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Abstract

The major application of active noise control (ANC) has been focused on using asingle
reference signal; the work on multiple reference ANC is very scarce. Here, the behavior of
multiple reference ANC is analyzed in both the frequency and time domain, and the coherence
functions are provided to evaluate the effectiveness of multiple reference ANC.

When there are multiple noise sources, multiple reference sensors are needed to generate
complete reference signals. A simplified method combines those signals from multiple reference
sensorsinto asingle reference signal. Although this method could result in satisfactory noise
control effects under special circumstances, the performance is generally compromised. A
widely adopted method feeds each reference signal into a different control filter. This approach
suffers from the problem of ill-conditioning when the reference signals are correlated. The
problem of ill-conditioning resultsin slow convergence rate and high sensitivity to measurement
error especially when the FXLMS algorithm is applied. To handle this particular problem, the
decorrelated Filtered-X LMS (DFXLMS) algorithm is developed and studied in this thesis.

Both simulations and experiments have been conducted to verify the DEXLMS agorithm
and other issues associated with multiple reference ANC. The results presented herein are
consistent with the theoretical analysis, and favorably indicate that the DFXLMS algorithm is
effective in improving the convergence speed.

To take the maximum advantage of the TM S320C30 DSP board used to implement the
controller, several DSP programming issues are discussed, and assembly routines are given in
the appendix. Furthermore, a graphical user interface (GUI) running under Microsoft® Windows
environment is introduced. The main purpose of the GUI is to facilitate parameters modification,
real time data monitoring and DSP process control.
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Chapter 1 Introduction

Over the last two decades, much research has been conducted in the area of active noise
control (ANC). The advantage of ANC liesin its effectiveness for reduction of low frequency
noise. Thisis anideal complement to the conventional passive noise control approach, which
generally works efficiently at higher frequencies.

The basic philosophy of ANC has long been established, it can be dated back to 1936,
when Paul Leug patented his ANC system in ducts [1]. The principle of ANC isthe
superposition of the two acoustical waves from the primary and secondary sources. When the
two waves are out of phase and of the same amplitude, the superposition results in complete
cancellation of the two waves and therefore generates a silent zone. Although the principle of
ANC is straightforward, the real time implementation requires a fast, precise, and affordable
controller, which is almost impossible to achieve with analogue devices. The recent advent of
digital signal processing (DSP) technology has greatly propelled the development of various
ANC systems.

There are two main approaches for ANC: feedback and feedforward. Olson and May first
developed afeedback ANC system [2], the block diagram of which isillustrated in Fig.1.1a. The
system uses an error sensor to detect the primary noise, and the detected noise is fed back to the
controller to drive the secondary source located close to the error sensor. When the controller is
optimally designed, a quiet zone can be created in the vicinity of the error sensor. The feedback
approach has limited band width and possible instability caused by phase shift of the open-loop
transfer function. The conventional feedback approach is non-adaptive, therefore careful design
of the controller is needed to ensure the desired performance. An alternative feedback approach
using an adaptive strategy has been proposed [3]. This approach differs from that of the
feedforward in that it synthesizes a reference signal based on the filter output and the error
signal.

Adaptive filters are advantageous over non-adaptive filtersin that they can automatically
search out optimum solutions, and keep track of the solutions when the environment changes. As
aresult, no elaborate efforts are required to design the filter coefficientsin contrast to non-
adaptive filters. Thus, feedforward ANC systems are always based upon adaptive filters. The
block diagram of an ANC system using feedforward approach isillustrated in Fig. 1.1b. The
system obtains areference signal, and feeds it forward to the adaptive filter to control the
secondary source. The reference signal must be coherent to the noise source in order to obtain
desired noise reduction, this requirement should be contrasted to the feedback approach, in
which no explicit reference signal is needed. A division should be drawn between the single
frequency control and broadband control as they exhibit distinct characteristics. For the single
frequency noise control, the future signal at the error sensor can be perfectly predicted through
the adaptive filter, therefore no causality problem isinvolved in the design of the ANC system.
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Figure 1.1 Two distinct control approachesfor ANC, (a) feedback, (b) feedforward.



In contrast, the broadband noise control is restricted by causality. The reference signal must be
obtained before the primary noise reaches the error sensor, this ensures enough time for the filter
to generate the control signal and for the secondary acoustical wave to propagate to the error
sensor. Although the adaptive filter is able to predict the future signal to a limited extent
depending upon the disturbance spectrum, the penalty for non-causal system is dramatic
deterioration of the performance.

The adaptive filter in afeedforward ANC system can be implemented with either IIR or
FIR filters. The advantage of an IIR filter is due to its poles, which make it easier to match
resonance, sharp cutoff, et al. However, an IIR filter is not always stable; when any one of its
poles moves outside of the unit circle during the adaptive process, the IR filter becomes
unstable. In addition, small changes in the denominator coefficients may lead to large changein
the frequency response if the poles are close to the unit circle, and the adaptation may converge
to aloca minimum since the performance surface of an IR filter is generally non-quadratic.
Thus, IR filters have only limited applications. In some ANC systems, the feedback from the
secondary source to the reference sensor is significant. To remove the feedback, the filtered-U
algorithm with an IR filter is proposed by Eriksson [4]. In the applications of the active structure
acoustical control, to efficiently model the resonance characteristics of the structure, an IR filter
is also proposed to identify the error path [5]. However, ANC systems are mostly implemented
with FIR filters, because, in contrast to IR filters, FIR filters are always stable and their
performance surfaces are always quadratic.

There are various adaptive algorithms for FIR filters. The selection among different
algorithms is generally based on three factors [6]: computational complexity, performance and
robustness. The computational complexity refers to the number of additions and multiplications,
and the amount of storage required to implement the algorithm. A more complicated algorithm
generaly requires afaster DSP with larger memory areato carry out the real time computations,
thereby increasing the cost of the ANC system. The performance is largely defined by: (1)
convergence speed: the number of iterations required for the filter weights to converge, (2)
misadjustment: the percentage deviation of the asymptotic mean square error to the optimum, (3)
non-stationary tracking: the ability to track the optimum filter weights under a non-stationary
environment. The three performance parameters are not independent, therefore it isimpossible to
satisfy critical requirements simultaneously. Which parameter should be given the highest
priority depends on the specific application of an ANC system. Finally, the robustness refers to
the performance variation due to measurement errors, finite precision calculations, et a. In
genera, an ideal algorithm delivering perfect results based on all three factorsis not available,
and atrade-off is inevitable when selecting an agorithm.

The ANC applications which have been successfully put into practice range from simple
one dimensional acoustical field, e.g. air duct, to complicated three dimensional acoustical fields,
e.g. aircraft cabin. The active control of complicated field requires that the secondary field be
generated by a complex array of actuators so that the disturbance field can be matched [7]. In
addition, minimizing the signal at a single error sensor may lead to increased noise level at other
locations due to the variant spatial distribution of the noise field. In other words, the total



acoustical potential energy may increase even when the noise at the error sensor is reduced [§].
In order to achieve global noise contral, it is necessary to use a number of secondary sources to
minimize the mean sgquare signals from a number of error sensors, which givesrise to amultiple
input multiple output ANC system. A multiple error LM S algorithm is presented by Elliott et. al.
for the active control of noise at a single frequency [9]. Later on, Elliott et. al. derived a steepest
descent algorithm to minimize a cost function comprised of a combination of the sum of mean-
sguare signals from a number of error sensors and the sum of the mean-square signals fed to the
secondary sources [10]. Many others aso contributed to the multiple channel ANC algorithms
and associated issue [11][12].

It is noted that many noise fields are due to multiple uncorrelated or partially correlated
disturbances. A typical example isthe noise field inside a passenger vehicle where noise
contributions are from tire-road interaction, engine firing, circulation fan, air stream and other
factors. In addition, since the noise inside an vehicle has broadband nature, a feedforward
approach is generally required. To gain maximum reduction of the noise field, it is necessary to
obtain maximum coherence between the reference signal and the error signal. Thisimplies the
use of multiple reference sensors and associated signals. Therefore, in a complicated spatial
noise field where there are several noise sources, a control strategy with multiple reference
sensors, multiple secondary sources and multiple error sensors is needed to achieve desirable
noise reduction [13]. Mikhael et. a discussed the noise coupling in a multiple source
environment and studied optimal filter structures for multiple reference ANC [14]. Wallace et. al.
proposed parallel adaptive filter structures for the multiple reference ANC inside a vehicle [15].
An average noise reduction of 16dB is reported. In principle, the number of reference sensors
needed to achieve maximum coherence should be more than the number of noise sources.
Traditional coherence techniques may be applied for noise source identification [16]. The
effectiveness of coherence techniques depends not only upon the source coherence, but on the
extent of measurement contamination [17]. Another criterion for the selection of reference
sensors to detect noise sources has been proposed based on maximum potential control and the
relative convergence rate [18]. A method to increase the convergence speed by using
uncorrelators for the ANC in a multiple noise source environment has been presented by Masato
et. a.[19]. In some other ANC systems, although there is only one major disturbance noise
source, the systems exhibit strong non-linear phenomenon. In principle, a non-linear component
can be treated as an independent noise source, and non-linearity is often a distributed
phenomenon in ANC systems. Thus, these systems are equivalent to multiple noise source
systems and are better treated using multiple reference sensors.

It is interesting to note that using multiple reference signals could potentially improve the
causality of an ANC system as shown in Fig. 1.2. The ANC system shown in Fig. 1.2(a) is
comprised of two noise sources. Using only the reference sensor 1 leads to the problem of a non-
causal system, because the noise source 2 reaches the error sensor before it reaches the reference
sensor 1. A similar problem arises using only the reference sensor 2. However, by using two
reference sensors, shown in Fig. 1.2b, with one close to noise source 1, the other close to noise
source 2, we can get complete coherent reference signals in advance, thus making the system
causal. One might consider forming a single reference signal by summing signals from al the



reference sensors. However, this approach suffers from poor system performance, since
essentially it is trying to model a multiple input multiple output system through a single input
single output system.

Active Structure Acoustical Control(ASAC) [20] isaviable dternative to the
conventional ANC. The ASAC principle is based on changing the radiation characteristics of a
structure, i.e. the structure is driven by the controller to vibrate in inefficient acoustical radiation
modes (non-volumetric mode) by applying active forces [21]. Since ASAC controls only
efficient acoustical radiation modes (volumetric modes), the resultant advantage is reduced
control efforts, and therefore fewer control actuators. This thesisillustrates the use of a multiple
reference DFXLMS algorithm on an ASAC experiment.

Thisthesisis organized as follows: the next chapter (chapter 2) discusses a single channel
feedforward active noise control system in both the frequency and time domain, and compares a
few adaptive algorithms mainly in terms of computational complexity. Chapter 3 discusses the
problems associated with multiple reference ANC; first with a single channel system, followed
by a multiple channel system. Chapter 4 discusses the real time implementation of the DFXLMS
algorithm; considerations are given to both DSP and host PC. Chapter 5 is dedicated to
simulation and experimental results based on a vibrating plate. Finally, chapter 6 gives some
conclusions and recommendations.
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2 Single Reference Single Channel ANC

This chapter discusses the principle of a single channel feedforward active noise control
(ANC) system. First, the frequency response of an unconstrained optimum controller is derived,
followed by the performance analysis of the corresponding ANC system in terms of relative
noise reduction. The resultant frequency domain optimum controller is not necessarily realizable
in physical system. In genera, the controller in an ANC system is implemented with a causal
FIR filter [22]. A FIR filter issaid to be causal if the filter coefficients { h(n)} are zero whennis
less than zero. Next, presented is a more practical approach in the time domain with a FIR filter
asthe basis of the controller, the corresponding optimum filter has a finite length and causal
nature, thus, it is physically realizable. Finally, severa adaptive algorithms are introduced and
their performances are compared in terms of computational complexity and convergence rate.

2.1 Frequency Domain Analysis of Optimum Controller

Figure 2.1 illustrates a single channel ANC system. The signal from the error sensor e(w)
is comprised of the contributions from both the primary noise source d(w) and the secondary
control source y(w).

e(w) =d(w)+y(w) (2.1.D
where d(w) and y(w) are given by

d(w) = x(w)P(w) (2.1.2)

y(w) =W(W)x(W)T (w) (2.1.3

where P(w), called the primary path, represents the transfer function from the noise source to the
error sensor; and T(w), called the error path, represents the transfer function from the secondary
source to the error sensor. Substituting equation (2.1.3) into equation (2.1.1) yields

e(w) =d(w) + W(w)x(w)T(w) (2.1.4)
The optimum controller is designed such that the mean square error at every frequency is
minimized. Thus, the cost function is constructed as

x(W) =S, (w) = E[e* (w)e(w)] (2.1.5)
where the asterisk * denotes the complex conjugate. Substituting equation (2.1.4) into equation
(2.1.5) yields

X(W) = E[(d * (w)d () + d * (W)W (W)x(w)T (W) +W * (W)x * (w)T * (w)d ()
+W * (w)x * (W)T * (W)W(W)X(W)T(W)] (2.1.6)
The weight vector W is a complex variable, and the complex gradient vector is defined as
K = Tx(w) _ fix(w) | J. fix(w)
Wlw)  TWe(w) W, (w)
Thus, the derivative of the cost function with respect to the transfer function W(w) can be
expressed as

(2.1.7)
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W) = 2E[d(w)x *(W)T * (w) + W(w)x* (w)T * (w)x(W)T(w)] (2.1.8
Setting equation (2.1.8) to zero, we obtain the optimum transfer function of the controller as
W, (w) = - LX) * (w)] 2.19)

E[x* (W) T * (W)x(w)T(w)]
Substituting equation (2.1.2) into equation (2.1.9), we can further smplify the optimum transfer

function as
P(w)

W, =-—_— 2.1.10
oot (W) Tw) ( )

Multiplying both sides of equation (2.1.10) by T(w) yields
Wopt (W)T (W) =- P(W) (2111)

The above equation is intuitively appealing, asit indicates that the whole transfer function, i.e.
the multiplication of optimum controller transfer Wox(w) and error path transfer function T(w),
isexactly out of phase with and has the same amplitude as the primary transfer function P(w). In
other words, the optimum controller transforms the reference signal into another signal which, at
the error sensor, destructively interferes with the signal from the primary path.

On the other hand, the optimum transfer function can be obtained in terms of signal

gpectrums. The filtered reference signa is defined as

X(w) = x(w)T (w) (2.1.12)
Substituting equation (2.1.12) into equation (2.1.9) resultsin
E[d(w)R* (w)]
E[%* (w)’(w)]
- Sz (W)

Sy (W)

The above equation indicates the frequency response of the optimum controller is determined by
the auto-spectrum of the filtered reference signal S,,(w) and the cross- spectrum between the

filtered reference signal and the primary signal S, (w). It should be noted, athough the above

equation does not explicitly contain the system transfer functions, i.e. P(w) and T(w), the
characteristics of the primary and secondary paths still determine the controller. In fact, the
influence of the system characteristics is embodied in the auto-spectrum S, (w) and the cross-
spectrum S, (w).
When the controller is optimized using equation (2.1.13), the error signal reaches the
minimum. The error signal, obtained in equation (2.1.6), can be rewritten as
See(W) = S (W) + Sy (W)W (W) + Sy (W)W * (W) +W * (W)W (W)S, (W) (21.14)
Substituting equation (2.1.13) into equation (2.1.14) resultsin
Ssa(W) Sg (W) Sy (W) Syq(w)
= + - -
See (W) = Sgq (W) + S (W) S, (W) Ssa (W) S, (W) S, (W) S, (W) Sg(w) (21.19)
Dividing equation (2.1.15) by S, (w), the relative noise reduction is obtained as

W, (w) =-

(2.1.13)




See (W) -1- Sz (W) S (W)
Sga (W) Sex(W)Syq (W)
=1- g, (W) (2.1.16)
where g,, (W) isthe ordinary coherence function between the filtered reference signal X(w) and
the desired signal d(w). It can be shown that equation (2.1.16) still holds when there are

measurement noise and unidentified noise sources. Equation (2.1.16) indicates that the relative
noise reduction is upper bounded by g,,(w) . It should be noted that g,,(w) isafunction of

frequency w, and an ANC system is typically focused on a certain frequency range. It is therefore
not necessary to obtain a coherent reference signal throughout the entire frequency range. In fact,
It is only essential to obtain a coherent reference signal at the particular frequency range where
we are interested in achieving significant noise reduction.

The ordinary coherence function is unity if the signal d(w) is completely coherent with
the reference signal x(w), which means that d(w) can be regarded as the output signal from a
linear system with x(w) as the input signal. In this case, perfect noise cancellation can be
achieved with the optimum controller defined by equation (2.1.13). However, the optimum
controller defined in frequency domain may not be physically realizable, since the inverse
Fourier transform of the frequency response function, i.e. the impulse response function, could
be non-causal. For a causal filter, only the present and past input data are needed to generate the
control output signal. This requirement is crucial for the broadband active noise control since no
future reference signal is available at the time of processing to generate the control output signal.

2.2 Optimum FIR Filter

As discussed in the chapter 1, the controller in an active noise control system istypically
implemented with a causal FIR filter. A typical structure of a causal FIR filter is shown in Figure
2.2, in which the filter length is M. The weight vector of the FIR filter can be represented by

w = [w0 W, W, ... wM_l]T (2.2.1)
The input vector at time step k can be written as
x(k) = [x(k) X(k-1) x(k-2) ... x(k-M +1)]T (2.2.2)

Thefilter output signal at time step k is the convolution of the input vector with the weight
vector, i.e.,

u(k) = x" (k)w = w'x(k) (2.2.3)
The error signal at time step k as shown in Figure 2.3 is composed of the primary source signal
and the secondary source signal, which can be expressed as

e(k) = d(k) + y(k)
=d(k)+u(k)T(z) (2.2.4)
where T(z) isthe Z transform of the error path. The Z transform can be considered as a delayed
operator, when ainput signal x(k) passes through Z*, the delayed signal x(k-1) is obtained. Here,
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no assumption is made about the structure of T(z), it could be in the form of either IIR or FIR
filters. Substituting equation (2.2.3) into equation (2.2.4) yields

e(k) = d(k) +x" (K)WT(z) (2.2.5)
Defining the filtered reference signal as
X(k) = x(k)T(2) (2.2.6)
the derivative of the error signal with respect to the weight vector w is obtained
fleCk) = X(k) (2.2.7)
w

Assuming that e(k), d(k), x(k) are statistically stationary and defining the cost function to be the
mean square of the error signdl, i.e.,

x = E[e? (k)] (2.2.8)
the gradient of the cost function with respect to weight vector is given by
x _ €, Tek)u
w28 w b
= 2E[d (k)% (K)] + E[R(K)X" (K)]w(k) (2.2.9)
To obtain the minimum mean-square error, the gradient set to zero, i.e.
qmmxmﬂ+mehmnimﬂ:o (2.2.10)
The above equation can be expressed more conveniently, if defining the square matrix R as
R = E[%(K)X" (K)]

N

¢ %K) RERK-1) .. RKRK- M+1) O

_g (k- D) Rk-DRK-1) . (k- DRK- MDY (2.211)
é : : : : u
(k- M+DR(K) R(k- M+DR(K-1) ...  2(k- M+D

and the vector P as
P = E[d(k)X(K)]
= [d(k))?(k) dK)k(k-1 ... d(k)x(k- M +1)] (2.2.12)
Equations (2.2.11) and (2.2.12) represent the auto-correlation matrix and the cross-correlation
vector respectively. Substituting equation (2.2.11) and (2.2.12) into equation (2.2.10), the
optimum weight vector is obtained as
w,_, =-R'P (2.2.13)

opt

The above fixed optimum FIR filter (Wiener filter) is causal and of finite length,
therefore it is realizable. However, to implement such afilter, the auto-correlation function of the
filtered reference signal and the cross-correlation function between the filtered reference signal
and the error signa have be obtained. This requirement implies the exact knowledge of both the
plant and the signals, thus it substantially constrains the application. In many active noise control
systems, the characteristics of the disturbance signals are statistically unknown, or the
characteristics of the plant are time varying. To operate in such circumstances, the FIR filter
should be able to tune itself automatically so that it tracks the optimum solution dynamically
without the exact prior knowledge of the ANC system.

11
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2.3 Adaptive Algorithm with a FIR Filter

In this section, the discussion is focused on a FIR filter with atransversal structure. The
transversal structure , compared with other structures (for example, alattice structure) has gained
dominant attention in the application of active noise control due to its versatility and ease of
implementation. In principle, adaptive signal processing is distinguished by two basic steps: (1) a
signal filtering step, and (2) afilter weight updating step. The signal filtering step produces the
output signal through the convolution of the input vector with the filter weight vector. The filter
weight updating step marks an algorithm by its unique weight updating scheme. Three main
adaptive agorithms are introduced beginning with the Filtered-X LMS algorithm, followed by
the Filtered-X RLS agorithm. The Filtered-X LMS algorithm and the Filtered-X RLS agorithms
are both the time domain algorithms. At the end, A brief discussion on the frequency domain
block algorithm is also presented.

2.3.1 Filtered-X LMS Algorithm

The LMS agorithm [23] is an important member of the family of gradient based
algorithms. The most significant advantage of the LM S algorithm liesin its smplicity and
performance. When the LM S agorithm is applied to an ANC system, it isusually extended to
the Filtered-X LMS algorithm due to the error path between the secondary source and the error
Sensor.

In section 2.2, the gradient of the mean square error signal with respect to the weight
vector is obtained as

iy - X _ o€ Te(k)h
N(k) w 2Ege(k) w B
= 2E[e(k)x(k)T(2)] (2.3.1)
The above equation is based on the assumption that the error path transfer function T(z) istime
invariant, or varies slowly compared with the weight vector updating. Such an assumption is
valid for most applications. To calculate the expected value in equation (2.3.1), the discrete time

average is used, which resultsin
N-1

Ri(k) = 2E[e(k)x(K)T (2)] @% & e(k- ix(k- T() (2.32)

The above equation requires too much computation. Further approximation of the expected value
in equation (2.3.2) is obtained by using the instantaneous value to estimate the expected value,
which is equivalent to setting N in equation (2.3.2) to unity. Thus, the gradient is rewritten as

N(k) @2e(k)x(k)T(z) (2.3.3)
The above approximation is the essence of the time domain LMS agorithm. It uses only the
latest value of the reference signal and error signal to estimate the gradient, thus substantially
simplifying the computation. the gradient method for updating the weight vector can be
expressed as:

w(k +1) = w(k) - mN(k) (2.3.4)
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Substituting equation (2.3.3) into equation (2.3.4) and ignoring the constant coefficient 2 yield

w(k +1) = w(k) - nme(k)x(k)T(z) (2.3.5)
The filter output at time step k is the input vector convoluted with the weight vector, i.e.,
u(k) = x" (k)w(k) (2.3.6)

Equations (2.3.5) and (2.3.6) define the Filtered-X LMS algorithm. The equation (2.3.5) is
different from the traditional LM S algorithm in that there is an extraterm T(z), which represents
the Z transform of the error path. Rewriting equation (2.2.6) yields

X(k) =x(k)T(2) (2.3.7)
Accordingly, equation (2.3.5) is adjusted as
w(k +1) =w(k) - nme(k)x(k) (2.3.8)

In the above equation, the reference signal x(K) is filtered through error path T(z) to form
another signal X(k) for weight updating, hence the term Filtered-X LMS agorithm. It can be

seen from equations (2.3.6) (2.3.7) and (2.3.8) that the Filtered-X LMS algorithm requires
2M+1+Z multiplications and M additions per iteration, where M is the number of filter weights,
and Z is the number of multiplications required for obtaining the filtered reference. The Filtered-
X LMS agorithm is summarized in Table 2.1.

Table 2.1 Summary of the Filtered-X LM S algorithm

Initialization:
w(0)=0
e(0)=0
At each step
Weight Update:
X =x(k)T(2)
wy, (k+1) =w,, (k) - re(k)x(k)
Filter Outpuit:
y(k) = x" (k)w(k)

It should be noted that the weight vector converges to the optimum Wiener filter as
defined in the previous section. However, the mean square error does not converge to the
minimum mean square error; it is always greater than the minimum mean square error.

There are also many variant forms for the FXLMS agorithm, e.g. Normalized FXLMS
algorithm, Leaky FXLMS algorithm, Signed FXLMS algorithm, variable step size FXLMS
algorithm. These algorithms deliver better performance in terms of convergence rate, robustness,
or computational complexity. In particular, the Leaky FXLMS algorithm, which minimizes the
control effort as well asthe error signa, is effective in avoiding the divergence problem due to
the finite precision effects and the multiple solutions of an under-determined ANC system.
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2.3.2 Filtered-X RLS Algorithm

The recursive least square (RLS) algorithm is a fundamental member of the family of
least square based algorithms [24]. The Filtered-X RLS algorithm is a natural extension of the
traditional RLS algorithm applied to an ANC system. An important feature of the RLS algorithm
isthat all the past input data, extending back to the initial time when the algorithm is started, are
considered for the weight updating. This feature, compared to the Filtered-X LMS algorithm,
provides better performance in terms of convergence rate and misadjustment. However, the
improvement in performance is achieved at the expense of increased computational complexity.

The fundamental difference of the RLS agorithm compared to the LM S algorithm liesin
the definition of the cost function, which is defined by

k .
x(k) = e2(i) ! (2.3.9)
i=1
where the parameter | (0<I £1) isthe weighting factor. | is often set to 1 if the algorithm is
operating in a stationary environment. A value of | in the range 0.95<| <0.9995 has proved to be
effective in tracking non-stationary signals [24]. The parameter €(i) is the error signal defined as

e(i) = d(i) +w(k) x()T(2)

=d(i) +w(k)" X(i) (2.3.10)
where w(k) is the weight vector at time step k with M coefficients, written as
w(k) =[wy(k) wy(k) wy(k) ... WM_l(k)]T (2.3.11)
and X(i) isfiltered reference data vector at time step i, written as
X(i) :[i(i) X(i-1) X(i-2) .. X(i- M +1)]T (2.3.12)
The gradient of the cost function with respect to weight vector is
G T(K) _ 8 ninngiver
N=—>"-=g " 2e(i)x(i 2.3.13
wik) al (D)x(i) ( )
Substituting equation (2.3.10) into equation (2.3.13) yields
k k
N=Q 1 ™ 2d(i)%(0) +w()g | ™ 2%(0)KX(i) (2.3.14)
i=1 i=1
The cross-correlation vector P(k) is defined as
k
P(k) = é | "' 2d ()X () (2.3.15)

i=1

and the auto-correlation matrix R(k) is defined as
k
R(K) = & | ™' 2%(@i)x(i) (2.3.16)

i=1
Substituting equations (2.3.15) and (2.3.16) into equation (2.3.14) and setting the gradient to zero
yield
w(k) = R (K)P(k) (2.3.17)
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It isinefficient and computational intensive to solve the matrix inversion in the above equation
directly. Instead, the weight vector at time step k is obtained by adding the previous weight
vector at time step k-1 with some adjustment vector. Thus equations (2.3.15) and (2.3.16) are
obtained in recursive manner as

P(k) =1P(k - 1) +d(k)X(k) (2.3.18)
R(k) =1 R(k - 1) + X(k)X" (k) (2.3.19)
The matrix inversion lemma states [6] that
if A=B*'+CC’ (2.3.20)
then A'=B-BC(I+C'BC)'C'B (2.3.21)

The similarity between equations (2.3.19) and (2.3.20) allows us to apply the matrix inversion
lemmato equation (2.3.19), i.e.

R*'Kk)=1"R k- 1)-
| "R *(k - 1)§<(n)(1+ £ (n)l "Rk - 1))?(k))9<(k)| RYk-1) (2322

Since the termsin the large brackets in equation (2.3.22) is scalar, it can be further rewritten as
| *R*(k - DX(K)XT (KR (k- 1)

RYk)=1"R*k-1)- N - —— (2.3.23)
1+ X" (KR (k- DX(K)I T
The gain vector is defined as
Gk) = — k= DX(k) (2.3.24)

I + X" (K)R (k- DX(K)
Substituting equation (2.3.24) into equation (2.3.23) yields
RY'Kk)=1"R*k-1-1'GKX (KR k-1 (2.3.25)

The weight vector is now ready to be updated using equations (2.3.18) (2.3.19) and (2.3.25), i.e.

w(k) =R (k)P(k)

=1 R*(K)P(k - 1) + d(K)R*(K)X(K)

=R k- DPkk- 1 - GKX" (KR (k- DP(k - 1) +d(k)R " (K)X(k)

=w(k- 1 - G(K)x"(k)w(k - 1) + d(k)G(k)

=w(k - 1)+ G(k)(d(k) - K" (K)w(k - 1))

=w(k - 1) +G(k)e(k) (2.3.26)
where (k) is called the priori estimation error, and is given by
e(k) = (d(k) - " (K)w(k - 1) (2.3.27)

Equation (2.3.26) is similar to the weight update equation for the LM S algorithm shown in
equation (2.3.8), in which nk(k) isreplaced by the gain vector G(k). The Filtered-X RLS

Algorithm is summarized in Table 2.2.

The Filtered-X RLS algorithm is much more complicated than the Filtered-X LMS
algorithm since the computational complexity is on the order of N, where N is the number of the
filter weights. However, the RLS agorithm is characterized by fast convergence rate, and it is
relatively insensitive to the eigenvalue spread of the auto-correlation matrix of the input data.
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Furthermore, some fast algorithms [25] based on the RLS algorithm are able to achieve a
computational complexity which increases linearly with the number of filter weights. However,
compared with the LM S algorithm, they still require much more computation.

Table 2.2 Summary of Filtered-X RLS agorithm

Initialization:
D(0) =d I d small positive constant
w(0)=0
e(0)=0
At each time step:
Weight Update
X(k) =x(K)T(2)
A(k) =D(k - Dx(k)
b(k) =1 +X"(k)D(k - DX(K)

G(k) = %

D(k) :%(D(k- 1) - G(K)X" (k)D(k - 1))

w(k) =w(k - 1) + G(k)e(k)
Filter Outpuit:
y(k) = x" (k)w(k)

2.3.3 Block Algorithm and the Frequency Domain Implementation

For both the LM S and RL S algorithms, the weight vector is updated at every sample
interval. Alternatively, the weight vector can be updated block by block, each block contains a
number of data depending on the block length, thus the term block algorithm [26]. The filter
output and the weight vector are not computed immediately upon receiving the input data.
Instead, the computation starts when the input data are accumulated into a block. During each
block, the weight vector is set to be constant. The block algorithm is usually implemented in the
frequency domain. There are two primary advantages for the frequency domain block algorithm.
First, when implemented with the fast Fourier transform (FFT), the computational complexity
can be significantly reduced compared to the Filtered-X LMS agorithm, especialy when the
number of filter coefficientsislarge. Second, the signal after FFT is almost uncorrelated, which
implies that the auto-correlation function R(t ) be zero if t is not zero. Asaresult, adifferent or

time-varying step size can be assigned for each weight, therefore alowing a uniform
convergence rate for all the filter weights.
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For each block k, the output vector, weight vector, and input matrix can be rewritten as

e y(kL+0) o
¢ yik+1) I
y(k) = g Yk +2) - (2.3.28)
C =
¢ i
Sy(kL+L- Doy,
%Wo(k)o
w, (k) -
Qw(k)—
w(k)=¢ (2.3.29)
¢ .. ¢
&w, (10, ,
é x(kL+0) x(kL +1) x(kL+L-1) 0
g x(kL - 2) x(kL+0) .- x(kL+L-2)H
X(k)—g x(kL- 2) x(kL - 1) x(kL + L - 3)3 (2.3.30)
& : : : : U
(kL - N+1) X(kL- N+2) - x(kL+L- N){ ..

where L isthe block length, and N is the filter length. In order to take the best advantage of the
block algorithm, the block length L isusually set to the filter length N. The above three

eguations are related by
y(k) = X (k)w(k)
and the error vector can be obtained as
e(k) =d(k) - X" (k)w(k)T(Z)
=d(k)- X" (k)w(k)
The cost function is defined as the average mean square error, that is

x(k) = % E(e" (k)e(k))

The gradient of the cost function with respect to the weight vector is

i ‘ﬂx(k) .
N = (k) @—X (k)e(k)

The weight vector is defined as follows
w(k +1) = w(k)- =

=w(k)- mXT (k)e(k)

(2.3.31)

(2.3.32)

(2.3.33)

(2.3.34)

(2.3.35)
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Equations (2.3.31) and (2.3.35) basically define the block LMS (BLMS) algorithm. At this point,
the computational complexity of the LMS and the BLMS algorithm is essentially the same,
although the BLM S algorithm requires much more memory for storing data. The advantage of
the BLMS agorithm lies in the frequency domain implementation [27][28]. As shown in Figure
2.4, the reference signal x(n) is transformed into the frequency domain signal X(n) using the
FFT. The frequency domain (complex) filter accepting the transformed reference signal X(n) as
input produces the frequency domain output signal Y (n), which is further transformed back to
the time domain signal y(n) using inverse FFT to drive the secondary source. The error signal is
also transformed into the frequency domain for the weight updating of the complex filter.

It is important to note that the multiplication in the frequency domain essentialy
corresponds to a circular convolution in the time domain, and an adaptive FIR filter produces
only the linear convolution. Thus, some data constraints must be enforced in order to obtain the
desired linear convolution. The overlap-save and overlap-add methods [29] are generally adopted
for applying the data constraints.

input x(n) X(n) Y(n) y(n)

— FFT ™ Complex Filter |—| IFFT

Y
Error Path

:

@4—

d(n)

E(n) e(n)
FFT

Adaptive
Algorithm

Y

Figure 2.4 Frequency domain adaptive filter configurations.
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3 Multiple Reference ANC

In a complicated noise field when there are multiple noise sources, e.g. car interior noise,
multiple reference signals are required to obtain satisfactory noise reduction effect. This chapter
discusses the behavior of a multiple reference ANC system. The first section is focused on a
single channel (i.e. single secondary source, single error sensor) system. First, the frequency
domain optimum solution is derived, and the coherence analysisis applied to show how the
multiple reference approach could potentially improve the performance. Next, the correlation
matrix of the reference signalsis examined, and two examples are given to illustrate that the
system isill-conditioned if the reference signals are correlated. Moreover, under the extreme
circumstance when any two reference signals are linearly dependent, the ANC system becomes
underdetermined, i.e. the solution to the system is not unique. To deal with the problem of ill-
conditioning, an adaptive algorithm to decorrelate the reference signals is presented.

The application of multiple reference ANC is mainly focused on complex systems with
complicated noise sources and acoustical fields. Such a system generally requires multiple
control channels to achieve spatial noise reduction effect. Therefore, the analysisis extended to a
multiple channel (multiple secondary sources and multiple error sensors) control system.

3.1 Single Channel Control System

A single channel MRANC system is considered, as shown in Figure 3.1, in which there
are K reference signals, one control signal, and one error signal.

3.1.1 Frequency Domain Optimum Solution

The primary signal d is due to multiple noise sources passing through multiple primary
paths. The signal e at the error sensor is contributed from both the primary signal and the control
signal, and can be written as

e(w) =d(w) + T (w)u(w) (3.1.1)
where T(w) is the transfer function between the secondary source and the error sensor, d(w) is
the primary signal due to the multiple noise sources, and u(w) is the summation of al the filter
output signals, given by

u(w) = éK X; (W)W, (w) (3.1.2)

i=1
where K is the number of reference signals. Substituting the above equation into (3.1.1) resultsin

e(w) = d(w) +T(W)é’lK X; (W)W, (w)

i=1
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Figure 3.1 Block diagram of a single channel multiple reference active noise control system.
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K
= d(w) + g T(W)xX, (W)W, (w) (3.1.3)
i=1
Defining the filtered reference signal as
i (W) = X, (W) T (w)
equation (3.1.3) is further smplified as
K
e(w) = d(w) + Q & (W)W, (w)

i=1

=d(w) + R (W)W(w) (3.1.4)

where
R(w) ={Z (W) (W) - R (W)} (3.L5)
W(w) ={W,(w) Wy(w) - W (w)}' (3.1.6)

The system cost function is constructed as follows
x(w) = E(e* (w)e(w))
= E{d* (w)d(w) +d* (W)X (W)W(w) + K™ (W)W’ (w)d(w))
+E(WH (w)& (W)X (w)W(w)) (3.1.7)

It is important to note that the above cost function has Hermitian quadratic form [6], and isared
scalar. The gradient of the cost function with respect to the complex weight vector is obtained as

N = E(%" (W)X (W))W (w) + E(dW)X" (W)

= R(W)W(w) + P(w) (3.1.8)
where
gsxlxl W) SpW) -+ S (W)9
R(w)=sﬁ(w)=gs*2*§(w) S*z*f - S*z*t(w)j (3.L.9)
5, W) S (W - S (W
and
a8, 4(W)0o
€8s
F’(W)=Sid(W)=g oL (3.1.10)
SO

Since the correlation matrix R(w) is positive definite, the cost functionx(w) has a unique global

minimum. The corresponding optimum weight vector is obtained by setting the complex gradient
vector to zero, thus

Wopt (W) =- Rl(W)P(W)
=-S,. '(W)S,, (W) (3.1.11)
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It isinteresting to note that if the reference signals are uncorrelated, their cross-spectra are zero,
it followsthat all the off-diagonal terms inside the matrix R(w) are zero. Thus, equation (3.1.11)
can be rewritten as

Sy (W)
Sy, (W)

W, (W) = i=123-,K (3.1.12)

The above equation indicates that, if the reference signals are uncorrelated, the optimum
solutions of all the filters are independent of each other, and each filter operates without any
interference from other filters. In other words, the filters are uncoupled if the reference signals
are uncorrelated. The optimum controller vector can be derived in terms of system transfer
functions. The primary noise at the error sensorsis formed by M noise sources passing through
M primary paths and is given by

d(w) =n" (w)P(w) (3.1.13)
where n(w) and P(w) are noise source vector and primary transfer function vector respectively
and can be expressed as

n(w) ={n,(w) n,(w) - n,(w)} (3.1.14)
Pw)={R(w) Pw) - P, (w)} (3.1.15)

The noise sources and the reference signals are related by
x(w) = H(w)n(w) (3.1.16)

where H(w) is the source coupling matrix, whose element Hj(w) represents the transfer function
between the ith noise source and the jth reference sensor, and can be written as

a-lll(w) H21(W) Sml(W)Q

¢ N
H(W) — gH21;(W) HZZ;(W) sz;(W)I (3.1.17)
EHW) HoWw) S, (W

Substituting equations (3.1.13), and (3.1.16) into equation(3.1.8) and moving al the transfer
functions to the outside of expectation, the gradient of the cost function is obtained as

R=T" (w)H (wW)E(n" (w)n ()| H™ (W)T (W)W (w) + P(w)] (3.1.18)
Another form of optimum controller vector can be obtained by setting the gradient to zero, i.e.
_ e gun P(W)
Wopt (W) =-H (W) T(W) (3119)

where H*(w) is the pseudo-inverse of H'(w). The optimum controller vector is expressed in
terms of transfer functions of the primary path, the error path and the source coupling path. This
solution is intuitively clear: the error signal comes from the noise sources through both the
primary path and the secondary path, the controller in the secondary path adjusts its transfer
function, so that the two paths have the same magnitude response and 180 degrees phase
difference, thus achieving noise cancellation.
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3.1.2 Coherence Analysis

The cost function in equation (3.1.7) can be expressed in terms of the auto-spectrum and
the cross-spectrum of the reference signal and the error signal. Equation (3.1.7) can be rewritten
as

Se(W) = Syg (W) + ST e (WYW(W) +STgs (W)W (W) + W™ (W)S,, (W)W(w)  (3.1.20)
when the filter W(w) is optimized using equation (3.1.11), the auto-spectrum of the error signal

reaches its minimum value. Substituting the equation (3.1.11) into (3.1.20), the minimum error is
obtained as

See (W) = Sy (W) +STax (W)S;, H (W)S 4 (W) (3.1.21)
Dividing both sides of equation (3.1.21) by S, (w) resultsin the relative reduction of the error
signd, i.e.
SeW) _, ST (W)S ;" (W)S 44 (W)
Saa (W) Saa (W)
=1- g%u(w) (3.1.22)
where g% (W) isreferred to as multiple coherence function. If all the reference signals are
independent of each other, the off-diagonal terms of the matrix S,, (w) are zero. Then, the above
eguation can also be written as
S, (W) —1 Sza (W)Sy (W) o Sz (W)Sg, (W) (3.1.23)
Sga (W) Sy, (W)Sgq (W) Sgz, (W) S (W)
Defining the ordinary coherence function between the reference x; and the primary noise d as
Sga (W)Sg (W)

9%a (W) = (3.1.24)
Syz, (W)Sgq (W)
equation (3.1.23) issimplified to
S, (w
% =1- gled (w)- - gzgkd (w) (3.1.25)
Comparing equation (3.1.22) with equation (3.1.25), it is easy to obtain
9% (W) =g%a(W) + -+ g%ga(w) (3.1.26)

The above equation is intuitively appealing, asit indicates that better noise control effect
can be achieved through the use of multiple reference signals in an environment with multiple

noise sources, since the multiple coherence function g% (W) is greater than an ordinary
reference coherence function g?;4 (w). This explains the fundamental motivation for the use of

multiple reference signals. It isimportant to note that equation (3.1.25) gives the maximum
noise reduction that can be potentially achieved. In areal ANC system, due to causality and
finite filter length, the actual control effect will generally be less.

We shall discuss details in the next section about the correlation among reference signals.
Here, it is pointed out that the reference signals are very likely to be correlated ina MRANC
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system. If the reference signals are correlated, equation (3.1.26) will not hold. An aternative
eguation can be obtained through the introduction of the partial coherence function. The partial
coherence function between signal X, and the primary noise d is defined as

Ss,am, (W)S gz 4, (W)
Sﬁzﬁzle(w)sddle(w)
where S, ;, (W) isreferred to as the conditional spectrum, since the evaluation is based on the

residual X, and residua d, where the contribution correlated with X, is removed from both X,
and d. Similarly, the partial coherence function between signal X, and the primary noised is
defined as

9% r0%, (W) = (3.1.27)

Spats (W)Sgz x5, (W)

Sttty (W)Sgax,..z, , (W)

The evauation of S, 4, , (W) isbased ontheresidual X, and residua d, where al the
contributions correlated with X,, ... and X,_, are removed.

9% a5, (W) = (3.1.28)

The multiple coherence function can be expressed in terms of partial coherence function
as[30]

g% (w) =1- (1- 9% (W))(l- gzxzdle(w))u-(l- gzxkdlemﬁk,l(w)) (3.1.29)

The above equation holds regardless of whether the reference signals are correlated or not.
When the reference signals are uncorrelated, equation (3.1.29) reduces to equation (3.1.26).

In a MRANC system, the maximum noise reduction is bounded by the multiple
coherence function. When ordinary coherence functions are obtained, care should be given
using the ordinary coherence functions to evaluate the potential noise reduction. For example,
consider atwo reference ANC system with an ordinary coherence function between each
reference signal and the primary noise of 0.5 throughout the interested frequency range. If the
two reference signals are uncorrelated, then, according to equation (3.1.26), the multiple
coherence function will be unity (i.e. the summation of the ordinary functions). However, if the
correlation between the two reference signals is unknown, the multiple coherence may not be
larger than the ordinary coherence function. In other words, the performance of MRANC may
not be better than that of single reference ANC. In fact, if the reference signals are completely
correlated, the multiple coherence function is still around 0.5. The actual situation can be
revealed through the evaluation of the partial coherence function. When the reference signals are
completely correlated, each partial coherence function is close to zero. In this case, one of the
two reference signals can be essentially discarded without sacrificing any noise reduction effect.
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3.1.3 Correlation Matrix and Condition Number

As discussed in the previous section, multiple reference signals are needed to achieve
satisfactory noise reduction in the system where there are multiple noise sources. The reference
signals are obtained through multiple sensors. Usually, each reference sensor picks up signals
from several noise sources passing through different paths, as shown in Figure 3.2. As aresult,
the reference signals are generally correlated. The correlated part of those reference signals
represents the common input to the different filters, which subsequently generates correlated
outputs. Therefore, the correlation among reference signals leads to redundancy of the filter
outputs. The detrimental effects are investigated in what follows:

The error signal at time step k can be expressed as
e(k) = d(k) + y(k)
=d(k)+u(k)T(z) (3.1.30)
where T(z) isthe Z transform of the error path, u(n) is the summation of all the filter outputs,
given by
K K
u(k) = a x;" (w; = w,"x;(k) (3.1.31)
i=1 i=1

where w; and x;(n) are the weight vector and the tapped input vector for the ith filter respectively.
Suppose the filter lengthis M, then

Noise source 1

Reference sensor 1

Noise source 2

Reference sensor 2

d_

Figure 3.2 An example illustrating the correlation of the reference signals in a multiple noise
source environment.
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:[Wo,i Wy W e WM-l,i]T (3.1.32)

X (K) =[x () x(k-1) x(k-2) .. x(k-M=+D| (3.1.33)
Substituting equation (3.1.31) into equation (3.1.30) yields
e(k) = d(k)+aw ", (K)T(2) (3.1.34)

i=1
If the impulse response of the adaptive filter varies owly, the error path and the adaptive filter
can be commuted. The filtered reference signa is defined as
R, (k) = x;(k)T(z) (3.1.35)
Substituting equation (3.1.35) into (3.1.34), we obtain

e(k) = d(k) +§ w.T%, (K)

i=1

= d(k) + WTX(k) (3.1.36)
where W and X(k) are vectors with K” M coefficients, i.e.
W = (WTl w, - WkT)T (3.1.37)
X(k) = (1K) &To(k) o Ku(k)' (3139)
The cost function is constructed as the mean square error signdl, i.e.
x = E[e?(k)] (3.1.39)
Taking the derivative of the cost function with respect to weight vector resultsin
o Ix fe(k)
N = 2E k
w ée ) qw
= 2E[d (K)X(K)] + 2E[X ()X (k)| W (3.1.40)

The optimum Wiener weight vector is obtained by setting the gradient of the cost function to
zero, which gives

E[d (k)X (k)] + E[X(K)XT (k)|w = 0 (3.1.41)
defining
P = E[d(K)X(K)]
and
R = E[X(K)X" (k)]
eguation (3.1.41) can be simplified as
RW=-P (3.1.42)
the above equation is called the norm equation, its characteristic is largely determined by the
correlation matrix R, which can be expanded as

27



X, (K)&T2(k) R (K)RTa(k) -+ Ry(K)XTi(K)O
_Egﬁz(k)fl(k) Z,(K)R2(K) -+ ZH(K)R (k)=
¢ : : : : +

gf(k(k)f(Tl(k) R (K)RT2(k) - ﬁk(k)ﬁTk(k);

It isimportant to note that each term inside the above matrix is a sub-matrix, and the
whole matrix is generally not Toepolitz [6], as contrasted to the auto-correlation matrix of a
single reference ANC system. A sgquare matrix is Toepolitz if al the elements on the main
diagonal are equal and any other elements on the subordinating diagonal are also equal. On the
other hand, the matrix R is real, symmetric and non-negative definite just like the matrix R in a
single reference ANC system. Therefore, the corresponding eigenvalues are also non-negeative
and real. The characteristics of the matrix R are determined by the cross-correlation functions of
the reference signals and the auto-correlation functions of the reference signals. If al the
reference signals are uncorrelated with each other, every off-diagonal termsin the matrix R will
be zero and every optimum weight vectors, w1, wy, ... and wy, are uncoupled.

R (3.1.43)

It is very important to understand perturbation theory [31] and itsimpact on the
development of an algorithm to solve the norm equation (3.1.42). The perturbation theory states
that if the matrix R and the vector P are perturbed by small amounts dR and dP respectively, and
if the relative perturbations, ||dR||/||R|| and ||dP||/||P||, are both on the same order of e, where e <<
1, then

o w|

WEGC(R) (3.1.44)

where dW is the change of weight vector W as a result of the perturbation from the matrix R and
the vector P, and c(R) is the condition number of the matrix R, and [ is the norm operator [32].

The condition number describes theill condition of a matrix. Since the matrix R is real and
symmetric, it can be shown [6] that the condition number equals

I
c(R)= Iﬂ (3.1.45)
where | . and | . arethe maximum and minimum eigenvalues of the matrix R respectively.
Thisratio is also commonly referred to as eigenval ue spread.

The perturbation theory states that if there are some errors in the matrix R or the vector P
caused by measurement noises or some other reasons, the ill-condition of the correlation matrix
R may lead to aweight vector solution W which is far from the optimum Wiener solution W .
In other words, the ill-conditioning of the correlation matrix R causes the optimum Wiener
vector to be very sensitive to measurement errors.

On the other hand, as discussed in section 2.3.1, the eigenvalue spread of the matrix R
has a significant impact on the convergence rate of an ANC system, especially when the LMS
algorithm is applied. An important factor which determines the eigenvalue spread is the
correlation among the reference signals. In particular, if the reference signal x; is correlated with
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the reference signal x;, the ith and jth columns in the matrix R will exhibit some similarities
which result in large eigenvalue spread, and accordingly slows down the convergence speed.
Upon the extreme circumstance when any two reference signals are the same, the determinant of
the matrix R becomes zero, and the eigenvalue spread goes up to infinite.

Two simple systems are now considered as shown in Fig. 3.4a. and Fig. 3.4b, in which
there are only two reference signals in each system. Suppose each filter in the systems has only
two weights, then the correlation matrix R becomes

e % (K% (k) X(K)&k(k-1) KX (k) X (k)R (k- 1) 0
_ gxlA(k :LA)xl(k) XlA(k :LA)xl(k 1 XlA(k :LA)XZ(k) XlA(k 1A)x2(k 1)I (3.1.46)

¢ R, (k)R (k) %, (k)% (k - 1) R, (K)X, (k) %, (K)%,(k - 1) .

8)?z(k - 1))?1(k) ﬁz(k - 1))?1(k - 1) ﬁz(k - 1))?2(k) ﬁz(k - 1))?2(k - 1)ﬂ

It is important to note that the terms inside the above correlation matrix R is the filtered
reference signal instead of the reference signal due to the error path in an ANC system. The first
caseis shown in Figure 3.3a Thefirst filtered reference signal X, is asine wave with the

frequency wi, and the second filtered reference signal X, is asine wave with the frequency w.
corrupted by some contribution from X, . The two filtered reference signal is written as
X, =a, sn(w,t) (3.1.47a)
X, =a,sin(w,t) +esin(w,t) (3.1.47b)
Since the two signals X, and X, are deterministic, the correlation function between them can be
analytically evaluated as

R (1) = E(x,(t)x,(t +1))
= E(a, sin(w;t)a, sin(w,(t +1)))

= E% alz(cos(wlt ) - cos(2w,t +w,t ))g

= %alz cos(w,t ) (3.1.489)
Ry, () = E(x,(t)x,(t +1))

= E{(a, sin(w,t) + esin(w,t))(a, Sin(w,(t +1)) + esin(w,(t +1)))

= % a,’ cos(w,t ) + % e’ cos(w,t ) (3.1.48b)

Ry () = E((t)x,(t +1))
= E(a, sin(w,t)(a, Sin(w, (t +1 ) +esin(w, (t +1 ))))
1
=3 a,e cos(wit ) (3.1.48c)
Using the above equations (3.1.48), all the terms inside the correlation matrix R are given by
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x,=a,sin(w,t)
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Figure 3.3 Case study of single channel MRANC systems, a) reference signals are correlated
due to coupling, b) reference signals are correlated due to common noise.



E(R(K)%,(K)) = Za% E(R,(K)%,(k - 1)) = —alcOSWDt

( 1(|<)X2(k)) ( %, (K)R, (K - 1)) —a e cosw, Dt

N|H '\’|H

1

S—

E(%,(k - D%,(k)) =

> &8 cosw, Dt E(%,(k)R,(K)) = —a +;e

(xz(k)xz(k 1)) —a?; cosw,Dt + ;e cosw, Dt (3.1.49)

where Dt isthe sampling interval, WhICh is related to the sampling frequency by Dt =1/ f, .
Substituting the above equations (3.1.49) into (3.1.46) yields

ge a,’ a,” cosw, Dt ae a,e cosw, Dt 0

Rol ca,” cosw,Dt a,’ a,e cosw,Dt ae +

26  ae a,e cosw, Dt a,’ +e’ a,’ cosszt +e coswlDt:

gale cosw, Dt ae a,” cosw,Dt + e? cosw, Dt a,’ +e’ 5
(3.1.50)

The correlation between the two filtered reference signals can be modified by setting the
parameter e to different values. The eigenvalue spread | /I ... iscalculated for different e.
The results are shown in Table 3.1. It is clear that the elgenvalue spread goes up when the
correlation between the two filtered reference signals increases. Upon the extreme case when the
two filtered reference signals have the same frequency (a=0, €* 0), which means that one signal
can be considered as a linear transformation of the other signal, the eigenvalue spread of the
matrix R will be infinite, and the system becomes underdetermined. An underdetermined system
results in infinite number of solutions for the norm equation (3.1.42). Among these solutions,
some give rise to very large control efforts, which is generally not desirable for an ANC system.

Table 3.1 Eigenvalue spread versus correlation, case No.1

a=1, a=1, wy=100*2p Hz, w,=120*2p Hz, Dt=0.003s
Correlation | e=0 e=0.2 e=0.5 e=0.8 e=1.0
I o/l e | 45161 5.4201 9.1461 16.0819 23.2590

The second case considered is shown in Figure 3.3b. The first filtered reference signal X,
is a sine wave with the frequency w; corrupted by the noise n;, and the second filtered reference
signa X, isasine wave with the frequency w, corrupted by the noise n,. The two filtered
reference signalsis written as

X, =a, sn(wt) +n, (3.1.514)

X, =a,sin(w,t) +n, (3.1.51b)
the two noise signals, n; and n,, are assumed to be correlated, and their correlation can be simply
modeled as
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05 k=0

|
i 9

fnlnz(k) = _|’_ ge k=1 (3.1.52)
} 0 k=else

where the parameter e is a constant describing the correlation between the two noise signals.
Using equation (3.1. 48) al the termsinside the correl ation matrix R can be evaluated as follows

E(%,(k)%,(K)) = —a 1+;e E(R,(K)%,(k - 1)) = —a 2, cosw, Dt + ée

E(%,(K)%,(K)) =§e E(%,(k)%,(k - 1))=—
. . 2 . 1
E(%,(k - D%, (k)) =ze E(%,(K)%,(K)) = —a 2+e
E(%,(k),(k - 1) = —a 2, cosw,Dt + ée (3.1.53)
Agan, Dt is the sampling interval, substltutlng the above equations into (3.1.46) yields
ge a’+e a,’ coswlDt +08e e 0.8e 0
Rol ca,” cosw,Dt +08e a’+e 08e e +
26 e 08e a+e a,” cosw,Dt +08e”
08e e a,” cosw,Dt +08e a,’ +e )
(3.1.54)

The correlation between the two filtered reference signals can be modified by setting the
parameter e to different values. The eigenvalue spread | /I ., isagain caculated for
different e. The results are shown in the Table 3.2. It is clear that the eigenvalue spread goes up
when the correlation between the two filtered reference signals increases. Here, the correlation is
caused by some correlated noises. It isimportant to note that the correlated noises in the
reference signals will generally stretch the eigenvalue spread. As aresult, the convergence rate
slows down and the system performance deteriorates.

Table 3.2 Eigenvalue spread versus correlation, case No.2

a=1, a=1, wy=100*2p, w,=160*2p, Dt=0.002
Correlation | e=0 e=0.2 e=0.5 e=0.8 e=1.0
[ 2.4830 2.4917 3.6184 4.7303 5.4504

max/I min
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3.1.4 Preprocessing of Reference Signals with Decorrelation Filters.

Asdiscussed in the last section, the correlation between the reference signals leads to the
problem of slow convergence rate and high sensitivity to measurement error. Thus, in order to
improve the performance of a multiple reference control system, it is desirable to process the
reference signals in some way such that they are uncorrelated with each other. In this thesis, this
is achieved through a set of decorrelation filters shown in Figure 3.4. The corresponding ANC
system with decorrelation filters to preprocess the reference signalsis shown in Figure 3.6. We
first derive the statistical relationship between the reference signal and the error signal in an
ANC system shown in Figure 2.3. Recall from equation (2.2.5) that

e(k) =d(k) + x" (K)WT(2) (3.1.55)
Setting T(z) to unity and multiplying both sides of the equation by x(k) yield

x(k)e(k) = x(K)d(k) +x(k)x" (k)w (3.1.56)
Taking the expected value of the above equation, we obtain

E(x(k)e(k)) =P + Rw (3.1.57)

If the adaptive weight vector w is converged to the optimum Wiener vector, i.e.
w =w =-R'P asshownin equation (1.1.13), we get

E(x(k)e(k)) =0 (3.1.58)
The above equation states the principle of orthogonality; when the filter operates in its optimum
condition, the error signal is uncorrelated with (orthogonal to) the reference signal.

Based on the orthogonal theorem, adaptive decorrelation filters can be constructed as
shown in Fig. 5, in which two correlated reference signals are processed by a couple of adaptive
filters to generate two uncorrelated reference signals. For the upper filter A, the reference signal
is x;, and the error signa is x,. Thus, the orthogonal relationship is expressed as

E[x, (k - i)fz(k)]A:Am =0 i=0,1,2,--M-1 (3.1.59)

where M is the number of filter coefficients corresponding to filter A. For the lower filter B, the
reference signal is x,, and the error signa is x;. Thus, the orthogonal relationship is expressed

as
E[X, (k - i)Yl(k)]B:BM =0 i=0,1,2,--M-1 (3.1.60)

where M is the number of filter coefficients corresponding to filter B. It is important to note that
the degree of decorrelation between the reference signal and the error signal depends on the
number of filter coefficients. Ideally, infinite number of filter coefficients is needed to
decorrelate the two reference signals. However, since the objective of applying decorrelation
filtersisto improve the condition number of the matrix R or diagonalize it. It is ready to obtain
that the two transversal filters in the decorrelation filters should have the same number of
coefficients, and the number of coefficients M should be the same as the number of the
controller filter coefficients.

It should be noted that the first coefficients ag and by in the filters A and B are redundant,
since both of them are trying to achieve
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E[X, (k)%, (k)] =0 (3.1.61)
Thisis an over-determined case, which gives infinite solutionsto a and by. A practical approach
isto force either a, or by to be zero. Using the LM S algorithm and assuming that first coefficient
bo is set to be zero, the uncorrelated reference signals x; and x, can be obtained as

%, (K) = xl(k)+éM %, (K - )b, (K) i=12--M-1 (3.1.62a)
b.(k +1) = bi(k)l-:lmTz(k - D)X, (k) i=12--M-1 (3.1.62b)
X, (k) = X, (K) +_é’1M %, (K - i)a, (k) i=0,1,2--M-1 (3.1.620)
a, (k +1)=ai(k)l-:0mTl(k- )X, (K) i=0,1,2--M-1 (3.1.62d)

This decorrelation technigue has been reported to achieve signal separation or the restoration
of origina signals[33][34]. It isimportant to note that all the essentia information in the
reference signalsis retained through the decorrelation filters. By decorrelating al the reference
signals, only redundant information is left out. The decorrelation filters can be implemented
using either Wiener filters or adaptive filters. If the computational load is a major concern for a
MRANC system and the correlation among reference signals remain unchanged, Wiener filters
should be implemented, otherwise, implementation with adaptive filtersis highly suggested. The
adaptive nature of the decorrelation filters can be applied to areal system more readily and
effectively since there are no elaborate procedures needed to analyze the exact properties of the
reference signals. Furthermore, the adaptive filters can automatically track the changing
relationship among the reference signals.

If the decorrelation filters are applied without any prior knowledge of the quality of the
reference signals, it is possible that one output signal becomes very small relative to the
corresponding input reference signal. In this case, a conclusion can be drawn that the particular
reference is highly correlated with other reference signals, and therefore this reference signal
may be eliminated without compromising much noise reduction effect. It is therefore suggested
to analyze the reference signals before applying the decorrelation filters. In fact, the
decorrelation filters can also be used to optimize the locations of the reference sensors. If the
reference signals are completely uncorrelated with each other, the output signals of the
decorrelation filters would be unchanged. In real systems, it is often impossible to get complete
uncorrelated reference signal's, and the correlation among them is largely determined by the
position of the reference sensors. The criterion for optimizing the positions of the reference
sensors is then to make the output value of the decorrelation filters close in magnitude to the
corresponding input value.
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3.1.5 Multiple Reference Single Input(MRSI) and Multiple Reference Multiple
Input(MRMI)

The foregoing sections discuss a multiple reference multiple input (MRMI) system,
which feeds each reference signal into a different filter. One might consider forming asingle
input by summing al the reference signals together. Such a system is referred to as a multiple
reference single input (MRSI) system, as shown in Fig. 3.6. In general, when there are multiple
noise sources, a MRSI system does not perform as well asaMRMI system. This can be
corroborated through coherence analysis.

As pointed out in the previous section, the maximum noise reduction effect is influenced
by the coherence function between the reference signal and the desired signal. Assuming that all
the reference signals X1, X2, X3, ..., X are uncorrelated and have zero mean values, i.e.

u(k) = E(x,(n + k)x, (n)) = 0 i1 (3.1.63)

Since the reference signals satisfy the above equation, they are also referred to as orthogonal .
The cross-spectrum of any two reference signals is the discrete Fourier transform of the
corresponding cross-correlation function. Since the reference signals are uncorrelated, their
corresponding Fourier transformsis zero. Thus

S, (W)= i T E(X, )X 1)) i ]

¥
= a u(k)e ™
k=-¥

=0 (3.1.64)
where N is the window length. The coherence function is defined as
Sya (W) S, (W)
g(w) =2 =7 (3.1.65)
Sxx (W)de (W)
According to Fig. 3.7, the reference signal X (w) and the desired signal D(w) can be written as
X(w) = X (w) + X, (w)+--+X, (W) (3.1.66)
D(W) = X, (W)H, (W) + X, (W) H, (W)+-+X, (W) H, (W) (3.1.67)
Taking the conjugation on both sides of equation (3.1.66) and (3.1.67) yields
XT(W) = X (W) + X o (W)+--+ X (w) (3.1.68)

D (w) = X y(W)H 1 (W) + X 2(W)H 2(w)+--+ X  (W)H (W)  (3.1.69)
Since the cross-spectrum of any two reference signalsis zero, it is ready to obtain that

Sxd (W) = lex1 (W) Hl(W) + szx2 (W) H2 (W)+ ’ '+Sxkxk (W) H k (W) (3 170)
Se(W)=S,, (W)H 1 (W) +S,, (W)H 2(w)+--+S,, (W)H (W) (3.1.71)
Sxx (W) = lex1 (W) + szx2 (W)+ ’ '+Sxkxk (W) (3172)

See(W) =S, W) H, (W)|* +S, , (W)|H,(W)*+--+S, , (W)|H, (W) (3.L.73)
Substituting equation (3.1.70), (3.1.71), (3.1.72) and (3.1.73) into (3.1.65) resultsin
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a S, (WH, (WA S, (WH";(w)
g(w) ==

k k 2
A S, (WA S, (WH; (W)
_

£1 (3.1.74)
It can be proved that the above coherence function is usually less than unity if Hi(w), Ha(w), ...
and Hy(w) are not equal. Subtracting the numerator from the denominator and omitting w in the
spectral expression yield

LY

Sxxsdd - Sxdsdx
k

= 8 (SPulH P+, S, (IH WP+ H W) + 5% [H w)F)
(

i,j=Lit j

]

Kk
A (SP H WS, S, (HiW)H ) + HY (W) () + % [H, (w)F )
i,j=Lit j
Kk
= A (SuSu (M WP HH, WP~ H M) (W) - H'\()H, (w))
i,j=1it
Kk
= 8 (S8, IH - Hyw)P) (3.1.75)
i,j=Litj
Under two special circumstances. 1) when all the transfer functions of the primary paths are
equd, i.e. [H;(w)- H;(w)|=0 fori?® j, 2)wheneach reference signal occupies different

frequency range, i.e. S, (W)ijxj (w)y=0 fori! j,equation (3.1.75) isequal to zero, which

implies unity coherence function throughout the frequency range. In this case, the performance
of aMRSI configuration is expected to be equivalent to that of aMRMI configuration. In fact, If
the noise sources are adjacently located, and the error sensors are far away from the noise
sources, all the primary paths are expected to be comparable. As aresult, asimilar noise
reduction effect can be achieved with aMRSI configuration. The choice of aMRSI
configuration greatly simplifies an multiple reference ANC system as compared to a MRMI
configuration.

Since the denominator is usually larger than the numerator as shown in equation (3.1.75),
the coherence function is usually less than unity. It should be noted that there is no
uncontrollable extra noise in the system shown in Fig. 3.6. However, since the coherence
function is less than unity, perfect noise cancellation can not be achieved at the error sensor. In
an environment with multiple noise sources, the signal at the error sensor is due to multiple noise
sources passing through multiple primary paths. Such an environment can be modeled perfectly
only through a multiple input multiple output system. However, since the controller in the MRSI
system has only a single input and a single output, it is not able to cancel the noise perfectly at
the error sensor. The optimum solution for the FIR filter can be obtained from equation (2.2.10),
which is repeated as follows

E[d (K)X(K)] + W E[ x(K)X" (k)| = 0 (3.1.76)
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where
X(k) =%, (k) +x,(k)+---+x, (k) (3.1.77)
d(k) =d, (k) +d,(k)+---+d, (k) (3.1.78)
Substituting equation (3.1.77) and (3.1.78) into (3.1.76) and considering X1, X, ... and Xk are
orthogonal, the above equation can be written as

k k
é I:)i +Wopté I:ei = O (3179)
i=1 i=1
where P; and R; are expressed as
P, = E(d(k)x(K))
R, = E(x, (k)x"i(k))
It follows that the optimum weight vector is

k -1k
W =-(@Ri) aPb (3.1.80)
i=1 i=1
Supposing that the primary paths are modeled by FIR filters with weight vectorswy, w, ... and
Wi , the above equation (3.1.80) can be rewritten as
-1 k

k
Wopt =- (a_ R|) (a_ I:aiwi) (3181)

The above equation gives the optimum weight vector in terms of the primary paths and the
reference signals. Again, such afilter cannot perform as well as those filters in the MRMI
system. This can be demonstrated by a ssmple case shown in Fig. 3.7, in which two reference
signals are orthogonal with the same signal power, and each primary path isaFIR filter with a
single weight. According to equation (3.1.81), the optimum weight for the single weight filter is
Wopt=2.5, and the corresponding error signal after control would be 0.5(x>-X1). The power of the
error signal after control is calculated as

P = E(O.25(x2 - xl)z)
=0255p, +P,) (3.1.82)

The error signal stays the same in this case even if the control filter has more than one weight.
On the other hand, if the two reference signals are not added up , but each signal isfed into a
different filter, perfect noise cancellation can be achieved as discussed section (3.1.2).
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3.2 Multiple Channel Control System

Many active noise control applications involve the attenuation of low frequency noisein
asimple spatia field. This allows the application of a single channel ANC system to achieve
desirable noise reduction. In alarge dimension enclosure where acoustical field is complicated, it
is generaly not enough to adjust a single secondary source to minimize asingle error signd
because noise cancellation at one point is likely to lead to the noise enhancement at other points
[8]. In principle, the number of secondary sources needed to obtain perfect noise cancellation in
an enclosure is the same as the number of acoustic modes excited [10]. Therefore, amultiple
channel ANC system is needed to achieve global noise cancellation in an enclosure with a
complex noise field.

3.2.1 Frequency Domain Optimum Solution

A multiple reference multiple channel control systemisillustrated in Figure 3.9. The
analysis procedure presented in this section follows closely that presented in section 3.1.1.

The signal at the Ith error sensor is contributed from both primary noise sources and
secondary control sources and can be written as

M
e (w) =d,(w) +Q T, (W)u,(w) (32.1)
m=1
where Tri(w) isthe transfer function between the mth secondary source and the Ith error sensor,
di(w) isthe signal at the Ith error sensor due to the primary sources. The signal um(w) isthe
summation of the filter output signals to the mth secondary source, which is given by

K
Up (W) = A X (W)W, (W) (32.2)
k=1
where K is the number of the reference signals. Substituting the above equation into equation
(3.2.1) yields

& (W) =d, (W) + Q T,y (W) X, (W)W, (W)

m=1 k=1

M K
=dw)+a a Tu(w)x (W)W, (w) (3.2.3)
m=1 k=1
Again, defining the filtered reference signal as
Rim (W) = X, (W)T,,, (W)
equation (3.2.3) simplifiesto

e (w)=d,(w)+ éK K (W)W, (W)

i=1

=d,(w)+ )A(lT (W)W (w) (3.2.4)
where
)A(l(W):{)?m R K | Ry Ko o Ko
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| | )?kll )?k2| )/(\kml} (3-2-5)

W(W):{Wn Wy, oo W | Wy W, e Wy
| | Wkl sz ka} (3-2-6)

Next, the error vector is defined as

e(w)={e,(w) e,w) - ew)}" (32.7)
Using equation (3.2.4), error vector can be expressed as

e(w) = d(w) + R(W)W(w) (3.2.8)
where

dw) ={d,(w) d,(w) - d (W)}’ (3.2.9)

(W) ={&T1(w) Ko(w) - k(W) (3.2.10)

The active noise control objective isto minimize overall sound pressure level, which is estimated
by the mean square error signals. Thus the cost function can be constructed as the summation of
the power spectrum of al the error signals, that is

x(w) = E(e H (W)e(w)) (3.2.11)
Substituting equation (3.2.8) into the above equation yields
x(w) = E(d" (w)d(w)) + E(d" (w)x(w)W(w)) +
E(W" (w)x" (w)d(w)) + E(WH (w)x" (w)x(w)W(w)) (3.2.12)

The above cost function has Hermitian quadratic form and isareal scalar. The gradient of the
cost function with respect to the complex weight vector is expressed as

K = x(w)
w(w)
= E(%" (W) (w))W(w) + E(d(w)X" ()
= R(W)W(w) + P(w) (3.2.13)
where
R(W) = S,,,(w) = E(%" (w)%(w)) (3.2.14)
P(W) =S,y (W) = E(d(w)%" (w)) (3.2.15)

The correlation matrix R(w) is generally positive definite, and the cost functionx(w) has a

unique global minimum value. The weight vector corresponding to the minimum value of the
cost function is referred to as the optimum weight vector, which is obtained by setting the
complex gradient vector to zero. Thus,

W, (W) = - R™H(w)P(w) (3.2.16)
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3.2.2 Coherence Analysis

Equation (3.2.12) can be written as
See (W) = Sy (W) + Sy (W)W(W) + S (W)W (W) + WH (W)S, (W)W (w)  (3.2.17)
when the controller is optimized with equation (3.2.16), the auto-spectrum of the error signal
reaches its minimum value, which is obtained by substituting equation (3.2.16) into (3.2.17) as
See(W) = S (W) +STex (W)S, " (W)Sy4 (W) (3.2.18)
dividing both side of the equation (3.1.14) by S, (w), the relative noise reduction is obtained as

S..(W) _ 1. ST ax (W)S g H(W)S 4, (W)
Saa (W) Saa (W)
=1- g%aq(w) (3.2.19)
where g%q(W) is the coherence function based on a multiple reference multiple error ANC
system. Equation (3.2.19) indicates that the overall noise reduction is bounded It should be
noted that the multiple coherence function defined in equation (3.1.22) is based on a multiple
reference single error ANC system.

3.2.3 Optimum FIR Filter

Asis pointed out in the first chapter, a frequency domain optimum filter is not guaranteed
to be causal, therefore it may not be realizable in areal system. Usually, the controller is
implemented using a FIR filter. The corresponding optimum solution can be derived as follows:

At time step k, the signal at the Ith error sensor can be written as

e (k) =d,(k) +§IM T (2)u, (k) (3.2.20)

where Tri(2) is the transfer function between the mth secondary source and the Ith error sensor in
the Z domain. The signal um(k) is the summation of the filter output signals to the mth secondary
source, given by

u, (k) = éK Xk (K)W,p, (3.2.21)

k=1
where K is the number of the reference signals, x, (k) isthe input vector at the reference k and
w,,, istheweight vector from the reference k to the secondary source m. Assuming that the
vector lengthisl, x, (k) and w,, become

() ={x (k) x (k-1 x(k-2) - x(k- I+D} (3.2.22)
Wi = (Wi (0) Wi (D) Win(2) -+ Wi (1- D} (3.2.23)
Substituting equation (3.2.21) into (3.2.20) yields

e (k) =d,(k)+ g Tml(z)éK X, (K)w,g,

m=1 k=1



M K
=d,()+a A Tu (@)X k(k)W,, (3.2.24)
m=1 k=1
Again, defining the filtered reference signal as
Ky (K) =%, (K)T,; (2) (3.2.25)
equation (3.2.24) smplifiesto

M K
6 (k) =d,(K)+a & K (K)w,,

m=1 k=1

=d, (k) + X," (kW (3.2.26)
where
XK ={&Tw K o K | K K o Ko
| | &' KT oo )A(Tkml}T (3.2.27)
W:{WTll WT12 WTlm | WT21 WT22 WTZm
| o ] wha whe - WTkm}T (3.2.28)
Next, the error vector is defined as
e(k) ={e,(k) e,(k) - e (K} (3.2.29)
Using equation (3.2.4), error vector can be expressed as
e(k) =d(k) + X (k)W (3.2.30)
where
dik) ={d,(k) d,(k) ~ d (K} (32.31)
X(k):{f(Tl(k) XTo(k) - )A(TL(k)}T (3.2.32)

The goal of the active noise control system isto minimize the total acoustical potential energy,
which is estimated by the mean square error signals. Thus the cost function is constructed as

x = E(e” (k)e(k)) (3.2.33)
Substituting (3.2.30) into the above equation yields
x = E(d" (k)d(k)) +E(d" ()X (k)W) +

E(WT (k)X (k)d(k)) + E(WT (k)X (k)X (k)W(K)) (3.2.34)
Defining the matrix R and the vector P as
R = E(X" (K)X(K)) (3.2.35)
P = E(X" (k)d(k)) (3.2.36)
eguation (3.2.34) can be rewritten as
x = E(d" (k)d(k)) + 2P"W + W' RW (3.2.37)

Again, it is noted that the above cost function has Hermitian quadratic form, and isarea scalar.
The gradient of the cost function with respect to the weight vector can be obtained as
N=RW+P (3.2.38)
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If the correlation matrix R has an inverse, which indicates a unique global minimum for the cost
function, the optimum weight vector can be obtained by setting the gradient to zero as

W, =-RP (3.2.39)

opt
Substituting equation (3.2.38) into (3.2.24), the corresponding minimum mean square error is
expressed as

Xn = E(d"(K)(K)) - PTW,, (3.2.40)
and equation (3.2.37) can be expressed as
X =Xn (W - W,

.
) R(W- W, ) (3.2.41)
The above two equations will be used in the next chapter to derive the misadjustment for the

DFEXLMS agorithm.

3.2.4 On the Problem of More Secondary Sources Than Error Sensors

It has been pointed out that the choice of an ANC system with more secondary sources
than error sensors should be avoided because it |eads to the problem of an underdetermined
system [35]. An underdetermined system has infinite number of optimum solutions for the
weight vector. Some of the solutions are associated with very large control effort, which is
generaly not desired.

A simple system with 1 reference, 2 secondary sources and 1 error sensor is considered as
shown in Fig. 3.10a. As mentioned earlier, such a system is commutable between the adaptive
filter and the error path provided that the adaptive filter changes slowly compared with the
response time of the error path. The commuted system, shown in Fig 3.10b, exhibits strong
similarity with the multiple reference single channel system, shown in Figure 3.3.

The correlation matrix of a multiple reference single channel system has been obtained in
eguation (3.1.43). Since there are only two filtered reference signals in Fig. 3.10b, equation
(3.1.43) can be simplified as
EX,(0X,(Kk) - Xy(k)X, (k)Y
eX, (k)X (k) X, (k) X,(k)g
It should be noted that every term inside the above matrix is a sub-matrix. the influence

of the individual sub-matrix to the property of the correlation matrix R isignored and the
attention is focused on the cross-correlation of these matrices.

(3.2.42)

The filtered reference signals X, and X, are derived from the same reference signal x;
through different error paths, therefore X, and X, are correlated more or less depending on the

characteristics of the error paths. If the transfer functions of two error paths have no overlapped
frequency band (e.g. oneis high-pass, the other islow pass), X, and X, will be uncorrelated. In

this case, the system behaves like multiple reference ANC system with two independent
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references. However, such acase is scarce, usually %, and X, are strongly correlated due to the

close location of error paths. This correlation causes the two columns in the above matrix R
similar and leads to the problem of severe ill-conditioning.

If the difference between the two error paths isignored, which implies that the two
filtered reference signals X, and X, are exactly the same and the two columns in the above R
matrix are linearly dependent, the system becomes underdetermined. It should be noted that
underdetermining is the extreme case of ill-conditioning. As a conclusion, the ANC system with
more secondary sources than error sensorsis an ill-conditioned system, which usually requires
large convergence time, especialy when the FXLMS algorithm is applied.
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4 Implementation of the DFXLMS Algorithm

This chapter discusses the real time implementation of a multiple reference multiple
channel active noise control system. First, the multiple reference Decorrelated Filtered-X LMS
(DFEXLMYS) agorithm is developed. This algorithm differs from the traditional FXLMS
algorithm in that it decorrelates al the reference signals by preprocessing them through a set of
adaptive filters. Then, the convergence behavior and the misadjustment due to the gradient noise
of the DFXLMS algorithm are studied and compared with the traditional FXLMS algorithm.
Furthermore, several features of the special purpose microprocessor TM S320C30 are introduced,
and the discussions on how to efficiently take advantage of these features for the DEXLMS
algorithm are also presented. Finally, because there are alarge number of real time data to be
processed in the algorithm and large number of adjustable parameters for the system, a graphical
user interface (GUI) is provided to facilitate data monitoring, parameter modification as well as
DSP process control.

4.1 The Multiple Reference DFXLMS Algorithm
4.1.1 The Multiple Reference DFXLMS Algorithm

A block diagram of the DEXLMS algorithm is shown in Fig. 4.1, in which there are K
reference signals, M secondary sources, L error sensors. The number of the adaptive filters and
the number of error pathsare K° M and M” L respectively. In this configuration, each secondary
source is capable of canceling all the noises detectable through K reference sensors. It is obvious
from the structure that the algorithm can be split into two sections. In the first section, by pre-
filtering the reference signal x;, X,, -+, X, , aset of mutually uncorrelated reference signals

X, X,, -+, X, are obtained, and the second section deals with the traditional Filtered-X LMS
algorithm.

The first section is composed of k= (k +1) adaptive transversa FIR filters as shown in
Figure 3.5. The first output signal is obtained as
X, (K) = X,(K) + %, (k) A By, (k) +---+ X, (k) A B, (K) (4.1.1)
where the symbol A denotes convolution. Generally, the ith output signal can be obtained as
X (k) = x; (k) +X,(K) A A (k) +--+ X (K) A Ay (K) +

iiﬂ(k)A B(i+l)i(k) +"'+Xk(k)A Bki(k) (4.1.2)
The last output signal is obtained i i
Yk(k) = Xk(k) +¥1(k)A Akl(k) +"'+ik—1(k)A Ak(k—l)(k) (4.1.3)

As discussed in the Section 3.1.4, As and Bs vectors have redundancy in their first coefficients.
To avoid this redundancy, the first coefficients in either As or Bs vectors should be set to zero.
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Assuming that the coefficientsin Bs vectors are set to zero, and if the standard LM S algorithm is
applied to the decorrelation filters, the weight vectors can be updated as

b, (k+Li)=b, (k,i)- nx (k- )X, (k) i=142--M-1 (4.12.9)

a,, (k+Li)=a,(k,i)- nx (k- )x (k) i=012--M-1 (4.1.5)
where M is the number of coefficients for each decorrelation FIR filter. Now the mutually
uncorrelated signals X, X,, -+, X, are obtained in the above equations. The next step is to derive
the traditional multiple reference Filtered-X LM S algorithm. The error signal at the Ith error
sensor is obtained in equation (3.2.26), which can be rewritten as

M K
e, (k)=dy(k)+a & RTim ()W, 1=12,L
m=1 k=1
=d, (k) +X," (k)W (4.1.6)
where the symbol U denotes the filtered reference signal, and the subscript ml denotes the error
path from the mth secondary source to the Ith error sensor. The cost function is constructed as

x(k) = E?éeé_l (2 (k))g 4.17)

The gradient of the cost function with respect to the whole weight vector W is estimated using
the instantaneous value and is given by

N(k) = '"XW(k) @(If;l 2e, (K)X, (k) (4.1.8)

The weight vector updating equation is obtained as
L
W(k +1) = W(k) - m8 (2e,(k)X, (k) (4.1.9)
I=1
where

X, (k)= & X, (k)T (2)

m=1
and the output signal to the mth secondary source is the summation of the output signals from K
filters, which can be written as

K
u (k)= X"«(kw,, (k) m=12--,M (4.1.10)
k=1
Equations (4.1.9) and (4.1.10) form the FXLMS algorithm for the multiple reference multiple
channel ANC system shown in Fig. 4.1.

4.1.2 Convergence Analysis of the Multiple Reference DFXLMS Algorithm

It is well-known that the convergence speed of the LM S algorithm isinversely
proportional to the eigenvalue spread [23]. The eigenvalue spread is determined by both the
auto-correlation and the cross-correlation of the reference signals. If the eigenvalue spread is
large, the convergence speed becomes slow. The DFXLMS weight updating is obtained in
eguation (4.1.9), which can be rewritten as
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W(k +1) = W(k) - meLl (2(d, (K) + >A<T(k)w)5<,T (k)) (4.1.11)

Taking the expected value of both sides of the equation (2.3.9) and assuming that W(k) and X(k)
are independent yield
E(W(k +1)) = E(W(k)) - m(P + RE(W(K)))

= E(W(K) - m(- RW,, + RE(W(K))) (4.1.12)

where W, denotes the optimum weight vector defined in equation (3.2.38), R and P are the
correlation matrix and the cross-correlation vector defined in equations (3.2.36) and (3.2.37)
respectively. Defining the shifted weight vector as

W(K) = W(k) - W,, (4.1.13)
then
E(W(k +1)) = (I - mR)E(W(k)) (4.1.149)
The auto-correlation matrix R is symmetrical, thus it can be transformed into a diagonal matrix
through a unitary transformation [36].
R=QLQ’ (4.1.15)
where L isadiagona matrix, and its diagonal components are the eigenvalues of the matrix R.

Q isaunitary matrix, whose columns are the normalized eigenvectors of the matrix R.
Substituting equation (2.3.13) into equation (2.3.12) and using QQ'=I yield

E(W(k +1)) = Q(I - nL)Q"E(W(k)) (4.1.16)
Defining the primed weight vector as
V(K) = Q"W(k) (4.1.17)

eguation (2.3.14) becomes

E(V(k+1)=(1- mL)E(V(k)) (4.1.18)
Since the matrix R is non-negative definite, al its eigenvalues are non-negative. In order for the
primed weight vector V to converge, the convergence parameter mhas to be bounded such that

0<m<|i (4.1.19)

If the eigenvalue spread (I max/l min) iSlarge, athough it could takes only one step for the primed
weight corresponding to the maximum eigenvalue to converge, it takes many steps to converge
for the weight corresponding to the minimum eigenvaue. Therefore, the overall convergence
rate for the weight vector is still Slow. Since the DFEXLMS algorithm uses uncorrelated reference
signals, its eigenvalue spread are expected to be smaller compared to the conventional FXLMS
algorithm. It follows that the convergence rate of the DFXLMS agorithm is faster than the
FXLMS agorithm.

4.1.3 Gradient Noise and Misadjustment of the multiple reference DFXLMS Algorithm

If the convergence condition is satisfied, the weight vector will converge to the optimum
Wiener solution. However, the mean square error (M SE) will not converge to the minimum. In
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fact, the MSE of the DFEXLMS algorithm is always larger than the minimum, asis the case for
the LM S agorithm. Thisis due to the gradient noise in the weight updating equation, which is
rewritten as

W(k +1) = W(k)- m(N - N(k)) (4.1.20)
where N is the gradient noise. When the weight vector converges, the true gradient goes to zero,
and the gradient estimation used in the weight updating equation is equal to the gradient noise,
i.e

N(K) = é’i (2e, ()%, () (4.1.21)

and N isthe true gradient and can be written as
Ri(k) = 2(P + Rw(k))

= 2R(W(K) - W,,) (4.1.22)
Substituting equations (4.1.21) and (4.1.22) into (4.1.20) yields
Wik +12) = W(K) - m{2R(W(K) - W,,,)- N(K)) (4.1.23)

Transforming into the primed coordinates using equations (4.1.13) and (4.1.17), equation
(4.1.23) can be rewritten as

V(k +1) = V(k) - m2LV(K) - N(K))
= (1- 2nL )V (k) - N(k) (4.1.24)
where N(k) is the gradient noise in the primed coordinates. According to the Wiener filter
theory, when the weight vector converges to the optimum Wiener filter solution, X, (k) and
e,(n) areuncorrelated. If assuming that the disturbance signals are Gaussian noise, then X, (k)

and e, (n) areindependent. Furthermore, two additional assumptions are made here that, upon

convergence, 1) error signals at each error sensor have the same amplitude, 2) the filtered
reference signals have the same amplitude. Then, the covariance matrix of N(k) is obtained as

cov(N(k)) = E(N(K)NT (k))
= Eiféi 2e.(k)5<.(k)é’§ 2, (k)X (K)2

:4é E(ezu(k))é E()A(I(k))A(IT(k))

1=1

LY

=4x_ R (4.1.25)
Projecting the gradient noise irlto the primed coordinates

N(k) = Q 'N(k) (4.1.26)
Then, the covariance of N(k) becomes

cov(N(K)) = xy,L (4.1.27)

The covariance of V(k) can be expressed as
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cov(V(k)) = E(V(K)V (k))
=g((1- 2nL )V (k)VT (k)(1 - 2nL)) + nPE(N(KNT (k) +
nE(NCkVT (k)(1 - 2nL)) +mE((1 - 2nL V(KN (k)
= (1- 2nL)E(V(OVT (K))(1 - 2nL ) + nPE(N(KNT (k) (4.1.28)
Since the covariance of V(k+1) is equal to the covariance of V(K), it is obtained that
cov(V(k)) = (1 - 2nL )eov(V(K))(1 - 2nL) + n? cov(N(k)) (4.1.29)

Furthermore, since the components of V(k) are mutually uncorrelated, and the covariance of
V(K) is diagonal, thus

cov(V(k)) = (1- 2n)” cov(V(k)) + nfax,, L (4.1.30)
The above equation (4.1.30) can be rewritten
(1- L) cov(V(k)) = mx,, 1 (4.1.31)

Supposing that the convergence parameter is chosen to be small, i.e. nlL <<, the covariance of
V(K) is further simplified to
cov(V(k)) = mx,,| (4.1.32)
Since each weight noise is uncorrelated with other weight noises, the average MSE is equal to
the reference signal power multiplied by the sum of the variances of a single weight noise.
Accordingly,
B 5 ayariance of single

(Ave. excess MSE) = E(xi (k)) XN XK XN >% weight noise 5 (4.1.33)
where n is the filter length, k is the number of the reference signals, and m is the number of the
secondary source. From equation (4.1.33), the variance of a single weight noiseis nx_,., and the
trace, i.e. the summation of all the diagonal terms, of the correlation matrix R is

tr(R) = E(x2 (k) xn X xm (4.1.34)
Thus, the excess MSE is obtained as
(Ave. excess MSE) =tr(R)mx;, (4.1.35)

and the misadjustment of the DFXLMS and FXLMS algorithm is
M = (Ave. excess MSE)

Xmin

=tr(R)m (4.1.36)
Misadjustment tells how much the M SE after convergence deviates from the minimum M SE.
The misadjustment is determined only by the convergence parameter mand the trace of the
correlation matrix R, but not by the eigenvalue spread of the correlation matrix R. Thus,
preprocessing the reference signals with the DFEXLMS algorithm does not improve the
misadjustment compared with the FXLMS algorithm. In addition, the minimum M SE does not
depend on an adaptive algorithm, it is therefore expected that the FXLMS and DFXLMS
algorithms have the same M SE after convergence.




4.2 Implementation with TMS320C30 DSP

It is noted that there are extensive amounts of computations associated with the
DFEXLMS agorithm. In real time control, the computations need to be carried out within each
sample interval, the length of which is determined by the sampling frequency. Without a
dedicated microprocessor, it is almost impossible to accomplish those computations while
maintaining the required sampling rate.

Digital signal processors (DSP) are special purpose microprocessors with sophisticated
bus structure and special instruction set. The TMS320C30 [37][38][39] is a high-performance
CMOS 32-hit floating-point device with 60-ns single circle instruction execution time. The
TMS320C30 can perform parallel multiplications and ALU operations on integer and floating
point data in a single cycle, thusit has the functionality of parallel addressing. This feature could
substantially improve computational speed since an adaptive algorithm is essentially comprised
of a sequence of multiplications and additions.

Another significant feature is that the TM S320C30 provides a circular addressing mode.
In the DEXLMS algorithm, extensive computations associated with convolution and correlation
require the implementation of circular buffersin memory. A circular buffer is used to implement
adliding window that contains the most recent data to be processed. As new datais brought in,
the new data overwrite the oldest data. This functionality can be achieved efficiently by a
circular addressing mode without any explicit conditional operations.

It is noted that each adaptive filtering process can be divided into two steps: (1) filtering
step, i.e. convoluting the tapped input vector with the filter weights to generate the filter output,
(2) weight updating step, i.e. updating the weight vector according a specific adaptive algorithm.
In the appendix A, two functions are introduced to carry out the functionality of each step. Based
upon these two functions, implementation of the DFXLMS algorithm is more flexible and
reliable.

It is also desirable for the DSP code to provide arandom signal generator and a sine wave
signal generator. These built-in signal generators can be used as noise sources to drive the
primary speakers, in the mean time, the signals from the signal generators are also used as the
reference signals in the ANC system. This enables broadband or single frequency experiments
without external noise sources. Most importantly, the reference signals are completely coherent
so that attention can be focused on other interested issues without worrying about the coherence.
Moreover, since the primary noise is generated inside the DSP, the noise source is completely
controllable. If some delays are added to the primary path through the DSP operation, the
causality problem can be avoided.

TI optimizing C compiler, which takes advantage of the special features of the
TMS320C30, is able to generate efficient assembly code. The frame of the DFXLMS algorithm
isimplemented using C language. The code written in C language generally has better
maintainability and readability compared with that written in Assembly language, however, the
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execution speed is compromised. To maximize the execution speed of the algorithm, the key
parts of the algorithm are implemented using assembly language.

4.3 Graphical User Interface

There are many adjustable parameters in the DFXLMS agorithm, and the optimum
values of those parameters vary with different applications. For some parameters, e.g. the
convergence parameter mand the sampling frequency fs, it is amost impossible to assign the
optimum values at the beginning. The process to obtain the optimum value is largely based on
trial and error. There are also massive data needed to be processed in the DFXLMS algorithm. It
is extremely helpful that these data be monitored, and measures be taken to control what is going
on during the adaptive process.

Based on the above considerations, a graphical user interface running under Microsoft®
Windows is provided to fulfill those requirements. The GUI is also responsible for downloading,
initializing and stopping the DSP code. As shown in Fig. 2.3, The main window of the GUI is
composed of atitle bar, amenu bar, a control bar, a status bar and several smplistic
oscilloscopes.

The prominent feature of the main window is its control bar, which lies on the right side
of the frame. The parametersin the control bar can be modified by one click or direct typing
without pulling down the main menu and opening a dialog box. On the upper part of the control
bar are three radio buttons, which represent the three status of the DSP. By default, the DSP
status is idle, which means that there are only some I/O operations and no sophisticated
computations involved. The estimation of error paths is performed if the DSP is running under
the system identification status. The control status, by name, corresponds to the process when the
DSPistrying to minimize the error signals. The other components in the control bar are for
sampling frequency, control filters, decorrelation filters, display options and process controls.

In the main window are maximum eight simplistic oscilloscopes, which are used to
display different data for different DSP status. When the DSP status is idle, the oscilloscopes
simply display input and output data from and to 1/O board. When the DSP statusis system
identification, the oscilloscopes display the error signals and the residual of the system
identification. If the system identification is carried out correctly with sufficient number of filter
coefficients, the residua of the system identification should be very small. Thusit can be seen
whether the system identification is successful or not. When the DSP status is control, the
oscilloscopes display error signals as well as the control output signals. Care should be given to
watch these signdl, if error signals go up, the DSP process should be immediately stopped, and
the cause be examined carefully, otherwise, damage to the DSP board may occur. When there are
more than 4 channels of inputs and outputs involved, the displayed channels can be switched by
clicking the push buttons in the control bar. Thus, all the channels can be monitored.
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The menu bar in the main window provides various options, for which there is no space
to implement in the control bar. It is desirable to save various parameters after quitting the
program so that the same parameters can be used next time. Thisis achieved with the file menu,
which provides the functionality to open the default or other existing files and save files. The
second menu is to download different DSP codes for different purposes. The third menu is
dedicated to those parameters not included in the control bars. There are three sub-menus
associated with the third menu, each of them bring up a dialog box. The dialog box brought up
by configuration sub-menu enables the selection of the number of reference signals, the number
of control channels and the number of error sensors. Different types of reference signals can also
be selected. The dialog boxes brought up by system ID and control sub-menusisfor selecting the
FIR filter length, convergence parameters and et. al.. The fourth menu is to upload various
signals from the DSP memory so that some post-process can be done for those data. The fifth
menu is to display the coefficients of the control filter and the system identification filter in both
the time and frequency domain. Looking at these coefficients graphically can give additional
insight into the problem. For example, if most of the coefficients for the system identification are
close to zero, the number of coefficients needed to identify the error path can be reduced. If
anticipating the secondary path has a sharp resonance peak, while the frequency response of the
FIR model is not sharp enough at resonance, more coefficients are probably needed. The last
menu is to provide copyright information and on-line help. The status bar in the main window
provides the running status information associated with the GUI as well as the DSP.

There are several error protection features with the GUI: (1) the system identification has
to been done before real time control, and if any parameter associated with error paths
identification (e.g. sampling frequency, the number of channels, or the number of errors) has
been changed, the error paths have to be re-identified. (2) Any DSP has computational limits.
Therefore, the computational sensitive parameters such as the sampling frequency, the filter
length, the number of reference signals and/or the control channels cannot increase without
bound. If the values of the parameters are too high such that the DSP computation limit is
exceeded, the GUI will issue beeping signals. (3) When the analogue input voltage is out of
range and causes the A/D converter get invalid data, the GUI issues a warning and exits
immediately.
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Figure 4.2 Main window of graphic user interface running under Microsoft® Windows.
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Chapter 5 Simulation and Experimental Results

In the forgoing chapters, thelgorithm (DFXLMS) and the comfurations of multiple
reference active noise controMeabeen praented alag with a discussion ofarious assoctad
issuesln order to very the dgorithm and the comjurations, gtensive simulations and
experiments were condted on a \brating plate with multiple primgy excitations. The results
corroborate the tlogetical predictions: 1) the performee of the MRMI configuration is
generdly better than that of the MR configuration, 2) the DFXMS dgorithm can improve the
condition number of the correlation matrix of the filtered referergeal thus increasmthe
convergace geed compared to the conventional FXLM Saaipm.

In this chapter, first introduced is the tagtupon which both the simulations and the
experiments are Isad. Then, the IR models of theystem transfer functions (primapath
transfer functions and errpath transfer faction) are preented. Based upon théRFmodels,
computer simulations are camded. Simulations are effective and efficient to in\gege the
algorithms and comjurations. However, reaystems are caaminatedoy the pghysical aspects
such as measurement errors, non-coherent noise, conversiegn(&fD, D/A), non-lineaty,
non-stationaty and the like. Therefe, experimental implementation is very p#il to
demonstrate the effectiveness and edficy of the dgorithm.

5.1 Test Rig

In a complicated ANGystem, eg. an aircraft cabin, the fuselageyrgenerae noise due
to direct applied forces as well as pressumeation. The testig usedhere gives consideration to
these twdypes of &citations. As shown inigure 5.1, here are two disturbancelgoes, me
secondey saurce and one eor microphone dr the platesystem. e plate has dimensions of
0.381m long and 0.305m wide and is mounted in ayhsteel frame, which produces negligible
rotation and displacement of the bournyapproximating clamped boundary conditions. The
steel frame is mounted in a rigid wall with one siderfg¢coward a reerberation chatver and
the other side toward amechoic chamber. The plate iscetedby two distinctive noise sources;
one is the acoustical disturizze from a large spkar, while he other is the structural
disturbance from a piezoelecticeramic/ptymer composite transducd?4T #1) mounted on
the plate. The secondecontrol source actg on the plte is anothePZT (PZT #2). The
positions of the PZTs aseleded such thatry plate mode of ader (44) or less can bexeited
{40] as shown in Figure 5.2. The ersensor is a microphone located in the direction
apprximatdy pependicular to the center of the plate.
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Figure 5.1 System setup for the simulations and the experiments.
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Figure 5.2PZT locations and node lines for the tests.

60



5.2 Simulation Results

In this section, the theoretical analysis on a multiple reference ANC presented in the
previous chapters is verified through various computer simulations. The first section discusses
the modeling of the test rig using FIR filters. Then, based on the model, two control
configurations discussed in section 3.1.5 are simulated. Finally, the performance of the
DFXLMS algorithm is simulated and compared with the traditional FXLMS algorithm. All the
simulations are carried out with MATLAB which provides built-in support for matrix
operations and special DSP toolboxes to facilitate the implementation.

5.2.1 System Measurement and Modeling

The system shown in Figure 5.1 has two primary paths (from the speaker through the
plate to the error microphone and from the PZT #1 to the error microphone) and one error path
(from the PZT #2 to the error microphone). The transfer functions of the two primary paths and
the error path were modeled with FIR filters. In order to obtain the FIR models of the system, the
frequency response functions (FRF) haven been measured with a B&K 2032 digital signal
analyzer, and 801 frequency response data points equally spaced between 0 to 400 Hz were
obtained. These frequency response data were fitted with FIR filters using the least square
method [41]. The frequency range is constrained to be below 400 Hz due to the limitation of the
processing speed of the digital signal processor, since more FIR coefficients and higher sampling
frequency are required to control a higher frequency range. The computational load is in direct
proportional to the number of coefficients, therefore, when the frequency range increases, the
DSP is required to perform more computations in a shorter period of time as determined by the
sampling frequency. Within the chosen frequency range, a maximum of five structural modes
can be excited. Each mode and its corresponding measured natural frequency are shown in Table
5.1.

Table 5.1Excited modes and measured natural frequencies

Mode (1.2) (2.1) (1.2) (2.2) (3.1)
Frequency (Hz) 115 201 265 342 350

There are 128 coefficients for each FIR filter. The number of coefficients is chosen such
that both the phase and magnitude of the transfer function can be well matched at the frequency
range where large noise cancellation is desired. The match at other frequency ranges (e.g. below
40 Hz) is not very important, since the noise cancellation at those frequency ranges is
unobtainable due to the dynamic limitations of the system components (e.g. PZT and
microphone). The sampling frequency is chosen to be 800 Hz which is exactly the Nyquist
frequency for the system.
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The primary transfer functions and the response of their corresponding FIR models are
shown in Figure 5.3 and Figure 5.4. It should be noted that the two primary transfer functions are
significantly different. The transfer function due to the acoustical disturbance from the speaker
has dominant response at (1, 1) mode because the speaker induces an acoustical wave normal to
the plate, while the transfer function due to the structural disturbance from the PZT has dominant
response at modes (2,2) and (3,1) due to the location of the PZT #1 on the plate. The error path
transfer function and its FIR model response are shown in Figure 5.5. The error path model is
essential for the adaptive algorithms (FXLMS and DFXLMS) to estimate the correct direction of
the cost function gradient. However, as long as the phase error between the error path and its
model is within 90 degrees, the stability for both algorithms is assured [42].

It should be noted that the error path and the primary path due to the structural
disturbance can be more efficiently (with less coefficients) modeled with IIR filters, especially at
the resonance. However, since the experiments model the error path with a FIR filter, more
comparable results can be obtained with the simulations based on FIR filters.

62



Magnitude of tplel

Frequency (Hz)

400

10" : : :
10° = o A M E
E v A
I ‘ i
1 \
10 ¢ I \ ]
% I AW \ ]
2 iy 10 L !
% —’ Al ./,J \ | ,\ 4
< AR | il Rk )
= il @ |
10 " I .
10°° i
—— Measured FRF
—— FIR Model
10_4 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Frequency (Hz)
Phase of tplel
200 T
1501
100
< 50
[<5]
o
(=]
(3]
= (6]
[«b]
(2]
I
=
& 50
!
-100 .
-150 1
—-200
[0} 150 200 250
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5.2.2 MRMI versus MRSI

As discussed in section 3.1.5, two configurations (MRSI and MRMI) are usually
considered for multiple reference ANC, and their performances are significantly different. This
section investigates the performance difference of the two configurations as shown in Figure 5.6,
in which two independent random signal generators are used as the noise sources. For the MRMI
configuration, the two reference signals are obtained directly from the two random signal
generators. Since the reference signals are uncorrelated, there is no preprocessing involved in the
simulation. The output signals of the two filters are added together to drive the secondary source.
For the MRSI configuration, the reference signal is the summation of the signals from the two
random signal generators.

The optimum filter weight vectors for the MRMI configuration can be calculated using
the norm equation defined in equation (3.1.29). The expected values inside theRnaaitixhe
vectorP were approximated using the average of 4096 samples. After obtaining the optimum
weight vectors through the matrix inversion and multiplication, they are substituted into the
controller filters. A sequence of error signal after control is shown in Figure 5.7 (b).

The optimum filter weight vector for the MRSI configuration can be calculated using the
norm equation defined in equation (2.2.13). It should be noted that the reference signal is the
summation of the two disturbance signals, and there is only one control filter in contrast to the
MRMI configuration. The expected values inside the m&raend the vectoP for the MRSI
were similarly approximated using the average of 4096 samples. After obtaining the optimum
weight vector, the sequence of the error signal after control was calculated in the same way as
that for the configuration MRSI, and the results are shown in Figure 5.7(a).

Figure 5.7 shows that the error signal for the MRMI is much lower than that for the MRSI. This
indicates that the MRMI has better performance than the MISI. Although perfect noise
cancellation for the MRMI can be achieved theoretically since the system is causal, completely
coherent and without any additional noise, the error signal does not reach zero. This is due to the
finite filter length effect since each controller filter for the MRMI has only 128 coefficients. Each
controller filter for the MRMI has 128 coefficients, while the controller filter for the MRSI has

256 coefficients. The number of coefficients is selected such that the same number of filter
coefficients can be implemented in the DSP without exceeding its computational limits when
doing real time experiments.

A comparison of the power spectrum is shown in Figure 5.8, which clearly indicates that
the performance of the MRMI is much better than that of MRSI. In fact, 10 dB overall noise
reduction for the MRMI is achieved, while only about 3 dB overall noise reduction is achieved
for the MRSI. It should be noted that the maximum noise reduction occurs in the vicinity of the
resonance frequencies, while at the off-resonance frequencies, only a small amount of noise
attenuation is achieved.
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5.2.3 Effect of Decorrelation Filters

As mentioned earlier, feedforward active noise control requires that the reference signals
be coherent with the error signals. The reference signals are usually measured with various
sensors, and each reference sensor may be influenced by more than one noise source. As a result,
the reference signals are correlated to some extent regardless of the characteristics of the noise
sources.

In this simulation, random signal generators were used to produce two independent noise
sources, and the reference signals were obtained indirectly from the two noise sources. The
relationship between the reference signals and the noise sources are shown in Fig.5.9. The first
reference signak is exactly the same as the first noise source signdhe second reference
signalr; is the combination of the second noise sougcnd the first noise source filtered
through a band-pass filter, that is

r(k) = n, (k) (5.2.1)

RK)=Co*n{R+n( B H 2 (5.2.2)
where G is a constant. The two uncorrelated noise source signasdn,, are uniformly
distributed between -1 and 1. The cut off frequencies for the band pass filter H(z) are selected to
be 160 Hz and 320 Hz. A FIR filter with four coefficients is used here to implement the band
pass filter. The windows method is adopted to design the band pass FIR filter and the resultant
four coefficients vector is {-1.009, 6.875, 6.875, -1.009}.

Noise source n,

Reference sensor r;

Noise source n, Reference sensorr,

( ) G >

Figure 5.9 Noise sources and reference sensors for the simulations.
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The two reference signals in equations (5.3.1) and (5.3.2) are correlated due to the
common contributions from noise sourgeand their correlation function can be varied if a
different constant gis selected. Corresponding to each selected conggacd@putations are
carried out to obtain the correlation matrix R for the reference signals, the decorrelated reference
signals, the filtered reference signals, and the decorrelated filtered reference signals. Based on
the correlation matrix, the corresponding eigenvalue spread is also computed and the results are
shown in Table 5.2.

Table 5.2Eigenvalue spread versus correlation

Co Reference signals Reference signals Filtered reference Filtered referencg
without D filter with D filter without D filter with D filter

1.0 17.7 3.2 8.4x10 2.3x10

0.5 48.2 3.4 2.9x10 3.1x10

0.2 242.5 3.0 1.1x10 2.2x10

It is clear that the eigenvalue spread of the reference signals is smaller after it is
processed through the decorrelation filter. In fact, the convergence speed is determined by the
filtered reference signals instead of the reference signals. Thus, in order to improve the
convergence speed, the eigenvalue spread for the filtered reference signals must get smaller as
well. This requirement is indeed satisfied since, although decorrelation is only applied to the
reference signals, the correlation between filtered reference signals is also affected. It is also
interesting to note the eigenvalue spread for the filtered reference signals is much larger than that
for the reference signals. This is due to the stretching effect of the error path.

N,Co

rh=n; r,= an(Z) + Nn,C,

—_— H(Z) =

Bandpass Filter

=>

Decorrelation Filter

- D(Z)

Figure 5.10Input and output configuration for the decorrelation in the simulation.
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In this simulation, the decorrelation filter is implemented with a fixed Wiener filter
instead of an adaptive filter since the correlation between the reference signals is time invariant.
The input and output configuration of the decorrelation filter is shown in Figure 5.10. The
requirement for the decorrelation filter is to remove the component in the referencesignal r
which is correlated with the reference signaBuch a requirement is essentially a system
modeling problem if the band-pass filter is considered as a plant. In theory [43], the band pass
filter can be perfectly modeled with the decorrelation filter since the plant disturbance due to
noise source, is uncorrelated with noise sounee The desired decorrelation filter weight
vector can be calculated using equation (2.2.13), in which the filtered referencexsgmaithe
desired signadl are replaced brs andr, respectively. Sample averaging is used to estimate the
expected value and the weight vector is calculated as {1.025, -6.888, -6.863, 1.003}.

When the constantds zero, the two reference signals are completely correlated. It
follows that the second reference signal after decorrelation is almost zero. In this case there is no
need to use a multiple reference control configuration, since a single reference control
configuration should perform equally as well.

The optimum error spectrums with and without the decorrelation filter were obtained
when the controllers are operated as the fixed Wiener filters. The results indicate that the
optimum error signals are almost the same regardless of whether or not the decorrelation filter is
used, as shown in Figure 5.11. This result is expected, since although the decorrelation filter
changes the eigenvalue spread of correlation matrix of the reference signals, it does not improve
the coherence of the system.

In order to examine the effect of the decorrelation filter on improving the convergence
speed, the conventional FXLMS algorithm discussed in section 2.3.1 was first applied. After
letting the controller weight vectors converge for 30 seconds, the convergence process was
frozen to obtain a set of partially converged weight vectors. Then, these weight vectors are used
to compute the spectrum of the error signal. In the same way, the spectrum of the error signal for
the DFXLMS algorithm discussed in section 4.1 was also computed. The results are shown in
Figure 5.12. After 30 seconds, 4.6 dB noise reduction was achieved without the decorrelation
filter, while 6.2 dB noise reduction was achieved with the decorrelation filter. This means that
the convergence speed with the Decorrelated FXLMS algorithm is faster than the conventional
FXLMS algorithm, since the eigenvalue spread of the system is smaller after the decorrelation of
the reference signals, as indicated in Table 5.2.

The learning curves for both the DFXLMS algorithm and traditional FXLMS algorithm
are shown in Figure 5.13. The results shows that the convergence speed of the DFXLMS
algorithm is about 3 times as fast as that of the traditional FXLMS algorithm, and the
improvement of the convergence speed is comparable in magnitude to the improvement of the
corresponding eigenvalue spread as shown in Table 5.2. It is very interesting to observe that,
after 6 minutes of convergence, the power of the error signal without the decorrelation filter is
still larger that that with the decorrelation filter. Such a result does not indicate that the
decorrelation filter improves the mean square error of the FXLMS algorithm. In fact, the mean
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square error stays the same since the optimum mean square error does not change with the
decorrelation filter as shown in Fig. 5.11, and the misadjustment stays the same after the
preprocessing through the decorrelation filter. The disparity between the mean square error after
6 minutes is due to the very long convergence time for both algorithms because the eigenvalue
spread for the filtered reference signals is extremely large. If sufficient time is given for the two
algorithms, it is expected that the mean square errors will approach the same value.
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spectrum of error signal after 30 seconds
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5.3 Experimental Results

In order to examine the practical issues associated with multiple reference ANC,
experiments were conducted, and the results are presented in this section. In contrast to the
simulations discussed in section 5.3, the experiments must be conducted in real time, which
means that extensive computations have to be carried out during each sampling interval such that
the control output signals can be generated to drive the secondary source. This computational
requirement implies the use of DSP.

For the experiments, the controller is based on adaptive FIR filters, and the number of
coefficients for each FIR filter is selected to be 128. The error path between the secondary source
(PZT #2) and the error sensor is also modeled with a FIR filter, and the same number of
coefficients is used. The frequency range of the noise field is selected to be below 400 Hz. These
parameters are selected based on the computational limit of the DSP, since increasing frequency
range generally requires more filter coefficients to get satisfactory results, which in turn requires
more computations.

The test rig has been discussed in section 5.1, and the block diagram showing the various
elements for the experiments is presented in Figure 5.14. The heart of the system is the
TMS320C30' DSP board, which is used to implement the algorithms. The A/D and D/A
conversions are carried out through two additional I/0O boards, which provide 32 input channels
and 16 output channels. The DSP board along with two associated I/O boards is plugged into a
PC. A graphical user interface (GUI) running under the host PC is provided to adjust various
control parameters and display DSP data. Since the disturbance signals generated within the DSP
are digital in nature, they are transformed into analog signals through D/A converters to drive the
primary noise sources (speaker and PZT #1). Similarly, the control signal is also transformed
into analog signal through D/A converters to drive the secondary source (PZT #2). Since the
frequency range for the experiments is selected to be below 400 Hz, all the signals are low-pass
filtered so that the frequency components above 400 Hz are negligible. In addition, since the
signals generated within the DSP have very small power, in order to drive the speaker and PZTs,
they are also fed into power amplifiers. It should be noted that the signal from the error
microphone is fed into a high-pass filter to eliminate the dc signal drift.

In the experiments, the disturbance signals were generated through the DSP and were
directly used as the reference signals. As a result, the reference signals are perfect with unity
coherence function and no feedback from the secondary source. This should be contrasted to real
applications, in which the reference signals are usually measured through various types of
sensors. The use of reference sensors usually results in measurement noise and feedback signals.
Thus, in real applications, the selection of the positions for the reference sensors is very
important in order to get good coherence and minimal feedback. In addition, the causality
problem may be avoided if some signal delays are added in the primary path through the DSP
buffers.
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The controllability and observability of each noise source are first examined in the
experiments. With only the acoustical disturbance being excited, 7.8 dB overall noise reduction
was obtained as shown in Figure 5.15. While, with only the structural disturbance being excited,
12.6 dB overall noise reduction was achieved as shown in Figure 5.16. It is interesting to note
that, in Figure 5.15, the (1,1) mode is the most dominant mode observed with the error
microphone, while, in Figure 5.16, all the modes except the (2,1) mode are equally observed. It
should also be noted that the noise reduction at the resonance frequencies is much greater than
that at the off-resonance frequencies.

As for the simulation shown in Section 5.2, the performance of the two different
configurations (MRSI and MRMI) as well as the convergence speed of the two algorithms
(FXLMS and DFXLMS) are compared. The similar experimental results are presented in the
following subsections.
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5.3.1 MRMI versus MRSI

As discussed in Section 3.1.5, when there are multiple noise sources with different paths
to the error sensors, the MRMI configuration is needed to achieve satisfactory noise reduction.
Although the MRSI configuration simplifies the ANC system, the noise control effect is
generally compromised.

In this experiment, two uncorrelated disturbance signals were generated with random
signal generators to drive the primary sources for both configurations. For the MRMI
configuration, each reference signal was obtained directly from each disturbance signal, and no
decorrelation filter was needed since the reference signals were uncorrelated. For the MRSI
configuration, the reference signal was obtained by summing the two disturbance signals
together.

A comparison of the power spectrum of the error signal before and after control using the
two configurations is shown in Figure 5.18. The results were based on the FXLMS algorithm,
whereas the similar results obtained in the simulations were based on the fixed Wiener filters.
Only 2.3 dB noise reduction with the MRSI configuration was achieved, while, overall 11.6 dB
noise reduction was achieved with the MRMI configuration. The poor performance of the MRSI
configuration is expected since the error signal is due to multiple noise sources passing through
multiple different paths as explained in Section 3.1.5. The performance difference between two
configurations can also be explained through coherence analysis.

Measured with a B&K 2032 signal analyzer, the ordinary coherence functions between
the reference signals and the error signal are shown in Figures 5.18 and 5.19. Since the two
coherence functions for the MRMI configuration are supplementary throughout the frequency
range, it is therefore possible to achieve good overall noise reduction. However, the coherence
function for the MRSI configuration is very poor for most of the frequency range, thus, it is
impossible to achieve good noise reduction.
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Spectrum of Error Signal
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5.3.2 Effect of Decorrelation Filters

The effectiveness of the decorrelation filter to improve the convergence speed has been
demonstrated in the simulation discussed in Section 5.3.2. The effect of the decorrelation filter is
now experimentally investigated. Except otherwise stated, all the parameters in these
experiments are the same as those used in the corresponding simulation.

The conventional FXLMS algorithm and the DFXLMS algorithm were applied, the auto-
spectrum of the corresponding error signals was measured as shown in Figure 5.20. Both auto-
spectrums were obtained after 30 seconds of convergence time, and the convergence parameter
was chosen to be 0.01 for both control algorithms. The results indicate that 9.0 dB noise
reduction was achieved with the DFXLMS algorithm, while only 5.3 dB noise reduction with the
conventional FXLMS algorithm. A smaller convergence parampte.001) was also used, and
the results are shown in Figure 5.20. Although both algorithms converged slower, the same
tendency showing that the DFXLMS can achieve larger noise reduction was observed. As a
conclusion, the DFXLMS algorithm converges faster than the conventional FXLMS algorithm
since the eigenvalue spread of the filtered reference signals is smaller after the decorrelation
processing, as shown in Table 5.2.

In order to measure the learning curve, the convergence processes of the FXLMS
algorithm and the DFXLMS algorithm were started, and the error signal power at 5, 10, 15, 25
... and 360 seconds were measured. These values representing the power of the error signal form
the learning curves as shown in Figure 5.22. As in the simulation, the results indicate that the
Decorrelated FXLMS algorithm converges about three times faster than the FXLMS algorithm.
It is interesting to note that the error signal power for the Decorrelated FXLMS is still larger than
that for the FXLMS algorithm after 360 seconds. This, however, does not imply that the
Decorrelated FXLMS algorithm can improve the steady state mean square error. In fact, the
steady state mean square errors for both algorithms are the same, as discussed in the simulation.
Since the eigenvalue spread for the filtered reference signals are extremely large, excessively
long convergence time is required for the error signal to reach the steady state.
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Spectrum of Error Signal after 30 seconds, u = 0.01
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Figure 5.20Comparison of the spectrum of the error signal after 30 se¢e1@d81, with
decorrelation filters versus without decorrelation filters.



Spectrum of Error Signal after 30 seconds, u = 0.001
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Chapter 6 Conclusions and Future Works

6.1 Conclusions

The behavior of multiple reference broadband active noise control has been studied in
both the frequery and time domain, it was particulginoted that if multiple referencegsals
are orrelated, the arrespondag system will be ill-conditioned, which results in slow
convergace $eed and fgh sensitiviy to measurement e

An approach fodecorrelatng reference sigals has been discusseddé@ on the Wiener
filter theay and Gram-Schmidt ortlgonalization theorem. Furthermore, the multiple reference
DFXLMS dgorithm was developed to handle the situation where there are multiple correlated
reference ignals. The DFXMS dgorithm differs from the traditional AXMS in that the
referenceiginals are preprocessed througdeof decorrkation filters.

The multiple reference gite input (MRSI) configuration has been compared with the
multiple referace multiple input (MRAI) configuration.It was noted that laen there are several
independent noise sources, the MIRconfiguration performs much better than the SR
configuration. The two confjurations can achieve cparable results oty when theprimary
paths are similar.

The above conclusions has been demonstratedgimsimulations andx@eriments on a
plate. The gperiments indicate that the DFXLM$garithm could not oly increase the
convergace geed, but redce the nae level as well.

There are more computations involved in the RIS algorithm than in the traditional
FXLMS agorithm. The computational cost increases with the number of neéesgnals and
the number of coeitients for each decorrelation filtén practice, whether to alpypthe
DFXLMS dgorithm or the FXLMS depends on theadjty of the reference siwpls and the DSP
speed.

6.2 Futur e Works

Multiple reference active noise control is nigifor complex gstem, in which there are
multiple noise sources. The characteristics of the noise sourced drafieamt impact on the
guality of the referace signals. On the lm¢r hand, the refenee sgnals are usubl obtained
throughvarioustypes of reference sensorsierefore, lhe positions and the number of refee
sensors also determines the chiamastics of the referencegsials. As a result, it is ghly
suggested that the optimization of the referesecesors be studied. The optimization should
include both the position and the number of reference sems@sme real applications when
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the exact number of noise sources is not identifiable, the position and the number of reference
sensors are usually coupled in the optimization process, and the position of the reference sensors
has crucial impact on the number of sensors needed. Therefore, the basic optimization criterion
could be achieving maximum noise reduction with minimum reference sensors while keeping the
reference signals as uncorrelated as possible.

For a complex system, the computations involved in the multiple reference active noise
control are extremely intensive, especially when multiple channels are applied to achieve global
noise control effect. This computational requirement suggests the study of efficient algorithms
such as frequency domain block algorithm. Furthermore, it is suggested to explore other
algorithms to implement more efficiently when multiple reference signals and multiple channels
are involved.

There are many other adaptive algorithms for the ANC, which deliver diverse
performance due to the different cost functions or the different filter structures. It is possible that
some algorithms are less sensitive to the eigenvalue spread of the ANC system. Therefore, it is
suggested that the behavior of other algorithms using correlated reference signals be studied and
optimized.

91



Bibliography

[1]
[2]

[3]
[4]
[5]
:
[8]
[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

P. Leug, “Process of Silencing Sound Oscillations,” U.S. Patent No. 2,043,416, 1936.

H. F. Olson and E.G.May, “Electronic sound absorber,” J. Acoust. Soc. Am., 28 966-972,
Sept. 1956.

L. J. Eriksson and M. C. Allie, “Correlated active attenuation system with error and
correction signal input, “ U.S. Patent 5,206,911, Apr. 27, 1993

L. J. Eriksson, “Active sound attenuation system with on-line adaptive feedback
cancellation,” U.S. Patent 4,677,677, June 30, 1987.

J. S. Vipperman, R. A. Burdisso, and C. R. Fuller, “Active control of broadband structural
vibration using the Ims adaptive algorithm,” Journal of Sound and Vibration (1993) 166(2),
283-299.

S. Haykin, Adaptive Filter Theory, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1991.

C. R. Fuller and A. H. von Flotow, “Active Control of Sound and Vibration,” IEEE Control
Systems, 9-19, December 1995.

S. J. Elliott, P. A. Nelson, “The active control of sound,” Electronics & Communication
Engineering Journal, 127-137, August 1990.

S. J. Elliott, I. M. Stothers and P. A. Nelson, “A Multiple Error LMS Algorithm and Its
Application to the Active Control of Sound and Vibration,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-35, No. 10, 1423-1434, October
1987.

S. J. Elliott, C. C. Boucher and P. A. Nelson, “The Behavior of a Multiple Channel Active
Control System,” IEEE Transactions on Signal Processing, Vol. 40, NO.5, May, 1992.

D. M. Melton and R. A. Greiner, “Adaptive Feedforward Multiple Input, Multiple Output
Active Noise Control System”, Proc. IEEE ICASSP, 1992.

D.Guicking and M. Bronzel, “Multichannel Broadband Active Noise Control in Small
Enclosure,” Proc. Inter-Noise 90, 1255-1258, 1990.

T. J. Sutton, S. J. Elliott, A. M. McDonald, and T. J. Saunders, “Active Control of road
noise inside vehicle,” Noise Control Eng. Journal 42(4), 137-147, Jul-Aug, 1994.

W. B. Mikhael, P. D. Hill, “Acoustic noise cancellation in a multiple noise source
environment,” IEEE International Symposium on Circuits and Systems Proceedings, p. 3
vol. 2915, 2399-402, 1988.

R. B. Wallace, R. A. Goubran, “Parallel adaptive filter structures for acoustic noise
cancellation,” IEEE International Symposium on Circuits and Systems, P.6 vol. 3028, 525-
8 vol.2, 1992.

J. Y. Chung, M. J. Crocker, “Measurement of Frequency Response and Multiple Coherence
Function of the Noise Generation System of a Diesel Engine,” J. Acoust. Soc. Am. 58,
635-642 1975.

M. E. Wang and Malcolm J. Crocker, “On the Application of Coherence Techniques for
Source Identification in a Multiple Noise Source Environment,” Journal of Acoust. Soc.
Am. 74(3), 861-872, September 1983.

Craig M. Heatwole and Robert J. Bernhard, “Reference Transducer Selection for Active
Control of Structure-borne Road Noise in Automobile Interiors”, Noise Control Eng. 44
(1), 1996 Jan-Feb.

92



[19]

[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]
[38]

Masato ABE, Guo-Yue Chen and Toshio Son, “A method to increase the convergence
speed by using uncorrelators in the active control of multiple noise sources,” Proc. Inter-
Noise 93, 759-762, 1993.

C. R. Fuller, S. J. Elliott and P. A. Nelson, Active Control of Vibration, Academic Press
Inc., London, Great Britain, 1996.

C. R. Fuller, “Active control of sound transmission/radiation from elastic plates by
vibrational inputs. I. Analysis,” Journal of Sound and Vibration, 136, 1-15, 1990.

R. A. Burdisso, J. S. Vipperman, and C. R. Fuller, “Causality analysis of feedforward-
controlled systems with broadband inputs,” J. Acoust. Soc. Am. Vol. 94, No. 1, 234-242,
July 1993.

B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice-
Hall, 1985.

S. Thomas Alexander, Adaptive Signal Processing, Springer-Verlag New York Inc. New
York, NY, 1986.

J. M. Cioffi and T. Kailath, “Fast, recursive-least-squares transversal filters for adaptive
filtering,” IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-32, pp. 304-337.

G.A. Clark, S. K. Mitra, and S. R. Parker, “Block implementation of adaptive digital
filters,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-29, no. 3, pp. 744-752,
June 1981.

J. J. Shynk, “Frequency-domain and multirate adaptive filters,” IEEE Signal Process, Mag.,
vol. 9, no.1, pp. 14-37, Jan. 1992.

Q.Shen and A.S.Spanias, “Time and Frequency Domain X Block LMS algorithms for
Single Channel Active Noise Control”, Proc. 2nd Int. Congress on Recent Developments in
Air- & Structure- Borne Sound and Vibration, PP. 353-360, Auburn, Al, March 1992.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Prentice Hall, Englewood
Cliffs, NJ, 1975.

J. S. Bendat and A. G. Piersol, Random Data-Analysis and Measurement Procedure,
Second Edition, John Wiley & Sons, Inc., New York, NY, 1986.

G. H. Golub and C. F. VanLoan, Matrix Computations, Second Edition, The Johns
Hopkins University Press, Baltimore, MD, 1989.

David S. Watkins, Fundamentals of Matrix Computations John Wiley & Sons, Inc., New
York, NY, 1991.

E. Weinstein, M. Feder, and A. V. Oppenheim, “Multi-chjannel signal separation by
decorrelation,"EEE Trans. Speech Audio Processingi, 1, 405-413, Oct. 1993.

S Gerven, D. Compernolle, “Signal Separation by Symmetric Adaptive Decorrelation:
Stability, Convergence, and Uniqueness,” IEEE Trans. On Signal Processing, vol. 43,
No.7, pp. 1602-1612, July 1995.

P. A. Nelson and S. J. Elliot, Active Control of Sound. Academic Press Inc., San Diego,
CA92101, 1992.

B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ,
1980.

TMS320C3X User’'s Guide, Texas Instruments, Inc., Dallas, Tex., 1991.

TMS320C3X Floating-Point DSP Optimizing C Compiler User’s Guide, Texas
Instruments, Inc., Dallas, Tex., 1991.

93



[39]
[40]
[41]

[42]

[43]

[44]

TMS320C3X Floating-Point DSP Assembly Language Tools User’s Guide, Texas
Instruments, Inc., Dallas, Tex., 1991.

James P. Carneal, “Active Structural Acoustic Control of Double Panel Systems including
Hierarchical Control Approaches,” VPI&SU Thesis, 1992.

A. A. Giordano and F. M. Hsu, Least Square estimation with application to digital signal
processing, Wiley, New York, 1985.

C. C. Boucher, S. J. Elliott, and P. A. Nelson, “Effect of errors in the plant model on the
performance of algorithms for adaptive feedforward control,” IEEE Proc. Radar Signal
Process., vol. 138, no.4, pp. 313-319, Aug. 1991.

B. Widrow and E. Walach, Adaptive Inverse Control, Prentice Hall, Englewood Cliffs, NJ,
1996.

D. E. Newland, An Introduction to Random Vibrations, Spectrum and Wavelet Analysis,
3rd ed.1993, New York: Wiley.

94



Appendix A. TMS320C30 Assembly Functions for the LMS Algorithm

Some special features like circular buffer, parallel addressing can not be fully exploited
using C language. In order to take the most advantage of TMS320C30 DSP, Assembly functions
callable by C are provided in this appendix.

As mentioned in section 4.3, an adaptive filtering process is basically comprised of two
steps:
y(K) =x(KOw K (A.1)
Wi(k+1) =w (K) - ueg R X k= m (A.2)
The first step shown in equation (A.1) represents a linear convolution, and the second step shown
in equation (A.2) represents weight vector updating for the LMS algorithm. The two steps can be
efficiently and flexibly implemented using three functions. The input vecttisrstored in a
circular buffer. The first function named cshiftv.asm is dedicated to put the newest input data
into circular buffer to replacing the oldest input data. The second function named conv.asm
performs the linear convolution represented by equation (A.1). The third function named
updatewt.asm updates the weight vector using the LMS algorithm.

For the single channel LMS algorithm, we can combine the three functions into a more
efficient function. However, if we want to implement the multiple reference multiple channel
LMS algorithm, the effort to implement a single Assembly function is almost formidable, and the
resulting code is not only prone to error, but also hard to modify. With the help of the foregoing
three functions, we can implement the multiple reference multiple channel LMS algorithm with
great flexibility.
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Program: cshiftv.asm  DATE: 03-10-96 *
Version: 2.0 *
Author: Yifeng Tu *
Dept of Mechanical Engineering *
Virginia Tech.
Blacksburg, VA24060
description:

before shift after shift

%

* % X %

pnew-> x(k)  newest value x(k-1)
X(k-N+1) oldest value pnew-> x(k) newest value
X(k-N+2) X(k-N+1) oldest value *

* *

* % x X

This routine stores the input data into circular buffer, the oldest data being replaced by  *
the newest data. *
vlen:  circular buffer length *
inp: newest input data *
pxnew: pointer to the newest value in the circular buffer *
kkkkkkkkkkhkkkkkkkhkkkhkkhkkkhkkkhkkkkhkhkkkhkhkhkkhkhkkhkhkkhkhkkhkkhkkkhhkkhkkkhkhkkhkkkhkhkkhkkkhkkkhkkkhkhkkhkkhhkkhkkkkhkkkkk
.version 30
fp  .set ar3
.globl  _cshiftv

b T R T B T R T R N N I B

;>>>>  float *cshiftv(int vlen, float inp, float *pxnew)

_cshiftv:

push fp*

Idi sp,fp

Idi *-fp(2), bk

Idi *-fp(4), ar0

Idf *fp(3), r1

Idf *ar0++(1)%, r0

stf rl, *ar0;

Idi ar0, r0 ;return the value
epio_1:

pop fp

rets

.end



* kkkkkkkkkkkkkkkkkhkkkkkhkkkhkkkhkkkkhkkkhkkkkkkhkkkhkkkkhkkkkhkkkkkkkkkk

This routine functions as FIR filter with length N, pwt points to the beginning
of vector W, px points to the newest value of vector X.

kkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhkhkhkkkhkkhkhkkkkkkkkkkkkhkkhkhkhkhkhkhhkhhkkkkkkkx

.version 30
fp  .set ar3
.globl  _conv

;>>>> float conv(int n, float *pwt, float *px)

_conv:
push fp
Idi  sp,fp
Idi  *fp(2),bk

Idi  *fp(3),ar0 ; ar0 the lowest address of coefficients, i.e. h(0)
Idi  *fp(4),arl ; arl the newest value of input x

Idi  *fp(2),rc

subi 1,rc

[df  0.0,r0
[df 0.0,r2

rpts rc

mpyf3 *arO++,*arl--%,r0
Il addf3  r0,r2,r2

addf3 r0,r2,r0

epio_1:
pop fp
rets
.end

* Program: conv.asm  DATE: 03-11-96 *
* Version: 2.0 *
* Author: Yifeng Tu *
* Dept of Mechanical Engineering

* Virginia Tech. *
* Blacksburg, VA24060

* description: *
* circular addressing

*

* ar0-> h(0) .

* h(1) arl->  x(k) newest value

* . x(k-N+1) oldest value

* X(k-N+2)

*

* . '

* h(N-1)

*

*

*

*
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* kkkkkkkkkkkkkkkkkhkkkkkhkkkhkkkhkkkkhkkkhkkkkkkhkkkhkkkkhkkkkhkkkkkkkkkk

Program: updatewt.asm  DATE: 03-13-96
Version: 2.0

Author: Yifeng Tu

Dept of Mechanical Engineering

Virginia Tech.

Blacksburg, VA24060

Description:

This routine updates FIR wights using LMS algorithm, pwt points to the
beginning of vector W, px points to the newest value of vector X,
W(n+1,i) = W(n,i) + u* e * X(n-i);

kkkkkkkkkkkkkkkkkkkhkkkhkkhkkkhhkkkkkhkkkkhkkkkkkkkhkkhkkkkhhkkkkhkkkkkkhkkkk

E I T . I B B

.version 30
fp  .set ar3
.globl _updatewt

;>>>> float *updatewt(int n, float *pwt, float *px, float error, float mu)

_updatewt:
push fp
Idi  sp,fp
Idi  *fp(2),bk

Idi  *fp(3),ar0 ; arO the lowest address of coefficients i.e.h(0)
Idi  *fp(4),arl ; arl the newest value of input x

Idf  *-fp(5),r2 ; error signal

Idf  *-fp(6),r3 ; mu

Idi  *fp(2),rc

subi 1,rc ; to make it repeat n times,
;setrc=n-

mpyf  r3,r2 ;r2=mu * error

Idf 0.0,r3

Idf 0.0,r0

mpyf3 *arl--%,r2,r0

rptb  E_loop

mpyf3 *arl--%,r2,r0
Il addf3 r0,*ar0,r3

E_loop: stf r3,*ar0++
Idi  *-fp(3),r0
epio_1:
pop fp
rets
.end
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