
Silver Lining: Enforcing Secure Information Flow at the Cloud Edge

Safwan Mahmud Khan, Kevin W. Hamlen and Murat Kantarcioglu
Department of Computer Science

University of Texas at Dallas
Richardson, Texas, USA

{safwan,hamlen,muratk}@utdallas.edu

Abstract—SilverLine is a novel, exceptionally modular frame-
work for enforcing mandatory information flow policies for
Java computations on commodity, data-processing, Platform-as-
a-Service clouds by leveraging Aspect-Oriented Programming
(AOP) and In-lined Reference Monitors (IRMs). Unlike tradi-
tional system-level approaches, which typically require modi-
fications to the cloud kernel software, OS/hypervisor, VM, or
cloud file system, SilverLine automatically in-lines secure infor-
mation flow tracking code into untrusted Java job binaries as
they arrive at the cloud. This facilitates efficient enforcement of
a large, flexible class of information flow and mandatory access
control policies without any customization of the cloud or its un-
derlying infrastructure. The cloud and the enforcement frame-
work can therefore be maintained completely separately and
orthogonally (i.e., modularly). To demonstrate the approach’s
feasibility, a prototype implements and deploys SilverLine
on a real-world data processing cloud—Hadoop MapReduce.
Evaluation results demonstrate that SilverLine provides inter-
process information flow security for Hadoop clouds with easy
maintainability (through modularity) and low overhead.

Keywords-Access control; Aspect-Oriented Programming;
Cloud computing; Information flow control; In-lined Reference
Monitors; Security

I. INTRODUCTION

Cloud computing has attracted tremendous attention over
the past several years as a means to shrink IT expenditures,
improve scalability and reduce administration overhead. As a
result, cloud computing platforms (e.g., [1]–[4]) have become
extremely popular and extensively used. Both government
and industry are adopting new business practices to maximize
their effectiveness. The General Service Administration
(GSA) recently announced a cost savings of almost $2
million USD per year since migrating from Lotus Notes
to Google’s cloud-based email [5]. According to Gartner, the
typical IT organization invests two-thirds of its budget in
daily operations, but moving to the cloud is expected to free
up 35–50% of operational and infrastructure resources [6].

The ongoing mass shift to clouds for large-scale computing
has raised significant concerns about security, however. More
than 50% of global 1000 companies are projected to store
sensitive data in public clouds by 2016 [7]. It is therefore
not surprising that many customers and businesses have
become worried about security and privacy issues in the
cloud. To address these concerns, the last few years have
seen extensive research on adding greater security to cloud

platforms. Examples include ensuring cloud computation
integrity (e.g., [8]–[10]), protecting cloud customer privacy
(e.g., [11]–[13]), secure data storage in the cloud (e.g., [14],
[15]), and detection and prevention of software tampering
(e.g., [16], [17]).

A common challenge faced by many of these efforts is
the multitenant problem [18]. In the complex and distributed
environment of clouds, many users have simultaneous access
to shared computing resources. This invites attacks that
corrupt, deny, or infer secret details of computations or data
owned by others. Many security fears associated with cloud
computing therefore revolve around incomplete isolation
of these myriad users. A prominent example is the debate
over cloud computing for healthcare data management [19].
Healthcare data are often sensitive for a human lifetime
or longer, and their disclosure are governed by elaborate
regulations in many countries of the world (e.g., [20]). While
data encryption is a widely used protection while such data
is at rest, it does not suffice to protect the data while it is
decrypted for use in computations.

A large category of cloud security research has therefore
concerned the enforcement of various forms of data access
control in clouds. Most of these protections are implemented
by modifying the cloud infrastructure (e.g., [21], [22]) or
the underlying OS (e.g., [23]). Others add an extra access
control layer atop an existing architecture, requiring new
protocols (e.g., [24], [25]). While all of these provide effective
enforcement, they have the significant drawback of being
difficult to maintain as the cloud infrastructure evolves.
Clouds are an extremely dynamic technology; there are
constant improvements being made to enhance the efficiency
of job dispatch, file lookup, data sharing, and a host of
other details. Security systems that customize the cloud
implementation are often brittle to these version updates;
they must be adapted or re-implemented frequently as the
cloud evolves. This has been a deterrent to their adoption,
and therefore a source of insecurity in real-world clouds.

To address this need, we propose a novel implementation
approach, SilverLine (secure information flow verification
in-lined), that enforces Mandatory Access Control (MAC)
and information flow security policies on untrusted Java jobs
binaries for Hadoop clouds [4], but whose implementation
is completely separate and orthogonal to the rest of the

cloud. This allows the cloud implementation and security
implementation to be maintained fully independently, with
changes to one having no impact on the other. Our approach
realizes the enforcement as an In-lined Reference Monitor
(IRM) [26] whose programming is in-lined into untrusted
binary jobs as they arrive at the cloud edge. After in-lining,
the modified jobs self-enforce the security policy. Thus, no
additional security monitoring within the cloud is needed.

To illustrate one large class of policies that can be
elegantly enforced using this strategy, SilverLine enforces
MAC policies that restrict explicit information flows between
cloud users, jobs, and resources (e.g., files). The in-lined
enforcement code maintains and consults an information
flow graph (IFG) implemented as a distributed data resource
within the cloud. The IFG tracks information flows between
the various principals, and the IRM prohibits job operations
that introduce explicit flows that violate an administrator-
defined policy.

While Hadoop can already enforce standard information
isolation policies via traditional system-level file access
controls, it could not easily enforce information flow controls
for multiple, mutually-distrusting tenants prior to our work.
Our work therefore opens new application areas for Hadoop
to which Hadoop was unsuited previously. In general, we con-
sider the IRM approach to be well suited for enforcing many
important data confidentiality and integrity policies [26]–
[35] for which Hadoop and similar clouds do not yet enjoy
widespread support.

SilverLine leverages Aspect-Oriented Programming
(AOP) [36] to elegantly specify, implement, and in-line
IRMs into untrusted jobs without access to job source codes.
A rewriter automatically transforms untrusted jobs (Java
bytecode binaries) via aspect-weaving as a preprocessing
step before passing them to the cloud. To our knowledge,
SilverLine is the first work that adopts IRMs in Hadoop
clouds to in-line information flow enforcement into jobs. It
yields rewritten, self-monitoring cloud jobs without modi-
fying the cloud platforms. These features establish it as an
exceptionally practical and portable framework for adding
powerful, custom security features to commodity clouds.

To evaluate our system, we deploy it in a realistic cloud
environment—the popular Hadoop MapReduce. IRMs are
implemented as AspectJ [37] pointcuts and advice. In AOP, a
pointcut is a program element that identifies join points
(binary program operations), and exposes data from the
execution contexts of these join points to advice code that
modifies or replaces them. The advice can thereby implement
a policy that constrains all operations matched by the pointcut.
Together, the pointcuts and advice form an aspect. AOP has
been heralded in the software engineering community as
a means of implementing cross-cutting concerns, such as
security and process auditing (e.g., logging). Our evaluation
results demonstrate the efficiency and scalability of this
approach to implementing cloud access controls.

The rest of the paper is organized as follows. Related
work is summarized in §II. Section III presents SilverLine
system details along with our threat model. We discuss
implementation, and report results with analysis in §IV and
§V, respectively. Section VI concludes with a summary of
outcomes and future directions.

II. RELATED WORK

Isolation of tenants in clouds is recognized as a significant
research problem. Past work has proposed many different
access control mechanisms to mutually isolate untrusted cloud
jobs and their resources. At an implementation level, these
can be broadly categorized into two main streams: (1) those
that modify the cloud architecture or system, and (2) those
that create an extra access control layer.

NetODESSA [21] introduces a distributed, host-level,
dynamic policy monitoring system into the network layer of
clouds. An administrator writes general policies for groups of
nodes, from which the system infers more rules dynamically.
Cloud-hosted services have also been proposed as a means
to enforce end-to-end information flow control [22]. The
vision applies data tagging to enforce MAC, Information
Flow Control (IFC), and Role-based Access Control (RBAC)
policies that ensure end-to-end security for the whole data
life through application-level virtualization. Airavat [23]
enforces mandatory information flow control on Hadoop
clouds by applying SELinux-style [38] MAC to prevent
information leaks through system resources. It additionally
applies differential privacy to detect leaks within job input-
output relations. While powerful, all of these approaches
require deep modifications to the VM and/or cloud framework
and implementation, which may raise barriers to adoption.
In contrast, SilverLine does not modify the cloud.

DACC [24] adopts distributed Key Distribution Centers
(KDCs) and decentralized attribute-based encryption to
provide distributed access control in clouds. CloudPolice [25]
proposes an extra access control layer within the hypervisors
at end-hosts. These works prevent unauthorized access to the
cloud and its resources, but do not address the problem of
authorized users performing operations that (intentionally or
unintentionally) violate data confidentiality. Cloudtracker [39]
performs side-channel detection from the VM layer to
identify dangerous job behavior that malicious users could
abuse to infer private information about co-located jobs.
SilverLine complements these works by securing explicit
information flows introduced by authorized users through
non-side channels.

A long history of works mitigate application-level security
breaches and intrusions by guarding the application-OS
boundary, intercepting and filtering the application’s access
to OS-level resources (e.g., Janus [40], MAPbox [41], and
BlueBox [42]). Effectively applying this sandboxing approach
to cloud jobs is challenging because clouds introduce extra
layers of infrastructure below the OS that have the effect of

conflating permissible and impermissible operations at the
OS level. For example, a job’s request to write to a particular
Hadoop Distributed File System (HDFS) object may only
be exposed to the OS as a write to a much larger, OS-level
file object that combines many HDFS objects. Monitoring at
this level is therefore too coarse-grained to properly enforce
many policies of interest.

SilverLine deploys IRMs [26] to constrain untrusted
Hadoop cloud jobs. In general, IRMs are strictly more
powerful than external execution monitors, in part because
they can observe and restrict fine-grained program behaviors
that are difficult or impossible to observe by monitors
implemented outside the user code [28], [34]. Extensive prior
work has examined the problem of automatically in-lining
secure policy enforcement programming into legacy source
codes of server applications [43] and general source codes
expressed in security-typed languages [44], as well as into
legacy binary programs for which source code is unavailable
(e.g., [29]–[31], [34], [45]). One widely used technique for the
latter domain expresses the IRM’s programming as aspects
in an AOP language [36], and applies aspect-weaving to
efficiently in-line it into untrusted binary programs [27], [46].
This is the approach employed by SilverLine.

Such in-lining can secure untrusted mobile code even when
the code was crafted by a malicious adversary that knows
all implementation details of the IRM in advance [29], [33],
[35]. In essence, the IRM implementation carefully leverages
object encapsulation, control-flow safety, and type-safety
properties of the binary language in which the mobile code
is expressed, to guarantee that the surrounding untrusted code
into which the IRM is in-lined cannot corrupt or circumvent
the IRM’s security programming at runtime.

Hamlen et al. [47] propose a framework to enforce security
policies for cloud data management, where they discuss
different possible approaches including leveraging IRMs.
SilverLine is the continuation of that research initiative, and
offers a full design, implementation, and evaluation in a
realistic cloud environment.

III. SYSTEM OVERVIEW

A. Cloud Structure

Clouds typically provide at least three common categories
of services to customers:

• Software-as-a-Service (SaaS) models provide software
to users who do not wish to manage the network, servers,
software, OS, or storage. Users consume the software
from the clouds. Examples include Salesforce.com [48]
and Google Apps [49].

• Platform-as-a-Service (PaaS) models provide users the
facility to deploy their software on clouds. Users control
their own software, but do not manage network, servers,
OS or storage. Examples include Cloud Foundry [50]
and Google App Engine [3].

• Infrastructure-as-a-Service (IaaS) models benefit users
with access to the infrastructure of the cloud to deploy
their own resources. However, users do not manage the
infrastructure. Examples include Amazon EC2 [1] and
Windows Azure [2].

In all of these types of services, users have varying degrees
of access to security-sensitive cloud resources, based on the
services they consume. To offer the broadest possible support,
SilverLine remains mostly agnostic to the specific services
offered by the underlying cloud.

Different cloud providers may vary in the details of their
internal architectures (cf., [1], [2], [4]), though in general
we assume that at some level their topologies consist of
a few master nodes and a large collection (e.g., hundreds
of thousands) of slave nodes. The complexity of the data
dependencies and jobs that manipulate such vast resources
invite subtle errors or malicious attacks that may violate
users’ information flow requirements, motivating a strong,
flexible approach to enforcing such policies.

We deploy our system on Hadoop MapReduce [4], which
consists of a single NameNode (with backups) as master
node and a large number of DataNodes as slave nodes. The
NameNode manages the HDFS namespace and regulates
access user file accesses. It also dispatches and monitors
the computation throughout the cloud cluster. DataNodes are
typically distributed one per node in the cluster, managing
storage attached to the nodes on which they run, and
independently executing the user-submitted job fragments
they are allocated. Users communicate with the NameNode,
which coordinates the services from the DataNodes.

B. Access and Information Flow Control

SilverLine facilitates enforcement of mandatory infor-
mation flow policies that constrain the explicit flow of
information from one security principal (viz., user, job, or
resource) to another along non-side channels within the
cloud. We chose this class of policies because it is simple
to understand, arises often within multitenant, distributed
workflows, has a well-established theory of enforcement, and
yet is not supported by most commodity workflow clouds.
Thus, a facility to add such support to existing clouds without
any modification to the cloud implementation or infrastructure
demonstrates the advantages of our approach.

As an example, a user U who owns a confidential file
H might wish to grant limited read-access to H with some
assurance that careless, faulty, or malicious readers of H do
not subsequently leak that data to a world-readable file L. One
way to enforce such a policy is to prohibit readers of H from
subsequently writing to L. However, that simple enforcement
strategy does not address information laundering scenarios, in
which a principal P1 copies H to an intermediate file I , after
which another principal P2 copies I to L. Sound enforcement
of information flow policies therefore requires maintaining a
transitive relation between data sinks and sources.

SELinux [38] uses such a strategy to enforce role-based ac-
cess control policies that constrain explicit information flows.
Because of their broad usefulness, past work has integrated
support for SELinux policies into Hadoop, but at the cost of
non-trivial modifications to the cloud implementation [23].
SilverLine does so without modifying the cloud.

C. Threat Model

Our threat model only concerns explicit, inter-principal,
information flows within the cloud. In particular, it does not
concern implicit information flows (e.g., flows that subtly
divulge information by not exhibiting an otherwise observable
action), or side-channels (e.g., where the attacker observes the
timing or power consumption of jobs to infer secrets). We also
do not secure flows outside the cloud. For example, flows that
involve one malicious user communicating a secret to another
outside the cloud, who then discloses it publicly within the
cloud, are not secured by SilverLine. All of these forms of
confidentiality violation are important ongoing subjects of
extensive study (cf., [51]), but are outside the scope of our
present investigation.

We conservatively assume that jobs submitted to the cloud
might contain arbitrary malicious programming, and that
attackers know all details of SilverLine’s enforcement strategy
and implementation. For example, attackers might submit
jobs containing malicious code that anticipates the IRM
logic that will be in-lined by SilverLine, and that seeks to
destroy or circumvent it at runtime to violate the policy. Thus,
SilverLine’s security is not based on obscurity; knowledge of
its implementation does not facilitate successful attacks. The
cloud kernel, Java Virtual Machine (JVM), and underlying
OS and hardware are all trusted. In particular, we assume
jobs come in the form of syntactically valid, type-safe Java
bytecode binaries, since malformed or type-unsafe binaries
are automatically rejected by the trusted JVM.

Security-relevant job operations mainly consist of system
API calls, which are the only means for Java code to perform
explicit I/O. There are three main APIs of interest: (1) the
HDFS API, (2) Java’s standard runtime API, and (3) the
API exposed by the OS to user processes. The last of these
is only directly exposed to Java programs via Java’s native
code interface, which is unsafe and should not be used by
jobs compiled for Hadoop. We therefore adopt the standard
precaution of denying native code privileges to all jobs.
(This limitation could be lifted by employing a system like
Robusta [52] to secure the native code interface.)

Java’s runtime API contains many unsafe I/O operations
that (disturbingly) remain fully available to unprivileged jobs
in a standard Hadoop installation. Since the HDFS files
are stored in file objects maintained by the OS, and since
the Java I/O libraries afford direct, uncensored access to
this OS view, we found that it is trivial to write malicious
Hadoop jobs that abuse the Java runtime to bypass all the
HDFS access controls. SilverLine closes this vulnerability by

maywrite user1 file2;
mayread user1 file4;
maywrite user2 file6;
maywrite user2 file9;
mayread user2 file12;
mayread user3 file1;
mayread user3 file3;
maywrite user3 file7;
mayread user4 file8;
maywrite user4 file10;
mayread user5 file11;

mayread user5 file13;
maywrite user5 file15;
maywrite user5 file17;
noflow file4 file2;
noflow user1 file14;
noflow file12 user1;
noflow user1 file15;
noflow file8 user3;
noflow file18 user4;
noflow file20 file16;
noflow file5 file19;

Figure 1. Sample Policy File

prohibiting access to the Java runtime’s I/O methods; jobs
may only access files via HDFS. The remainder of the IRM
implementation focuses on guarding HDFS API calls.

D. MapReduce Paradigm

MapReduce [53] is an increasingly popular distributed
programming paradigm used in clouds. It provides automatic
parallelization and distribution, fault tolerance, I/O schedul-
ing, monitoring, and status updates among other features,
making it popular among the commonly used cloud platforms
(e.g. [1], [4]). Since our system is deployed on Hadoop, we
leverage Hadoop’s MapReduce framework.

In Hadoop, user computations arrive as Java bytecode
programs (jobs) submitted by users. Each job consists mainly
of two functions: Map and Reduce. The Map function maps
input key-value pairs to a set of intermediate key-value pairs.
Based on the configuration, those may be passed to Shuffle or
Sort functions for additional processing. The Reduce function
reduces the set of intermediate key-value pairs that share
a key to a smaller set of key-value pairs traversable by
an iterator. Each Map process and Reduce process works
independently on DataNodes without communication.

E. Policy Specifications and Flow Tracking

An administrator-specified policy file, such as the one in
Fig. 1, defines the specific access control and information
flow policy enforced by SilverLine. Rule “maywrite P1 P2”
grants principal P1 direct write-access to P2, and “mayread
P2 P1” grants P2 direct read-access to P1. (At a policy
level, these two commands have identical semantics; they
both pemit direct information flows from P1 to P2.) Rule
“noflow P1 P2” disallows information flows from P1 to P2.
For example, in Fig. 1, even though user1 may read file4
and write to file2, it may not do the former followed by the
latter, since flows from file4 to file2 are disallowed.

The policy language in Fig. 1 is simplistic but suffices
for our experiments. It can be conceptualized as a classic
Bell-LaPadula labeling system [54] where the labels form
a lattice of principal subsets (expressing impermissible flow
destinations) ordered by subset relation [55], [56]. Much more
expressive policy languages (e.g., [32], [57]) are possible,
but supporting them is a subject of future work.

User 1 User 2

User 3

User 4

User 5

object (file)

read/write

disallowed flow

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Figure 2. A sample Information Flow Graph (IFG). Edge (user1, file2) is rejected because its addition would complete disallowed flow (file4, file2).

To enforce the policy, SilverLine maintains an Information
Flow Graph (IFG) stored as a distributed data structure in
HDFS. Figure 2 depicts an example IFG. Nodes are labeled
with principals (viz., users, jobs, and resource identifiers) as
well as the set of nodes to which their information must-not
flow (shown as dashed edges in the figure). For example,
to enforce the policy in Fig. 1, node user1 is labeled with
must-not set MN [user1] = {file14, file15}. Solid, directed
edges indicate active information flows (e.g., files currently
opened by running jobs) between the nodes.

Whenever a new edge (x, y) is about to be introduced,
SilverLine checks whether MN[x] ∩ R(y) = ∅, where
R(y) is the set of nodes reachable from y. If not, the
impending operation is rejected by throwing a (catchable)
exception. Otherwise, the operation is permitted and MN[x]
is propagated to the nodes in R(y). The bold red edges in
Fig. 2 show such a policy violation. The addition of edge
(user1, file2) to the graph would complete disallowed flow
(file4, file2), so user1’s request to write to file2 is rejected.

To avoid a bottleneck when accessing the IFG, it is stored
as a distributed HDFS data structure whose disconnected
components can be separately locked for exclusive write-
access. Since the IFG only includes edges for current
operations, and since reading and writing to the same file
simultaneously is rare (it risks inconsistent results in HDFS),
the IFG is usually quite fragmented; having separate locks
for disconnected components therefore scales well. HDFS
does not provide built-in locking support, so we implemented
it ourselves as part of the IRM’s access protocol (without
modifying the cloud). All access to the IFG data by the
non-IRM job code is prohibited by the IRM.

F. In-lined Reference Monitor Design
SilverLine’s main implementation is an AspectJ [37]

program that encodes the transformation of untrusted job
code into safe job code as a set of aspects. Each aspect’s
pointcuts identify unsafe program operations (API calls) that
might appear in untrusted jobs, and its advice supplies guard
code that secures such operations wherever they appear. The
guard code includes logic for consulting and updating the
IFG at runtime. AspectJ’s aspect-weaver inserts the guard
code around each unsafe operation prior to running the job,
resulting in a secure binary.

In contrast to purely static approaches to mobile code
security, SilverLine makes no attempt to decide in advance
whether untrusted jobs, when executed, might try to violate
the policy. (In fact, information flow policies are statically
undecidable in general [28].) Rather, it introduces program-
ming that discovers impending policy violations at runtime
and intervenes to prevent them.

Protecting the integrity of the IRM from corruption by the
surrounding untrusted job code is a major part of the design.
There are three major ways that malicious jobs might attack
the IRM, none of which are successful:

1) Malicious jobs may try to erase or overwrite the IRM
code at runtime.

2) Malicious jobs may try to corrupt the IRM’s internal
variables or data.

3) Malicious jobs may try to “jump over” the IRM’s
runtime security checks to reach policy-violating oper-
ations, bypassing the security code.

Attack 1 is thwarted by denying jobs access to Java’s
reflection libraries, which are the only way to write self-
modifying code in Java. Attack 2 is thwarted by storing all

Algorithm 1 Initialize IFG
1: for (noallow x y) ∈ policy do
2: MN [x]← MN [x] ∪ {y}
3: end for

the IRM’s data in local variables and private field members
of a non-inheritable class. Type-safety of the Java bytecode
language therefore prevents untrusted job code outside of
that class from corrupting those members. Finally, attack 3
is not possible because the aspect-weaver retargets all static
control-flow transfer instructions so that they cannot bypass
the advice. The only form of dynamic control-flow in Java
bytecode is method call, which can only target a method
entrypoint, and there are no method entrypoints between the
security checks and the dangerous operations they check.
These approaches to ensuring IRM integrity have been
validated by prior studies [29], [33], [35].

G. Architecture and Protocol

Figure 3 depicts the high-level architecture of SilverLine.
End users submit jobs to the cloud in the usual way; no
change to how jobs are created or submitted is required to
accommodate SilverLine. SilverLine’s aspect-weaver inter-
cepts the submitted jobs at the cloud edge and in-lines the
IRM. The aspect-weaver may reside on any node inside cloud,
or may be deployed on a separate machine outside of cloud.
The resulting self-monitoring binaries are then dispatched to
the cloud for execution.

SilverLine maintains persistent access history. For example,
if user1 runs a job that reads from file4, and then later runs
a separate job that writes to file2, the IFG maintains the
node labels resulting from the earlier job and thereby detects
the flow from file4 to file2.

There are interesting design challenges for handling this
correctly in a cloud where jobs run concurrently and job
submissions are separate from job executions. For example,
if user1 first submits job1 and job2 in their entirety to
the cloud, and then job1 and job2 run concurrently, with
job1 only reading from file4 and job2 only writing to file2
(no other file accesses or network accesses), then SilverLine
concludes that no information has flowed from file4 to file2
(yet). The reasoning is that job2 was submitted to the cloud
(i.e., written) before job1 read file4, and the two jobs did not
(explicitly) communicate. Such scenarios are why SilverLine
needs separate nodes for users and jobs.

The IFG initialization and IRM runtime guard code are
summarized in Algorithms 1 and 2, respectively. Line 16
of Algorithm 2 computes the IFG subset reachable from y,
which is typically small due to the IFG’s disconnectedness
(see §III-E). Line 20 expresses IFGs as multisets, since
duplicate edges can arise from multiply opened file handles.

Algorithm 2 SilverLine Guard Pseudo-code for Untrusted
Operation op on HDFS Object o

1: if op is a Java I/O API call then
2: throw SecurityException
3: else if op is an HDFS open/close operation then
4: if op open/closes o for reading then
5: x← o
6: y ← job identifier
7: else // op open/closes o for writing
8: x← job identifier
9: y ← o

10: end if
11: if op is a close then
12: IFG ← IFG − {(x, y)}
13: else if (maywrite x y), (mayread y x) 6∈ policy then
14: throw SecurityException
15: else if (x, y) 6∈ IFG then
16: R← breadth first search(IFG , y) // R is small
17: if R ∩MN [x] 6= ∅ then
18: throw SecurityException
19: else
20: IFG ← IFG] {(x, y)}
21: for z ∈ R do
22: MN [z]← MN [z] ∪MN [x]
23: end for
24: end if
25: end if
26: end if

IV. IMPLEMENTATION

Implementation of SilverLine in a real-world cloud envi-
ronment is one of our main contributions. We deployed it on
a commodity data processing cloud—Hadoop MapReduce.
Experiments were conducted on a Hadoop cluster consisting
of 12 DataNodes and 1 NameNode. Nodes have Intel Pentium
IV 2.40–3.00GHz processors with 2–4GB of memory each,
running Ubuntu operating systems.

As mentioned in §III-F, SilverLine implements IRMs using
AspectJ [37]. The total implementation size is approximately
1.5K lines of source code. Listing 1 shows a (simplified)
sample aspect that implements part of Algorithm 2.

For the experiments, the SecurityExceptions that signal
policy violations are not caught by the surrounding job
code, so the job simply aborts. Jobs could alternatively take
corrective actions, such as handling the exception by rolling
back to a consistent state (but corrective actions cannot violate
the policy, since the code that implements any corrective
action is part of the job and therefore constrained by the IRM).
We distribute AspectJ JARs and aspects to all the nodes in
the cloud to enable it in the Hadoop environment. SilverLine
takes advantage of AspectJ’s runtime weaving feature that
injects specified security policies into the binaries of jobs
instead of into source code at compile or post-compile time.

binary
rewriter

jobs master
node

self-monitoring
jobs (with IRMs)

slave nodes

job

IRM

policy
rules

IFGbinary
rewriter

jobs master
node

self-monitoring
jobs (with IRMs)

slave nodes

job

IRM

policy
rules

IFG

Figure 3. System architecture of SilverLine

public aspect CloudIRM {

pointcut reads(InputStream f) :
call(* * org.apache.hadoop.fs.FileSystem.open(..) && args(f,..);

// Guard HDFS I/O calls
before(InputStream f) throws SecurityException : reads(f)
{

if (!policyMayAccess(f, this_job))
throw new SecurityException("access denied");

lockIFGComponents(IFG, f, this_job);
try {

if (!hasEdge(IFG, f, this_job)) {
Collection〈IFGNode〉 r = BFS(IFG, this_job);
Collection〈IFGNode〉 mn = getLabel(IFG, f);
for(Iterator〈IFGNode〉 i=r.iterator(); i.hasNext();) {

if (mn.contains(i.next()))
throw new SecurityException("info flow violation");

}
addEdge(IFG, f, this_job);
for(Iterator〈IFGNode〉 i=r.iterator(); i.hasNext();) {
IFGNode v = i.next();
setLabel(IFG, v, getLabel(IFG,v).addAll(mn));

}
}

} finally { unlockIFGComponents(IFG, f, this_job); }
}

// Prohibit Java I/O calls
before(..) throws SecurityException : call(* * java.io.*(..)) {

throw new SecurityException("prohibited operation");
}

}
Listing 1. Sample aspect in AspectJ

To maintain persistent history and track concurrent jobs
(§III-G), jobs are represented in IFGs as temporary nodes.
When a job J is received from a user U , we create a new
node for J and copy MN [U] to MN [J]. This reflects the
fact that J potentially knows all secrets known by U at

the time U submitted J . Whenever J opens a file F1 for
reading, we join (union) [56] MN [F1] into MN [J] (and
all nodes reachable from J) to reflect the flow of secrets
from F1 to J . Dually, whenever J opens F2 for writing, we
join MN [J] into MN [F2] (and all nodes reachable from F2).
When J finishes and its results are returned to U , MN [J]
is joined back into MN [U]; then we destroy node J and
all its adjacent edges. For efficiently controlling concurrent
access to our IFG in HDFS, we implement a straightforward
synchronization mechanism using semaphores. Far more
sophisticated distributed graph representations are possible
(cf. [58]), but are left as future work.

V. EXPERIMENTAL RESULTS

To evaluate our system, we conduct two experiments: one
with synthetic jobs and one with real-world jobs drawn from
public MapReduce code repositories. All experiments use 5
principals and include attacks (§III-C) that attempt to violate
the information flow policies or subvert the IRM. SilverLine
successfully blocks all these attacks in our experiments by
halting such jobs before their first violations. The remainder
of this section reports performance results for the remaining
policy-compliant jobs that were not prematurely terminated.

The first experiment runs chaotic jobs whose Mappers
perform randomly chosen HDFS file operations in random
combinations, as well as dangerous Java I/O and system
calls (via java.io.Runtime) with some probability.
Figure 4 reports performance results, which illustrate the
good scalability of SilverLine. Each trial simulates increasing
numbers of users and jobs simultaneously, taxing the system’s
scheduler and shared resources (e.g., the IFG). Under these
conditions of high resource contention, jobs with SilverLine’s
IRM installed run 4.6–7.5% slower (approximately 1.56–2.64
seconds slower) each. This slowdown is primarily due to

0

5

10

15

20

25

30

35

40

45

30/200 50/300 90/600

A
v
g
.

E
x
ec

.
T

im
e

p
er

jo
b

(s
ec

)

of users/jobs

With SilverLine
Without SilverLine

Figure 4. Performance measurement with increasing concurrency

0

50

100

150

200

250

30/200 50/300 90/600

A
v
g.

IF
G

si
ze

(#
o
f

n
o
d
es

)

of users/jobs

of nodes
of edges

Figure 5. Performance measurement with increasing IFG size

locking and unlocking of the distributed IFG data structure
for writing, and by the extra job operations that implement the
IRM in each job. Since each lock is acquired for only a very
short time (see Listing 1), the overhead remains reasonable.

Figure 5 reports the IFG size for the same experiment. The
number of IFG nodes increases with the increasing number
of job submissions over the trials, while the edge count
increases due to the higher number of concurrently accessed
HDFS file objects. The median IFG sizes (nodes plus edges)
range from 101–374 over the three trials. This means that
each job contributes just 0.6 nodes+edges to the average
size of the IFG. This excellent scalability is because the
IFG only tracks concurrent resource accesses, and HDFS
avoids longstanding locks on files. The resulting median job
performance overhead comes to a mere 66ms total extra
job time per IFG node or edge. This low impact is due to
HDFS’s aggressive distribution of the IFG over many cloud
nodes, and the generally small number of nodes reachable
from any given node (since long edge chains only result
from separate jobs simultaneously reading and writing the
same file—usually in error).

Our second experiment (Fig. 6) examines performance
under more practical conditions that involve some common,
pre-existing MapReduce programs used in the field. We
choose two classic MapReduce jobs: (1) k-means clustering,
which partitions data points into 2 clusters, and (2) sorting,

0

10

20

30

40

50

60

Chaotic
K-means Clustering

Sorting

A
v
g.

E
x
ec

.
T

im
e

p
er

jo
b

(s
ec

)

Different Mapper Jobs

With SilverLine
Without SilverLine

Figure 6. Comparing performance of different MapReduce jobs

which sorts data provided by the input files using a standard
merge-sort algorithm. These were submitted with randomly
generated input files to Hadoop as 200 jobs from 30 simulated
users. The experiments were performed both with and without
SilverLine (with the results shown as pairs of bars in the
figure) in order to assess SilverLine’s performance overhead
relative to standard Hadoop. We also applied the same
experiment to the chaotic jobs.

Figure 6 shows that SilverLine introduces 4.39%, 5.88%
and 5.04% performance overhead, respectively, for chaotic,
k-means clustering, and sorting jobs, respectively. The
experiment also demonstrates the applicability of our system
to existing cloud job codes. No change to the job binaries
was required; they worked seamlessly on Hadoop after
instrumentation by SilverLine. Aspect-weaving also yielded
negligible size increases to job binaries. (The size increases
were masked by padding in the binary format, so are too
small to be measurable.)

VI. CONCLUSION

SilverLine is the first Hadoop cloud information flow
enforcement framework whose implementation makes no
alteration to the cloud infrastructure, and that is completely
transparent to Java job authors—requiring no change to
the job computation language (Java bytecode) or its API.
This makes it easily implementable and adaptable to real-
world clouds, since the cloud and the enforcement can
be maintained completely orthogonally. It achieves this by
realizing the enforcement as an IRM that is in-lined into
untrusted binary jobs at the cloud’s edge. The resulting
jobs self-monitor their accesses and collectively maintain
a distributed information flow graph within the cloud, which
tracks the history of flows and prohibits policy-violating
operations. Well-established IRM design methodology was
applied to secure the IRM against attacks from the code into
which it is in-lined, protecting it even from threats that know
all the IRM’s implementation details.

We demonstrated the feasibility of SilverLine by im-
plementing and evaluating it in a real cloud architecture:
Hadoop MapReduce. The popular AOP language AspectJ is

leveraged to elegantly formulate and instantiate IRMs within
the Hadoop architecture. Experimental results illustrate the
efficiency and scalability of SilverLine with low overhead.
Future work should consider extending the approach to
workflow computations expressed in other languages, such
as native code. Native code IRMs [59], [60] are a natural
foundation for such extensions.

Our present prototype is limited to enforcement of manda-
tory access controls of explicit information flows between
principals. Future work should examine the applicability of
our approach to enforce larger, more expressive policy classes
and policy languages. There are also many engineering
challenges that should be investigated to optimize the
approach for large-scale clouds. A prominent one is the
question of how best to store and maintain global security
state (e.g., the IFG) within the cloud without introducing
bottlenecks for massive parallelism.

Past work has shown that the security of IRM frameworks
can be strengthened by introducing a formal verification
step that removes the significant complexity of the binary-
rewriter from the trusted computing base [29], [33], [35]. The
verification step applies type-checking, contract-checking, or
model-checking to the rewritten job code to automatically
and independently certify that the self-monitoring job is
incapable of violating the security policy when executed (i.e.,
the IRM precludes all possible violations). The verification
algorithm’s implementation is typically much smaller than the
code-rewriting infrastructure (because it performs no code-
generation and conservatively rejects programs whose safety
is unclear), and is therefore viewed as more trustworthy. In
future work we plan to investigate the feasibility of such
verification for validating IRMs in the cloud.

ACKNOWLEDGMENTS

The authors thank our shepherd, David Eyers, as well as
the anonymous reviewers for their expert feedback, which
greatly improved the paper. The research reported herein was
supported in part by NSF grant CNS-1228198 and AFOSR
grant FA9550-12-1-0044.

REFERENCES

[1] Amazon, “Amazon elastic compute cloud (Amazon EC2),”
http://aws.amazon.com/ec2, 2013.

[2] Microsoft, “Windows Azure: Cloud computing,” http://www.
windowsazure.com, 2013.

[3] Google, “Google App Engine,” https://developers.google.com/
appengine, 2013.

[4] Apache, “Apache Hadoop,” http://hadoop.apache.org, 2013.
[5] C. Coleman, “Cloud conversion saves GSA millions,”

http://gsablogs.gsa.gov/gsablog/2012/09/25/cloud-conversion-
saves-gsa-millions, Sep. 2012.

[6] J. Wilcox, “Gartner: Most CIOs have their heads in the
clouds,” http://betanews.com/2011/01/24/gartner-most-cios-
have-their-heads-in-the-clouds, 2010.

[7] D. M. Smith, Y. V. Natis, G. Petri, T. J. Bittman, E. Knipp,
P. Malinverno, and J. Feiman, “Predicts 2012: Cloud computing
is becoming a reality,” Gartner, Tech. Rep. G00226103, Dec.
2011.

[8] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina, “Controlling data in the cloud: Outsourcing
computation without outsourcing control,” in Proc. ACM
Workshop Cloud Computing Security, 2009, pp. 85–90.

[9] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted
cloud computing,” in Proc. Conf. Hot Topics in Cloud Computing
(HotCloud), 2009.

[10] S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust
management for Hadoop,” in Proc. IEEE Int. Conf. Cloud
Computing (CLOUD), 2012, pp. 494–501.

[11] H. Takabi, J. Joshi, and G.-J. Ahn, “Security and privacy
challenges in cloud computing environments,” IEEE Security &
Privacy, vol. 8, no. 6, pp. 24–31, 2010.

[12] S. Pearson, “Taking account of privacy when designing
cloud computing services,” in Proc. ICSE Workshop Software
Engineering Challenges of Cloud Computing, 2009, pp. 44–52.

[13] S. M. Khan and K. W. Hamlen, “AnonymousCloud: A data
ownership privacy provider framework in cloud computing,” in
Proc. IEEE Int. Conf. Trust, Security and Privacy in Computing
and Communications (TrustCom), 2012, pp. 170–176.

[14] S. Nepal, C. Shiping, Y. Jinhui, and D. Thilakanathan, “DIaaS:
Data integrity as a service in the cloud,” in Proc. IEEE Int.
Conf. Cloud Computing (CLOUD), 2011, pp. 308–315.

[15] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability
and integrity layer for cloud storage,” in Proc. ACM Conf.
Computer and Communications Security (CCS), 2009, pp.
187–198.

[16] K. Fukushima, S. Kiyomoto, and Y. Miyake, “Towards secure
cloud computing architecture: A solution based on software
protection mechanism,” J. Internet Services and Information
Security (JISIS), vol. 1, no. 1, pp. 4–17, 2011.

[17] S. M. Khan and K. W. Hamlen, “Computation certification as a
service in the cloud,” in Proc. IEEE/ACM Int. Sym. Cluster,
Cloud and Grid Computing (CCGrid), 2013, pp. 434–441.

[18] L. M. Vaquero, L. Rodero-Merino, and D. Morán, “Locking the
sky: A survey on IaaS cloud security,” Computing, vol. 91,
no. 1, pp. 93–118, 2011.

[19] Ponemon Institute, “The risk of regulated data on mobile devices
& in the cloud,” Ponemon Institute, Tech. Rep., Jun. 2013.

[20] U.S. Department of Health & Human Services, “Health
information privacy,” http://www.hhs.gov/ocr/privacy/index.html,
2013.

[21] J. Bellessa, E. Kroske, R. Farivar, M. Montanari, K. Larson, and
R. H. Campbell, “NetODESSA: Dynamic policy enforcement
in cloud networks,” in Proc. IEEE Sym. Reliable Distributed
Systems Workshops (SRDSW), 2011, pp. 57–61.

[22] J. Bacon, D. Evans, D. M. Eyers, M. Migliavacca, P. Pietzuch,
and B. Shand, “Enforcing end-to-end application security in the
cloud (big ideas paper),” in Proc. ACM/IFIP/USENIX Int. Conf.
Middleware, 2010, pp. 293–312.

[23] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce,” in Proc. USENIX
Conf. Networked Systems Design and Implementation (NSDI),
2010.

http://aws.amazon.com/ec2
http://www.windowsazure.com
http://www.windowsazure.com
https://developers.google.com/appengine
https://developers.google.com/appengine
http://hadoop.apache.org
http://gsablogs.gsa.gov/gsablog/2012/09/25/cloud-conversion-saves-gsa-millions
http://gsablogs.gsa.gov/gsablog/2012/09/25/cloud-conversion-saves-gsa-millions
http://betanews.com/2011/01/24/gartner-most-cios-have-their-heads-in-the-clouds
http://betanews.com/2011/01/24/gartner-most-cios-have-their-heads-in-the-clouds
http://www.hhs.gov/ocr/privacy/index.html

[24] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed
access control in clouds,” in Proc. IEEE Sym. Security &
Privacy (S&P), 2011, pp. 91–98.

[25] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, and I. Stoica,
“CloudPolice: Taking access control out of the network,” in Proc.
ACM SIGCOMM Workshop Hot Topics in Networks (Hotnets),
2010.

[26] F. B. Schneider, “Enforceable security policies,” ACM Trans.
Information and Systems Security (TISSEC), vol. 3, no. 1, pp.
30–50, 2000.

[27] L. Bauer, J. Ligatti, and D. Walker, “Composing security policies
with polymer,” in Proc. ACM Conf. Programming Language
Design and Implementation (PLDI), 2005, pp. 305–314.

[28] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability
classes for enforcement mechanisms,” ACM Trans. Programming
Languages And Systems (TOPLAS), vol. 28, no. 1, pp. 175–205,
2006.

[29] ——, “Certified in-lined reference monitoring on .NET,” in
Proc. ACM SIGPLAN Workshop Programming Languages and
Analysis for Security (PLAS), 2006, pp. 7–16.

[30] J. A. Ligatti, “Policy enforcement via program monitoring,”
Ph.D. dissertation, Princeton University, Jun. 2006.

[31] K. W. Hamlen, “Security policy enforcement by automated
program-rewriting,” Ph.D. dissertation, Cornell University, Ithaca,
New York, Aug. 2006.

[32] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined reference
monitors,” in Proc. ACM SIGPLAN Workshop Programming
Languages and Analysis for Security (PLAS), 2008, pp. 11–20.

[33] I. Aktug, M. Dam, and D. Gurov, “Provably correct runtime
monitoring,” in Proc. Int. Sym. Formal Methods (FM), 2008, pp.
262–277.

[34] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement
of nonsafety policies,” ACM Trans. Information and System
Security (TISSEC), vol. 12, no. 3, 2009.

[35] K. W. Hamlen, M. M. Jones, and M. Sridhar, “Aspect-oriented
runtime monitor certification,” in Proc. Int. Conf. Tools and
Algorithms for Construction and Analysis Systems (TACAS),
2012, pp. 126–140.

[36] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
Proc. European Conf. Object-Oriented Programming (ECOOP),
1997, pp. 220–242.

[37] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of AspectJ,” in Proc.
European Conf. Object-Oriented Programming (ECOOP), 2001,
pp. 327–353.

[38] United States National Security Agency (NSA), “SELinux,”
http://selinuxproject.org.

[39] M. B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and
D. Porter, “Cloudtracker: Cloud-wide policy enforcement with
real-time VM introspection,” Poster at IEEE Sym. Security &
Privacy (S&P), 2013.

[40] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A
secure environment for untrusted helper applications confining
the wily hacker,” in Proc. USENIX Security Sym., 1996.

[41] A. Acharya and M. Raje, “MAPbox: Using parameterized
behavior classes to confine untrusted applications,” in Proc.
USENIX Security Sym., 2000.

[42] S. N. Chari and P.-C. Cheng, “BlueBoX: A policy-driven,
host-based intrusion detection system,” ACM Trans. Information
and Systems Security, vol. 6, no. 2, pp. 173–200, 2003.

[43] D. Muthukumaran, T. Jaeger, and T. Ganapathy, “Leveraging
“choice” to automate authorization hook placement,” in Proc.
ACM Conf. Computer and Communications Security (CCS),
2012, pp. 145–156.

[44] D. King, S. Jha, D. Muthukumaran, T. Jaeger, S. Jha, and S. A.
Seshia, “Automating security mediation placement,” in Proc.
European Conf. Programming Languages and Systems (ESOP),
2010, pp. 327–344.

[45] Ú. Erlingsson and F. B. Schneider, “SASI enforcement of
security policies: A retrospective,” in Proc. New Security
Paradigms Workshop (NSPW), 1999, pp. 87–95.

[46] F. Chen and G. Roşu, “Java-MOP: A monitoring oriented
programming environment for Java,” in Proc. Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), 2005, pp. 546–550.

[47] K. W. Hamlen, L. Kagal, and M. Kantarcioglu, “Policy
enforcement framework for cloud data management,” IEEE
Data Engineering Bulletin (DEB), Special Issue on Security and
Privacy in Cloud Computing, vol. 35, no. 4, pp. 39–45, 2012.

[48] SalesForce.com, “Sales Force,” http://www.salesforce.com, 2013.
[49] Google, “Google Apps,” http://www.google.com/enterprise/

apps/business, 2013.
[50] VMWare, “Cloud foundry,” http://en.wikipedia.org/wiki/Cloud

Foundry, 2013.
[51] A. Sabelfeld and A. C. Myers, “Language-based information-

flow security,” IEEE J. Selected Areas in Communications,
vol. 21, no. 1, pp. 5–19, 2003.

[52] M. Sun, G. Tan, J. Siefers, B. Zeng, and G. Morrisett, “Bringing
Java’s wild native world under control,” ACM Trans. Information
and System Security (TISSEC), vol. 16, no. 3, 2013.

[53] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications ACM (CACM),
vol. 51, no. 1, pp. 107–113, 2008.

[54] D. E. Bell and L. J. Lapadula, “Secure computer systems:
Mathematical foundations and model,” MITRE Corporation,
Tech. Rep. 2547, Vol. 1, 1973.

[55] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM (CACM), vol. 19, no. 5, pp.
236–243, 1976.

[56] R. S. Sandhu, “Lattice-based access control models,” IEEE
Computer, vol. 26, no. 11, pp. 9–19, 1993.

[57] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language
for enforcing user-defined security policies,” in Proc. IEEE Sym.
Security & Privacy (S&P), 2008, pp. 369–383.

[58] J. Mondal and A. Deshpande, “Managing large dynamic graphs
efficiently,” in Proc. ACM SIGMOD Int. Conf. Management of
Data (SIGMOD), 2012, pp. 145–156.

[59] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing
untusted code via compiler-agnostic binary rewriting,” in Proc.
Annual Computer Security Applications Conference (ACSAC),
2012, pp. 299–308.

[60] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula, “XFI: Software guards for system address spaces,” in
Proc. Sym. Operating Systems Design and Implementation
(OSDI), 2006, pp. 75–88.

http://selinuxproject.org
http://www.salesforce.com
http://www.google.com/enterprise/apps/business
http://www.google.com/enterprise/apps/business
http://en.wikipedia.org/wiki/Cloud_Foundry
http://en.wikipedia.org/wiki/Cloud_Foundry

	Introduction
	Related Work
	System Overview
	Cloud Structure
	Access and Information Flow Control
	Threat Model
	MapReduce Paradigm
	Policy Specifications and Flow Tracking
	In-lined Reference Monitor Design
	Architecture and Protocol

	Implementation
	Experimental Results
	Conclusion
	References

