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Abstract

We present a novel approach for the estimation of 3D-
motion directly from two images using the Radon trans-
form. We assume a similarity function defined on the cross-
product of two images which assigns a weight to all feature
pairs. This similarity function is integrated over all feature
pairs that satisfy the epipolar constraint. This integration
is equivalent to filtering the similarity function with a Dirac
function embedding the epipolar constraint. The result of
this convolution is a function of the five unknown motion pa-
rameters with maxima at the positions of compatible rigid
motions.

The breakthrough is in the realization that the Radon
transform is a filtering operator: If we assume that im-
ages are defined on spheres and the epipolar constraint is
a group action of two rotations on two spheres, then the
Radon transform is a convolution/correlation integral. We
propose a new algorithm to compute this integral from the
spherical harmonics of the similarity and Dirac functions.
The resulting resolution in the motion space depends on
the bandwidth we keep from the spherical transform. The
strength of the algorithm is in avoiding a commitment to
correspondences, thus being robust to erroneous feature de-
tection, outliers, and multiple motions. The algorithm has
been tested in sequences of real omnidirectional images and
it outperforms correspondence-based structure from mo-
tion.

1 Introduction

Estimation of 3D-motion from two calibrated views has
been exhaustively studied in the case where optical flow
or feature correspondences are given and the scene is
rigid. Algorithms working over multiple frames yield high-
quality motion trajectories and reconstructions when fea-
ture matches are cleaned through outlier rejection and mo-
tions independent of the camera are excluded. These outlier
rejection and segmentation steps are subject to the funda-
mental problem of data association and estimation: to es-
timate 3D motion we must consider only correspondences
induced by that motion, but to segment we must know the

correspondences. Outlier rejection and independent motion
segmentation pose severe practical limitations to the wide
application of structure from motion as a navigation tool,
visual GPS, or a camera tracker.

In this paper, we propose a novel approach for structure
from motion applicable in the presence of many outliers and
multiple motions. It is based on the naive principle that
an exhaustive search over all possible correspondence con-
figurations for all motion hypotheses would yield all 3D-
motions compatible with these two views. Such a search
is intractable when we use a large field of view in an arbi-
trary, possibly unstructured environment with thousands of
features.

The contribution of this paper is in the re-formulation of
such a Hough-reminiscent approach as a filtering problem:
Assuming a similarity function between any two features in
the first and second view, we convolve this function with
a kernel that checks the compatibility of a correspondence
pair with the epipolar constraint for a given motion hypothe-
sis. The resulting integral is a Radon transform known from
computer tomography where a material density is integrated
over a ray path. In our case, this path is the subset of the
cross product of all features that satisfies the epipolar con-
straint.

The question is: Can we efficiently compute this integral
avoiding the combinatorially infeasible summation over all
correspondences compatible with the epipolar constraint?
The answer is yes, because this is a convolution integral
and we can compute it through multiplication in the Fourier
domain. While we are familiar with convolution as an inner
product with a shifted kernel, here it is not obvious what
the domain is and what is shifted. Abstract harmonic anal-
ysis tells us that convolutions can be generalized to other
domains on which groups (similar to shifts) act. In our case
the domain is the cross-product of two rotated spheres and
we will show that the acting group is a cross-product of rota-
tions: the first being the rotation of the rigid motion and the
ratio of the two having the translation direction as third col-
umn. As a matter of fact, this integral transform is called a
correlation in signal processing since it results in a function
of the motion parameters while in a convolution integral the
response would be on the same domain as the filtered func-
tion. After applying a modulation-like theorem to the spher-



ical Fourier transform, the final motion space is obtained
through a five dimensional inverse rotational Fourier trans-
form on the motion parameters. A 5D exhaustive search
finds the maxima corresponding to rigid motions. The num-
ber of spherical harmonic coefficients preserved determines
the resolution of the motion space. Obviously, the approach
can work on arbitrarily large motions.

We have built an end-to-end system, from images to mo-
tion parameters. We extracted hundreds of SIFT features
[12] for which we defined their similarity function propor-
tional to the Euclidean norm of the attribute vectors and we
computed the spherical harmonics of the similarity function
as the input to the correlation integral. The only thresh-
old of the approach is the cut-off frequency of the harmonic
coefficients which determines the resolution of the motion
space. This “low-pass” operation has the appealing prop-
erty of quantizing the motion space and allowing rough but
faster estimates. In the experiments, we use as input hemi-
spherical omnidirectional images. We should point out to
the reader that this is not an omnidirectional structure from
motion approach. A projective plane can always be mapped
to the sphere and the field of view has to be large any-
way for any structure from motion algorithm to succeed
[15, 2]. The results on real sequences outperform Lowe’s
correspondence algorithm [12] followed by least squares es-
timation of the Essential matrix.

Before continuing with the related work we summarize
the main contributions of this paper:

• We propose a new integral transform that maps a sim-
ilarity function between two calibrated images to the
strength of a motion hypothesis without assuming any
correspondences.

• We show that this Radon transform can be written as
a convolution/correlation integral which can be com-
puted from the spherical harmonic coefficients of the
image similarity function.

• In real experiments, we compare our algorithm to a
correspondence-based approach and show its superi-
ority in the presence of hundreds of outliers. In simu-
lated experiments, we show how multiple motions are
detected as maxima of the strength function in motion
space.

The approach paves the way for several other motion es-
timation problems where the constraints can be written as
convolution kernels. Currently, the main drawback is the
computation time which allows the algorithm to be applied
only “after action.”

In the next subsection we will compare to related ap-
proaches. Then we will motivate the Radon transform by
explaining how the well-known Hough line detection can
be written as a Radon integral [3]. In section 2 we elaborate

on the Radon transform which is known in harmonic anal-
ysis to be written as a convolution. We extend this to incor-
porate the epipolar geometry and we show how to compute
the Radon transform in the frequency domain. We describe
the algorithm in a form that can be easily replicated and we
finish with experiments.

1.1 Related Work

Structure from motion without correspondences has a his-
tory since the 80’s. Most of the approaches, calleddirect
motion computation, assumed a temporally dense sequence
so that computation of spatio-temporal derivatives is fea-
sible. When assuming the projection of a plane [14, 18],
the eight optical flow parameters can be estimated directly
from the brightness change constraint equation. When no
assumption about structure is made, several computation
schemes have been proposed [8]. The main constraint used
is depth-positiveness and usually a variational problem is
solved where depth is the unknown function over the image.
Direct approaches based on normal optical flow or even just
its direction have been thoroughly studied by Fermuller et
al. [6] who also established formal conditions for ambigu-
ity and instability of solutions. Jin et al. [9] have applied
a direct method for simultaneous matching of regions and
3D-motion estimation over time by exploiting photometric
constraints.

Among the approaches which do not use spatiotemporal
derivatives and thus can afford any amount of motion, the
closest to ours is the ones by Dellaert et al. [4], Antone
and Teller [1], and Roy and Cox [16]. In [4], all possible
assignments of 3D-points to image features are considered
and the correct correspondence is established through an it-
erative expectation-maximization scheme where the E-step
computes assignment weights and the M-step structure and
motion parameters. In [1], images are already de-rotated
using vanishing point correspondences and the translation
is initialized via a Hough transform over all possible fea-
ture correspondences. Antone and Teller are the only ones
who use the epipolar constraint and address the complexity
of such a Hough transform. They propose ways to prune
the search space through feature similarity as well as lim-
its in the parameter space. In [16], an exhaustive search in
the 5D parameter space is performed where for each mo-
tion hypothesis a cost function between points in the first
image and segments of the corresponding epipolar line in
the second image is computed. Our approach is also related
to the learning of the epipolar geometry [20] though ours
is not data-driven but requires a calibrated camera. Our ap-
proach is superior to [4] and [1] because it is not based on
an iterative process which can possibly run through all as-
signments. While we use an exhaustive search in parameter
space, the computation of the associated “likelihood” is ac-



complished without iteration but directly from the spherical
harmonic coefficients. Our approach is superior to Roy and
Cox only in the efficient computation of each motion hy-
pothesis. We have not described here work on motion seg-
mentation given correspondences. The reader is referred to
the application of normalized cuts [17] and the generalized
PCA [19] among tens of other papers on the subject.

2 Radon transform

We begin with an introduction to the traditional Hough
transform as it applies to finding lines in images. In this
setting the data points are image pixels and the discrete pa-
rameter space is a set of lines. Conceptually, for each im-
age pixel, the Hough transform contributes a vote to all the
lines it lies along. This vote is weighted by the likelihood
that the point under consideration is indeed an edge pixel
(e.g. the gradient magnitude). Equivalently, we could de-
scribe this computation as a traversal through the parameter
space instead of the data space. The vote total for each line
can be generated by counting the number of image pixels
the line goes through, weighted by the likelihood that each
pixel is an edge pixel. In the continuous case, this compu-
tation could be written as the following integral

G(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)δ(ρ − x cos θ − y sin θ)dxdy

Hereg(x, y) is a weighting function which could store the
gradient lengths of each pixel andδ is a soft characteristic
function which measures how close the edge pixel(x, y)
is to the line given by(ρ, θ). This integral transformation
from data space to parameter space is often referred to as
the Radon transform. We would like to use similar intuition
to formulate a transform which will identify the unknown
motion parameters.

Consider a camera moving rigidly in space. Assuming
the intrinsic calibration parameters of the camera are known
(meaning we can associate with each image pixel a ray in
space), we can assume that the camera model is spherical
perspective projection. This is useful since many single-
viewpoint camera systems ranging from traditional CCD
cameras to fish-eye lenses and even omnidirectional cam-
eras can be treated with this spherical projection model. In
this setting, pointsP ∈ R

3 in the world project to image
pointsp ∈ S

2, wherep = P/||P ||. If a camera under-
goes a rigid motion described by(R, T ) ∈ SE(3)(R ∈
SO(3), T ∈ R

3), it is well known that the projectionsp and
q obey the epipolar constraint:

(Rp × q)T t = 0 (1)

If we were to follow the blueprint of the integral transform
described earlier, we would define our parameter space to be

Figure 1:Concept: Instead of searching for corresponding points
between images, we considerall feature pairs. The motion which
is satisfied by the largest subset of feature pairs (weighted by a
similarity measure) is considered to be the true camera motion.
In the example above a weighting could be generated from the
similarity between local blob structure

the group of all possible rigid camera motions and our data
space to be the set of all point pairs between two images.
Our integral transform would look like

G(R, t) =

Z
p∈S2

Z
q∈S2

g(p, q)∆(Rp, q, t)dpdq (2)

Here the soft characteristic function∆(Rp, q, t) = δ(Rp×
q)T t), measures how close the feature pair (p, q) comes to
satisfying the motion constraint (1), andg(p, q) is a mea-
sure of how likely the pointsp, q are the projections of the
same scene point. For each motion given by(R, t), the in-
tegral (2) counts the number of point pairs which satisfy the
motion constraint, weighted by the likelihood that the point
pair represents the same scene point (see figure 1). Take a
moment to imagine a discretized evaluation of Radon the in-
tegral. Assuming an image hasn pixels, the number of pos-
sible point pairs considered would ben2, of which clearly
no more thann pairs can represent true correspondences.
With such a miniscule percentage of inlying point pairs, it is
essential that we construct a discriminating weighting func-
tion g(p, q). In our setting it is clear a simple image-based
neighborhood similarity will not suffice. Instead of using
intensity information directly, we perform feature extrac-
tion in the image. Thus, instead of considering all the pixel
locations in an image, we only use the positions where fea-
tures can been detected. We have chosen to use the popular
SIFT features [12], which histogram neighborhood gradient
orientations at peaks and valleys of difference-of-gaussians.
These histograms typically make up a128-dimensional vec-
tor, which allows us to create a very simple weighting func-
tion based on the Euclidean distance between two such vec-
tors:

g(p, q) = e−||p−q||2 (3)

The two functionsg, ∆ have now been concretely defined.



We could generate a solution to the ego-motion problem by
computingG(R, t) directly. Computationally, if we assume
the number of samples in each dimension of our parameter
space is N, and the number of features identified in each im-
age is M, then the complexity of this direct approach would
be on the order ofO(N5M2). This is an unacceptable load
for almost any practical application. For a rigorous look at
the combinatorics of this problem, see the Appendix of [1].
In the following sections we will demonstrate an efficient
algorithm to generate the values ofG(R, t).

3 Motion estimation as correlation

A cursory glance at our formulation ofG(R, t) reveals
g(p, q) is independent of the motion. Thus we can focus
our attention on∆. So far we have identified camera mo-
tions with anR ∈ SO(3), and a unit vectort. Sincet ∈ S

2,
we can representt with a rotation so thatt = Rte3, where
e3 is the standard Euclidean basis vector associated with the
Z axis. This allows us to parameterize the space of camera
motions with a rotation pair(R, Rt) ∈ SO(3) × SO(3).
∆(Rp, q, t) can now be written as

∆(Rp, q, Rt) = δ((Rp × q)T Rte3)
= δ((RT

t Rp × RT
t q)T e3) (4)

We will write Rc = RT Rt for the composite rotation em-
bedding the rotational and translational terms. We have con-
veniently written∆ in the form of (4) to highlight it as a
function defined on the spaceS

2 × S
2:

∆(RT
c p, RT

t q) = δ((RT
c p × RT

t q)T e3)

In this setting, the canonical camera motion, defined by
Rc = Rt = I, is represented by∆(p, q) = ((p × q)T e3),
which represents a translation along the Z axis and a rota-
tion of either0◦ or 180◦ about the Z axis.

Define the rotation of spherical functions with the op-
eratorΛ(R1,R2)f(p, q) ≡ f(RT

1 p, RT
2 q). We see that the

∆ for any camera motion(Rc, Rt) can be generated from
the rotation of the canonical∆ : Λ(Rc,Rt)∆(p, q) =
∆(RT

c p, RT
t q). Revisiting our transform (2), we can write

G(Rc, Rt) =
∫

p

∫
q

g(p, q)Λ(Rc,Rt)∆(p, q)dpdq (5)

Instead of recomputing∆ for every motion, we only need
to understand how the canonical∆ rotates. In the follow-
ing section, we will use this crucial fact to explore a spec-
tral correlation technique which will enable us to compute
G(Rc, Rt) directly without traversing the space of all pos-
sible camera motions.

4 Harmonic analysis

The inner product computed in (5) measures the correlation
between two functionsg, ∆ ∈ L2(S2 × S

2). Remember
that g is a function on the set of feature pairs and∆ em-
beds the epipolar constraint. In some sense we are comput-
ing the overlap or intersection between point pairs ing with
epipolar great circles in∆. In fact, we are searching for
the rotation pair which maximizes this overlap. The gen-
eral problem of signal correlation has been approached suc-
cessfully in other domains. The convolution properties of
functions on various groups and homogeneous spaces have
shown that it is often easier to compute the spectral com-
ponents of a correlation function likeG(Rc, Rt) than it is
to generate the function samples directly in the spatial do-
main. In fact, to get a clearer understanding of how we can
compute our integral in such a fashion, we can explore the
restricted problem of maximizing the correlation between
two functions defined on the unit sphereS

2. In this setting
we will compute

G(R) =
∫

f(p)ΛRh(p)dp, f, h ∈ L2(S2) (6)

by generating the spectral coefficients ofG(R). This ap-
proach naturally gives rise to three questions:(1) How can
we compute the Fourier transform off ∈ L2(S2)? (2) How
does the spectrum off change whenf undergoes a rota-
tion ΛRf? (3) How can we compute the Fourier transform
of G(R) efficiently using the answers to questions 1 and
2? To answer these questions we will present a minimal
introduction to spherical and rotational signal processing.
Readers are referred to [5] for a comprehensive exposition
of the spherical Fourier transform.

As the solution to the Laplacian restricted to the cir-
cle generates a basis for periodic functions on the line, the
spherical harmonic functionsY l

m form an orthonormal basis
for spherical functions. There exist(2l+1) such harmonics
for each degreel (m = −l . . . l), and they are defined as

Y l
m(p(θ, φ)) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P l

m(cos θ)eimφ

whereP l
m(cos (θ)) are associated Legendre polynomials.

This basis gives rise to the Spherical Fourier Transform
(SFT):

f(p) =
∑
l∈N

∑
|m|≤l

f̂ l
mY l

m(p) (7)

f̂ l
m =

∫
p

f(p)Y l
m(p)dp (8)

Two very important properties of the spherical harmonic
functions are their orthogonality and their relationship un-



der rotations:∫
p

Y l
m(p)Y n

k (p)dp = δlnδmk (9)

ΛRY l
m(p) =

∑
|k|≤l

Y l
k(p)U l

km(R) (10)

TheU l are the unitary matrix representations for the trans-
formation groupSO(3). This last relationship (10) is im-
portant because it helps answer our second question. We
will write f̂ l, Y l without the subscriptm to denote the vec-
tor of (2l+1) orders for a given degreel. With this notation
we can express the inverse SFT (7) for functions undergoing
a rotational shift as

ΛRf(p) =
∑

l

(ΛRY l(p))T f̂ l

=
∑

l

Y l(p)T U l(R)f̂ l (11)

As we just mentioned, the unitary matricesU l are the group
representations ofSO(3), so they form a basis for a Fourier
transform for functions defined on the rotation group:

f(R) =
∑

l

∑
|m,k|≤l

f̂ l
mkU l

mk(R) (12)

f̂ l
mk =

∫
R

f(R)U l
mk(R)dR (13)

The matrix elements ofU l are given as

U l
mk(R) = e−imαP l

mk(cosβ)e−ikγ , (14)

whereP l
mk are the generalized Legendre polynomials.

We now have the mechanisms in place to answer our
third question. Replacingf(p) and ΛRh(p) with their
Fourier transforms we have

G(R) =
∑

l

∑
|m,k|≤l

f̂ l
mĥl

kU l
mk(R) (15)

From the orthogonality property∫
R

U l1
m1k1

(R)U l2
m2k2

(R)dR = δl1l2δm1m2δk1k2

the SO(3) Fourier transform ofG(R) is simply

Ĝl = (f̂ l)T ĥl (16)

In conjunction with the inverseSO(3) Fourier transform
(12), this last equation shows that we can obtain the samples
of G(R) directly from the pointwise multiplication of the
Fourier coefficients off andh.

As expected, this theory extends directly to functions on
S

2×S
2, where the “rotation” comes from the product group

I NPUT

1. A pair of spherical imagesI1, I2

OFFLINE

1. Compute the Fourier transform̂∆ of ∆ from (18).

ONLINE

1. Detect SIFT feature setsp, q from imagesI1, I2.

2. From the cross product of the feature sets generate the
similarity functiong.

3. Compute the Fourier transform̂g of g from (18).

4. Generate the 5D coefficient spaceĜl1l2
m1m2k1−m2

from

ĝ and∆̂ as described in (19).

5. Using inverse Fourier transforms (12) obtain
G(Rc, Rt). Note: only a partial 2D inverse transform
is needed forRt = R(0, β, γ).

6. Locate(Rc, Rt) at the maxima ofG

7. Relative orientation between cameras isR = RtR
T
c .

8. Direction of translation isT = Rte3.

Figure 2: The full motion estimation algorithm.

SO(3) × SO(3). The Fourier transform for any function
f ∈ L2(S2 × S

2) is given as

f(p, q) =
∑

l1l2m1m2

f̂ l1l2
m1m2

Y l1
m1

(p)Y l2
m2

(q) (17)

f̂ l1l2
m1m2

=
∫

p

∫
q

f(p, q)Y l1
m1(p)Y l2

m2(q)dpdq (18)

The spectrum ofG(Rc, Rt) from (5) can be obtained from
the Fourier transforms ofg, ∆:

Ĝl1l2
m1m2k1k2

= f̂ l1l2
m1k1

∆̂l1l2
m2k2

(19)

Up to this point we have treated camera motions with
rotation pairs(Rc, Rt) ∈ SO(3) × SO(3). However, the
direction of translation obtained fromt = Rte3 is inde-
pendent of the first applied rotation fromRt, so we fix
Rt = R(0, β, γ). In effect, the rotationRt is explicitly a
two-parameter rotation. This characteristic is reflected in
our formulation sinceĜ is nonzero only ifm2 = −k2.
We are only interested in the coefficientŝGl1l2

m1m2,k1,−m2
,

which constitute the five-dimensional Fourier space of our
camera motions. Thus, the resulting inverse Fourier trans-
form required to obtain the samples ofG is also only five
dimensional. A summary of the full ego-motion estimation
algorithm is presented in figure (2).

5 Experiments

In this section we will present the results of the motion esti-
mation algorithm on real image sequences as well as a sim-
ulated result for detecting multiple motions in the scene.



Before presenting the results we will address some prac-
tical considerations regarding spherical image acquisition
and discrete Fourier transforms.

5.1 Spherical image acquisition

One of the benefits of choosing to model our camera with a
spherical perspective projection is that it enables us to unite
a number of real single-viewpoint camera systems. The
projection model of a central catadioptric system is equiva-
lent to a spherical projection followed by a projection onto
the plane [7]. If calibrated, such a sensor enables us to
interpolate spherical perspective images. Our system con-
sisted of a Canon Powershot G2 digital camera fastened to
a parabolic mirror attachment from RemoteRealityTM[13].
The mirror’s field-of-view is 212◦ so the camera captures
slightly more than a hemisphere of information. The im-
ages from this system are mapped to a uniformly sampled
polar (θ − φ) grid. Figure (3) shows a sample catadioptric
image obtained from a parabolic mirror and its correspond-
ing projection onto the sphere.

Figure 3:Top Left: a parabolic catadioptric image. Bottom: the
corresponding spherical image on a uniformly sampled polar grid.
Top Right: the spherical image as it would appear on the surface
of the sphere

5.2 Discrete Fourier transforms

Until now we have only discussed the spherical andSO(3)
Fourier transforms in regards to continuous functions.
However, our spherical images and Radon spaceG(Rc, Rt)
are discrete functions. In order to compute the SFT of
a spherical image residing on a uniformly sampled po-
lar grid, we can use a fastO(L2log2L) algorithm devel-
oped by Driscoll and Healy [5], whereL is the bandlimit
of the signal being transformed. A similar separation-of-
variables approach exists for a fastSO(3) Fourier transform
in O(L3log2L) [11]. A useful C implementation for both

routines is freely available from [10]. Our implementation
for the full algorithm is based loosely on these routines and
can be downloaded from the author’s website [].

5.3 Results

We proceed to show experimental results of our algorithm
tested on a sequence of real omnidirectional images. For our
tests, we assumed a function bandwidth ofL = 32, which
left us with a spatial resolution of2L = 64 samples in each
of the five dimensions of our motion space. For a compar-
ison of our result to an existing ego-motion technique, we
chose a traditional Essential matrix estimation which em-
beds the same epipolar constraint we have exploited in our
Radon computation. SIFT features are matched to provide
correspondences [12], and the well-known eight-point algo-
rithm is used to estimate the Essential matrix, from which
the rotation and translational terms can be decoupled eas-
ily. We begin with a pure translational sequence of images.
By fixing and sliding our camera along a rigid beam, we
were able to generate two sequences of translational motion
along the X and Z axes of the camera frame. We ran our mo-
tion estimation algorithm, along with the Essential matrix
computation, on each pair of consecutive images. By fix-
ing the magnitude of motion between each frame, we were
able to plot the estimated camera trajectory in figure (4).
Although both algorithms found the solution to be approx-
imately in line with the X axis, the Essential matrix com-
putation was significantly further from the observed ground
truth motion. Also notice in the figure that the translational
slice shown depicts a peak atRt(0, π

2 , π)e3 = −X . Al-
though it is clear that translation along both±X will sat-
isfy the epipolar constraint, what may be surprising is that
there is not also a peak at+X . This happens because our
motion space is represented with(Rc, Rt), and sinceRc

is a composite rotation of both rotational and translational
terms,(Rc, Rt) and (Rc,−Rt) do not represent the same
motion.

A similar experiment was performed with the camera
moving along the Z axis. The motion was recovered from
pairs of consecutive images, with the estimated camera path
shown in figure (5). Once again, our Radon estimation out-
performed the Essential matrix estimation, but this time the
difference is marked. The feature tracker is unable to de-
tect erroneous matches which unduly effect the estimation.
This result shows the value of the Radon computation for
tasks like robot localization. Even slightly poor estimation
results can accumulate to cause drift in the cameras per-
ceived trajectory over time, as is exhibited by the Essential
matrix estimation. Our Radon transform, however, was not
affected by a large number of outliers.

In order to test both rotations and translations while
recording ground-truth observations, we positioned the
camera at the outside edge of a turntable. This allowed us to



capture images from the camera moving around in a circle.
There was a45◦ rotation between each of the images in this
sequence, and the estimated camera positions are shown in
figure (6). Once again there was much less error accumula-
tion in the Radon’s estimation, and the bottom of the figure
also shows how close the Radon came to coinciding with
recorded ground-truth motions.
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Figure 4: Top: the estimated trajectory of the camera. In blue
(light) is the Radon estimation, in red (dark) is the Essential ma-
trix computation, and the yellow circle marks the starting position.
Bottom Left: An Z-Y slice showing the deviation of the estimated
positions from the X axis. Bottom Right: theRt slice of the grid
G where the maxima was found.

5.4 Multiple motions

One aspect of our algorithm we have only briefly touched
upon is the significance of treating feature pairs indepen-
dently. This is critical because while outlying feature pairs
may contribute to incorrect solutions, they cannot detract
from or perturb the value of the integral at the position of
the correct solution. The effect, besides making our algo-
rithm robust to outliers, is that if there are multiple moving
objects in a scene, the feature matches from the individual
objects will contribute to their respective motions. Thus,
our algorithm, without having to be altered, can detect mul-
tiple motions of moving objects in a scene.

We simulate two moving objects in an otherwise static
scene to test our algorithm for detecting multiple motions.
Figure (7) shows a caricature of the types of scenes we con-
sidered for this simulation. The two objects each have 150
features. These features project onto the spherical image
as gaussian blobs. A simple sum-of-squared differencing
is used to generate the similarity functiong. We incremen-
tally deform the features by randomly replacing theσ with a
new one from the existing pool (this simulates introducing
erroneous feature matches while simultaneously reducing
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Figure 5: Left: the estimated trajectory of the camera. In blue
(light) is the Radon estimation, in red (dark) is the Essential ma-
trix computation, and the yellow circle marks the starting position.
Top Right: An X-Y slice showing the deviation of the estimated
positions from the Z axis. Bottom Right: theRt slice of the gridG
where the maxima was found (notice the peak is locate atθ ≈ 0,
which corresponds to the correct translation along Z).

correct matches). Figure (7) shows on the bottom one of
the two translational slices of the motion space. Although
both motions are correctly estimated when20% of the fea-
tures are deformed, the peaks are clearly disintegrated by
the time30% of the features have been affected.

6 Conclusion

We have presented a novel approach for the computation of
3D-motion from two views without correspondences. It is
based on a 5D-search in the motion parameter space. Given
today’s computing power it is not the search but rather
the combinatorial explosion of all possible correspondences
that is intractable. Instead of traversing all possible corre-
spondence assignments, our method computes for each mo-
tion hypothesis a correlation function which considers only
feature pairs satisfying the epipolar constraint. Such a func-
tion can be written as a Radon-transform which is known
to become a convolution integral if the integration path can
be written as a group action over the domain of integra-
tion. In this case, the integral can be computed as an inner-
product in the Fourier domain. The bandwidth limitation
affects directly the resolution of the parameter space and it
is indeed our future work to establish a “space localization”
using wavelets. Such a localization in the parameter space
would also allow a constrained search when prior distribu-
tions of motion are established causally through time. In
that case, we could also achieve near real-time performance
which right now is impossible in all correspondence-less
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Figure 6: Path of a camera moving along a circular path. Top
Left: In blue (light) is the Radon estimation, in red (dark) is the
Essential matrix computation. Top Right: An X-Z slice showing
the deviation from the plane of the turntable. Bottom Left: An
overhead view. The yellow circles are the observed ground truth
positions of the camera. Bottom Right: four images from the se-
quence. Even though the dominant motion is rotation, the transla-
tion is still effectively detected by the Radon.

approaches. Naturally, our approach can handle both out-
liers and multiple rigid motions. It can be easily cast in a
maximum likelihood framework. In experiments our algo-
rithm outperforms a state of the art matcher and subsequent
least-squares computation of the essential matrix. Our ap-
proach can be modified to incorporate a normalization of
the epipolar constraint that removes the bias in translation
direction.
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