0,2] there exist Z" ' oP!, such that (X, z" t,ﬁpt) isa KKT point of (PT), whence X
solves the perturbed problem (PT).

INote that the log-det barrier function forces the solutioti¢ in the interior of the semidefinite cone. However, as viitierior
point methods, this does not cause any practical difficuitiesn dealing with SDPs.



Proof. Let A(v) =Y, 7;A;, and(X, Z, 7, v) be a KKT point of (AUX), whereby,

ViX)+A@) ++vC —-Z =0,

Tr(CX) = 0,
Tr(A;X) < b;, 1<i<m, (2.1)
7;(Tr(AX) —b;) =0, 1<i<m,

Note that the equalitiir(CX) = é@ust hold for a KKT point of (AUX), because any feasible pafitAUX)
is also feasible for (P), and'ifr(CX) < ¢ is not satisfied with strict equality, it would contradicetassump-
tion thatt is the minimum value of (P). Thus € S. B
SinceX is an optimal solution of (P), there is a KKT poifX, Z, v) of (P) satisfying
C+AWw)-2=0
X,Z = 0,v>0.

<i<m 29
<i<m (2.2)

We now combine (2.1) and (2.2) to construct a KKT point of (PTpnsider the following two cases (s
the dual variable corresponding to tlig(CX) < 6 constraint):

Casel: v = 0. For anye > 0, (X,eZ + Z,<¥ + v) is a KKT point of (PT). This is easily verified by
multiplying (2.1) bye and adding the result to (2.2). Formally,

eVIX)+ Al +v)+C— (eZ+ 2) =
Tr(AX) <b;, 1<
(evi +vi) (Tr(AX) —b;) =0, 1<
X,eZ+Z = 0,(cv +v) >0,

are the KKT conditions for (PT). Note that’ = ¢Z + Z ando?* = 7 + v.

Case 2 v > 0. Forany\ € [0,1], (X, Z",v?t) is a KKT point of (PT), withe = X\/y, Z' =
(1=NZ+2Z,andv” = (1-\v + %ﬁ. As for Case 1, this is easily verified by multiplying (2.1) by,
(2.2) byl — A, and adding the two. Note that= 1/~.

Finally, since the objective function of (PT) is strictlyraex and we assume strong duality holds for (P),
strong duality also holds for (PT). Thus, the KKT conditi@rs sufficient foiX to be the minimum of (PT).

O

Theorem 2.1 above shows that a solution of (P) is also a saolafi (PT) for an appropriate. Since the
latter problem has a strictly convex objective, it has a uaiginimum, whereby, solving it automatically
yields a solution to (P). In other words, solving (PT) leadsatsolution of (P) because the perturbation
function allows us to pick anique solution from amongst all the solutions to (P). This statetiseformalized
by the following corollary to Theorem 2.1.

Corollary 2.2. Assume the conditions of Theorem2.1 hold, sothat ¢ € [0, £). Let S # () be the set of optimal
solutions of (P)and X* the solution to (PT). Then,

X* = argmax  det(X),
XeS

i.e., X* isthe maximum-determinarsgplution to (P).



Proof. LetX be any solution of (P). Becau3g is the solution to (PT), by Theorem 2" it is also optimal
for (P). Thus,Tr(CX") = Tr(CX), and sinceX* solves (PT), we further havér(CX") — log det(X*) <
Tr(CX) — log det(X). Therefore—log det(X*) < —log det(X), or equivalentlydet(X*) > det(X). O

Remark: If we used f(X) = 3|/X||? as the perturbation function, we would obtain the minimum

Frobenius-norm solution to the original SDP. See Secti@ri@.details on this alternative.

2.2 Error-bounds

The hypotheses of Theorem 2.1 may not always be satisfiedarticplar, there could be problem instances
for which (AUX) might not possess a KKT point (due to the rigidnstraint that forces the interior of the
feasible set to be empty). Detecting such a situagipniori can be difficult and it is valuable to assess how
different the perturbed problem can be in comparison to tigimal. Furthermore, in practice we do not
know & when solving an SDP, so we hope that ththat we choose will yield a solution that is “close” to the
solution of the unperturbed problem even it £. The theorem below (adapted from [10]) shows that under
fairly mild assumptions, the solution to the perturbed peabis close to the solution of the unperturbed
problem when the unperturbed solution is well-conditiana formalize this as follows:

Theorem 2.3. Let X* € S denote an optimal solution to (P). Suppose there exist 7 > 0 and v > 1 such that
Tr(CX) — Tr(CX*) > 7dist(X,S)” for all X feasiblefor (P), (2.3)
where dist(X, S) = miny. g ||X — X*||¢. Then, for any £ > 0, there exists 7 > 0, such that
dist(X(g),8)7"t < 7e, forall € (0,4,
where X(¢) isthe optimal solution to (PT).
Proof. For anye > 0, let X*(e) = argminy. g [|[X(¢) — X*||f, S0 that
Tr(CX*(g)) — elog det(X*(g)) > Tr(CX(e)) — elog det(X(e)),
sinceX(e) is the optimal solution to (PT). Now, using (2.3) we obtain
Tr(CX(e)) — elog det(X(g)) > Tr(CX*(e)) + 7||X(g) — X*(¢)||g — e log det(X(e)),

which implies
7[[X(g) = X*(g) ||} < e(log det(X(e)) — log det(X*(e))).

Exploiting the concavity ofog det, we have
log det(X(e)) — log det(X"(£)) < ((X*(£)) ™%, X(e) = X*(e)) < (X () " [eIX(e) — X* (&) lIr
which we can combine with the former inequality to finally aibt
TIX(e) = X @IF " < el (X () e

SettingT = w completes the proof. O

From the theorem above, we see that the solutions to therped@and unperturbed problems are close
when||(X*(¢)) ||+ is small (which is true when the eigenvaluesXf(c) are large). We refer the reader
to [10] for more discussion and references related to drooinds such as the one described above.



3 Algorithms

There are many potential methods for optimizing (PT). Havethe use of the log-det perturbation function
lends itself well to Bregman’s method, a general techniquerfinimizing a strictly convex function subject
to linear equality and inequality constraints [6]. This hrat proceeds iteratively by choosing a single con-
straint at each iteration, projecting the current solutiato that constraint, and performing an appropriate
correction. The projection done at each step is not an oothalgprojection, but ratherBregman projection,
which is tailored to the particular convex function to be miized. Under mild assumptions, this method
provably converges to the globally optimal solution. Eaiéwntly, we may view Bregman’s method as a
dual-coordinate ascent procedure, where we choose a singlevariable (corresponding to one constraint),
fix all other dual variables, and maximize the dual with respe the chosen dual variable.

Below, we sketch out the computation involved in projectthg current solution onto a single affine
equality or inequality constraint. As we will see, for loank constraint matrices;, the Bregman projection
for h(X) = Tr(CX) —elog det(X) can be performed i®(n?) time as a simple low-rank update to the current
solution.

We further discuss the Frobenius perturbation in Secti@ ®heref(X) = |X||Z, and we briefly
describe methods for optimizing SDPs with the Frobeniutupleation.

3.1 Projection onto a Single Constraint

The gradient ofs with respect toX is given byVh(X) = C — eX~1. Bregman's method chooses a single
constraint at every iteration, and projects the current ma¥jonto that constraint via a Bregman projection
to form X;. For equality constraints, the Bregman projection is pangx by solving the following system
of nonlinear equations far andX;.; (this is derived by differentiating the Lagrangian withpest toX and
the dual variables):

Vh(Xir1) = VA(X) + aA;
Tr(Xi41A:) = bi. (3.1)

Simplifying the top equation yield¥,,.; = (X;* — %Ai)*l. WhenA,; is of low-rank, then the Sherman-
Morrison-Woodbury inverse formula may be applied to thidate. For example, i; = z;z, then the top
equation simplifies to

%thiZiTxt

Xig1 =X + 02—,
t+1 t+ 1= %ZiTthi

(3.2)

Given thatTr(X;412;2]) = 27X, 112; = b;, we can solve for the projection parametein closed form as:

e(b; — 2z Xy 2;)
o= ————"">Tt"_""
b; - 2IXz;

We then use this choice of to updateX;,;. After solving for«, we updateX.,; via (3.2); note that this
update is a rank-one update, and can be performél{irt) time.

If instead the constraint is an inequality constraint, taerorrection must be enforced to make sure that
the corresponding dual variable remains non-negative A\Lebrrespond to the dual variable for constraint
i. After solving fora as in the equality case, we s€t= min()\;,a) and\; = \; — o/. Finally, we update
to X,y using (3.2) witha’ in place ofa. Note that the dual variables; and the starting matriX, are
initialized so thatvVh(Xo) = — ), A\iAi, Xo > 0, and); > 0 for all inequality constraints.

This general approach is summarized as Algorithm 1, whicivexges to the globally optimal solution
to (PT). For further details on the convergence of Bregmprdgection method, see [6]. In practice, when
choosing a constraint at each iteration, we choose the redmisthat is the most violated. For low-rank
constraints, determining the most violated constraint usumlly be performed efficiently; for example, if



Algorithm 1 Semidefinite programming with Bregman’s method
Input: {A;, b; }i%: input constraintsC: input matrix,e: tradeoff parameter
Output: X: output PSD matrix

1. Initialize X and; such thatX = 0, \; > 0 for inequality constraints, and = £(C + >_, \iA;) ™.
2. repeat

2.1. Pick a constraint (e.g., the most violated constrdig) b; ).

2.2. Solve (3.1) fore. {Can be done in closed form for rank-1 to rank-4 constraints

2.3. If constraint is an inequality constrainty < min(\;, @), A; — \; — a.

24X — (X — 24;)7"
3. until convergence

each constraint can be evaluated in constant time, then disé violated constraint can be found@h(m)
time, which is generally much less than the cost of a singhgeption.

Note that when the constraint matricas are high-rank (greater than 4), it is not possible to solve fo
« in closed-form; this is because the equation for solvingdowith rank+ constraint matrices involves
finding the roots of a polynomial of degrde In such higher-rank cases, we can perfapproximate
Bregman projections using the secant method to calculate an approximdg®. UpdatingX also becomes
commensurately more expensive for higher-rank consgaint

3.2 Frobeniusnorm perturbation

So far we have mainly focused our attention on the log-detigestion for SDPs. In this section, we briefly
digress to look at two simple approaches for handling thé&mius norm perturbation, i.ef(X) = £[/X||2.
Bregman projections alone are not applicable for the Frinisgperturbation; they cannot be applied to the
semi-definiteness constraint due to its non-polyhedralreatWith log-det, the domain of the perturbation
function is the set of positive-definite matrices, and satpesdefiniteness is automatically enforced. For the
Frobenius perturbation, we must find a way to explicitly niaiim positive definiteness.

To tackle this new difficulty imposed by the semidefinitenessstraint we propose two methods below.
The first approach invokes Dykstra’s method [8], while theosel one calls upon the gradient ascent scheme
of [3]. Both these approaches are based upon replacing itiearSDP by its perturbed version, which is
then interpreted aslaast-sguares SDP. To the best of our knowledge, both these approaches/itng&DPs
are new.

3.21 Least-squares SDP
With f(X) = 3||X||2, Problem (P) becomes
min  Tr(CX) + e1(|X|3,

subject toTr(A;X) <b;, 1<i<m
X =0,

which may be rewritten as the least-squares SDP problem

min  1|X + 1|2
subject toTr(A;X) <b;, 1<i<m (PT2)
X > 0.



3.2.2 Solving (PT2)via Dykstra's Method

Dykstra’s method is similar to Bregman’'s method, except ithia able to handle arbitrary convex constraint
sets, though at the same time being restricted to only qtiadrjective functions. Intuitively, Dykstra’s
method cycles through the constraints like Bregman'’s ntetAbeach step, it first deflects the current iterate
by a small amount before projecting onto the associatedtints After the projection, it accumulates the
difference between the projected and un-projected vasahto the deflection term, which is then used again
the next time around when projecting onto the same constiajnmaintaining these extra history variables
(analogous to the dual variables maintained by Bregmantbodg, Dykstra’s method ensures convergence
to the optimum, rather than just to a point in the intersectibthe convex constraints.

For the perturbed problem (PT2), the resulting adaptati@ysktra’s method is provided by Algorithm 2
below. For mathematical details pertinent to Dykstra'&thm, the reader is referred to [7].

Algorithm 2 Semidefinite programming with Dykstra’s method

Input: {As, b; }i2: input constraintsC: input matrix,e: tradeoff parameter
Output: X: output PSD matrix

1. Initialize Xog = —e " 'C, Ay =0fori=1,...,m+ 1.
2.repeat
2.1. Fori = 1tom + 1 (each constraint):
Xnew — Pi (Xold + /\z)
Ai — Xold — Xnew + A\;
{P;(X) denotes orthogonal projection ¥fonto:-th constrain}

3. until convergence

Note that in Algorithm 2 we have (arbitrarily) numbered teews-definiteness constraint to be (he+1)-
th constraint. The orthogonal projections should natuitzdl implemented to exploit the sparsity of the input
problem. Thehistory matrices\; should also not be stored explicitly to avoid excess storage

3.23 Solving (PT2)via Projected Gradients

Boyd and Xiao [3] remarked in their paper that their methadHe least-squares SDP could also be solved via
a standard SDP package, though this approach is ineffidikanre we are suggesting the opposite, i.e., using
our Frobenius norm perturbation, several SDPs (in patictiiose with negative-definite cost matric@s
can be solved by converting them into least-squares SDRepnstthat can be easily tackled by the projected
gradient approach of [3].

After some simple algebra, it can be shown that the dual oR)sIgiven by

. 1 _ 1
min $(Zp) = |2 'C- AW+ 55 ICIE - pTb
subjectto Z>0, wu>0,

(3.3)

whereA(u) = >, piA;. The dual problem (3.3) can be solved by the following sinpptgected (sub)gradient
method (illustrated as Algorithm 3). See [3] for more detail

If Problem (PT2) is strictly feasible, then for small enowgkp-sizey, Algorithm 3 is guaranteed to
converge, i.e.X andu converge to their optimal values. As usual, too small a value can lead to slow-
convergence, whereby depending upon the problem one mlest #eappropriately. Further note that in
practice, several implementation details need to be hdrfdlemaking Algorithm 3 efficient. A discussion
of such issues may also be found in [3].



Algorithm 3 Semidefinite programming using Projected Gradients
Input: {A;, b; }i%: input constraintsC: input matrix,y: step size parameter
Output: X: output PSD matrix

1. Initialize Xg = —e~'C, u = 0.

2. repeat
LetX = (Xo — A(p)) + {Projection onto semidefinite cohe
Projected gradient update for

2.1. Evaluaté%/)/(‘),ui = TI‘(AZX) — bl
2.2. Letu; = (pi + (99 /0p1)) ,
3. until convergence

3.3 Examples

We briefly highlight a few SDPs from machine learning thatwed-suited to our algorithmic framework, as
they feature low-rank constraint matrices.

Nonlinear Embedding: Semidefinite embedding [24] (also called maximum variandelding) is a non-
linear dimensionality reduction problem which aims to finiba-dimensional embedding of the input data
such that the variance in the data is maximized while theadégis among a set of nearest neighlis
maintained, and a centering constraint is enforced. Tta# ttmber of constraints isk, wheren is the
number of data points aridis the number of nearest neighbors, and all constraintaaleone. Given a set

S of neighbor pairs, each with a target distaifie, the semidefinite embedding problem can be formalized
as:

m)z(ix TT(X)
subjectto X;; + X;; — 2X;; = Dyj, (i,7) €
eTXe =0
X = 0.

A related problem is the robust Euclidean embedding prolpfgnwhich seeks to find the closest (squared)
Euclidean distance matri® to some given input dissimilarity matri®, under the elementwisg loss:

||ID — Dy||1. Appropriate manipulation of this objective transformmib an SDP with rank-two constraint
matrices.

Graph Cuts: Several graph cut problems can be relaxed as SDPs. For exatmpiminimum balanced cut
problem [13] has been successfully used when finding batbriosters of skewed-degree distribution graphs
(such as power-law graphs). A relaxation to the minimumrbzed cut problem may be posed as an SDP
with |V| + 1 rank-one constraints, witfV'| the number of vertices in the graph. Given a graph Laplakcjan
the min balanced cut problem can be expressed as:

II%}II Tr(LX)
subjectto diagX) = e
efXe=0

X > 0.

Metric Learning: Various metric learning algorithms have been posed as SDRsarticular, the method
of large-margin nearest neighbors (LMNN) [23] guarantéwd tistances between nearest neighbors in the
same class is much smaller than distances between poiniféeiredt classes. The resulting SDP has rank-3
constraints. The method of [23] attempts to find a Mahalandlsitance matriX such that two neighboring



Table 1: Accuracy Results on Min Balanced Cut

Trace Value Max. Violation
Data Set SEbuMI [ SDPLogDet SEbumi | SDPLogDet
Iris 1.020 x 10% | 1.021 x 10% [[ 9.252 x 10~ 1T [ 9.633 x 10~ *
Wine 5.657 x 103 | 5.672 x 10% [[ 8.290 x 10~10 | 9.995 x 10~*
lonosphere|| 6.755 x 10% | 6.766 x 10% || 9.912 x 10~% | 9.912 x 10~*
Soybean || 1.239 x 10° | 1.239 x 10° || 2.978 x 10~ 1T [ 9.937 x 10~*
Diabetes || 1.704 x 10% | 1.711 x 10% || 3.785 x 10~ 1T | 9.454 x 10~

points in the same class have distances much smaller thapdimts in different classes. Let; = 1 if
points: and; are neighbors (and 0 otherwisg); = 1 if the labels of points andj match (and O otherwise),
& correspond to slack variables for the constraints, @nd= ), nij(z; — ;)(z; — z;)T. Then the
corresponding SDP to be solved is formalized as:

ringn Tr(CoA) + v Xl: i (1 — y51)&it
ij
subject tada(xi, ;) — da(zs, ;) > 1 — &iji,

&t >0, A=
Collaborative Filtering: The maximum margin matrix factorization SDP for collabomfiltering [19] has

simple, low-rank constraints. Other first-order methodgshaeen proposed; however, these methods work
on a slightly different (non-convex) optimization problewhich may lead to poor local optima.

(3.4)

4 Experiments

We now present initial results comparing our proposed sefimiie programming algorithm (SDPLogDet)
to existing SDP software. We considered several SDPs wkiderenenting with our software: semidefinite
embedding, LMNN, min balanced cut, and robust Euclideanestding. These SDPs all have constraints that
are rank-one, rank-two, or rank-three, making them appatpfor our method. We compare with DSDP [2]
and Spumi [17], both standard off-the-shelf SDP solvers, as well a;Wérger et al.’s [23] implementation
of LMNN (obtained from the authors)—a special-purpose stdglignt algorithm that outperforms standard
solvers on the LMNN problem—and the sub-gradient algoritbnrébust Euclidean embedding described
in [5]. All software uses the MATLAB interface, with code wtgn in C and MATLAB. It is difficult to
compare various software packages for SDPs, especialndhe number of tunable parameters, so in all
experiments, we used the default parameters w841 and DSDP. We tested the above algorithms and
problems on standard UCI data Setss well as on synthetic data sets. In all experiments, we set0~!;

we observed empirically that smallerled to slower convergence, and that with= 10—, the solutions
obtained by our algorithm were very close to the globallyirapt solutions. Furthermore, we demonstrate
that our algorithm performs well when the SDP is ultimateded for a machine learning task; in particular,
we see that classification results for metric learning usiregoutput of our algorithm are as good as those
obtained using existing methods.

4.1 Accuracy and Scalability of the Proposed Method

We first determine the accuracy and scalability of the predasethods on some simple SDPs: min balanced
cut and semidefinite embedding. In order to judge the acgurdour method, Table 1 lists results for
min balanced cut on some of the UCI data sets tested. The gfaptthis SDP were constructed using

2pvailable at http://www.ics.uci.edtimlearn/MLRepository.html.
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the Gram matrix of the data points (and scaled so that edgghtgaivere between 0 and 1). We see that the
accuracy of our method in terms of the final objective funttialue is very close to the accuracy EBumi;
further improvements may be gained by setting be smaller or running more iterations of our algorithm.
Our maximum violation is higher since we set our convergesriderion to stop when the max violation
was smaller than0—3. As expected, we exhibited slower convergence (total timken to converge) than
SeEDuMI for this SDP (our method is a first-order algorithm).

Table 2: UCI| Data Sets

| Name [ No. of points | No. of dims |
Iris 150 4
Wine 178 13
lonosphere 351 34
Soybean 683 35
Diabetes 768 8

Table 3: Memory overhead (in megabytes) for performing seéefinite embedding. A ‘— indicates that the
method could not run due to memory requirements.

[ n [ Sepumi | DSDP | SDPLogDet|

100 13 3 1

500 222 67 5

1000 881 263 35
1500 1930 586 52
2000 — 1033 92
2500 — 1608 144
3000 — 2170 207
3500 — — 253

The key advantage to using our method on these SDPs is imbdiglto very large data sets. In an
additional experiment, we found that for the splice datawhich is a UCI dataset with 3190 data points,
SEDUMI could not run on our machine due to its excessive memory copsan (over 2GB). On the other
hand, the SDPLogDet algorithm requires approximately 8GbtBhis data, and ran successfully.

The scalability of the algorithms is even more drastic forPSOwith a greater number of constraints.
While the minimum balanced cut SDP hagonstraints, the semidefinite embedding problemstiason-
straints, wheré: is the number of nearest neighbors. In Table 3, we show thémmogix memory overhead
needed for performing semi-definite embedding on synttedia. The value: refers to the number of
rows/columns of the semi-definite matrix; in these expenitag: = 5. SEDUMI requires the most memory,
and was unsuccessful in running on problems wheveas greater than 1500. DSDP scalesite= 3000,
whereas LogDet requires no memory overhead beyond thegstofahe semi-definite matrix and the con-
straints. Thus it is feasible to scale the proposed methwedrplarge SDPs.

Table 4 lists preliminary results for the min-balanced csitaghieved using an implementation of our
Dykstra based SDP algorithm (with Frobenius norm pertimbat The initial results are promising, though
it still remains a challenge to decide when to terminate thikesira iterations.

4.2 Comparison to Sub-Gradient M ethods

We compared our solver to specialized software for the LMNbdbjem, which employs sub-gradient meth-
ods. Table 5 compares Weinberger et al.'s implementatidrvdfiN with our proposed algorithm. Here we

are considering the use of SDPs as one of the steps in an lovexehine learning problem (in this case,
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Table 4: Min-balanced cut with Dykstra based SDP solver. atk@ eigenvalues violation (REV) =
225 1A (X)]/22; [2i(X)| measures the departure from positive-definiteness.

Dataset Ob;. Maxviol. REV Time (s)
Iris 1.022e4 4.53e-7 021 23
Wine 5.645e3 6.04e-12 .026 5.3
Soybean 1.236e5 3.37e-9 .065 343
lonosphere 6.755e3 2.21e-9 .092 66
Balance 1.332e5 1.47e-5 025 47.9
Autos 3.408e3 4.27e-7 054 7.1
Audiology 9.705e3 1.32e-9 .033 144
Breast-cancer 2.508e4 3.17e-10 .029 19.3
Colic 2.284e4 3.30e-10 .037 249
Dermatology | 2.623e4 1.09e-10 .030 29.1

Table 5: Comparisons of Large-Margin Nearest Neighborst Eeror and Running Times.EBUMI cannot
be used for this SDP due to the large number of constraints.n@thod gives comparable test error and
superior running times.

Test Error Running Time (secs)
Data Set Euclidean| Weinberger et al| SDPLogDet|| Weinberger et al] SDPLogDet
Iris .031 .024 .021 1.24 119
Wine .306 .038 .036 8.77 323
lonosphere .164 123 119 9.74 10.54
Soybean 122 .082 .079 21.95 13.25
Diabetes 311 .296 .298 47.50 16.08

metric learning). The running times are in seconds and sepitethe average time for the optimization to
complete, and we provide the baseline Euclidean test dreoy test error with no metric learning) for com-
parison. Overall, we see that, on all data sets, our test e¥solts are comparable to Weinberger et al., and
that on four of the five data sets, the running time is faster.

As we are ultimately interested in test error for this leagnproblem, in Figure 1, we plot the test error
after each projection on the wine data set. For this figureatgorithm was run on wine until the maximum
violation was10~'2. Interestingly, the test error is lowest after approxirhafel0 projections, suggesting
that solving this problem to optimality will not always le#ol the lowest test error. It therefore may be
sufficient to terminate early, thus highlighting anothevatdage to using first-order methods for machine
learning problems.

On many SDPs, the large number of constraints make it infk=gd run standard off-the-shelf software
such as 8bumi or DSDP. For example, on the robust Euclidean embeddindemgtsEpumi did not scale
to data sets larger than 100 points, which is consistenttivétobservations in [5].

5 Conclusions and Future Work

In this paper we presented a perturbation based approadivings SDPs, where we replaced the original
linear objective function by a strictly convex objectivafition. We developed a scalable first-order algorithm
based on Bregman projections for solving the perturbedlenotihat obtains the maximum determinant
solution to the original unperturbed problem. Our experitakresults are encouraging and they show that
despite its simplicity, our method achieves solutions cetitige to other SDP methods. Furthermore, due
to its modest memory requirements our method is highly btalaas compared to several standard SDP
packages.
Two further directions of future work are open. First is thatgmtial of further improvements to our
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Figure 1: Test error as a function of the number of projection the wine data set
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algorithm by either using some second-order informatidmyaa combination with methods such as conjugate
gradients. The second is the exploitation of low-rank optétion techniques, particularly for SDPs where
the optimal solution can be of much smaller rank than the lproldimensionality.
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